CN101046111A - 吸音面板及吸音面板的制造方法 - Google Patents

吸音面板及吸音面板的制造方法 Download PDF

Info

Publication number
CN101046111A
CN101046111A CNA2007100914281A CN200710091428A CN101046111A CN 101046111 A CN101046111 A CN 101046111A CN A2007100914281 A CNA2007100914281 A CN A2007100914281A CN 200710091428 A CN200710091428 A CN 200710091428A CN 101046111 A CN101046111 A CN 101046111A
Authority
CN
China
Prior art keywords
absorbing
panel
suond
base material
decorative plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100914281A
Other languages
English (en)
Other versions
CN101046111B (zh
Inventor
中村康敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Publication of CN101046111A publication Critical patent/CN101046111A/zh
Application granted granted Critical
Publication of CN101046111B publication Critical patent/CN101046111B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8461Solid slabs or blocks layered
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

一种设计自由度优良,并且制品间的最大吸音率的偏差也小的吸音面板及其制造方法,采用具有如下特征的吸音面板,将设有开口直径0.1mm以下或0.2mm以下的多个贯通孔(2b)的厚度0.02~0.5mm范围的多孔装饰板(2)、和配置于多孔装饰板(2)的背面(2a)侧的多孔性吸音基材(3)相互重合,构成面板主体(4),面板主体(4)的空气流动阻力值在0.1~1.0Pa的范围。

Description

吸音面板及吸音面板的制造方法
技术领域
本发明涉及吸音面板及吸音面板的制造方法。
本申请对2006年3月31日申请的特愿2006-097002号、及2007年1月9日申请的特愿2007-001186号主张优先权,在此援用其内容。
背景技术
目前,已知有将由多孔性板构成的吸音面板或多孔性板和多孔性吸音材料组合而成的吸音面板。特开平6-348281号公报中公开有如下吸音板,在板状材料上设置多个开口孔部,将与该开口孔部同一形状的金属多孔性吸音材料一体按压紧固于开口孔部。
另外,特许第3024525号公报中公开有如下金属板,由贯通孔均匀空开的金属板构成并降低声波反射率,以满足规定的条件。
再有,特许第2993370号公报中公开有如下吸音装饰板,在吸音基材上粘着装饰材料,在装饰材料上形成开口直径为0.05~0.5mm的多个微孔。
但是,所谓的吸音面板是指,由于作为建筑物等壁面材料使用的情况多,故不仅要求其吸音特性,而且要求吸音面板自身的美观性。
但是,特开平6-348281号公报中记载的吸音板如同文献中图8及图9所示,开口孔部的大小为可目视程度的大小,充填于该开口孔部的金属多孔性吸音材料为可识别的状态。因此,该吸音面板的外观由开口孔部的大小和金属多孔性吸音材料的外观大致决定,从而存在设计自由度低的问题。
另外,特许第3024525号公报中记载的金属板如同文献中表1~表8所示,贯通孔的半径为8~28mm,贯通孔的间隔也达到20~100mm程度的较大水平,且将贯通孔设定为可识别程度的大小。因此,该金属板的外观由贯通孔的半径和间隔大致决定,从而存在设计自由度低的问题。
进而特许2993370号公报中记载的吸音装饰板中,在装饰板上形成微孔时,由于使用脉冲激光加工机,从而其受装饰板材质的限制,在这一点上存在设计自由度低的问题。
另外,在特开平6-348281号公报或特许第2993370号公报中记载的将多孔性板和多孔性吸音材料组合而成的吸音板中,作为多孔性吸音材料,有使用玻璃棉或石棉等纤维类吸音材料的吸音板和使用将珠光体或白砂等粒状无机材料固化成形而成的粒状类吸音材料的吸音板。作为从其中选定为吸音板的构成材料的指标,采用空隙率的情况较多。但是,在纤维类吸音材料及粒状类吸音材料中,由于内部空隙形成方法不同,故空隙率和最大吸音率的关系不一定确定,即使以空隙率为指标选定多孔性吸音材料,也不一定能得到显示良好的最大吸音率的吸音板。另外,即使是相同的纤维类吸音材料,由于纤维的粗细及长度即使空隙率相同吸音率也可能不同,或者,即使是相同的粒状类吸音材料,由于构成的无机性粒子的大小或粘接剂的粘附方法,即使是相同的空隙率其吸音率也不同。即,即使为相同的空隙率,由于构成的部件的不同,从而空气流动的经路也不同,因此,空隙率和吸音率的关系不是确定的。
因此,即使是显示相同的空隙率的多孔性吸音材料,有时也会因构成的部件的状态而使最大吸音率产生偏差,且即使为同一构成的吸音板,有时在制品间其吸音特性也会产生偏差。
发明内容
本发明是鉴于上述情况而构成的,其目的在于,提供一种设计自由度优越并且制品间的最大吸音率的偏差小的吸音面板及其制造方法。
本发明者们对吸音面板的物理特性和最大吸音率的关系进行了刻意的研究,发现在将多孔性装饰板和多孔性吸音基材组合时,吸音面板的空气流动阻力值和最大吸音率之间有密切的关系,且发现在空气流动阻力值处于特定范围时显示优良的最大吸音率。
即,本发明提供一种吸音面板,其特征在于,将设有开口直径0.2mm以下或0.1mm以下的多个贯通孔的厚度0.02~0.5mm范围的多孔装饰板和配置于所述多孔装饰板背面侧的多孔性吸音基材相互重叠构成面板主体,所述面板主体的空气流动阻力值为0.1~1.0Pa的范围。
另外,本发明的吸音面板中,优选所述多孔性吸音基材的空气流动阻力为0.1~0.8Pa的范围。另外,本发明提供一种吸音面板,其特征在于,将设有开口直径0.2mm以下或0.1mm以下的多个贯通孔的厚度0.02~0.5mm范围的多孔装饰板和配置于所述多孔装饰板背面侧的加强基材相互重叠构成面板主体,所述面板主体的空气流动阻力值为0.1~1.0Pa的范围。
在本发明的吸音面板中,优选所述加强基材是蜂窝结构或冲孔金属。
进而在本发明的吸音面板中,优选所述多孔装饰板和所述多孔性吸音基材或所述增强基材拆装自如。
另外,本发明的吸音面板中,也可以在所述多孔性吸音基材或所述加强基材的背面侧设置背后空气层。
其次,本发明提供一种吸音面板的制造方法,其特征在于,包括:通过在厚度0.02mm~0.5mm范围的装饰板上设置开口直径0.2mm以下或0.1mm以下的多个贯通孔,形成多孔装饰板的工序;在所述多孔装饰板的背面侧重叠多孔性吸音基材或加强基材,构成面板主体,并且将所述面板主体的空气流动阻力值设定在0.1~1.0Pa的范围的工序。
另外,本发明的吸音面板的制造方法中,优选在形成所述多孔装饰板之前,对所述装饰板背面侧的相反侧的表面侧进行设计。
根据上述吸音面板,由于面板主体的空气流动阻力值为0.1~1.0Pa的范围,故其可显示60%以上的最大吸音率。
此外,由于使用与最大吸音率的相关度较高的空气流动阻力值作为指标代替空隙率,故吸音面板的最大吸音率在制品间不会产生偏差,可构成吸音特性稳定的吸音面板。
另外,由于贯通孔的开口直径较小,故不容易发现贯通孔,由此,可以不考虑贯通孔的存在而可自由地设计吸引面板的外观。
另外,根据上述的吸引面板,由于多孔性吸音基材的空气流动阻力值为0.1~0.8Pa的范围,故在构成面板主体时,面板主体的空气流动阻力值不会脱离0.1~1.0Pa的范围,从而能够发挥优良的吸音特性。
再有,在使用加强基材的情况下,可提高吸音面板的强度。
另外,根据上述的吸音面板,由于多孔装饰板和多孔性吸音基材或加强基材相互拆装自如,故可在设置吸音面板后,容易地只更换多孔装饰板,在对多孔装饰板实施设计等时,通过只更换多孔装饰板,可容易地就行设计的变更。
另外,根据上述的吸音面板的制造方法,在将多孔装饰板和多孔性吸音基材重合,构成面板主体时,将面板主体的空气流动阻力值设定在0.1~1.0Pa的范围,因此,可在吸音面板的制造阶段大致决定吸音面板的最大吸音率,且可制造制品间的吸音特性没有偏差的吸音面板。
再有,根据上述的吸音面板的制造方法,由于在形成多孔装饰板之前对装饰板实施设计,故为实施设计而使用的涂料等不会损坏多孔装饰板的贯通孔,可制造具备良好的吸音特性的吸音面板。
附图说明
图1是表示本发明实施方式的吸音面板之一例的剖面模式图;
图2是表示本发明实施方式的吸音面板的另一例的剖面模式图;
图3是表示空气流动电阻值的测定装置的模式图;
图4是表示测定试样No.1~25的吸音面板的垂直入射吸音特性时的最大吸音率和空气流动阻力值的关系的图表;
图5(a)(b)(c)(d)是说明多孔装饰板的制造工序之一例的工序图;
图6(a)(b)是说明多孔装饰板的制造工序的另一例的工序图;
图7是表示实施例1的垂直入射吸音特性的频率依赖性的图表;
图8是表示实施例2的垂直入射吸音特性的频率依赖性的图表;
图9是表示实施例3的垂直入射吸音特性的频率依赖性的图表;
图10是表示实施例4的垂直入射吸音特性的频率依赖性的图表;
图11是表示实施例5、6及比较例1的垂直入射吸音特性的频率依赖性的图表;
图12是表示测定试样No.26~42的吸音面板的垂直入射吸音特性时的最大吸音率和空气流动阻力值的关系的图表;
图13是表示实施例8的试样No.44的垂直入射吸音特性的频率依赖性的图表;
图14是表示实施例9的试样No.50的垂直入射吸音特性的频率依赖性的图表;
具体实施方式
下面,参照附图对本发明实施方式的吸音面板及其制造方法进行说明。下面的说明中参照的图用于说明吸音面板等的构成,图示的各部分的大小、厚度或尺寸等有时与实际的吸音面板等的尺寸关系不同。
图1是表示本实施方式的吸音面板之一例的剖面模式图,图2是本实施方式的吸音面板的另一例的剖面模式图。
图1及图2所示的吸音面板1由多孔装饰板2、多孔装饰板2的背面2a侧设置的多孔性吸音基材3构成。将多孔装饰板2和多孔性吸音基材3相互重合而构成面板主体4。
多孔装饰板2由厚度为0.02~0.5mm范围的金属板、木质板、树脂板、纸等构成,设有贯通厚度方向的开口直径0.1mm以下或0.2mm以下的多个贯通孔2b。通过设置该多个贯通孔2b,声音及空气能够通过多孔装饰板2。另外,贯通孔2b不只是单单通过声音及空气,还具有吸收声音的功能。这些贯通孔2b的开口直径有肉眼难以识别的程度即0.1mm以下程度或0.2mm以下程度的开口直径,可确保多孔装饰板2的外观的美观性。
另外,由金属板构成多孔装饰板2时的材料例如也可以是不锈钢、铝、铝合金、铜、殷钢等铁镍合金。
另外,贯通孔2b的平面看形状也可以为圆形、椭圆形、矩形中之一。在为圆形时,其直径为开口直径,在为椭圆形时,其长径为开口直径,在为矩形时,在其长边的长度为开口直径。
另外,为提高吸音面板1外观的美观性,也可以对多孔装饰板2的表面2c侧实施绘图、花纹等设计,还可以将表面2c加工成镜面。
再有,多孔装饰板2的厚度如上所述,优选0.02~0.5mm的范围。当厚度不足0.02mm时,难以使用多孔装饰板2,故不优选,当厚度超过0.5mm时,贯通孔2b难以有效地形成,故不优选。
再有,贯通孔2b的开口率优选0.2%~40%的范围,更优选1%~20%的范围。在此,贯通孔2的开口率是指,贯通孔2b相对于多孔装饰板2的表面2c或背面2b的面积的开口面积的比例。若开口率为0.2%以上,则可将多孔装饰板2本身的空气流动阻力值设为1Pa以下,在将多孔性吸音基材3重合而构成面板主体4时,可将面板主体4的空气流动阻力值设为1Pa以下。另外,若开口率为40%以下,则不容易看到贯通孔2b,从而不会损害多孔装饰板2的外观的美观性。
其次,多孔性吸音基材3如图1所示,也可以为将玻璃粒子、矿物粒子、陶瓷粒子、树脂粒子等烧结或粘着而成的粒状的多孔性材料,如图2所示,也可以是将玻璃纤维、矿物纤维、树脂纤维、金属纤维、棉等天然纤维等编织而成的纤维状的多孔性材料。在图1的粒状多孔性材料的情况中,各粒子的粒径最好为0.1~2mm程度。另外,在图2所示的纤维状多孔性材料的情况中,也可以在纤维彼此之间充填玻璃粒子、矿物粒子、陶瓷粒子、树脂粒子等。
多孔性吸音基材3的厚度优选1mm以上,更优选1~50mm的范围,特别优选1~20mm的范围。若厚度为1mm以上,则多孔性吸音基材3的空气流动阻力值可能降低,可将面板主体4的空气流动阻力值设为0.1Pa以上。另外,从吸音特性的观点看,多孔性吸音基材3的厚度上限没有特别限制,但从面板主体4的处理性的观点看,优选将上限设为50mm以下。
多孔性吸音基材3的空隙率优选5~90%的范围,更优选5~40%的范围。若空隙率为5%以上,则空气流动阻力值可能大幅增加。另外,若空隙率为90%以下,则多孔性吸音基材3的机械强度不会降低。
但是,多孔性吸音基材3的空隙率如上所述,和最大吸音率的关系未必确定,因此,即使以空隙率为指标选定多孔性吸音基材3,也不未必得到显示良好的最大吸音率的吸音面板1。因此,空隙率只是参考的程度。
其次,多孔性吸音基材3的空气流动阻力值优选0.1~0.8Pa的范围,更优选0.1~3Pa的范围。若多孔性吸音基材3的空气流动阻力值为0.1Pa以上,则多孔装饰板2的空气流动阻力值没有限制,即使是接近0Pa的值,也可以将面板主体4的空气流动阻力值设为0.1Pa以上。另外,若多孔性吸音基材3的空气流动阻力值为0.8Pa以下,则即使多孔装饰板2的空气流动阻力值为较低的值,也可以将面板主体4的空气流动阻力值设为1Pa以下。如后述,在面板主体4的空气流动阻力值为0.15~0.5Pa的范围时,面板主体4的最大吸音率显示80%以上,因此,考虑多孔装饰板2的增加量,更优选将多孔性吸音基材3的空气流动阻力值设为0.3Pa以下。
另外,从面板主体4轻量化的观点看,多孔性吸音基材3的表面密度优选8kg/m2以下。
多孔装饰板2和多孔性吸音基材3既可以通过粘接剂等结合,也可以利用工具及夹具等拆装自如。特别是由于拆装自如,从而多孔装饰板2的更换变容易,且可完全改变多孔装饰板2的设计。
其次,对空气流动阻力值进行说明。空气流动阻力值是以JIS A 6306规定的单位面积流动阻力为基准的指标。是由图3所示的测定装置计测的指标。图3所示的测定装置10大致由使空气流动的流路11、配置于流路11上游侧且调节流路11的空气流速的流速计12、配置于流路11中途的试样13(面板主体4)、在试样13的上游侧及下游侧之间分支的旁路路径14、设于旁路经路14中的差压计15构成。试样13上游侧的空气流速被设为0.5mm/秒。在这样构成的测定装置10中,通过读取差压计15显示的差压,计测空气流动阻力值。
在本实施方式的吸音面板1中,面板主体4的空气流动阻力值优选0.1~1.0Pa的范围,更优选0.15~0.5Pa的范围,特别优选0.2~0.45Pa的范围。若面板主体4的空气流动阻力值为0.1~1.0Pa的范围,则如图4所示,可将吸音面板1的最大吸音率设为60%以上,若为0.15~0.5Pa的范围,则可将最大吸音率设为80%以上,若为0.2~0.45Pa的范围,则可将最大吸音率设为90%以上。
图4是表示试样No.1~25的吸音面板的最大吸音率和空气流动阻力值的关系的图表。该图4中,通过将多孔装饰板和多孔性吸音基材重合,构成空气流动阻力值为0.1~2.2Pa范围的21种吸音面板,对各吸音面板测定垂直入射吸音特性,描绘出此时的最大吸音率和空气流动阻力值的关系。另外,多孔装饰板的结构(材质、板厚、贯通孔的开口直径、开口率)和多孔性基材的结构(材质、厚度、空隙率、空气流动阻力值)如表1所示。另外,表1中,GW23K、GW32K、GW39K、GW44K、GW51K、GW62K及GW73K是旭フアイバ一グラス(株)制的玻璃棉,アルト一ン(注册商标)是ニチアス(株)制的铝纤维片,セラソ一ン(注册商标)是日本ガイシ(株)制的陶瓷粒子烧结体。
如表1及图4所示,最大吸音率在空气流动阻力值为0.25Pa时,表示接近100%的最大值,但随着空气流动阻力值进一步增大,其逐渐减小,在2.2Pa时,最大吸音率降低到40~50%程度。这样,在多孔装饰板和多孔性吸音基材重合而成的吸音面板中,随着空气流动阻力值的增大,最大吸音率降低。因此,在吸音面板1中,需要对空气流动阻力值设定上限,在此,将该上限值设为1.0Pa。
表1
  试样No.   多孔装饰板   多孔性吸音基材   空气流动阻力值(Pa)   最大吸音率(%)
  材质   板厚(μm)   贯通孔的开口直径(μm)   开口率(%)   材质   厚度(mm)   空气流动阻力值(Pa)
1 SUS 50 70 30.9   GW23K   50   0.17   0.18   99
  2   SUS   50   70   30.9   GW32K   50   0.26   0.27   98
  3   SUS   50   70   30.9   GW39K   50   0.43   0.44   88
  4   SUS   50   70   30.9   GW44K   50   0.51   0.52   82
5 SUS 50 70 30.9 GW51K 50 0.70 0.72 69
  6   SUS   50   70   30.9   GW62K   50   1.07   1.10   60
  7   SUS   50   70   30.9   GW72K   50   2.13   2.14   34
  8   SUS   20   70   30.9   GW32K   50   0.26   0.23   96
  9   SUS   100   70   30.9   GW32K   50   0.26   0.28   99
  10   SUS   500   70   30.9   GW32K   50   0.26   0.46   90
  11   SUS   20   70   0.2   GW32K   50   0.26   0.76   70
12 SUS 50 70 0.2 GW32K 50 0.26 2.08 48
  13   SUS   50   70   30.9   アルト一ン   1   0.16   0.17   87
14 SUS 50 70 3.6 アルト一ン 1 0.16 0.46 88
  15   SUS   50   70   0.9   アルト一ン   1   0.16   0.66   73
  16   SUS   50   70   30.9   アルト一ン   1   0.16   0.17   87
  17   PET   50   70   30.9   セラソ一ン   20   0.16   0.26   99
  18   PET   50   70   3.6   セラソ一ン   20   0.16   0.39   92
  19   PET   50   70   0.9   セラソ一ン   20   0.16   0.52   88
  20   SUS   50   70   40.0   GW23K   20   0.11   0.11   62
21 200 100 0.9 アルト一ン 1 0.16 0.76 69
  22   木质   200   100   0.9   アルト一ン   1   0.16   1.02   61
23 木质 200 90 0.7 アルト一ン 1 0.16 1.13 55
  24   SUS   500   70   3.6   アルト一ン   1   0.16   2.2   53
25 SUS 50 70 30.9 GW56K 50 0.80 0.82 63
要制造吸音面板1,只要分别准备多孔装饰板2和多孔性吸音基材3,将他们相互重合粘接,或拆装自如地安装,并且将空气流动阻力值设为0.1~1.0Pa的范围即可。
要制造多孔装饰板2,示例如下方法,例如图5所示,准备厚度0.02~0.5mm范围的装饰板21(图5(a)),其次,如图5(b)所示,在装饰板21的一面上形成屏蔽层22,其次,如图5(c)所示,对从屏蔽层22露出的部分实施EB加工、腐蚀或喷砂加工,形成贯通孔2b。作为此时的装饰板21的材质,优选金属板。
另外,如图6所示,也可以采用如下方法,准备装饰板31(图6(a)),其次,如图6(b)所示,实施激光加工,形成贯通孔2b。作为此时的装饰板31的材质,优选木质板、树脂板、纸等。
另外,无论采用哪种方法,都优选对装饰板21、31预先实施绘图及花纹等设计。
此外,空气流动阻力值的调整例如只要通过在上述的范围内将多孔装饰板2的结构(板厚、贯通孔2b的开口直径、开口率)、和多孔性吸音基材3的结构(厚度、空隙率、空气流动阻力)变更为任意的值调整即可。另外,也可以通过在多孔装饰板2上粘贴多孔性吸音基材3,进而粘贴其它的多孔性吸音基材进行调整。
如上说明,根据上述的吸音面板1,由于面板主体4的空气流动阻力值为0.1~1.0Pa的范围,故可发挥良好的最大吸音率。
另外,由于以与最大吸音率的关系较高的空气流动阻力值为指标使用,故吸音面板1的最大吸音率在制品间不会产生偏差,可构成吸音特性稳定的吸音面板1。
再有,由于多孔性吸音基材3的空气流动阻力值为0.1~0.8Pa的范围,故在构成面板主体4时,面板主体4的空气流动阻力值不会脱离0.1~1.0Pa的范围,可发挥优良的吸音特性。
还有,由于多孔装饰板2和多孔性吸音基材3相互拆装自如,故在设置吸音面板1后,可容易地只是更换多孔装饰板2,在对多孔装饰板2实施设计等时,通过只更换多孔装饰板2,可容易地进行设计的变更。
另外,根据上述的吸音面板1的制造方法,由于将面板主体4的空气流动阻力值设定在0.1~1.0Pa的范围,故可在吸音面板1的制造阶段大致决定吸音面板1的最大吸音率,可制造制品间的吸音特性没有偏差的吸音面板1。
另外,由于在形成多孔装饰板2之前对装饰板21、22实施设计,故为实施设计而使用的涂料等不会损坏多孔装饰板2的贯通孔2b,从而可制造具有良好的吸音特性的吸音面板1。
再有,在本实施方式的吸音面板1中,也可以用加强基材来代替多孔性吸音材料3,与多孔装饰板重叠构成面板主体,并将该面板主体的空气流动阻力值设定在0.1~1.0Pa的范围。作为加强基材,例如可使用蜂窝结构材料或冲孔金属。
根据具备加强基材的吸音面板,由于面板主体的空气流动阻力值为0.1~1.0Pa的范围,故可发挥良好的最大吸音率,并且,可通过加强基材提高吸音面板的强度。
进而在本发明的吸音面板中,也可以在上述多孔性吸音基材或上述加强基材的背面侧设置背后空气层。通过设置背后空气层,可进一步提高吸音特性。
(实施例)
(实施例1)
准备预先实施了设计的不锈钢制的厚度50μm(0.05mm)的装饰板,通过对该装饰板实施喷砂加工,以0.12mm的节距形成开口直径70μm(0.07mm)的贯通孔,由此制造开口率30.9%的多孔装饰板。
其次,作为多孔性吸音基材,准备厚度50mm的玻璃棉(商品名:玻璃棉32K、旭日フアイバ一グラス(株)制),将该多孔性吸音基材粘贴在多孔装饰板上,形成面板主体。面板主体的空气流动阻力值为0.3Pm。这样制造实施例1的吸音面板。
对实施例1的吸音面板测定将背后空气层的厚度设为0mm时的垂直入射吸音特性。结果示于图7。图7中仅表示厚度50mm的多孔性吸音基材(商品名:玻璃棉32K、旭日フアイバ一グラス(株)制))的垂直入射吸音特性。
如图7所示,与单独的多孔性吸音基材的情况相比,可知实施例1的吸音面板的垂直入射吸音特性稍微提高。这认为是由于,通过将多孔装饰板与多孔性吸音基材组合,从而与单独的多孔性吸音基材的情况相比,空气流动阻力值稍微上升,由此改善吸音特性。
(实施例2)
除对装饰板实施腐蚀加工之外,与实施例1的情况相同,制造出多孔装饰板。
其次,作为多孔性吸音基材,准备厚度1mm的铝纤维片(商品名:アルト一ン、ニチアス(株)制),将该多孔性吸音基材粘贴在多孔装饰板上,形成面板主体。面板主体的空气流动阻力值为0.2Pa。这样制造出实施例2的吸音面板。
对实施例2的吸音面板测定将背后空气层的厚度设为150mm时的垂直入射吸音特性。结果示于图8。图8中仅表示厚度1mm的多孔性吸音基材(商品名:アルト一ン、ニチアス(株)制))的垂直入射吸音特性。
如图8所示,与单独的多孔质吸音基材的情况相比,可知实施例2的吸音面板的垂直入射吸音特性稍微提高。这认为是由于,与实施例1的情况相同,通过将多孔装饰板与多孔性吸音基材组合,从而与单独的多孔性吸音基材的情况相比,空气流动阻力值稍微上升,由此改善吸音特性。
(实施例3)
准备预先实施了设计的不锈钢制的厚度50μm(0.05mm)的装饰板,通过对该装饰板实施EB加工,以0.12mm的节距形成开口直径70μm(0.07mm)的贯通孔,由此制造出开口率为30.9%的多孔装饰板。
其次,作为多孔性吸音基材,准备厚度1mm的铝纤维片(商品名:アルト一ン、ニチアス(株)制),将该多孔性吸音基材粘贴在多孔装饰板上,形成面板主体。面板主体的空气流动阻力值为0.2Pa。这样制造出实施例3的吸音面板。
对实施例3的吸音面板测定将背后空气层的厚度设为150mm时的垂直入射吸音特性。结果示于图9。图9中仅表示厚度1mm的多孔质吸音基材(商品名:アルド一ン(注册商标)、ニチアス(株)制))的垂直入射吸音特性。
与实施例1及2的情况相同,与单独的多孔性吸音基材的情况相比,可知实施例3的吸音面板的垂直入射吸音特性稍微提高。这认为是由于,与实施例1及2的情况相同,通过将多孔装饰板与多孔性吸音基材组合,从而与单独的多孔性吸音基材的情况相比,空气流动阻力值稍微上升,由此改善吸音特性。
(实施例4)
准备预先实施了设计的PET薄膜制的厚度50μm(0.05mm)的装饰板,通过对该装饰板实施激光加工,以0.7mm的节距形成开口直径70μm(0.07mm)的贯通孔,由此制造出开口率为0.9%的多孔装饰板。其次,作为多孔性吸音基材,准备厚度20mm的陶瓷粒子烧结材料(商品名:NGKセラソ一ン(注册商标)、日本ガイシ(株)制),将该多孔性吸音基材粘贴在多孔装饰板上,形成面板主体。面板主体的空气流动阻力值为0.5Pa。这样制造出实施例4的吸音面板。
对实施例4的吸音面板测定将背后空气层的厚度设为20mm时的垂直入射吸音特性。结果示于图10。图10中仅表示多孔性吸音基材(商品名:NGKセラソ一ン(注册商标)、日本ガイシ(株)制)的垂直入射吸音特性。
与单独的多孔性吸音基材的情况相比,可知实施例4的吸音面板的垂直入射吸音特性稍微降低。这认为是由于,与实施例1~3不同,通过将多孔装饰板与多孔性吸音基材组合,从而与单独的多孔性吸音基材的情况相比,空气流动阻力值稍微上升,由此改善吸音特性。
(实施例5、6及比较例1)
准备预先实施了设计的不锈钢制的厚度50μm(0.05mm)的装饰板,通过对该装饰板实施EB加工,以0.12mm~0.70mm的节距形成开口直径75μm(0.075mm)的贯通孔,由此制造出开口率为35.4%~1.0%三种多孔装饰板。
其次,作为加强基材,准备厚度10mm、单体尺寸19mm的蜂窝结构材料(商品名:ペ一パ一ハニカム、昭和飛行機工業(株)制),将该加强基材分别粘贴在上述各多孔装饰板上,形成三种面板主体。面板主体的空气流动阻力值为0.01~0.30Pa。这样制造出实施例5、6及比较例1的吸音面板。
对实施例5、6及比较例1的各吸音面板测定将背后空气层的厚度设为40mm时的垂直入射吸音特性。结果示于图11。另外,表2中表示各吸音面板的结构和最大吸音率。
如图11及表2所示,可知实施例5及6的吸音面板与比较例1相比,垂直入射吸音特性大幅度提高。比较例1中,多孔装饰板的开口率高达35.4%,由此,由于面板主体的空气流动阻力值降低至0.01Pa,故与实施例5及6相比,垂直入射吸音特性降低。
表2
  多孔装饰板   空气流动阻力值(Pa)   最大吸音率(%)
  材质   板厚(μm)   贯通孔的开口直径(μm)   贯通孔的节距(mm)   开口率(%)
  比较例1   SUS   50   75   0.12   35.4   0.01   17
  实施例5   SUS   50   75   0.35   4.2   0.13   72
  实施例6   SUS   50   75   0.70   1.0   0.30   99
另外,在上述实施例5、6及比较例1的吸音面板中,代替蜂窝结构材料,使用口孔部形状平面看大致菱形(对角线长度为7mm及3mm)且开口率80%、厚度0.5mm的不锈钢制冲孔金属加强多孔装饰板的背面,以背后空气层50mm的条件测定吸音特性,得到与表2及图11相同的结果。
(实施例7)
准备预先实施了设计的纸制或不锈钢制的厚度20μm(0.05mm)~500μm(0.5mm)的装饰板,通过对纸制装饰板实施激光加工,对不锈钢制装饰板实施EB加工,形成开口直径75μm(0.075mm)~100μm(0.1mm)的贯通孔,由此制造出开口率为69.4%~0.2%的17种多孔装饰板。其次,作为加强基材,准备厚度10mm、单体尺寸19mm的蜂窝结构材料(商品名:ペ一パ一ハニカム、昭和飛行機工業(株)制),将该加强基材分别粘贴在多孔装饰板上,形成17种面板主体。面板主体的空气流动阻力值为0.01~1.5Pa。这样制造出试样No.26~42的吸音面板。
对试样No.26~42的各吸音面板测定将背后空气层的厚度设为40mm时的垂直入射吸音特性,由此计测最大吸音率。图12表示测定了试样No.26~42的吸音面板的垂直入射吸音特性时的最大吸音率和空气流动阻力值的关系。另外,表3中表示各吸音面板的结构和最大吸音率。
表3
  试样No.   多孔装饰板   空气流动阻力值(Pa)   最大吸音率(%)
  材质  板厚(μm)   贯通孔的开口直径(μm)   开口率(%)
  26   SUS   50   75   35.4   0.01   17
  27   SUS   50   75   4.2   0.13   72
  28   纸   50   100   1.8   0.25   99
  29   SUS   50   75   1.0   0.3   99
  30   纸   50   75   0.6   0.42   88
  31   SUS   50   75   0.4   0.8   68
  32   SUS   50   75   0.3   1.0   60
  33   SUS   50   75   0.2   1.5   50
  34   SUS   20   75   2.8   0.11   68
  35   SUS   20   75   0.9   0.34   93
  36   SUS   20   75   0.2   0.9   61
  37   SUS   100   75   13.7   0.13   75
  38   SUS   100   75   2.8   0.28   98
  39   SUS   100   75   0.9   0.75   72
  40   SUS   500   75   69.4   0.09   63
  41   SUS   500   75   11.1   0.22   98
  42   SUS   500   75   4.1   0.82   66
如表3及图12所示,可知即使在将加强基材与多孔装饰板重合,构成吸音面板的情况下,若空气流动阻力值为0.1~1.0Pa的范围,则也可以将吸音面板的最大吸音率设为60%以上,若为0.15~0.5Pa的范围,则也可以将最大吸音率设为80%以上,若为0.2~0.45Pa的范围,则也可以将最大吸音率设为90%以上。
(实施例8)
准备预先实施了设计的不锈钢制的厚度50~100μm(0.05~0.1mm)的装饰板,通过对该装饰板实施EB加工,等间隔形成开口直径50~200μm(0.05~0.2mm)的多个贯通孔,由此制造出开口率为0.91%~10%的多孔装饰板。
其次,作为多孔性吸音基材,准备厚度50mm的玻璃棉(商品名:玻璃棉32K、旭フアイバ一グラス(株)制)和厚度1mm的铝纤维片(商品名:アルト一ン(注册商标)、ニアチアス(株)制),将这两种多孔性吸音基材分别粘贴在多孔装饰板上,形成6种面板主体。面板主体的空气流动阻力值为0.29~0.35Pa。这样制造出试样No.43~48的吸音面板。
对试样No.43~48的各吸音面板测定将背后空气层的厚度设为50mm时的垂直入射吸音特性,由此计测最大吸音率。表4中表示各吸音面板的结构和最大吸音率。另外,图13表示试样No.44的吸音面板的垂直入射吸音特性。
表4
  No.   多孔装饰板   多孔性吸音基材   空气流动阻力值(Pa)   最大吸音率(%)
  材质   板厚(μm)   贯通孔的开口直径(μm)   开口率(%)   材质   厚度(mm)   空气流动阻力值(Pa)
  43   SUS   100   150   2.04   GW32K   50   0.26   0.30   99
  44   SUS   100   200   0.91   GW32K   50   0.26   0.32   97
  45   SUS   100   150   2.04   アルト一ン   1   0.16   0.30   98
  46   SUS   100   200   0.91   アルト一ン   1   0.16   0.35   92
  47   SUS   50   50   10.0   GW32K   50   0.26   0.29   98
  48   SUS   50   50   10.0   アルト一ン   1   0.16   0.29   98
如表4及图13可知,即使在多孔装饰板的开口直径为50~200μm的情况下,若面板主体的空气流动阻力值在0.1~1.0Pa的范围,则也可以得到高的最大吸音率。
(实施例9)
准备预先实施了设计的不锈钢制的厚度100μm(0.1mm)的装饰板,通过对该装饰板实施腐蚀加工,等间隔形成开口直径50~200μm(0.05~0.2mm)的多个贯通孔,由此制造出开口率为0.91%~10.0%的多孔装饰板。
其次,作为加强基材3,准备厚度0.5mm、开口直径7mm×3mm、开口率80%、开口部的平面看形状为菱形的不锈钢制的冲孔金属,将该加强基材分别粘贴在上述各多孔装饰板上,形成2种面板主体。面板主体的空气流动阻力值为0.12~0.14Pa。这样制造出试样No.49~51的吸音面板。
对试样No.49~51的各吸音面板测定将背后空气层的厚度设为50mm时的垂直入射吸音特性,由此计测最大吸音率。表5中表示各吸音面板的结构和最大吸音率。另外,图14表示试样No.50的吸音面板的垂直入射吸音特性的测定结果。
表5
  试样No.   多孔装饰板 空气流动阻力值(Pa) 最大吸音率(%)
  材质   板厚(μm)   贯通孔的开口直径(μm)   开口率(%)
  49   SUS   100   150   2.04   0.12   76
  50   SUS   100   200   0.91   0.14   86
  51   SUS   50   50   10.0   0.13   71
如表5及图14可知,即使在多孔装饰板上重叠作为加强基材的冲孔金属构成吸音面板的情况下,若空气流动阻力值在0.1~1.0Pa的范围,则也可以将吸音面板的最大吸音率设为60%以上。
(实施例10)
准备预先实施了设计的铝制、铜制及殷钢合金制的厚度100μm(0.1mm)的装饰板,通过对该装饰板实施腐蚀加工,等间隔形成开口直径75μm(0.075mm)的多个贯通孔,由此制造出开口率为2.78%的多孔装饰板。
其次,作为多孔性吸音基材,准备厚度50mm的玻璃棉(商品名:玻璃棉32K、旭フアイバ一グラス(株)制),将该多孔性吸音基材分别粘贴在上述各多孔装饰板上,形成3种面板主体。面板主体的空气流动阻力值为0.44~0.46Pa。这样制造出试样No.52~54的吸音面板。
对试样No.52~54的各吸音面板测定将背后空气层的厚度设为50mm时的垂直入射吸音特性,由此计测最大吸音率。表6中表示各吸音面板的结构和最大吸音率。
表6
  试样No.   多孔装饰板   多孔质吸音基材   空气流动阻力值(Pa)   最大吸音率(%)
  材质   板厚(μm)   贯通孔的开口直径(μm)   开口率(%)   材质   厚度(mm)   空气流动阻力值(Pa)
  52   铝   100   75   2.78   GW32K   50   0.26   0.46   92
  53   铜   100   75   2.78   GW32K   50   0.26   0.45   94
  54   殷钢   100   75   2.78   GW32K   50   0.26   0.44   91
如表6可知,即使在使用作为加强基材的铝、铜、及殷钢合金作为多孔装饰板的材质的情况下,若空气流动阻力值在0.1~1.0Pa的范围,则也可以将吸音面板的最大吸音率设为60%以上。
(实施例11)
准备预先实施了设计的铝制、铜制、殷钢合金制的厚度100μm(0.1mm)的装饰板,通过对该装饰板实施EB加工,等间隔形成开口直径75μm(0.075mm)的多个贯通孔,由此制造出开口率为0.91~13.7%的多孔装饰板。
其次,作为加强基材,准备厚度0.5mm、开口直径7mm×3mm、开口率80%、开口部的平面看形状为菱形的不锈钢制的冲孔金属,将该加强基材分别粘贴在上述各多孔装饰板上,形成5种面板主体。面板主体的空气流动阻力值为0.12~0.61Pa。这样制造出试样No.55~59的吸音面板。
对试样No.55~59的各吸音面板测定将背后空气层的厚度设为50mm时的垂直入射吸音特性,由此计测最大吸音率。表7中表示各吸音面板的结构和最大吸音率。
表7
  试样No.   多孔装饰板   空气流动阻力值(Pa)   最大吸音率(%)
  材质  板厚(μm)   贯通孔的开口直径(μm)   开口率(%)
  55   铝   100   75   13.7   0.12   73
  56   铝   100   75   2.78   0.24   99
  57   铝   100   75   0.91   0.61   76
  58   铜   100   75   2.78   0.25   98
  59   殷钢   100   75   2.78   0.24   97
如表7可知,即使在使用作为加强基材的铝、铜、及殷钢合金作为多孔装饰板的材质,使用冲孔金属作为加强基材构成吸音面板的情况下,若空气流动阻力值在0.1~1.0Pa的范围,则也可以将吸音面板的最大吸音率设为60%以上。
根据本发明,可提供设计自由度优良,并且制品间的最大吸音率的偏差也小的吸音面板及其制造方法。

Claims (8)

1、一种吸音面板,其特征在于,将设有开口直径0.2mm以下或0.1mm以下的多个贯通孔的厚度为0.02~0.5mm范围的多孔装饰板和配置于所述多孔装饰板背面侧的多孔性吸音基材相互重叠构成面板主体,
所述面板主体的空气流动阻力值为0.1~1.0Pa的范围。
2、如权利要求1所述的吸音面板,其特征在于,所述多孔性吸音基材的空气流动阻力为0.1~0.8Pa的范围。
3、一种吸音面板,其特征在于,将设有开口直径0.2mm以下或0.1mm以下的多个贯通孔的厚度为0.02~0.5mm范围的多孔装饰板和配置于所述多孔装饰板背面侧的加强基材相互重叠构成面板主体,
所述面板主体的空气流动阻力值为0.1~1.0Pa的范围。
4、如权利要求3所述的吸音面板,其特征在于,所述加强基材是蜂窝结构材料或冲孔金属或延展的金属。
5、如权利要求1所述的吸音面板,其特征在于,所述多孔装饰板和所述多孔性吸音基材或所述加强基材拆装自如。
6、如权利要求3所述的吸音面板,其特征在于,所述多孔装饰板和所述多孔性吸音基材或所述加强基材拆装自如。
7、一种吸音面板的制造方法,其特征在于,包括:
通过在厚度0.02mm~0.5mm范围的装饰板上设置开口直径0.2mm以下或0.1mm以下的多个贯通孔,形成多孔装饰板的工序;
在所述多孔装饰板的背面侧重叠多孔性吸音基材或加强基材,构成面板主体,并且将所述面板主体的空气流动阻力值设定在0.1~1.0Pa的范围的工序。
8、如权利要求7所述的吸音面板的制造方法,其特征在于,在形成所述多孔装饰板之前,对所述装饰板背面侧的相反侧的表面侧进行设计。
CN2007100914281A 2006-03-31 2007-03-28 吸音面板及吸音面板的制造方法 Expired - Fee Related CN101046111B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006097002 2006-03-31
JP097002/06 2006-03-31
JP001186/07 2007-01-09
JP2007001186A JP2007291834A (ja) 2006-03-31 2007-01-09 吸音パネル及び吸音パネルの製造方法

Publications (2)

Publication Number Publication Date
CN101046111A true CN101046111A (zh) 2007-10-03
CN101046111B CN101046111B (zh) 2010-10-13

Family

ID=37964790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100914281A Expired - Fee Related CN101046111B (zh) 2006-03-31 2007-03-28 吸音面板及吸音面板的制造方法

Country Status (4)

Country Link
US (1) US7600609B2 (zh)
EP (1) EP1840287B1 (zh)
JP (1) JP2007291834A (zh)
CN (1) CN101046111B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439240A (zh) * 2009-03-30 2012-05-02 Usg内部股份有限公司 含可再生组分的面板及其制造方法
CN102652335A (zh) * 2009-12-11 2012-08-29 埃尔塞乐公司 用于制造用于飞行器发动机舱的声学板的方法
CN102057421B (zh) * 2008-04-14 2014-12-10 3M创新有限公司 多层吸声片材
CN104269166A (zh) * 2014-10-11 2015-01-07 国家电网公司 双层立体降噪防护屏
CN104395954A (zh) * 2012-07-04 2015-03-04 西川橡胶工业股份有限公司 防音材
CN104428830A (zh) * 2012-07-05 2015-03-18 乐金华奥斯有限公司 装饰性吸声片及包括该装饰性吸声片的吸声式隔声板
CN104805930A (zh) * 2015-04-14 2015-07-29 国网河南省电力公司济源供电公司 一种变电站防噪声墙体及施工方法
CN105822137A (zh) * 2016-05-05 2016-08-03 成都华气能源工程有限公司 带滚轮的临时隔音屏障
CN107615375A (zh) * 2015-05-19 2018-01-19 株式会社神户制钢所 多孔板
CN108292498A (zh) * 2015-11-27 2018-07-17 株式会社神户制钢所 多孔吸音板
CN108357186A (zh) * 2018-03-17 2018-08-03 侯炳林 一种吸音装饰板的生产工艺
CN110476204A (zh) * 2017-03-27 2019-11-19 富士胶片株式会社 隔音结构体、以及吸音面板及调音面板
CN111052225A (zh) * 2017-08-28 2020-04-21 富士胶片株式会社 隔音结构及隔音结构体
CN112012117A (zh) * 2020-09-16 2020-12-01 曾发英 一种道路用温变隔音屏障
CN112976747A (zh) * 2021-04-29 2021-06-18 中国空气动力研究与发展中心低速空气动力研究所 一种带复合护面板的消声结构

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106854A1 (ja) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. 吸音構造体
DE202005008921U1 (de) * 2005-06-07 2005-08-11 Rieter Technologies Ag Hybrid-Unterbodenverkleidung
DE102007000568A1 (de) * 2007-10-24 2009-04-30 Silencesolutions Gmbh Schallabsorber
EP2055850A1 (en) * 2007-11-05 2009-05-06 Rockwool International A/S Acoustic absorbing panel provided with a decorative design pattern and a method and apparatus for manufacturing the panel
JP2011519433A (ja) * 2008-04-22 2011-07-07 スリーエム イノベイティブ プロパティズ カンパニー 複合吸音シート
WO2009137466A2 (en) * 2008-05-05 2009-11-12 3M Innovative Properties Company Acoustic composite
US8573358B2 (en) * 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer
WO2010038486A1 (ja) * 2008-10-02 2010-04-08 名古屋油化株式会社 吸音材料、複層吸音材料、成形複層吸音材料、吸音性内装材料及び吸音性床敷材料
DE102009006166B4 (de) * 2009-01-26 2012-12-13 Airbus Operations Gmbh Verfahren und System zum Herstellen einer Verbundplatte
CN102477718A (zh) * 2010-11-29 2012-05-30 张家港港丰交通安全设施有限公司 一种公路隔音板
FI123952B (fi) * 2011-01-12 2014-01-15 Acoustic Group Oy Pinnoite ja sen valmistusmenetelmä
JP6110056B2 (ja) 2011-08-25 2017-04-05 スリーエム イノベイティブ プロパティズ カンパニー 吸音材
JP5956786B2 (ja) * 2012-03-05 2016-07-27 株式会社クラレ 吸音パネル並びに吸音方法及び音響改善方法
EP2819122B1 (en) * 2012-07-12 2016-11-30 Howa Textile Industry Co., Ltd. Soundproofing body and insulator for automobile
DE102012216500A1 (de) * 2012-09-17 2014-03-20 Hp Pelzer Holding Gmbh Mehrlagiger gelochter Schallabsorber
US8720642B1 (en) * 2012-12-12 2014-05-13 Wilfried Beckervordersandforth Acoustic element and method for producing an acoustic element
CZ304840B6 (cs) * 2013-12-02 2014-11-26 Josef Žikovský Transparentní štěrbinový rezonátor protihlukové stěny
CN104213669A (zh) * 2014-08-15 2014-12-17 成都宏源铸造材料有限公司 一种车间吸音墙
JP6539850B2 (ja) * 2014-12-12 2019-07-10 昭和電工株式会社 構造体の製造方法
JP6663659B2 (ja) * 2015-07-14 2020-03-13 大成建設株式会社 吸音構造を構成する有孔吸音ボードの貫通孔の寸法設定方法
GB201521075D0 (en) * 2015-11-30 2016-01-13 Short Brothers Plc Methods, precursors and abrasive blasting masks for manufacturing noise attenuating devices
EP3438969B1 (en) * 2016-03-29 2022-04-06 FUJIFILM Corporation Soundproofing structure, partition structure, window member, and cage
US10810988B2 (en) * 2017-12-01 2020-10-20 Spirit Aerosystems, Inc. Acoustic panel employing rounded particles in septum layer and system and method for making same
CN108489855B (zh) * 2018-04-12 2023-12-05 合肥工业大学 一种温度可控的吸声材料流阻测量仪
US10837169B2 (en) * 2019-03-14 2020-11-17 Hilti Aktiengesellschaft Method and apparatus for producing a tubular sealing element
CN112681582B (zh) * 2020-12-23 2022-06-17 澳莆(上海)环保科技有限公司 一种户内a级防火竹饰面幕墙吸音模块
DE102021200905A1 (de) * 2021-02-01 2022-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mehrschichtige Schallabsorptionsplatte und deren Verwendung sowie Verfahren und Vorrichtung für deren Herstellung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235303A (en) * 1978-11-20 1980-11-25 The Boeing Company Combination bulk absorber-honeycomb acoustic panels
JPH0521119Y2 (zh) * 1987-06-09 1993-05-31
CN2036551U (zh) * 1988-08-30 1989-04-26 北京清河毛纺织厂 新型浮云式吸声板
US5041323A (en) * 1989-10-26 1991-08-20 Rohr Industries, Inc. Honeycomb noise attenuation structure
JPH06348281A (ja) 1993-06-03 1994-12-22 Ndc Co Ltd 吸音板ならびにその製造方法
JP2993370B2 (ja) * 1994-05-30 1999-12-20 ヤマハ株式会社 吸音化粧板
JP3024525B2 (ja) 1995-09-28 2000-03-21 住友金属工業株式会社 音波反射率を低下する表層金属板および制振構造部材
JPH09101788A (ja) * 1995-10-04 1997-04-15 Nippon Steel Chem Co Ltd 吸音材およびその製法
DE29911495U1 (de) * 1998-10-06 1999-09-02 Lignoform Benken Ag Schallabsorbierende Platte für die Raumgestaltung
US6182787B1 (en) * 1999-01-12 2001-02-06 General Electric Company Rigid sandwich panel acoustic treatment
US6345688B1 (en) * 1999-11-23 2002-02-12 Johnson Controls Technology Company Method and apparatus for absorbing sound
GB0016149D0 (en) * 2000-06-30 2000-08-23 Short Brothers Plc A noise attenuation panel
JP2002173914A (ja) * 2000-12-08 2002-06-21 Nippon Sheet Glass Co Ltd 吸音板
CN2501932Y (zh) * 2001-08-15 2002-07-24 北新建材(集团)有限公司 一种具有静音功能的矿棉吸声板
DE10253832A1 (de) * 2002-11-18 2004-05-27 Carcoustics Tech Center Gmbh Schallisolierender Hitzeschutzschild
US7540354B2 (en) * 2006-05-26 2009-06-02 United Technologies Corporation Micro-perforated acoustic liner

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057421B (zh) * 2008-04-14 2014-12-10 3M创新有限公司 多层吸声片材
CN102439240B (zh) * 2009-03-30 2014-08-20 Usg室内建材公司 含可再生组分的面板及其制造方法
CN102439240A (zh) * 2009-03-30 2012-05-02 Usg内部股份有限公司 含可再生组分的面板及其制造方法
CN102652335A (zh) * 2009-12-11 2012-08-29 埃尔塞乐公司 用于制造用于飞行器发动机舱的声学板的方法
CN104395954A (zh) * 2012-07-04 2015-03-04 西川橡胶工业股份有限公司 防音材
CN104428830A (zh) * 2012-07-05 2015-03-18 乐金华奥斯有限公司 装饰性吸声片及包括该装饰性吸声片的吸声式隔声板
CN104269166A (zh) * 2014-10-11 2015-01-07 国家电网公司 双层立体降噪防护屏
CN104805930A (zh) * 2015-04-14 2015-07-29 国网河南省电力公司济源供电公司 一种变电站防噪声墙体及施工方法
CN104805930B (zh) * 2015-04-14 2017-06-13 国网河南省电力公司济源供电公司 一种变电站防噪声墙体及施工方法
CN107615375A (zh) * 2015-05-19 2018-01-19 株式会社神户制钢所 多孔板
CN108292498A (zh) * 2015-11-27 2018-07-17 株式会社神户制钢所 多孔吸音板
CN105822137A (zh) * 2016-05-05 2016-08-03 成都华气能源工程有限公司 带滚轮的临时隔音屏障
CN110476204A (zh) * 2017-03-27 2019-11-19 富士胶片株式会社 隔音结构体、以及吸音面板及调音面板
CN110476204B (zh) * 2017-03-27 2020-10-23 富士胶片株式会社 隔音结构体、以及吸音面板及调音面板
US10988924B2 (en) 2017-03-27 2021-04-27 Fujifilm Corporation Soundproof structure, sound absorbing panel, and sound adjusting panel
CN111052225A (zh) * 2017-08-28 2020-04-21 富士胶片株式会社 隔音结构及隔音结构体
CN108357186A (zh) * 2018-03-17 2018-08-03 侯炳林 一种吸音装饰板的生产工艺
CN112012117A (zh) * 2020-09-16 2020-12-01 曾发英 一种道路用温变隔音屏障
CN112976747A (zh) * 2021-04-29 2021-06-18 中国空气动力研究与发展中心低速空气动力研究所 一种带复合护面板的消声结构

Also Published As

Publication number Publication date
US20070227815A1 (en) 2007-10-04
CN101046111B (zh) 2010-10-13
EP1840287B1 (en) 2014-03-12
US7600609B2 (en) 2009-10-13
EP1840287A3 (en) 2010-10-06
EP1840287A2 (en) 2007-10-03
JP2007291834A (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
CN101046111A (zh) 吸音面板及吸音面板的制造方法
CN101042865A (zh) 吸音材料、吸音材料的制造方法以及吸音板
CN100341623C (zh) 陶瓷蜂窝构造体及其制造方法、及其制造中所用的涂材
CN1883791A (zh) 蜂窝结构体
CN1067016C (zh) 高强度复合板
EP2537800A3 (en) Carbon composite materials and methods of manufacturing same
KR20140072038A (ko) 무기섬유 성형체 및 그의 제조방법
TW201508139A (zh) 具有增進固定強度之建築面板及其製造方法
CN1162526A (zh) 叠层板及其生产工艺
RU2597590C1 (ru) Усиленная стекловолокном акустическая плитка на основе минеральной шерсти
CN1113650A (zh) 纤维增强的多孔塑料管及其制造方法
CN1754201A (zh) 使用薄膜的吸音结构
CN1167862C (zh) 特宽频带微穿孔吸声体及其制造方法和设备
KR20200040778A (ko) 고흡음 계수, 저밀도 음향 타일
CN106284904A (zh) 一种不开胶石材复合板
CN100492491C (zh) 微孔吸声结构
CN1483905A (zh) 不燃板和不燃板的制造方法
CN1640658A (zh) 用于基片的加工复合件
CN207245262U (zh) 一种均匀传声的剧院
CN1167309C (zh) 扬声器
JP2022154968A (ja) 吸音建材
CN1934056A (zh) 陶瓷多孔体及成型体的制造方法
EP2789821A1 (en) Holding seal material, manufacturing method for holding seal material and exhaust gas purification apparatus
CN101053974A (zh) 陶瓷蜂窝构造体的制造方法
JP2017020291A (ja) 有孔吸音ボードと吸音構造

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101013

Termination date: 20150328

EXPY Termination of patent right or utility model