CN101034155A - 提高飞行时间测量设备的测量速率 - Google Patents
提高飞行时间测量设备的测量速率 Download PDFInfo
- Publication number
- CN101034155A CN101034155A CNA2006101528335A CN200610152833A CN101034155A CN 101034155 A CN101034155 A CN 101034155A CN A2006101528335 A CNA2006101528335 A CN A2006101528335A CN 200610152833 A CN200610152833 A CN 200610152833A CN 101034155 A CN101034155 A CN 101034155A
- Authority
- CN
- China
- Prior art keywords
- light pulse
- time
- emission
- reflecting part
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/02—Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
- G01C11/025—Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/87—Combinations of systems using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
公开了一种用于测量到表面的距离的设备。该设备在接收先前发送的光脉冲的反射之前发射至少一个后续光脉冲。因此,多个光脉冲在给定时间飞行。实施例可应用于地形测绘、海洋测深学、地震学、检测故障、生物量测量、风速测量、温度计算、交通速度测量、军事目标识别、地对空测距、高清晰度勘测、近距离摄影测量学、大气组成、气象学、距离测量以及许多其它应用。这样的设备的实例包括激光测距系统,如光检测和测距(LIDAR)系统,以及激光扫描器。由数据处理单元从该设备接收的数据可用来创建描述表面、地形和/或物体的数据模型,如点云、数字表面模型或数字地形模型。
Description
技术领域
本发明涉及飞行时间测量设备和方法。
背景技术
发光装置如激光器已在各种应用中用作收集信息的传感器部件。例如,飞行时间测量设备如激光扫描器以及光检测和测距设备(下文中称为“LIDAR”)已用于许多应用。这样的应用的实例包括地形测绘、海洋测深学、地震学、检测故障、生物量测量、风速测量、差异吸收LIDAR(DIAL)、温度计算、交通速度测量、军事目标识别、地对空测距、高清晰度勘测、近距离摄影测量学、大气组成、气象学、距离测量以及许多其它应用。
LIDAR已越来越多地用于地理区域的勘测和地形学测绘,例如,使用安装在运载工具如飞行器或卫星中的向下观察的LIDAR装置。这样的LIDAR装置用来使用光脉冲确定到表面如地形表面或物体表面的距离。到该表面的距离通过测量发射光脉冲与检测到对应反射信号之间的时间延迟来确定。在这样的系统中,光速用作使用光行进时间来计算距离的已知常数。
空载LIDAR系统已用于从空中直接测量地面以及自然和人造物体。典型地,诸如激光距离和返回信号强度测量的数据,连同从空载GPS和惯性子系统得到的位置数据和姿态数据,由飞行中的LIDAR系统记录。所生成的数据模型可包括高空间分辨率“点云”,“点云”还可以产生林木植被(tree cover)下的细节并且提供用于航空影像的正射校正(orthorectification)(使用标准化的软件包)的“裸露大地”地形模型。当飞行器飞过投影区域时,光脉冲以高速率一个接一个地向地面发射。这些光脉冲被地面和/或地面上的物体如树和建筑物反射。
激光扫描器还用来获得描述表面如物体表面的数据模型。激光扫描器的一个实例在美国专利No.6,734,849中公开,其内容通过引用结合于此。激光扫描器如在美国专利No.6,734,849中公开的激光扫描器可用来采集形成描述扫描表面的点云的点。
根据这些传统实施例,后续光脉冲并不发送,直到接收到来自前一光脉冲的返回反射信号。对于每个光脉冲,测量发射信号和返回信号之间的经过时间,这使得能够计算竖直或倾斜距离。反射表面的位置可基于如下来计算:(1)发射光脉冲的相对于系统的角度;(2)系统相对于大地的取向,以及(3)系统的当前位置。随着测量的进行,可捕获来自这样的激光发射的通常以百万计的数据,并且可记录描述反射表面的附加数据模型,从而提供例如密集数字地形模型(DTM)或数字表面模型(DSM)。然而,这些传统实施例受到关于可发送和接收光脉冲的速率的限制。
发明内容
飞行时间测量设备包括配置成发射光的激光器和配置成接收光的光接收器。飞行时间测量设备进一步包括配置成使得激光器在发射第二光脉冲之前发射第一光脉冲的激光器控制电路。激光器控制电路进一步配置成使得激光器在光接收器接收反射的第一光脉冲的时间之前发射第二光脉冲。飞行时间测量设备进一步包括经过时间电路,该经过时间电路配置成测量激光器发射第一光脉冲与光接收器接收第一光脉冲的反射部分之间的经过时间。
公开了一种用于采集描述地形的信息的系统。该系统包括配置成在接收先前发射的光脉冲的反射部分之前发射至少一个后续光脉冲的LIDAR系统。
公开了一种用于获取描述表面的数据的方法。该方法包括发射第一光脉冲。该方法进一步包括在发射第一光脉冲之后发射第二光脉冲。该方法进一步包括在发射第二光脉冲之后接收第一光脉冲的反射部分。该方法进一步包括通过确定发射第一光脉冲与接收第一光脉冲的反射部分之间的经过时间来确定第一光脉冲的飞行时间。
本发明的这些和其它特征根据下面的描述和所附的权利要求而将变得更为显而易见,或可以通过如下文中所阐明的本发明的实践而习知。
附图说明
为了进一步阐明本发明的以上和其它特征,将参考在附图中图示的本发明的特定实施例提供本发明的更具体的描述。应当理解,这些附图仅描绘了示例性实施例,并因此不应视为对本发明的范围构成限制。将通过使用附图、利用附加的特征和细节来描述和解释这些示例性实施例,在附图中:
图1图示了根据一示例性实施例的飞行时间测量设备;
图2图示了用于在飞行时间测量设备中发射和接收信号的方法;
图3图示了用于采集地形学信息的系统;以及
图4图示了用于获取描述地形的数据的方法。
具体实施方式
这里描述的实施例的原理描述了几个用来说明本发明的实例的结构和工作。应当理解,附图是这样的示例性实施例的概略性和示意性表示,并因此不对本发明的范围构成限制,附图也不必要按比例绘制。将众所周知的装置和过程排除在外,以避免将讨论淹没在本领域技术人员公知的细节中。
参考图1,图示了飞行时间测量设备100,如激光扫描或LIDAR系统。飞行时间测量设备100包括光发射器105,如激光器,和光接收器110,如光电二极管。光发射器105和光接收器110电耦合到电路115。第一光脉冲120由光发射器发出,反射离开表面140,并由光接收器110接收,如图1所示。在发射第一光脉冲120之后,但在光接收器110接收第一光脉冲120之前,光发射器105发射第二光脉冲125。在光接收器110接收第一光脉冲120的反射部分之后,光接收器110将接收第二光脉冲125的反射部分。可以在光接收器110接收第一光脉冲120或第二光脉冲125的反射部分之前发射附加的光脉冲。例如,光发射器105可以在光接收器110接收第一光脉冲120的反射部分的时间之前或与该时间同时发射第三光脉冲130。因此,在工作期间,多个光脉冲,例如三个、四个或更多光脉冲可以同时在光发射器105与光接收器110之间飞行。结果,相对于传统系统,给定时间量内的光脉冲数目和对应的距离测量可以得到增加。
此特征是非常有利的,特别是当承载飞行时间测量设备的运载工具在任何单独激光脉冲通常限制可获得的最大脉冲速率的较高高度飞行时。此影响可能是显著的。例如,光速将仅能够进行顺序测距操作的系统的最大脉冲速率限制为在地平面以上(AGL)6000m的高度处大约18kHz,而在低于500m AGL的高度处可获得150+kHz。本发明的结果是:给定激光脉冲速率的飞行高度可以增至两倍、增至三倍等(依赖于同时处理的脉冲数目),或相反,给定飞行高度的最大脉冲速率可以增至两倍,增至三倍等。
电路115可包括经过时间电路,该经过时间电路配置成测量光发射器105发射第一光脉冲120与光接收器110接收第一光脉冲120的反射部分之间的时间。电路115可进一步包括数据处理装置,配置成计算第一光脉冲120的反射部分所行进的距离。例如,根据下面的方程,发射第一光脉冲120与光接收器110接收第一光脉冲120的反射部分之间的经过时间指示从飞行时间测量设备100到表面140的距离:
距离=(光速×经过时间)/2 方程1
在脉冲以一角度发射到表面140的情形下,可测量出该角度,并且可使用公知的三角学方程来计算出飞行时间测量设备100与反射点处的表面140之间的垂直距离(即斜距)。例如,扫描子组件135如镜、棱镜、全息光学元件或指示设备(例如万向架(gimbal))可用来将光脉冲120、125和130导向表面140。可改变扫描子组件135导引光脉冲120、125和130的角度,使得光脉冲120、125和130被导向表面140的不同位置。可测量扫描子组件135导引光脉冲120、125和130的角度,以提供扫描角。可替选地,具有到达时间输出的2D LIDAR检测阵列还可以与透镜和/或全息元件结合使用,以实现接收反射的角度的测量。扫描子组件135在各实施例中不是必需的,并可以被排除在飞行时间测量设备100之外。
电路115可进一步包括耦合到光发射器105并且耦合到光接收器110以便为每个光脉冲120、125和130建立飞行时间的定时电路。该定时电路可配置成在一时间间隔期间对来自光接收器110的电子信号进行采样,该时间间隔近似为其间预期接收到光脉冲120、125和130的反射部分的时间。在飞行时间测量设备100与表面140之间的距离已知或可以估算时,可以近似计算该时间间隔。例如,当飞行时间测量设备100将光脉冲导引至表面140的不同部分、并且表面140的最高点和最低点已知或可以估算时,可以近似计算发射光脉冲和接收光脉冲之间的经过时间。因此,仅需要在此时间段期间对来自光接收器110的信号采样。
例如,参考图2,图示了用于在飞行时间测量设备中发射和接收信号的方法。在时间T0发射第一光脉冲120。在时间T0发射第一光脉冲之后,但在接收第一光脉冲120的反射部分之前,在时间T1发射第二光脉冲125。在时间T1发射第二光脉冲125之后,在时间T2接收第一光脉冲120的反射部分。如上所述,当测距系统与表面之间的距离已知或可以估算时,可能不必要对来自光接收器的信号连续地采样。更确切地说,可以在其间预期接收到信号的特定间隔150(其还可以称为“测距门”或“采样门”)期间对光接收器进行采样。此外,在某些情形下,可能接收不到返回信号,例如当光脉冲被远离光接收器而导引时。在此情形下,在间隔150内将接收不到信号,并且可以使得将噪声、干扰或另一信号误认为返回信号的可能性最小。
可以实施任何用于将所接收的信号与所发射的信号相关联的方法。例如,可以调制、偏振和/或发送具有不同波长的信号。可以调制信号以便使用信号的调制来将发射信号与接收信号相关联。可以调制信号的振幅、相位和/或频率以将接收信号与发射信号相关联。例如,参考图2,信号120可以用第一振幅、相位和/或频率来调制,而信号125可以用不同于信号120的振幅、相位和/或频率来调制。因此,在T2和T3接收的返回信号120和125可以基于发射和接收信号的调制而与在T0和T1发送的它们的发射信号相关联。
还可以实施信号的偏振以将发射信号与接收信号相关联。例如,参考图2,信号120可具有第一偏振,而信号125可具有不同于信号120的偏振。因此,在T2和T3接收的返回信号120和125可以基于发射和接收信号的偏振而与在T0和T1发送的它们的发射信号相关联。
还可以实现具有不同波长的信号以将发射信号与接收信号相关联。例如,参考图2,信号120可具有第一波长,而信号125可具有不同于信号120的波长。因此,在T2和T3接收的返回信号120和125可以基于发射和接收信号的波长而与在T0和T1发送的它们的发射信号相关联。
交叉参考图1和图2,电路115可测量光脉冲120、125和130的发射和接收之间的经过时间。例如,电路115可通过测量在时间T0发射第一光脉冲120的时间与在时间T2接收第一光脉冲120的反射部分的时间之间的经过时间(即T2-T0)来确定第一光脉冲120的飞行时间。类似地,电路115可通过测量在时间T1发射第二光脉冲125的时间与在时间T3接收第二光脉冲125的反射部分的时间之间的经过时间(即T3-T1)来确定第二光脉冲125的飞行时间。电路115还可包括采样电子器件,该采样电子器件可连续记录连同定时信息如时间戳的从接收器110接收的样本,并且记录连同用于后处理的定时信息的样本。可存储并随后处理所记录的信息以确定接收脉冲与发射脉冲之间的关联并因此根据所记录的信息得到距离和/或表面模型。
采样数据可进一步包括波形(即强度分布)。电路115可进一步包括强度波形记录装置和/或峰值强度记录装置。这里讨论的任何装置或公知为与飞行时间测量装置或某个应用共同组合的其它装置,可以利用这里公开的实施例而组合为单个装置。波形记录装置的一个实施例可考虑为类似于连同数字采样装置的示波器。波形记录装置可包括从接收器110接收样本并且记录用于实时分析和/或后处理的波形信息的电路115。强度记录装置还可包括从接收器110接收样本并且记录用于实时分析和/或后处理的强度信息的电路115。
这里说明的实施例还可包括计算机可读介质,用于承载计算机可执行指令或数据结构或使计算机可执行指令或数据结构存储在其上。这样的计算机可读介质可以是可以由通用或专用计算机存取的任何可用介质。举例来说但非限制地,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储装置、或可用来承载或存储计算机可执行指令或数据结构的形式的所需数据和程序代码装置并且可以由通用、专用计算机或其它数据处理装置存取的任何其它介质。计算机可执行指令包括例如使通用、专用计算机或其它数据处理装置执行某个功能或某组功能的指令和数据。
电路115可包括数据处理装置,用于执行存储在存储器中的指令、用于执行计算、存储和从存储器中检索数据,以及用于执行这里描述的其它任务。例如,电路115可包括传统或专用计算机或者具有数据处理器、存储器和用户接口的其它数据处理装置。
参考图3,图示了包括用于采集地形学信息的系统的飞行时间测量设备。该系统包括承载LIDAR 305的飞行器300类型的运载工具、GPS310类型的位置测量单元以及IMU 315类型的取向测量单元。LIDAR 305配置成在接收先前发射的光脉冲的反射部分之前发射至少一个后续光脉冲,例如参见图1和图2。从LIDAR 305发射的光脉冲可以以扫描角320发射以便对表面325的部分进行距离和/或强度测量。被采样的表面325的部分可以与LIDAR 305的扫描角320相关。可以考虑LIDAR 305的扫描角320来确定表面325的轮廓并根据使用公知三角方程获得的数据来产生后续数据模型,如点云、DSM或DTM。LIDAR 305可产生林木植被下的细节、夜晚“所见”和正射校正影像(利用软件)。
GPS 310可以从多个卫星330接收信号并根据从卫星330接收的信号计算位置数据。GPS可包括任何位置测量装置。位置数据可包括描述给定时间点的飞行器300的位置的纬度、经度和高程数据。IMU 315可测量飞行器300的姿态的变化并且可包括任何取向测量装置。例如,IMU315可测量飞行器300的俯仰、滚转和航向的变化。
飞行器可包括电路335,其用于处理从LIDAR 305、GPS 310和/或IMU 315接收的数据以创建描述表面325的高空间分辨率数据模型。例如,当飞行器300飞过包括表面325的投影区域时,以高速率向地面发射光脉冲,使得多个光脉冲在同一时间飞行。这些光脉冲被表面325和/或表面325上的物体如树和建筑物反射。对于每个光脉冲,测量发射信号与返回信号之间的经过时间,这使得能够计算距离。同时,利用空载GPS 310和IMU 315测量飞行器300的位置和姿态。GPS地面参考站340也可用于增大精度。
除了记录光脉冲的往返经过时间之外,还可以记录返回的反射的强度。强度信息可以以图表的形式绘制、由与正射影像的过程类似的过程生成。当光脉冲不仅仅遇到表面325时,其可被附加的物体例如电缆和树反射。可针对每个光脉冲记录附加的返回信号,生成关于采样区域的信息。在飞行器中实施的或在数据采集任务之后实施的后处理固件和/或软件还可以将飞行器轨迹与光脉冲扫描数据相组合来计算数据点的地面坐标并且如果需要则变形为用户偏好的投影和基准(datum)。根据同时传播通过大气的多个激光脉冲的时间间隔测量的处理不局限于检测在一时间间隔(例如参见图2中的时间间隔150)期间发生的离散的单个或多个返回反射脉冲。记录可能在任何时间间隔期间存在的整个返回信号波形(例如对于图2中的返回反射120、125、130)的系统也获得了处理多个脉冲的优点。
后处理固件和/或软件可以将从LIDAR 305、GPS 310和IMU 315接收的数据与描述大气状况、硬件特性和其它相关参数的信息相组合以便为地面上的点生成一系列XYZ坐标三元组(任选地利用返回信号强度数据)。随着数据采集任务的进行,可捕获到百万个这样的点,从而提供DTM。
参考图4,图示了用于获取描述表面如地形表面或物体表面的数据的方法。该方法包括发射第一光脉冲(400)。第一光脉冲可由激光器发射并且可具有向着表面的某个轨迹和扫描角。在发射第一光脉冲之后发射第二光脉冲(410)。在这里公开的任何实施例中,第二光脉冲与第一光脉冲可以由同一激光器发射,或者第二光脉冲与第一光脉冲可以由不同的激光器发射。第二光脉冲可具有与第一光脉冲不同的轨迹和扫描角并且被导向表面的不同位置。在发射第二光脉冲之后接收第一光脉冲的反射部分(420)。因此,在接收第一光脉冲之前,至少第一和第二光脉冲同时“飞行”。可发射附加的光脉冲,并且这里公开的实施例不局限于仅两个光脉冲在同一时间“飞行”。因此,三个、四个或更多个光脉冲可以在同一时间“飞行”并且可以由同一激光器或不同的激光器发射,并且发射光脉冲的反射部分可以由同一接收器或不同的接收器接收。光脉冲可具有不同的波长,可被调制和/或偏振以将接收信号与发射信号相关联。可以在如前面参考图2所讨论的某些间隔(即门)期间进行接收器的采样。
接收第二光脉冲的反射部分(430)。确定第一光脉冲的飞行时间(440)。可通过测量发射第一光脉冲与接收第一光脉冲的反射部分的时间之间所经过的时间来确定第一光脉冲的飞行时间。还可以确定第二光脉冲的飞行时间(450)。可通过测量发射第二光脉冲与接收第二光脉冲的反射部分的时间之间所经过的时间来确定第二光脉冲的飞行时间。可使用每个光脉冲的飞行时间来计算第一和第二光脉冲的行进距离(460)。例如,可使用上面的方程1来计算每个光脉冲的行进距离。可使用飞行距离来创建数据模型,如点云、DSM或DTM(470)。数据模型可将第一和第二光脉冲的倾斜角考虑在内并且可包括从附加光脉冲接收的数据,例如数百万个光脉冲可用来创建数据模型。
可使用激光器发射光脉冲,并且可使用检测器来检测光脉冲的反射部分,如雪崩光电二极管、PIN光电二极管、光电倍增器、通道倍增器、真空二极管、具有到达时间输出的成像阵列或本领域技术人员公知的任何其它类型的检测器。可以在某些时间段期间对检测器采样,其中所述时间段具有至少部分基于飞行器与感测表面之间的最大和最小距离来计算的时序和持续时间。例如,当飞行器在其上飞行的地面的最高点为700英尺且最低点为海平面上0英尺时,可估算采样时间段的时序和持续时间。接收脉冲返回部分的预期时间至少部分基于光速和飞行器高于地面的高度范围。
激光器和接收器可以是激光测距系统的部分,例如参见图1和图2,并且激光测距系统可产生描述光脉冲的发射和接收的电子信号。可以从GPS和IMU接收附加信息,该附加信息描述运载工具、如图3中所示其中承载有LIDAR、GPS和IMU的飞行器的位置和姿态。可以至少部分基于从LIDAR、GPS和IMU接收的数据来创建点云或DTM。
尽管已结合用于收集描述物体表面和地形的信息的应用而描述了这里所讨论的设备,但应当理解,上述设备可用于各种其它应用,诸如但不限于地震学、检测故障、生物量测量、风速测量、温度计算、交通速度测量、军事目标识别、大气研究、气象学、距离测量以及许多其它应用。
根据这里的教导的飞行时间测量装置设备可包括激光扫描器,如在美国专利No.6,734,849中公开的激光扫描器,该专利的内容已通过引用结合于此。激光扫描器如在美国专利No.6,734,849中公开的激光扫描器可用来通过在发射第二光脉冲之前发射第一光脉冲、使得在激光扫描器的光接收器接收第一光脉冲的反射部分的时间之前发射第二光脉冲来采集形成点云的点。计算机可将上述点在显示器上显示为点云,显示器包括这样的装置,如监视器、投影屏幕和立体眼镜。通过显示上述点,计算机根据众所周知的原理基于来自软件的指令来分配像素值。点云中的每个点可表示真实场景中从该场景中的物体表面上的点到激光扫描器的距离。
本发明可以以其它特定形式实施而不背离其精神或基本特性。所描述的实施例应在所有方面视为仅仅是说明性的而非限制性的。因此,本发明的范围由所附权利要求而不是前面的描述来指示。所有落入权利要求的等同者的含义和范围内的变化将包括在权利要求的范围内。
Claims (34)
1.一种飞行时间测量设备,包括:
激光器,配置成发射光;
光接收器,配置成接收光;
激光器控制电路,配置成使所述激光器在发射第二光脉冲之前发射第一光脉冲,所述激光器控制电路进一步配置成使所述激光器在所述光接收器接收所述第一光脉冲的反射部分的时间之前发射所述第二光脉冲;以及
经过时间电路,配置成测量所述激光器发射所述第一光脉冲与所述光接收器接收所述第一光脉冲的反射部分之间的经过时间。
2.根据权利要求1的飞行时间测量设备,进一步包括:
数据处理装置,配置成至少部分基于所述经过时间来计算所述设备与表面之间的距离。
3.根据权利要求1的飞行时间测量设备,进一步包括:
扫描子组件,配置成以不同扫描角导引由所述激光器发射的所述第一和第二光脉冲。
4.根据权利要求1的飞行时间测量设备,进一步包括:
耦合到所述光接收器的定时电路,所述定时电路配置成在第一时间间隔期间对来自所述光接收器的电子信号进行采样,所述第一时间间隔至少部分基于从激光测距系统到所述表面的一个范围的距离以及所述第一光脉冲的扫描角而近似为一时间,估计所述光接收器在该时间期间接收到所述第一光脉冲的反射部分。
5.根据权利要求4的飞行时间测量设备,其中所述定时电路进一步配置成在第二时间间隔期间对来自所述光接收器的电子信号进行采样,所述第二时间间隔至少部分基于从所述激光测距系统到所述表面的所述范围的距离以及所述第二光脉冲的扫描角而近似为一时间,估计所述光接收器在该时间期间接收到所述第二光脉冲的反射部分。
6.根据权利要求1的飞行时间测量设备,进一步包括配置成从所述光接收器接收离散返回反射脉冲、多个反射脉冲或整个返回反射脉冲波形的特性的采样电子器件。
7.根据权利要求1的飞行时间测量设备,其中所述激光器控制电路进一步配置成使所述激光器在发射所述第一光脉冲之后但在所述光接收器接收所述第一光脉冲的反射部分的时间之前发射至少一个附加的光脉冲。
8.根据权利要求1的飞行时间测量设备,其中所述经过时间电路进一步配置成计算所述激光器发射所述第二光脉冲与所述光接收器接收所述第二光脉冲的反射部分之间的时间,其中在所述光接收器接收所述第二光脉冲的反射部分之前,所述光接收器接收所述第一光脉冲的反射部分。
9.一种包括根据权利要求1的飞行时间测量设备的激光测距系统,所述激光测距系统进一步包括以下的至少一个或任意组合:
支持所述激光测距系统的运载工具;
位置测量单元;
惯性测量单元;以及
扫描子系统。
10.一种包括权利要求1中所述的飞行时间测量设备的激光扫描器。
11.一种用于采集描述地形的信息的系统,该系统包括:
光检测和测距(LIDAR)系统,配置成在接收先前发射的光脉冲的反射部分之前发射至少一个后续光脉冲。
12.根据权利要求11的系统,进一步包括以下的至少一个或任意组合:
承载所述LIDAR系统的运载工具;
位置测量单元;以及
取向测量单元。
13.根据权利要求12的系统,其中所述LIDAR系统进一步包括:
激光器,配置成发射所述光脉冲;
光接收器,配置成在发射所述至少一个后续光脉冲之后接收所述先前发射的光脉冲的反射部分;以及
经过时间电路,配置成计算发射所述第一光脉冲与所述光接收器接收所述第一光脉冲的反射部分之间的经过时间。
14.根据权利要求12的系统,其中所述位置测量单元从多个卫星接收信号并且根据从所述卫星接收的信号来计算所述运载工具的位置数据,其中所述位置数据包括纬度、经度和高程数据;并且其中所述取向测量单元计算所述运载工具的姿态数据,所述姿态数据包括航向数据、俯仰数据和滚转数据。
15.根据权利要求12的系统,进一步包括:
数据处理单元,配置成从所述LIDAR接收距离数据,所述数据处理单元进一步配置成从所述取向测量单元接收俯仰、滚转和航向数据,所述数据处理单元进一步配置成从所述位置测量单元接收纬度、经度和高程数据。
16.根据权利要求15的系统,其中所述数据处理单元进一步包括存储在计算机可读介质上的计算机可执行指令,所述计算机可执行指令配置成使所述数据处理单元至少部分基于从所述LIDAR、位置测量单元和取向测量单元接收的数据来创建描述地形的数字地形模型(DTM)或点云。
17.根据权利要求12的系统,其中所述位置测量单元是全球定位系统(GPS),且所述取向测量单元是惯性测量单元(IMU)。
18.一种用于获取描述表面的数据的方法,该方法包括:
发射第一光脉冲;
在发射所述第一光脉冲之后发射第二光脉冲;
在发射所述第二光脉冲之后接收所述第一光脉冲的反射部分;以及
通过确定发射所述第一光脉冲与接收所述第一光脉冲的反射部分的时间之间的经过时间来确定所述第一光脉冲的飞行时间。
19.根据权利要求18的方法,进一步包括:
在接收所述第一光脉冲的反射部分之后接收所述第二光脉冲的反射部分;以及
通过确定发射所述第二光脉冲与接收所述第二光脉冲的反射部分的时间之间的时间来确定所述第二光脉冲的飞行时间。
20.根据权利要求19的方法,进一步包括:
计算所述第一光脉冲的行进距离;以及
计算所述第二光脉冲的行进距离。
21.根据权利要求18的方法,其中所述光脉冲使用激光器来发射。
22.根据权利要求18的方法,其中在预定时间段期间对所述反射部分采样,其中所述预定时间段的持续时间和时序至少部分基于飞行器与所述飞行器之下的地面之间的最大和最小距离以及所述第一和第二光脉冲的扫描角来计算。
23.根据权利要求17的方法,进一步包括对所述第一光脉冲进行调制、使所述第一光脉冲偏振或采用所述第一光脉冲的特定波长。
24.根据权利要求23的方法,进一步包括基于所述第一光脉冲的反射部分的调制、偏振或波长来将所述第一光脉冲的反射部分与所发射的第一光脉冲相关联。
25.根据权利要求23的方法,进一步包括不同于所述第一光脉冲地对所述第二光脉冲进行调制、使所述第二光脉冲偏振或采用所述第二光脉冲的光波长。
26.根据权利要求18的方法,其中所述光脉冲由光检测和测距(LIDAR)系统发射,该方法进一步包括:
从所述LIDAR接收描述所述第一光脉冲的飞行时间的信号;
从位置测量单元接收描述运载工具的位置的信号,所述运载工具中承载有所述LIDAR单元和位置测量单元;以及
从取向测量单元接收描述所述运载工具的姿态变化的信号。
27.根据权利要求26的方法,进一步包括:
至少部分基于从所述LIDAR、取向测量单元和位置测量单元接收的信息来创建数字地形模型(DTM)。
28.根据权利要求18的方法,进一步包括:
创建描述所述表面的数字地形模型(DTM)、数字表面模型(DSM)或点云模型。
29.根据权利要求18的方法,进一步包括:
将描述离散返回反射脉冲、多个反射脉冲或整个返回反射脉冲波形的信息记录在计算机可读介质中。
30.根据权利要求18的方法,进一步包括:
执行对所述第一、第二和后续光脉冲的反射部分的波形分析。
31.根据权利要求18的方法,进一步包括:
测绘地形、进行海洋测深学研究、进行地震学研究、检测故障、测量生物量、测量风速、进行臭氧测量、计算温度、测量交通速度、识别目标、执行地对空测距、勘测、进行近距离摄影测量学研究、分析大气、进行气象学研究或测量距离。
32.根据权利要求18的方法,进一步包括:
在接收先前发射的光脉冲的反射部分之前发射至少两个后续光脉冲;以及
确定每个光脉冲的飞行时间。
33.一种具有存储在所述计算机可读介质上的计算机可执行指令的计算机可读介质,所述计算机可执行指令配置成使计算机创建权利要求28中的所述DTM、DSM或点云模型。
34.配置成根据权利要求18的方法来控制至少一个激光器的光发射的电路。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78016706P | 2006-03-07 | 2006-03-07 | |
US60/780,167 | 2006-03-07 | ||
US11/397,246 US7944548B2 (en) | 2006-03-07 | 2006-04-04 | Increasing measurement rate in time of flight measurement apparatuses |
US11/397,246 | 2006-04-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101034155A true CN101034155A (zh) | 2007-09-12 |
CN101034155B CN101034155B (zh) | 2010-11-03 |
Family
ID=37461549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101528335A Active CN101034155B (zh) | 2006-03-07 | 2006-10-20 | 用于提高测量速率的飞行时间测量设备和方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7944548B2 (zh) |
EP (2) | EP1832897B1 (zh) |
JP (1) | JP5230858B2 (zh) |
CN (1) | CN101034155B (zh) |
AT (1) | ATE489645T1 (zh) |
AU (1) | AU2006228080B1 (zh) |
CA (1) | CA2562620C (zh) |
DE (1) | DE602006018418D1 (zh) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7944548B2 (en) | 2006-03-07 | 2011-05-17 | Leica Geosystems Ag | Increasing measurement rate in time of flight measurement apparatuses |
CN103558604A (zh) * | 2013-10-12 | 2014-02-05 | 浙江大学 | 飞行时间原理的调制型漫反射表面反射成像方法与系统 |
CN103868504A (zh) * | 2014-03-25 | 2014-06-18 | 许凯华 | 自主测绘机 |
CN103885065A (zh) * | 2014-03-21 | 2014-06-25 | 中国科学院上海光学精密机械研究所 | 双波长双脉冲的无模糊激光测距装置 |
CN104101881A (zh) * | 2014-07-23 | 2014-10-15 | 哈尔滨工程大学 | 基于激光测距和mems/gps的目标导航测绘误差角估计方法 |
CN105549026A (zh) * | 2016-01-19 | 2016-05-04 | 北醒(北京)光子科技有限公司 | 一种多线光学扫描测距装置及其方法 |
CN106353768A (zh) * | 2015-07-17 | 2017-01-25 | 赫克斯冈技术中心 | 利用实时解模糊的飞行时间测量装置和飞行时间测量方法 |
CN107064554A (zh) * | 2009-10-09 | 2017-08-18 | 爱普西莱恩公司 | 用于测量风速的设备 |
CN107110975A (zh) * | 2014-12-11 | 2017-08-29 | 空客直升机 | 用于旋翼飞行器的驾驶传感器的冗余设备 |
CN107358796A (zh) * | 2016-05-10 | 2017-11-17 | 武汉万集信息技术有限公司 | 一种基于无人机的车辆检测方法 |
CN108007353A (zh) * | 2018-02-01 | 2018-05-08 | 深圳大学 | 一种旋转式激光轮廓测量方法、存储装置及其测量装置 |
CN108761474A (zh) * | 2017-04-21 | 2018-11-06 | 通用汽车环球科技运作有限责任公司 | 用于具有高处理增益的脉冲重复序列的方法和装置 |
CN109073756A (zh) * | 2016-03-21 | 2018-12-21 | 威力登激光雷达有限公司 | 以变化的照射场密度进行基于lidar的3-d成像 |
CN109298427A (zh) * | 2017-07-24 | 2019-02-01 | 三星电子株式会社 | 光检测和测距系统及其驱动方法 |
CN109564287A (zh) * | 2016-08-01 | 2019-04-02 | 株式会社电装 | 光飞行型测距装置 |
CN109844560A (zh) * | 2016-10-17 | 2019-06-04 | 罗伯特·博世有限公司 | 用于激光雷达系统的光学元件 |
CN109870148A (zh) * | 2019-01-16 | 2019-06-11 | 刘建明 | 一种立体空间测绘方法及装置 |
CN110174679A (zh) * | 2018-02-21 | 2019-08-27 | 爱贝欧汽车系统有限公司 | 用于光学测距的方法和装置 |
CN110346813A (zh) * | 2018-04-04 | 2019-10-18 | 迈来芯科技有限公司 | 脉冲光检测和测距装置、在脉冲光检测和测距系统中对物体进行检测和测距的系统和方法 |
CN110506220A (zh) * | 2016-12-30 | 2019-11-26 | 图达通爱尔兰有限公司 | 多波长lidar设计 |
CN110520757A (zh) * | 2017-01-05 | 2019-11-29 | 图达通爱尔兰有限公司 | 使用高频脉冲射击的高分辨率LiDAR |
CN110809722A (zh) * | 2017-07-20 | 2020-02-18 | 深圳市大疆创新科技有限公司 | 用于光学距离测量的系统和方法 |
CN110809704A (zh) * | 2017-05-08 | 2020-02-18 | 威力登激光雷达有限公司 | Lidar数据获取与控制 |
CN110869699A (zh) * | 2017-07-14 | 2020-03-06 | 三菱电机株式会社 | 数据间除装置、测量装置、测量系统以及数据间除方法 |
CN110888146A (zh) * | 2018-07-31 | 2020-03-17 | 优步技术公司 | 自主交通工具计算系统、光检测和测距校准系统及其方法 |
CN111033306A (zh) * | 2017-06-30 | 2020-04-17 | 伟摩有限责任公司 | 通过多个假设的光探测和测距(lidar)设备范围混叠弹性 |
CN111208490A (zh) * | 2018-11-21 | 2020-05-29 | 英飞凌科技股份有限公司 | 用于lidar系统的干扰检测与缓解 |
CN111247450A (zh) * | 2017-06-06 | 2020-06-05 | 视野有限公司 | 使用扫描仪和flash激光源的激光雷达距离测量 |
CN111580122A (zh) * | 2020-05-28 | 2020-08-25 | 睿镞科技(北京)有限责任公司 | 空间测量装置、方法、设备以及计算机可读存储介质 |
CN111610511A (zh) * | 2020-07-10 | 2020-09-01 | 北京敏视达雷达有限公司 | 一种光学收发系统及光学收发方法 |
CN111830522A (zh) * | 2019-03-26 | 2020-10-27 | 西克股份公司 | 操作测距监控传感器的方法和测距监控传感器 |
CN112292614A (zh) * | 2018-03-15 | 2021-01-29 | 麦特里奥传感器有限公司 | 用于提高lidar系统的成像性能的系统、装置和方法 |
CN112912757A (zh) * | 2018-10-12 | 2021-06-04 | 倍加福欧洲股份公司 | 检测监测区域中的物体的根据飞行时间原理的光学传感器 |
CN113296106A (zh) * | 2021-05-17 | 2021-08-24 | 江西欧迈斯微电子有限公司 | 一种tof测距方法、装置、电子设备以及存储介质 |
TWI745852B (zh) * | 2019-05-02 | 2021-11-11 | 大陸商廣州印芯半導體技術有限公司 | 飛時測距模組、其操作方法以及多媒體系統 |
CN113646661A (zh) * | 2019-03-05 | 2021-11-12 | 伟摩有限责任公司 | 用于实时lidar距离校准的系统和方法 |
WO2021248292A1 (zh) * | 2020-06-09 | 2021-12-16 | 深圳市汇顶科技股份有限公司 | 基于飞行时间的测距方法和相关测距系统 |
CN113945191A (zh) * | 2020-07-17 | 2022-01-18 | 日立乐金光科技株式会社 | 测距系统和测距传感器的检测强度分布显示方法 |
Families Citing this family (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
US7831089B2 (en) * | 2006-08-24 | 2010-11-09 | Microsoft Corporation | Modeling and texturing digital surface models in a mapping application |
DE102007010236B4 (de) | 2007-03-02 | 2008-11-20 | Toposys Topographische Systemdaten Gmbh | Vorrichtung und Verfahren zur Entfernungsbestimmung mittels Lichtpulsen |
US8310655B2 (en) * | 2007-12-21 | 2012-11-13 | Leddartech Inc. | Detection and ranging methods and systems |
JP4981780B2 (ja) * | 2008-10-20 | 2012-07-25 | 本田技研工業株式会社 | 測距システム及び測距方法 |
KR101851732B1 (ko) * | 2009-08-17 | 2018-04-24 | 코닌클리케 필립스 엔.브이. | Smi 센서 및 대응하는 센서 디바이스를 동작시키는 방법 |
US9091754B2 (en) | 2009-09-02 | 2015-07-28 | Trimble A.B. | Distance measurement methods and apparatus |
JP5580076B2 (ja) * | 2010-02-23 | 2014-08-27 | 株式会社パスコ | 地表面観察方法 |
US8786845B2 (en) | 2010-04-08 | 2014-07-22 | Navteq B.V. | System and method of generating and using open sky data |
JP5653715B2 (ja) * | 2010-10-27 | 2015-01-14 | 株式会社トプコン | レーザ測量機 |
US20120150573A1 (en) * | 2010-12-13 | 2012-06-14 | Omar Soubra | Real-time site monitoring design |
AT510296B1 (de) * | 2010-12-21 | 2012-03-15 | Riegl Laser Measurement Sys | Verfahren zur entfernungsmessung mittels laserimpulsen |
EP2469301A1 (en) * | 2010-12-23 | 2012-06-27 | André Borowski | Methods and devices for generating a representation of a 3D scene at very high speed |
JP2012189552A (ja) * | 2011-03-14 | 2012-10-04 | Sysmex Corp | 試薬調製装置、試薬調製方法および検体処理装置 |
KR101788032B1 (ko) * | 2011-03-24 | 2017-10-19 | 삼성전자주식회사 | 깊이 센서, 상기 깊이 센서의 깊이 정보 에러 보상 방법, 및 상기 깊이 센서를 포함하는 신호 처리 시스템 |
US11231502B2 (en) * | 2011-06-30 | 2022-01-25 | The Regents Of The University Of Colorado | Remote measurement of shallow depths in semi-transparent media |
US11933899B2 (en) | 2011-06-30 | 2024-03-19 | The Regents Of The University Of Colorado | Remote measurement of shallow depths in semi-transparent media |
US11313678B2 (en) | 2011-06-30 | 2022-04-26 | The Regents Of The University Of Colorado | Remote measurement of shallow depths in semi-transparent media |
US10684362B2 (en) | 2011-06-30 | 2020-06-16 | The Regents Of The University Of Colorado | Remote measurement of shallow depths in semi-transparent media |
AT511733B1 (de) * | 2011-08-12 | 2013-05-15 | Riegl Laser Measurement Sys | Verfahren zum erzeugen einer verbesserten abtastpunktewolke |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US9470520B2 (en) | 2013-03-14 | 2016-10-18 | Apparate International C.V. | LiDAR scanner |
KR20140147257A (ko) * | 2013-06-19 | 2014-12-30 | 주식회사 만도 | 차량용 무선통신장치 및 이를 이용한 주행차량 간 무선통신방법 |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
JP6244862B2 (ja) * | 2013-12-05 | 2017-12-13 | 三菱電機株式会社 | レーザレーダ装置 |
US9360554B2 (en) * | 2014-04-11 | 2016-06-07 | Facet Technology Corp. | Methods and apparatus for object detection and identification in a multiple detector lidar array |
EP3195010A4 (en) | 2014-08-15 | 2018-04-11 | Aeye, Inc. | Methods and systems for ladar transmission |
DE102014117097B3 (de) * | 2014-11-21 | 2016-01-21 | Odos Imaging Ltd. | Abstandsmessvorrichtung und Verfahren zum Bestimmen eines Abstands |
CN104536008B (zh) * | 2015-01-05 | 2017-01-25 | 大连理工大学 | 一种凿岩台车炮孔激光测距定位方法 |
US10036801B2 (en) | 2015-03-05 | 2018-07-31 | Big Sky Financial Corporation | Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array |
US10698110B2 (en) * | 2015-03-05 | 2020-06-30 | Teledyne Digital Imaging, Inc. | Laser scanning apparatus and method |
KR101785254B1 (ko) * | 2015-03-23 | 2017-10-16 | 주식회사 엠쏘텍 | 전방향 라이다 장치 |
KR101785253B1 (ko) * | 2015-03-20 | 2017-10-16 | 주식회사 엠쏘텍 | 라이다 장치 |
US10088557B2 (en) * | 2015-03-20 | 2018-10-02 | MSOTEK Co., Ltd | LIDAR apparatus |
US10557939B2 (en) | 2015-10-19 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system with improved signal-to-noise ratio in the presence of solar background noise |
WO2017079483A1 (en) | 2015-11-05 | 2017-05-11 | Luminar Technologies, Inc. | Lidar system with improved scanning speed for high-resolution depth mapping |
JP6852085B2 (ja) | 2015-11-30 | 2021-03-31 | ルミナー テクノロジーズ インコーポレイテッド | 分布型レーザー及び複数のセンサー・ヘッドを備える光検出及び測距システム、並びに、光検出及び測距システムのパルス・レーザー |
US20170168162A1 (en) * | 2015-12-09 | 2017-06-15 | The Boeing Company | Light detection and ranging (lidar) imaging systems and methods |
US10627490B2 (en) * | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US20170242104A1 (en) | 2016-02-18 | 2017-08-24 | Aeye, Inc. | Ladar Transmitter with Induced Phase Drift for Improved Gaze on Scan Area Portions |
US10641872B2 (en) | 2016-02-18 | 2020-05-05 | Aeye, Inc. | Ladar receiver with advanced optics |
US9933513B2 (en) | 2016-02-18 | 2018-04-03 | Aeye, Inc. | Method and apparatus for an adaptive ladar receiver |
US10042159B2 (en) | 2016-02-18 | 2018-08-07 | Aeye, Inc. | Ladar transmitter with optical field splitter/inverter |
US9866816B2 (en) | 2016-03-03 | 2018-01-09 | 4D Intellectual Properties, Llc | Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis |
JP2017161292A (ja) * | 2016-03-08 | 2017-09-14 | 富士通株式会社 | 光測距システムおよび光測距方法 |
WO2017164989A1 (en) | 2016-03-19 | 2017-09-28 | Velodyne Lidar, Inc. | Integrated illumination and detection for lidar based 3-d imaging |
AT517701B1 (de) | 2016-04-15 | 2017-04-15 | Riegl Laser Measurement Systems Gmbh | Laserscanner |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
DK3264135T3 (da) | 2016-06-28 | 2021-07-12 | Leica Geosystems Ag | Langtrækkende lidarsystem og fremgangsmåde til kompensation for virkningen af scannerbevægelse |
CN106225768B (zh) * | 2016-08-25 | 2018-07-24 | 南京昊控软件技术有限公司 | 一种利用多波束激光测量水下地形的方法和装置 |
KR102457029B1 (ko) * | 2016-09-20 | 2022-10-24 | 이노비즈 테크놀로지스 엘티디 | Lidar 시스템 및 방법 |
AT519103B1 (de) * | 2016-10-28 | 2018-04-15 | Riegl Laser Measurement Systems Gmbh | Verfahren, Vorrichtung und Fahrzeug zur Entfernungsmessung |
EP3324203B1 (de) | 2016-11-22 | 2024-01-03 | Hexagon Technology Center GmbH | Laserdistanzmessmodul mit polarisationsanalyse |
DE102016014851A1 (de) * | 2016-12-14 | 2018-06-14 | Alexander Zielbach | Umrisspulsmodulationsmessung |
EP3339885A1 (de) | 2016-12-21 | 2018-06-27 | Hexagon Technology Center GmbH | Laserdistanzmessmodul mit inl-fehlerkompensation |
EP3339901B1 (de) | 2016-12-21 | 2019-04-24 | Hexagon Technology Center GmbH | Laserdistanzmessmodul mit adc-fehlerkompensation durch variation der samplingzeitpunkte |
JP6793033B2 (ja) * | 2016-12-26 | 2020-12-02 | 浜松ホトニクス株式会社 | 測距装置 |
US10761188B2 (en) | 2016-12-27 | 2020-09-01 | Microvision, Inc. | Transmitter/receiver disparity for occlusion-based height estimation |
US10061441B2 (en) | 2016-12-27 | 2018-08-28 | Microvision, Inc. | Touch interactivity with occlusions in returned illumination data |
US11002855B2 (en) | 2016-12-27 | 2021-05-11 | Microvision, Inc. | Occlusion-based height estimation |
US10359507B2 (en) * | 2016-12-30 | 2019-07-23 | Panosense Inc. | Lidar sensor assembly calibration based on reference surface |
AU2018220938B2 (en) | 2017-02-17 | 2022-03-17 | Aeye, Inc. | Method and system for ladar pulse deconfliction |
US9810786B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Optical parametric oscillator for lidar system |
US9810775B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Q-switched laser for LIDAR system |
US9905992B1 (en) | 2017-03-16 | 2018-02-27 | Luminar Technologies, Inc. | Self-Raman laser for lidar system |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
US10007001B1 (en) | 2017-03-28 | 2018-06-26 | Luminar Technologies, Inc. | Active short-wave infrared four-dimensional camera |
US10386465B2 (en) | 2017-03-31 | 2019-08-20 | Velodyne Lidar, Inc. | Integrated LIDAR illumination power control |
EP3415950B1 (de) | 2017-06-13 | 2020-05-27 | Hexagon Technology Center GmbH | Distanzmesser mit spad-anordnung und range walk kompensation |
US11294035B2 (en) | 2017-07-11 | 2022-04-05 | Nuro, Inc. | LiDAR system with cylindrical lenses |
US11061116B2 (en) | 2017-07-13 | 2021-07-13 | Nuro, Inc. | Lidar system with image size compensation mechanism |
JP2020527805A (ja) | 2017-07-20 | 2020-09-10 | ニューロ・インコーポレーテッドNuro Incorporated | 自律車両の再配置 |
US11009868B2 (en) | 2017-07-20 | 2021-05-18 | Nuro, Inc. | Fleet of autonomous vehicles with lane positioning and platooning behaviors |
WO2019023522A1 (en) | 2017-07-28 | 2019-01-31 | Nuro, Inc. | SYSTEM AND MECHANISM FOR INCENTIVE SALE OF PRODUCTS ON AUTONOMOUS VEHICLES |
EP3438699A1 (de) * | 2017-07-31 | 2019-02-06 | Hexagon Technology Center GmbH | Distanzmesser mit spad-anordnung zur berücksichtigung von mehrfachzielen |
EP3451021A1 (de) | 2017-08-30 | 2019-03-06 | Hexagon Technology Center GmbH | Messgerät mit scanfunktionalität und einstellbaren empfangsbereichen des empfängers |
EP3450915B1 (de) | 2017-08-30 | 2020-11-25 | Hexagon Technology Center GmbH | Totalstation oder theodolit mit scanfunktionalität und einstellbaren empfangsbereichen des empfängers |
CN111344647B (zh) | 2017-09-15 | 2024-08-02 | 艾耶股份有限公司 | 具有低延时运动规划更新的智能激光雷达系统 |
EP3460519A1 (en) | 2017-09-25 | 2019-03-27 | Hexagon Technology Center GmbH | Laser scanner |
EP3460520B1 (en) | 2017-09-25 | 2023-07-19 | Hexagon Technology Center GmbH | Multi-beam laser scanner |
US10824862B2 (en) | 2017-11-14 | 2020-11-03 | Nuro, Inc. | Three-dimensional object detection for autonomous robotic systems using image proposals |
US10690773B2 (en) * | 2017-12-07 | 2020-06-23 | Velodyne Lidar, Inc. | Systems and methods for efficient multi-return light detectors |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
CN110646806B (zh) * | 2018-06-26 | 2021-11-30 | 深圳市速腾聚创科技有限公司 | 激光雷达及激光雷达控制方法 |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
EP3633405B1 (de) | 2018-10-03 | 2023-01-11 | Hexagon Technology Center GmbH | Messgerät zur geometrischen 3d-abtastung einer umgebung mit einer vielzahl sendekanäle und semiconductor-photomultiplier sensoren |
US11513197B2 (en) * | 2018-10-15 | 2022-11-29 | Leica Geosystems Ag | Multiple-pulses-in-air laser scanning system with ambiguity resolution based on range probing and 3D point analysis |
US11327177B2 (en) | 2018-10-25 | 2022-05-10 | Aeye, Inc. | Adaptive control of ladar shot energy using spatial index of prior ladar return data |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
CN109490904B (zh) * | 2018-11-15 | 2021-09-21 | 上海炬佑智能科技有限公司 | 飞行时间传感器及其检测方法 |
EP3660538A1 (en) * | 2018-11-27 | 2020-06-03 | STMicroelectronics (Research & Development) Limited | Apparatus & method for controlling system timing within a lidar system |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US11949456B2 (en) * | 2019-03-01 | 2024-04-02 | Ball Aerospace & Technologies Corp. | Systems and methods for communication by wavelength toggling |
US11796827B1 (en) * | 2019-03-01 | 2023-10-24 | Ball Aerospace & Technologies Corp. | Systems and methods for noise reductions in Lidar sensing of a target by wavelength toggling and filtering |
CN109831255B (zh) * | 2019-03-26 | 2021-03-23 | Oppo广东移动通信有限公司 | 飞行时间组件的控制系统和终端 |
US10641897B1 (en) | 2019-04-24 | 2020-05-05 | Aeye, Inc. | Ladar system and method with adaptive pulse duration |
CN110095108B (zh) * | 2019-05-23 | 2021-02-12 | 马鞍山市雷铭网络科技有限公司 | 一种基于bim无人机测绘装置及测绘方法 |
CN111982071B (zh) * | 2019-05-24 | 2022-09-27 | Tcl科技集团股份有限公司 | 一种基于tof相机的3d扫描方法及系统 |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
US20220341751A1 (en) * | 2019-08-21 | 2022-10-27 | Ahmed Shaker Abdelrahman | Systems and methods for multi-sensor mapping using a single device that can operate in multiple modes |
US11964627B2 (en) | 2019-09-30 | 2024-04-23 | Nuro, Inc. | Methods and apparatus for supporting compartment inserts in autonomous delivery vehicles |
EP4128100A1 (en) | 2020-03-23 | 2023-02-08 | Nuro, Inc. | Methods and apparatus for automated deliveries |
US12027006B1 (en) | 2020-03-23 | 2024-07-02 | Intelligent Entry Machines LLC | LIDAR-assisted access control systems and methods |
EP3929617B1 (de) * | 2020-06-26 | 2023-07-05 | RIEGL Laser Measurement Systems GmbH | Laserscanner und verfahren zum vermessen einer umgebung |
US11371840B2 (en) * | 2020-10-28 | 2022-06-28 | Rockwell Collins, Inc. | ESA based altimeter |
EP4063897A1 (en) | 2021-03-25 | 2022-09-28 | Hexagon Geosystems Services AG | Computer implemented method for identifying transparent and/or mirroring plane candidates and uav using the same |
US11635495B1 (en) | 2021-03-26 | 2023-04-25 | Aeye, Inc. | Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror |
US11822016B2 (en) | 2021-03-26 | 2023-11-21 | Aeye, Inc. | Hyper temporal lidar using multiple matched filters to orient a lidar system to a frame of reference |
US11675059B2 (en) | 2021-03-26 | 2023-06-13 | Aeye, Inc. | Hyper temporal lidar with elevation-prioritized shot scheduling |
US11630188B1 (en) | 2021-03-26 | 2023-04-18 | Aeye, Inc. | Hyper temporal lidar with dynamic laser control using safety models |
US11467263B1 (en) | 2021-03-26 | 2022-10-11 | Aeye, Inc. | Hyper temporal lidar with controllable variable laser seed energy |
US11480680B2 (en) | 2021-03-26 | 2022-10-25 | Aeye, Inc. | Hyper temporal lidar with multi-processor return detection |
US11604264B2 (en) | 2021-03-26 | 2023-03-14 | Aeye, Inc. | Switchable multi-lens Lidar receiver |
CN113970653B (zh) * | 2021-10-21 | 2024-06-18 | 陕西鼎泰光宇科技有限公司 | 一种激光传感模拟测速方法、系统、设备及终端 |
CN114325738B (zh) * | 2021-12-23 | 2023-01-10 | 探维科技(北京)有限公司 | 测量距离的方法及激光雷达 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3456211A (en) | 1966-06-16 | 1969-07-15 | American Optical Corp | Fiber laser structures and the like |
US4234141A (en) * | 1970-03-10 | 1980-11-18 | The United States Of America As Represented By The Secretary Of The Army | Range gated retroreflective missile guidance system |
US3897150A (en) * | 1972-04-03 | 1975-07-29 | Hughes Aircraft Co | Scanned laser imaging and ranging system |
FR2372436A1 (fr) * | 1976-11-30 | 1978-06-23 | Cilas | Telemetre laser |
US4515431A (en) | 1982-08-11 | 1985-05-07 | The Board Of Trustees Of The Leland Stanford Junior University | Fiber optic amplifier |
US4604542A (en) | 1984-07-25 | 1986-08-05 | Gould Inc. | Broadband radial vibrator transducer with multiple resonant frequencies |
JPS62117535A (ja) | 1985-11-18 | 1987-05-29 | アロカ株式会社 | 超音波ドプラ装置 |
US4685107A (en) | 1986-06-09 | 1987-08-04 | Spectra-Physics, Inc. | Dispersion compensated fiber Raman oscillator |
JPS638576A (ja) | 1986-06-28 | 1988-01-14 | Toshiba Corp | レ−ダ装置 |
US4835778A (en) | 1987-09-30 | 1989-05-30 | Spectra-Physics, Inc. | Subpicosecond fiber laser |
JPH0348790A (ja) | 1989-07-17 | 1991-03-01 | Mitsubishi Heavy Ind Ltd | 複数波長型イメージレーザレーダ |
US5150125A (en) * | 1990-12-24 | 1992-09-22 | Honeywell Inc. | High Doppler rate, high altitude capability coherent pulse Doppler radar altimeter |
JPH05134042A (ja) * | 1991-11-12 | 1993-05-28 | Mitsubishi Electric Corp | 車載用測距装置および方法 |
US6746078B2 (en) * | 1997-12-17 | 2004-06-08 | Automotive Technologies International, Inc. | System and method for moving a headrest based on anticipatory sensing |
US5513194A (en) | 1994-06-30 | 1996-04-30 | Massachusetts Institute Of Technology | Stretched-pulse fiber laser |
JPH08189970A (ja) * | 1995-01-10 | 1996-07-23 | Mitsubishi Electric Corp | 対象物の位置検出装置 |
US5606413A (en) | 1995-01-19 | 1997-02-25 | Northrop Grumman Corporation | Real time spectroscopic imaging system and method |
US6023322A (en) * | 1995-05-04 | 2000-02-08 | Bushnell Corporation | Laser range finder with target quality display and scan mode |
US6720920B2 (en) * | 1997-10-22 | 2004-04-13 | Intelligent Technologies International Inc. | Method and arrangement for communicating between vehicles |
US5793034A (en) | 1995-09-18 | 1998-08-11 | Daedalus Enterprises, Inc. | Target detection system utilizing multiple optical criteria |
US5726657A (en) * | 1996-03-22 | 1998-03-10 | Lockheed Martin Corporation | Phase coherent radar system using fast frequency agile waveform synthesis |
US5988862A (en) | 1996-04-24 | 1999-11-23 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three dimensional objects |
US5835199A (en) | 1996-05-17 | 1998-11-10 | Coherent Technologies | Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator |
JP3417222B2 (ja) * | 1996-08-07 | 2003-06-16 | 松下電器産業株式会社 | 実時間レンジファインダ |
US6359582B1 (en) * | 1996-09-18 | 2002-03-19 | The Macaleese Companies, Inc. | Concealed weapons detection system |
US5815250A (en) * | 1997-05-27 | 1998-09-29 | Coherent Technologies, Inc. | Doublet pulse coherent laser radar for precision range and velocity measurements |
US6963354B1 (en) * | 1997-08-07 | 2005-11-08 | The United States Of America As Represented By The Secretary Of The Navy | High resolution imaging lidar for detecting submerged objects |
FI112402B (fi) * | 1999-10-28 | 2003-11-28 | Diware Oy | Menetelmä puustotunnusten määrittämiseksi sekä tietokoneohjelma menetelmän suorittamiseksi |
US6664529B2 (en) * | 2000-07-19 | 2003-12-16 | Utah State University | 3D multispectral lidar |
JP2002156452A (ja) * | 2000-11-20 | 2002-05-31 | Hioki Ee Corp | レーザレーダシステム |
CN1152233C (zh) * | 2000-12-12 | 2004-06-02 | 哈尔滨工业大学 | 回波触发近距离激光测距方法 |
AUPR301401A0 (en) * | 2001-02-09 | 2001-03-08 | Commonwealth Scientific And Industrial Research Organisation | Lidar system and method |
JP2004527765A (ja) | 2001-05-30 | 2004-09-09 | イーグル レイ コーポレーション | 距離測定用光学センサー |
US20030122420A1 (en) * | 2002-01-02 | 2003-07-03 | Ford Global Technologies, Inc. | Brake pedal system for improved braking performance |
US20040049323A1 (en) * | 2002-09-05 | 2004-03-11 | Ford Global Technologies, Inc. | Haptic seat notification system |
US6853919B2 (en) * | 2003-02-04 | 2005-02-08 | General Motors Corporation | Method for reducing repeat false alarm indications in vehicle impact detection systems |
FI117309B (fi) * | 2003-03-31 | 2006-08-31 | Geodeettinen Laitos | Menetelmä, laitteisto ja ohjelma puiden kasvun määrittämiseksi |
JP5242884B2 (ja) | 2005-04-08 | 2013-07-24 | 株式会社富士商会 | 強粘着テープ |
US20060238742A1 (en) * | 2005-04-25 | 2006-10-26 | Hunt Jeffrey H | Short duty cycle lidar |
US7944548B2 (en) | 2006-03-07 | 2011-05-17 | Leica Geosystems Ag | Increasing measurement rate in time of flight measurement apparatuses |
US9449619B1 (en) * | 2015-12-11 | 2016-09-20 | International Business Machines Corporation | Direction dependent tape head assembly to reduce tape-head friction |
-
2006
- 2006-04-04 US US11/397,246 patent/US7944548B2/en active Active
- 2006-10-05 CA CA2562620A patent/CA2562620C/en active Active
- 2006-10-06 EP EP06121927A patent/EP1832897B1/en not_active Revoked
- 2006-10-06 EP EP10169727.4A patent/EP2233947B1/en not_active Revoked
- 2006-10-06 AT AT06121927T patent/ATE489645T1/de not_active IP Right Cessation
- 2006-10-06 AU AU2006228080A patent/AU2006228080B1/en active Active
- 2006-10-06 DE DE602006018418T patent/DE602006018418D1/de active Active
- 2006-10-20 CN CN2006101528335A patent/CN101034155B/zh active Active
- 2006-10-26 JP JP2006290973A patent/JP5230858B2/ja active Active
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7944548B2 (en) | 2006-03-07 | 2011-05-17 | Leica Geosystems Ag | Increasing measurement rate in time of flight measurement apparatuses |
CN107064554A (zh) * | 2009-10-09 | 2017-08-18 | 爱普西莱恩公司 | 用于测量风速的设备 |
CN103558604A (zh) * | 2013-10-12 | 2014-02-05 | 浙江大学 | 飞行时间原理的调制型漫反射表面反射成像方法与系统 |
CN103885065A (zh) * | 2014-03-21 | 2014-06-25 | 中国科学院上海光学精密机械研究所 | 双波长双脉冲的无模糊激光测距装置 |
CN103885065B (zh) * | 2014-03-21 | 2016-04-13 | 中国科学院上海光学精密机械研究所 | 双波长双脉冲的无模糊激光测距装置 |
CN103868504B (zh) * | 2014-03-25 | 2015-01-14 | 许凯华 | 自主测绘机 |
CN103868504A (zh) * | 2014-03-25 | 2014-06-18 | 许凯华 | 自主测绘机 |
CN104101881A (zh) * | 2014-07-23 | 2014-10-15 | 哈尔滨工程大学 | 基于激光测距和mems/gps的目标导航测绘误差角估计方法 |
CN107110975A (zh) * | 2014-12-11 | 2017-08-29 | 空客直升机 | 用于旋翼飞行器的驾驶传感器的冗余设备 |
US10935672B2 (en) | 2014-12-11 | 2021-03-02 | Airbus Helicopters | Redundant device of piloting sensors for a rotary-wing aircraft |
US10345434B2 (en) | 2015-07-17 | 2019-07-09 | Hexagon Technology Center Gmbh | Time-of-flight measurement apparatus and time-of-flight measurement method with ambiguity resolution in real time |
CN106353768A (zh) * | 2015-07-17 | 2017-01-25 | 赫克斯冈技术中心 | 利用实时解模糊的飞行时间测量装置和飞行时间测量方法 |
CN106353768B (zh) * | 2015-07-17 | 2019-10-11 | 赫克斯冈技术中心 | 用于测量电磁信号的飞行时间的距离测量装置和方法 |
CN105549026A (zh) * | 2016-01-19 | 2016-05-04 | 北醒(北京)光子科技有限公司 | 一种多线光学扫描测距装置及其方法 |
CN109073756B (zh) * | 2016-03-21 | 2024-01-12 | 威力登激光雷达有限公司 | 以变化的照射场密度进行基于lidar的3-d成像 |
CN109073756A (zh) * | 2016-03-21 | 2018-12-21 | 威力登激光雷达有限公司 | 以变化的照射场密度进行基于lidar的3-d成像 |
CN107358796A (zh) * | 2016-05-10 | 2017-11-17 | 武汉万集信息技术有限公司 | 一种基于无人机的车辆检测方法 |
CN109564287A (zh) * | 2016-08-01 | 2019-04-02 | 株式会社电装 | 光飞行型测距装置 |
CN109564287B (zh) * | 2016-08-01 | 2022-12-06 | 株式会社电装 | 光飞行型测距装置 |
CN109844560B (zh) * | 2016-10-17 | 2024-01-09 | 罗伯特·博世有限公司 | 用于激光雷达系统的光学元件 |
CN109844560A (zh) * | 2016-10-17 | 2019-06-04 | 罗伯特·博世有限公司 | 用于激光雷达系统的光学元件 |
CN110506220B (zh) * | 2016-12-30 | 2023-09-15 | 图达通智能美国有限公司 | 多波长lidar设计 |
CN110506220A (zh) * | 2016-12-30 | 2019-11-26 | 图达通爱尔兰有限公司 | 多波长lidar设计 |
CN110520757A (zh) * | 2017-01-05 | 2019-11-29 | 图达通爱尔兰有限公司 | 使用高频脉冲射击的高分辨率LiDAR |
CN110520757B (zh) * | 2017-01-05 | 2023-11-03 | 图达通智能美国有限公司 | 使用高频脉冲射击的高分辨率LiDAR |
CN108761474A (zh) * | 2017-04-21 | 2018-11-06 | 通用汽车环球科技运作有限责任公司 | 用于具有高处理增益的脉冲重复序列的方法和装置 |
CN110809704A (zh) * | 2017-05-08 | 2020-02-18 | 威力登激光雷达有限公司 | Lidar数据获取与控制 |
CN111247450A (zh) * | 2017-06-06 | 2020-06-05 | 视野有限公司 | 使用扫描仪和flash激光源的激光雷达距离测量 |
CN111033306A (zh) * | 2017-06-30 | 2020-04-17 | 伟摩有限责任公司 | 通过多个假设的光探测和测距(lidar)设备范围混叠弹性 |
CN111033306B (zh) * | 2017-06-30 | 2023-11-07 | 伟摩有限责任公司 | 通过多个假设的光探测和测距(lidar)设备范围混叠弹性 |
US11774590B2 (en) | 2017-06-30 | 2023-10-03 | Waymo Llc | Light detection and ranging (LIDAR) device range aliasing resilience by multiple hypotheses |
CN110869699A (zh) * | 2017-07-14 | 2020-03-06 | 三菱电机株式会社 | 数据间除装置、测量装置、测量系统以及数据间除方法 |
CN110809722B (zh) * | 2017-07-20 | 2023-05-26 | 深圳市大疆创新科技有限公司 | 用于光学距离测量的系统和方法 |
CN110809722A (zh) * | 2017-07-20 | 2020-02-18 | 深圳市大疆创新科技有限公司 | 用于光学距离测量的系统和方法 |
US12013486B2 (en) | 2017-07-24 | 2024-06-18 | Samsung Electronics Co., Ltd. | LiDAR system and method of driving the same |
CN109298427A (zh) * | 2017-07-24 | 2019-02-01 | 三星电子株式会社 | 光检测和测距系统及其驱动方法 |
CN109298427B (zh) * | 2017-07-24 | 2023-09-15 | 三星电子株式会社 | 光检测和测距系统及其驱动方法 |
CN108007353A (zh) * | 2018-02-01 | 2018-05-08 | 深圳大学 | 一种旋转式激光轮廓测量方法、存储装置及其测量装置 |
CN108007353B (zh) * | 2018-02-01 | 2023-11-21 | 深圳大学 | 一种旋转式激光轮廓测量方法、存储装置及其测量装置 |
CN110174679A (zh) * | 2018-02-21 | 2019-08-27 | 爱贝欧汽车系统有限公司 | 用于光学测距的方法和装置 |
CN110174679B (zh) * | 2018-02-21 | 2023-12-26 | 微视公司 | 用于光学测距的方法和装置 |
CN112292614A (zh) * | 2018-03-15 | 2021-01-29 | 麦特里奥传感器有限公司 | 用于提高lidar系统的成像性能的系统、装置和方法 |
CN110346813A (zh) * | 2018-04-04 | 2019-10-18 | 迈来芯科技有限公司 | 脉冲光检测和测距装置、在脉冲光检测和测距系统中对物体进行检测和测距的系统和方法 |
CN110888146A (zh) * | 2018-07-31 | 2020-03-17 | 优步技术公司 | 自主交通工具计算系统、光检测和测距校准系统及其方法 |
CN110888146B (zh) * | 2018-07-31 | 2022-05-31 | Uatc有限责任公司 | 自主交通工具计算系统、光检测和测距校准系统及其方法 |
CN112912757A (zh) * | 2018-10-12 | 2021-06-04 | 倍加福欧洲股份公司 | 检测监测区域中的物体的根据飞行时间原理的光学传感器 |
CN112912757B (zh) * | 2018-10-12 | 2023-07-14 | 倍加福欧洲股份公司 | 检测监测区域中的物体的根据飞行时间原理的光学传感器 |
CN111208490A (zh) * | 2018-11-21 | 2020-05-29 | 英飞凌科技股份有限公司 | 用于lidar系统的干扰检测与缓解 |
CN111208490B (zh) * | 2018-11-21 | 2023-12-22 | 英飞凌科技股份有限公司 | 用于lidar系统的干扰检测与缓解 |
CN109870148B (zh) * | 2019-01-16 | 2021-10-22 | 刘建明 | 一种立体空间测绘方法及装置 |
CN109870148A (zh) * | 2019-01-16 | 2019-06-11 | 刘建明 | 一种立体空间测绘方法及装置 |
CN113646661A (zh) * | 2019-03-05 | 2021-11-12 | 伟摩有限责任公司 | 用于实时lidar距离校准的系统和方法 |
US11573308B2 (en) | 2019-03-26 | 2023-02-07 | Sick Ag | Method of operating a distance-measuring monitoring sensor and distance measuring monitoring sensor |
CN111830522A (zh) * | 2019-03-26 | 2020-10-27 | 西克股份公司 | 操作测距监控传感器的方法和测距监控传感器 |
TWI745852B (zh) * | 2019-05-02 | 2021-11-11 | 大陸商廣州印芯半導體技術有限公司 | 飛時測距模組、其操作方法以及多媒體系統 |
CN111580122B (zh) * | 2020-05-28 | 2022-12-06 | 睿镞科技(北京)有限责任公司 | 空间测量装置、方法、设备以及计算机可读存储介质 |
CN111580122A (zh) * | 2020-05-28 | 2020-08-25 | 睿镞科技(北京)有限责任公司 | 空间测量装置、方法、设备以及计算机可读存储介质 |
WO2021248292A1 (zh) * | 2020-06-09 | 2021-12-16 | 深圳市汇顶科技股份有限公司 | 基于飞行时间的测距方法和相关测距系统 |
CN111610511A (zh) * | 2020-07-10 | 2020-09-01 | 北京敏视达雷达有限公司 | 一种光学收发系统及光学收发方法 |
CN113945191A (zh) * | 2020-07-17 | 2022-01-18 | 日立乐金光科技株式会社 | 测距系统和测距传感器的检测强度分布显示方法 |
CN113296106A (zh) * | 2021-05-17 | 2021-08-24 | 江西欧迈斯微电子有限公司 | 一种tof测距方法、装置、电子设备以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP2233947A3 (en) | 2010-10-06 |
US20090122295A1 (en) | 2009-05-14 |
EP2233947B1 (en) | 2014-09-17 |
EP2233947A2 (en) | 2010-09-29 |
CN101034155B (zh) | 2010-11-03 |
JP2007240516A (ja) | 2007-09-20 |
DE602006018418D1 (de) | 2011-01-05 |
EP1832897B1 (en) | 2010-11-24 |
US7944548B2 (en) | 2011-05-17 |
ATE489645T1 (de) | 2010-12-15 |
CA2562620A1 (en) | 2007-09-07 |
JP5230858B2 (ja) | 2013-07-10 |
EP1832897A1 (en) | 2007-09-12 |
AU2006228080B1 (en) | 2007-03-29 |
CA2562620C (en) | 2013-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101034155B (zh) | 用于提高测量速率的飞行时间测量设备和方法 | |
EP1962107B1 (en) | High-speed laser ranging system including a fiber laser | |
CN112556659B (zh) | 单光子激光雷达水下光子位移校正、测深方法及装置 | |
US9335415B2 (en) | Modulated laser range finder and method | |
CN101839981B (zh) | 激光成像回波波形和层次特征获取方法及装置 | |
JP2022539706A (ja) | 適応型多重パルスlidarシステム | |
CN108594254A (zh) | 一种提高tof激光成像雷达测距精度的方法 | |
Steinvall et al. | Airborne laser depth sounding: system aspects and performance | |
US11513197B2 (en) | Multiple-pulses-in-air laser scanning system with ambiguity resolution based on range probing and 3D point analysis | |
US20230236298A1 (en) | Systems and methods for detecting an electromagnetic signal in a constant interference environment | |
Sakib | LiDAR with Pulsed Time of Flight | |
Sakib | LiDAR Technology-An Overview. | |
Lohani | Airborne altimetric LIDAR: Principle, data collection, processing and applications | |
CN108181313B (zh) | 一种适用于接触网运行环境安全状态检测的装置及方法 | |
Lu et al. | An automatic range ambiguity solution in high-repetition-rate airborne laser scanner using priori terrain prediction | |
CN111708005A (zh) | 单光子激光雷达水下光子位移校正、测深方法及装置 | |
CN111665487A (zh) | 单光子激光雷达水下光子位移校正、测深方法及装置 | |
JP6470658B2 (ja) | レーザ計測システムおよびレーザ計測方法 | |
CN208421239U (zh) | 一种轻小型机载双激光器扫描仪 | |
US11747472B2 (en) | Range estimation for LiDAR systems | |
KR102648440B1 (ko) | 항공 수심 라이다 보정 방법 및 그 장치 | |
RU2575471C2 (ru) | Способ определения скорости движущихся объектов методом пассивной локации |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |