CN111208490B - 用于lidar系统的干扰检测与缓解 - Google Patents

用于lidar系统的干扰检测与缓解 Download PDF

Info

Publication number
CN111208490B
CN111208490B CN201911152490.6A CN201911152490A CN111208490B CN 111208490 B CN111208490 B CN 111208490B CN 201911152490 A CN201911152490 A CN 201911152490A CN 111208490 B CN111208490 B CN 111208490B
Authority
CN
China
Prior art keywords
detector signal
detector
delay time
signal
light pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911152490.6A
Other languages
English (en)
Other versions
CN111208490A (zh
Inventor
P·梅斯纳
M·赫尔斯卢特
A·梅尔泽
V·彼得罗维克
C·斯坦纳
H·范利罗普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN111208490A publication Critical patent/CN111208490A/zh
Application granted granted Critical
Publication of CN111208490B publication Critical patent/CN111208490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本公开涉及用于LIDAR系统的干扰检测与缓解,例如,一种LIDAR传感器(500),包括:检测器(510),被配置为在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号(240‑1),并且在发射至少一个第二光脉冲之后的第一延迟时间处生成至少一个第二检测器信号(240‑2);以及处理器(520),被配置为基于第一和至少一个第二检测器信号的组合来生成第一延迟时间的组合信号(522)。根据组合的类型,组合信号(522)可用于干扰检测或缓解。

Description

用于LIDAR系统的干扰检测与缓解
技术领域
本公开总体上涉及LIDAR(光检测和测距)系统,并且更具体地,涉及用于脉冲LIDAR系统的干扰检测和/或缓解。
背景技术
LIDAR是指通过用脉冲激光照射目标并且利用光敏传感器测量反射脉冲来测量与目标的距离的测量概念。然后,激光返回时间的差和波长可用于进行目标的数字3D表示。换句话说,可基于光束从光源到传感器的飞行时间(ToF)来确定从光源到目标的距离。为了测量与LIDAR系统的视场中的多个目标的距离,可以一维或二维地扫描激光束。
LIDAR传感器被认为在未来先进的驾驶辅助系统(ADAS)中、甚至在自动驾驶(AD)中扮演重要的角色。这是因为它们在径向和横向上都具有很大的分辨率。例如,后者比同类雷达传感器要好得多。未来几年,由于这些传感器的小型化和生产成本的降低,越来越多的LIDAR传感器可能部署在街头的车辆上。这样做的缺点是增加了多个LIDAR传感器之间相互干扰的可能性。
因此,对LIDAR系统的干扰检测和/或缓解概念提出了要求。
发明内容
通过根据独立权利要求的装置和方法来解决这种需求。在特定情况下可能有利的实施例通过从属权利要求来解决。
根据第一方面,提供了一种LIDAR传感器,其包括检测器电路,该检测器电路被配置为在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号,并且在发射至少一个第二光脉冲发射之后的相同第一延迟时间处生成至少一个第二检测器信号。LIDAR传感器还包括处理器电路,该处理器电路被配置为基于第一和至少一个第二检测器信号的组合生成针对第一延迟时间的组合信号。换句话说,根据各种实施例,组合在发射多个光脉冲之后具有相同延迟时间的多个检测器信号。可以多种方式来进行这种组合。然后,组合信号可用于与干扰检测和/或缓解相关的进一步信号处理。
在本公开中,检测器信号可理解为由一个或多个光敏检测器(诸如固态光电检测器(例如,雪崩光电二极管)或光电倍增管)生成的电信号。检测器信号可表示噪声、从一个或多个目标反射的光脉冲、干扰或它们的组合。在一些示例实施方式中,检测器电路被配置为生成第一和至少一个第二检测器信号作为相应的模数转换采样。
在一些示例实施方式中,处理器电路被配置为基于组合信号来验证第一和至少一个第二检测器信号是否对应于来自目标的第一和至少一个第二光脉冲的相应反射。换句话说,处理器可被配置为验证检测器信号是否表示目标反射。在这些实施例中,信号组合可用于干扰的检测和/或缓解。
在一些示例实施方式中,处理器电路被配置为对第一和至少一个第二检测器信号进行低通滤波以生成组合信号。在一个示例中,低通滤波操作可对应于平均操作,并且处理器电路可被配置为计算第一和至少一个第二检测器信号的平均值作为组合信号。由于平均是一种低通操作,因此其可以缓解对应的干扰脉冲。
在一些示例实施方式中,处理器电路被配置为计算第一和至少一个第二检测器信号的最小值作为组合信号。这里,多个检测器信号的组合对应于它们最小值的确定。这是非线性操作,如此能够完全消除干扰。作为积极的副作用,其也可以抑制噪声,因为对于每个采样仅选择最小的噪声贡献。
在一些示例实施方式中,处理器电路被配置为计算第一和至少一个第二检测器信号的中值作为组合信号。确定中值也是非线性操作,并且在一些场景中可能比最小值更安全。
受益于本公开的技术人员应理解,除了所提到的操作/组合之外或者作为所提到的操作/组合的替代,脉冲重复域中的检测器信号的其他类型的组合也是可行的以缓解干扰。
受益于本公开的技术人员还应理解,可以评估与发射相应光脉冲之后的多于一个的延迟时间相对应的检测器信号。因此,检测器电路可进一步被配置为在发射第一光脉冲之后的第二延迟时间处生成第三检测器信号并且在发射第二光脉冲之后的第二延迟时间处生成至少第四检测器信号。处理器电路进一步被配置为基于第三和至少一个第四检测器信号的组合生成第二延迟时间的组合信号。因此,与第一延迟时间相同的操作可以针对不同于第一延迟时间的至少第二延迟时间来进行。以这种方式,可以针对多个延迟时间执行信号组合,并由此执行干扰检测和/或缓解。处理器电路可被配置为基于针对第二延迟时间的组合信号来验证第三和至少一个第四检测器信号是否对应于来自目标的第一和至少一个第二光脉冲的相应反射。换句话说,处理器电路可以被配置为验证与第二延迟时间相对应的检测器信号是否表示目标反射。
在一些示例实施方式中,第一和/或第二延迟时间的上限对应于光脉冲的连续发射之间的时间。光脉冲可以发射到相同方向和/或从相同方向接收。因此,采样窗口的最大值不大于两个连续光脉冲发射之间的时间(例如,在相同方向上)。
在一些示例实施方式中,多个光脉冲(在相同方向上发射)可以是光脉冲的帧。检测器电路可以被配置为在发射帧的第一光脉冲之后的多个不同延迟时间中的每一个处生成相应的检测器信号,并且在发射帧的第二光脉冲之后的多个不同延迟时间中的每一个处生成相应的检测器信号。不同延迟时间的数量可以至少为100。处理器被配置为基于相应检测器信号的组合为多个不同的延迟时间中的每一个生成相应的组合信号。因此,可以在至少100个不同的延迟时间间隔中进行组合,即,采样窗口可以被划分为至少100个不同的时间间隔,并且可以对每个时间间隔进行组合。
在一些示例实施方式中,处理器被配置为组合多个第一检测器信号。多个第一检测器信号包括第一检测器信号和第二检测器信号。多个第一检测器信号中的每一个在多个第一发射光脉冲的相应光脉冲的发射之后的第一预定时间延迟处生成。多个第一发射光脉冲包括第一光脉冲和第二光脉冲。例如,用于生成组合信号的多个第一发射光脉冲的数量可以在2和64之间的范围内。
在一些示例实施方式中,多个第一发射光脉冲中的每一个是在第一光脉冲发射方向上发射的光脉冲。因此,仅在该方向上传输多个第一检测器信号所基于的发射光脉冲。
在一些示例实施方式中,多个第一检测器信号中的每一个基于从相同接收方向接收的光信号。
在一些示例实施方式中,多个第一检测器信号中的每一个基于从第一光接收方向和与第一方向相邻的光接收方向接收的光信号。以这种方式,可以一起处理由相邻像素检测的具有定向扩散的入射光。在这种情况下,多个第一信号中的每一个都基于来自多个光检测器像素的信号、与从第一光接收方向以及与第一光接收方向相邻的光接收方向接收的光相对应的多个光检测器像素的信号的组合。
在一些示例实施方式中,多个第一发射光脉冲中的每一个是在第一光脉冲发射方向以及与所述第一光脉冲发射方向相邻的光脉冲发射方向上发射的光脉冲。以这种方式,具有特定方向扩散的出射光可以一起处理。
在一些示例实施方式中,在光脉冲的单个帧中传输多个发射光脉冲,单个帧的帧时间间隔在20ms和60ms之间。
在一些示例实施方式中,处理器电路被配置为在满足一个或多个预定标准集合时检测目标的存在。例如,处理器电路可被配置为在组合信号的幅度或功率超过预定阈值时检测目标的存在。
在一些示例实施方式中,处理器电路可被配置为基于组合信号检测干扰源的存在。例如,处理器电路可被配置为将第一和至少一个第二检测器信号之间的变化(variation,诸如方差或标准差)的测量值计算为组合信号。然后,处理器可被配置为在变化(例如,方差或标准差)超过预定阈值时检测干扰源的存在。
根据本公开的第二方面,提供了一种LIDAR传感器,其包括检测器电路,检测器电路被配置为在发射第一光脉冲之后的第一延迟时间处生成第一检测器采样,以及在发射至少一个第二光脉冲之后的第一延迟时间处生成至少一个第二检测器采样。LIDAR传感器还包括处理器电路,其被配置为测量第一和至少一个第二检测器采样之间的变化,并且在变化超过预定阈值时检测干扰源的存在。
在一些示例实施方式中,处理器电路被配置为确定第一和至少一个第二检测器采样的标准差和/或方差。
根据本公开的第三方面,提供了一种LIDAR传感器,其包括检测器电路,检测器电路被配置为在发射第一光脉冲之后的第一延迟时间处生成第一检测器采样,以及在发射至少一个第二光脉冲之后的第一延迟时间处生成至少一个第二检测器采样。LIDAR传感器还包括处理器电路,处理器电路被配置为对第一和至少一个第二检测器采样的序列进行低通滤波,以生成针对第一延迟时间的低通滤波信号,并且在低通滤波信号超过预定阈值时检测目标的存在。
根据本公开的另一方面,一种LIDAR方法包括:发射光脉冲序列的第一光脉冲;在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号;发射光脉冲序列的至少一个第二光脉冲;在发射第二光脉冲之后的第一延迟时间处生成第二检测器信号;以及组合第一和至少一个第二检测器信号,以生成针对第一延迟时间的组合信号。
本公开的一些实施例提出在脉冲重复域上执行滤波操作,在该域中利用目标反射的相干性和干扰的非相干性。因此,典型的性质或干扰可用于完全缓解它。
附图说明
下面将仅以示例的方式并参照附图描述装置和/或方法的一些示例,其中:
图1示出了示例LIDAR系统的简化框图;
图2示出了在具有干扰的一个像素通道中的八个连续的检测器采样;
图3示出了示例LIDAR干扰场景;
图4示出了具有干扰的一个像素通道中的八个连续检测器采样;
图5示出了根据一个实施例的LIDAR传感器的框图;
图6示出了不同的检测器采样组合选项:平均值(左)、最小值(中间)、中值(右);以及
图7示出了无干扰和有干扰的接收信号的平均值以及无干扰和有干扰的Np个脉冲上的方差。
具体实施方式
现在将参照示出一些示例的附图更全面地描述各种示例。在图中,为了清楚,可以放大线、层和/或区域的厚度。
因此,虽然进一步的示例能够实现各种修改和替代形式,但图中示出了其中的一些特定示例,随后将进行详细描述。然而,这种详细描述并不将进一步的示例限于所描述的特定形式。进一步的示例可覆盖落入本公开范围内的所有修改、等效和替代。相同或相似的数字在附图的描述中表示相同或相似的元素,在提供相同或相似的功能的同时,当相互比较时,这些元素可以独立地或以修改的形式实现。
应理解,当一个元件被称为“连接”或“耦合”至另一元件时,元件可以直接连接或耦合,或者经由一个或多个中间元件。如果使用“或”组合两个元素A和B,如果没有明确或隐含地另外定义,则这将被理解为公开所有可能的组合,即,只有A、只有B以及A和B。相同组合的替代措辞是“A和B中的至少一个”或“A和/或B”。加以必要的变通,这同样适用于多于两个的元素的组合。
本文用于描述特定示例的术语无意限制进一步的示例。无论何时使用诸如“一个”和“该”的单数形式并且仅使用单个元素既不是显式地也不是隐式地被定义为强制性的,进一步的示例也可以使用多个元素来实施相同的功能。类似地,当随后将功能描述为使用多个元素实施时,进一步的示例可使用单个元素或处理实体实施相同的功能。还应理解,术语“包括”和/或“包含”在使用时指定所提特征、整数、步骤、操作、处理、动作、元素和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、处理、动作、元素、部件和/或任何它们的组合的存在或添加。
除非另有定义,否则本文使用的所有术语(包括技术和科学术语)均为示例所属领域的一般含义。
LIDAR系统是主动远程感测系统,其可用于测量从(光)源到一个或多个目标的距离。LIDAR使用光束(通常是激光束)照射一个或多个目标。与其他光源相比,激光束可长距离传播而不明显地扩散,并且可聚焦在小光斑上,以便长距离地传送高光功率密度,并提供良好的分辨率。可以调制激光束,使得传输的激光束包括一系列或一帧脉冲。所传输的激光束可以被定向到目标,目标可以反射所传输的激光束。可测量从目标反射的激光束,并且可以测量从传输光束的脉冲从源传输的时间到脉冲到达源附近或已知位置处的检测器的时间的飞行时间(ToF)。然后,从源到目标的距离可例如通过r=c.t/2来确定,其中r是从源到目标的距离,c是自由空间中的光速,以及t是光束脉冲从源到检测器的ToF。
图1示出了示例LIDAR系统100的简化框图。系统100可包括扫描平台110,其可用于在不同的方位和/或海拔方向上扫描激光束。扫描平台110可包括光源120和传感器(检测器)130。光源120可朝向目标对象发射光束140,目标对象可反射束140的一部分作为反射束150。然后,反射束150可以被传感器(检测器)130收集和检测。
光源120可包括光学源,诸如激光器、激光二极管、垂直腔面发射激光器(VCSEL)、发光二极管(LED)或其他光学源。例如,激光器可以是输出波长例如为930-960nm、1030-1070nm、约1550nm或更长的红外脉冲光纤激光器或其它锁模激光器。
传感器130可包括光敏检测器或检测器阵列(有时也称为像素),每一个都具有与光源120的波长相当的工作(敏感)波长。检测器可以是高速光电检测器,例如,在p型半导体区域和n型半导体区域之间具有本征区域的PIN光电二极管、或者InGaAs雪崩光电检测器(APD)。在一些系统中,传感器130可包括硅光电倍增管(SiPM)传感器。
扫描平台110可使用许多不同类型的波束扫描机制,例如,由电机驱动的旋转平台、多维机械级、检流计控制的反射镜、由微电机驱动的微机电(MEMS)反射镜、使用压电材料(诸如石英或锆钛酸铅(PZT)陶瓷)的压电转换器/换能器、电磁致动器或声学致动器。扫描平台110可以是没有任何部件的机械运动的平台,例如使用相控阵技术,其中可以调制来自一维(1D)或二维(2D)激光器阵列中的激光器的激光束的相位以改变叠加激光束的波前。
由于扫描平台110使用任何光束扫描机制(诸如上述扫描机制)在不同方向上指向光束140,因此光束140可在扫描期间照射不同的目标或目标对象的不同位置。在扫描期间,来自不同目标对象或目标的不同位置的反射束150可被传感器130收集和检测,以生成检测器信号,然后可由分析器或处理器使用该检测器信号来确定目标对象的特性,诸如它们与系统100的距离及它们的反射特性,或者生成扫描区域的图像。当扫描平台110旋转一周时,LIDAR系统100可执行对周围环境的“切片”的测量。
为了实现环境的三维(3D)扫描,LIDAR系统可使用激光器/检测器的多个集合或者2D扫描机制,使得整个系统不仅可以在图1所示的一个平面中扫描,而且可以在多个不同的平面中扫描。
在不受干扰的操作中,光源120发射激光脉冲,该激光脉冲在环境中的对象处反射并返回到传感器130。在那里,其被接收并处理所得到的检测器信号,以获得在光脉冲发射的方向上与对象的距离的估计。如果信噪比(SNR)足够大,则可以将脉冲检测为检测器信号中的峰值。然而,如果在相同环境中存在另一LIDAR传感器,则其发射的激光束可直接照射传感器130,并在检测器信号中导致可能与任何有意义的对象反射无关的大脉冲。因此,接收信号中的这些脉冲会导致所谓的“幻象目标”,即,实际在环境中物理上不存在的对象/目标的检测。这种检测会引起汽车安全系统中的意外反应,例如刹车。这显然是安全关键。
由于LIDAR传感器尚未广泛部署,所以干扰解决方案尚未公开或可用。然而,一些普通的检测/缓解方法可如下表述:
脉冲编码:
LIDAR系统可发射被编码的光脉冲的序列。接收到的脉冲可与已知编码序列相关,这使得不显示脉冲序列的干扰脉冲的缓解。该编码可应用于传输脉冲序列,无论是脉冲的幅度(不优选,因为期望最大功率下的传输以便不浪费任何SNR,并且基于幅度的检测是困难的)、相位(难以检测,因为需要相干接收器)或脉冲的时间延迟。通常,测量时间的增加是与编码长度成比例的直接结果。编码长度也直接导致不同编码序列的数量,即,唯一可识别的传感器的数量。较大的测量时间部分地被由不同脉冲的组合获得的处理增益补偿。
脉冲之间的随机等待时间:
这可能会降低干扰的可能性,同时使实施复杂化。
本公开的实施例假设对于每个检测器像素,LIDAR传感器获取通常多于一个的Np个信号的序列或帧,其中每个信号对应于在特定时间发射的光脉冲。这在图2的检测器采样图200中示出。
检测器采样图200的第一轴210代表在Δt=0处从光源120发射光脉冲之后的(延迟)时间Δt。在一些实施例中,光脉冲可以在特定的方位和/或海拔方向上发射。在所示示例中,延迟时间从0ns直到近似Δtmax=850ns。Δt=0对应于光脉冲的发射时间。Δtmax对应于根据rmax=c.Δtmax/2与最大距离联系的最大飞行时间。应注意,Δtmax=850ns的所选数量只是许多可能数量中的一个。时间分辨率(即,相邻采样在延迟时间轴210上的时间分离)是应用和/或硬件特有的。例如,延迟时间轴210可包括100个或更多个采样(或时间容器)。受益于本公开的技术人员应理解,延迟时间轴210的采样或容器的数量确定系统的采样分辨率。离散容器越多,距离分辨率越细。
检测器采样图200的第二轴220表示光脉冲索引。在所示示例中,连续光脉冲的帧(例如,在相同方向发射)包括Np=8个光脉冲,它们可被处理以获得组合信号。一般地,光脉冲的帧可具有比所示示例更多或更少(至少两个)的光脉冲,这取决于LIDAR系统的应用和/或环境。例如,根据一些实施例,数量Np可以是从8以上、16以上、32以上、64以上的范围中选择的数量。
检测器采样图200的第三轴230表示相应检测器信号的幅度或功率。
在具有摆动或旋转反射镜以引导激光束140的扫描LIDAR传感器的示例中,当反射镜处于对应检测器像素的相同相应位置时,可以获取帧的Np个脉冲。这样做以通过对Np个检测器脉冲进行平均来提高SNR。然而,根据本公开的实施例,多个检测器脉冲的获取也可用于检测和缓解干扰光脉冲。图2示出了与实际或真实目标相关的被检测目标峰值240与相当恒定的延迟时间相关联,即,在近似相同的时间索引(对应于往返距离)处存在并且在Np个脉冲上具有相似的幅度。这假设目标对象以足够低的速度移动,使其在Np个脉冲上的移动距离不超过系统的距离分辨率。在所示示例中,目标峰值240位于帧的相应光脉冲发射之后的延迟时间Δt≈270处,与从扫描平台110大约40米的距离相对应。
图3示意性示出了干扰场景。如图3所示,激光器302通过透镜304将激光束316发射到目标308上。束316被目标308反射通过透镜306到达像素320的阵列上。然而,如图3所示,像素320进一步检测干扰束314和318,这些干扰束是从其他源间接和直接接收,例如从对象310(间接干扰源)反射或由车辆312(直接干扰源)传输。在一些实施例中,干扰束314和318将导致来自LIDAR系统的不正确结果(“幻象目标”)。受益于本公开的技术人员应理解,图3不是按比例绘制的,并且在其他实施例中,光源、透镜、像素和其他对象的操作可不同于图3所示。例如,透镜可反转被检测对象的位置,并且可以是比图3所示更大的像素阵列。此外,在一些实施例中,可具有比图3所示更多的像素。
干扰LIDAR系统的脉冲很可能将不与传感器同步,使得对应检测到的幻象脉冲将出现在接收信号的明显随机位置处,其在图4的示例采样图示意性示出。这里,示出了与不同延迟时间和脉冲索引位置处的幻象目标(干扰源)相对应的一些单独检测到的幻象脉冲410-1、410-2、410-3。
本公开提出利用对象相关脉冲在脉冲帧的脉冲重复上的相对相干性。任何(线性或非线性)如低通的滤波操作都可以减少干扰相关脉冲的贡献,因为它们在沿脉冲重复观看时代表高频扰动。
图5示意性示出了根据实施例的LIDAR传感器500。
LIDAR传感器500包括光敏检测器电路510,其被配置为在发射第一光脉冲(例如,脉冲索引1)之后的第一延迟时间Δt1输出包括第一检测器信号240-1的多个检测器信号,并且在发射至少一个第二光脉冲(例如,脉冲索引2)之后的相同第一延迟时间Δt1输出至少一个第二检测器信号240-2。第一和第二光脉冲可以是来自脉冲帧内的脉冲重复的连续或甚至非连续光脉冲。也就是说,检测器信号240-1、240-2从相同方向(例如,由同一像素)接收,并且对应于相同的延迟时间容器Δt1,但位于沿脉冲索引轴的不同脉冲索引处(与不同的光脉冲传输相关联)。
在一些实施例中,第一光脉冲和至少一个第二光脉冲可基本上在相同方向上发射,例如在扫描LIDAR的后续旋转期间。在一些实施例中,第一光脉冲和至少一个第二光脉冲是基本上从相同方向接收的光脉冲。
检测器电路510可包括一个或多个光敏像素,其将光转换为电信号并将电信号从模拟域转换到数字域。因此,检测器信号240、540可对应于来自一个或多个固态光电检测器或光电倍增管的数字信号采样。
LIDAR传感器500还包括处理器电路520,其被配置为基于第一和至少一个第二检测器信号240-1、240-2的组合来生成针对第一延迟时间Δt1的组合信号522。组合信号522可以各种可能的方式获得,这取决于是否期望干扰检测或干扰缓解。受益于本公开的技术人员应理解,根据一些实施例,例如,每个延迟时间Δt组合多于两个的检测器信号,诸如Np=32、Np=64或者Np=128。
受益于本公开的技术人员应理解,500也可以被解释为对应LIDAR方法的流程图。在这种情况下,510将表示在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号以及在发射第二光脉冲之后的第一延迟时间处生成第二检测器信号的动作。然后,520表示将第一和至少一个第二检测器信号组合以计算针对第一延迟时间的组合信号522的动作。
对于从0到Δtmax的延迟时间窗口中的一些或所有离散延迟时间,可以生成组合信号522,从而通过所有可能的离散范围移动到最大范围。为此,检测器电路510可被配置为在发射第一光脉冲(例如,脉冲索引1)之后的第二延迟时间Δt2处生成第三检测器信号540-1,并且在发射第二光脉冲(例如,脉冲索引2)之后的第二延迟时间Δt2处生成至少一个第四检测器信号540-2。处理器电路520可被配置为基于第三和至少一个第四检测器信号的组合来生成针对第二延迟时间Δt2的组合信号522。在所示示例中,检测器信号采样540-1和540-2仅表示噪声采样,而不是任何有用的反射或干扰。
从本公开受益的技术人员应理解,处理器电路520可被配置成为0ns到Δtmax的延迟时间窗口中的所有离散延迟时间Δt生成相应的组合信号(沿脉冲重复索引组合)。换句话说,如果帧包括多个Np光脉冲(在相同方向上发射和/或从相同方向接收),则检测器510可被配置为在发射帧的第一光脉冲(例如,脉冲索引1)之后的多个不同的离散延迟时间Δt的每一个处生成相应的检测器信号,并且在发射帧的第二光脉冲(例如,脉冲索引2)之后的多个不同延迟时间的每一个处生成相应的检测器信号。不同延迟时间的数量可以至少为100。处理器电路520可被配置为基于与一个延迟时间Δt相关联的相应Np个检测器信号的组合来生成多个不同延迟时间中的每一个的相应组合信号。因此,沿脉冲重复的组合可以在至少100个不同的延迟时间间隔内进行。为此,采样或延迟时间窗[0;Δtmax.]可划分为至少100个不同的时间间隔,并且对于每个时间间隔,可以进行沿脉冲索引轴的组合。
在一些示例实施方式中,第一延迟时间Δt1和/或第二延迟时间Δt2的上限Δtmax对应于脉冲帧内的光脉冲的连续发射之间的时间。从本公开受益的技术人员应理解,Δtmax将取决于LIDAR系统的应用和实施方式。例如,其可以依赖于扫描镜的旋转频率。
在一些示例实施方式中,处理器电路520被配置为对第一和至少一个第二检测器信号240-1、240-2(540-1、540-2)进行低通滤波,以生成组合信号522。在一个示例中,低通滤波操作可对应于平均操作,并且处理器电路520可被配置为计算第一和至少一个第二检测器信号240-1、240-2(540-1、540-2)的算术平均值作为组合信号522。这种平均操作是低通操作,并且将在一定程度上缓解干扰脉冲。此外,对于不受干扰影响的信号,通过该操作还提高了SNR。在干扰脉冲的对应时间实例中,干扰的一些剩余贡献可能仍然存在。缓解性能(以及通常的平均增益)取决于Np。如果N个检测器信号采样(x1,...,xN)的估计平均值表示为则可以根据下式来计算平均的在线估计:
附加地或备选地,处理器电路520可被配置为计算第一和至少一个第二检测器信号240-1、240-2的最小值作为组合信号。因此,沿脉冲重复的检测器信号240、540的组合也可以是它们的最小值min(x1(Δt),...,xN_p(Δt))的确定。这是非线性操作,如此能够完全消除干扰。作为副作用,其还可以抑制噪声,因为对于每个采样,只选择最小噪声贡献。当然,这同样适用于与目标相对应的检测器信号,目标峰值也在脉冲上减小到最小。
附加地或备选地,处理器电路520可被配置为计算第一和至少一个第二接收信号的中值作为组合信号。已知中值是分隔数据集(x1(Δt),...,xN_p(Δt))的较大部分和较小部分的中间值。确定中值也是非线性操作,但可能比最小值更安全。再次注意,对于包括Np个脉冲的序列,上述操作(滤波、平均、最小、中值等)可应用于所有Np个检测器信号,而不是仅应用于第一和第二检测器信号。
在图6中示出了不同组合选项(平均值、最小值和中值)的比较。这里,可以看出,与平均值(左)和中值(右)相比,沿脉冲重复轴220的检测器信号最小值(中间图)的计算使得沿着时间轴210产生相当低的噪声水平。受益于本公开的技术人员应理解,可以应用其他滤波操作来获得具有低通滤波特性的组合信号。
在一些示例实施方式中,处理器电路520可被配置为在满足预定标准集合中的一个或多个的情况下检测目标的存在。例如,如果组合信号522的幅度超过预定阈值,则处理器可被配置为检测目标对象的存在。例如,在图6的示例中,阈值可设置为1。在这种情况下,可以对组合信号是否指示目标做出可靠的决定。所有三个组合选项将在近似Δt=270ns处检测目标。
另一方面,处理器电路520可以附加地或备选地被配置为基于组合信号来检测干扰源的存在。在这种情况下,可以根据沿脉冲重复的干扰检测方案来组合检测器信号。例如,处理器可被配置为计算沿脉冲重复的第一和至少一个第二检测器信号之间的变化(诸如方差或标准差)的测量作为组合信号522。图7示出了包括沿脉冲重复的平均值μ(Δt)710以及沿脉冲重复的检测器信号方差var(Δt)720的示图。可以看出,var(Δt)可用作在Δt=100ns、Δt=580ns和Δt=700ns处的干扰源的指示符,这些干扰源很难基于μ(Δt)来识别。
因此,在一些示例实施方式中,可以针对一个或多个像素检测沿脉冲重复的Np个连续脉冲,以能够执行干扰检测和/或缓解。计算沿脉冲重复的方差允许检测干扰峰值。为了避免针对所有延迟时间Δt存储所有Np个脉冲,可以代替使用在线估计器来估计方差。使用在线平均估计对N个采样的方差σN 2进行在线估计的算法如下:
定义
方差的在线估计可根据来计算。
然后,处理器电路520可被配置为在方差σN 2超过预定阈值的情况下检测干扰源的存在。受益于本公开的技术人员应理解,该阈值将取决于应用和/或LIDAR环境。
到目前为止,假设在脉冲帧的持续时间内,引起反射脉冲的对象的移动不超过距离分辨率。然而,如果对象移动得更快,则反射脉冲峰值位置可出现在沿脉冲重复的相邻时间容器中。为了解决以相对于LIDAR传感器500的速度vmax进行的这种快速目标移动,可以定义时间轴210上的最大允许脉冲间隔Δτmax。最大允许脉冲间隔Δτmax表示允许在一个脉冲帧上分布相同对象的检测峰值的范围。如果Trep表示Np个脉冲的传输的总时间(即,帧时间间隔),则可以根据Δτmax=2/c.Trep.vmax来确定Δτmax。例如,如果帧时间间隔Trep为40ms且vmax=400km/h(例如,两辆车分别以200km/h的速度彼此接近),则Δτmax计算为30ns。这对应于在一帧内的时间轴210上的反射脉冲的延迟时间变化30ns。只有在30ns的该延迟范围外的脉冲才能被识别为幻象目标。
与一个或多个先前详细描述的示例和附图一起提及和描述的方面和特征也可以与其他示例中的一个或多个组合,以便替代另一示例的类似特征,或者为了将该特征附加地引入另一示例。
当在计算机或处理器上执行计算机程序时,示例还可进一步是或者涉及具有用于执行上述一种或多种方法的程序代码的计算机程序。上述各种方法的步骤、操作或处理可由编程计算机或处理器执行。示例还可以覆盖程序存储设备(诸如数字数据存储介质),它们是机器、处理器或计算机可读的,并且对机器可执行程序、处理器可执行或计算机可执行程序的指令进行编码。指令执行或使得执行上述方法的一些或所有动作。程序存储设备可包括或者例如是数字存储器、诸如磁盘和磁带的磁性存储介质、硬盘驱动器或者光学可读数字数据存储介质。进一步的示例还可以覆盖被编程以执行上述方法的动作的计算机、处理器或控制单元或者被编程以执行上述方法的动作的(现场)可编程逻辑阵列((F)PLA)或(现场)可编程门阵列((F)PGA)。
说明书和附图仅示出本公开的原理。此外,本文所述的所有示例仅明确用于说明性目的,以帮助读者理解本公开的原理以及发明人为促进本领域的发展而贡献的概念。本文所有阐述本公开的原理、方面和示例以及其具体示例的陈述用于包括其等效物。
表示为“用于…的装置”的执行特定功能的功能块可表示被配置为执行特定功能的电路。因此,“用于…的装置”可以实施为“被配置为或适合于…的装置”,诸如被配置为或适合于对应任务的装置或电路。
图中所示的各种元件的功能(包括标记为“装置”、“用于提供信号的装置”、“用于生成信号的装置”等的任何功能块)可以专用硬件的形式(诸如“信号提供器”、“信号处理单元”、“处理器”、“控制器”)以及能够执行与适当软件相关联的软件的硬件来实施。当由处理器提供时,功能可由单个专用处理器、单个共享处理器或者多个单独处理器(其中一些或所有可被共享)来提供。然而,术语“处理器”或“控制器”到目前为止并不限于仅能够执行软件的硬件,而是可以包括数字信号处理器(DSP)硬件、网络处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、用于存储软件的只读存储器(ROM)、随机存取存储器(RAM)和非易失性存储器。也可包括其他常规和/或定制的硬件。
例如,框图可示出实施本公开的原理的高级电路图。类似地,流程图、状态转换图、伪码等可表示各种处理、操作或步骤,这些过程、操作或步骤例如可基本在计算机可读介质中表示,并且由计算机或处理器执行,无论是否显式地示出这种计算机或处理器。本说明书或权利要求中公开的方法可以通过具有用于执行这些方法中的每个对应动作的装置的设备来实施。
应当理解,说明书或权利要求书中公开的多个动作、处理、操作、步骤或功能的公开不被理解为在特定顺序内,除非另有明确或暗示的说明,例如出于技术原因。因此,多个动作或功能的公开不将它们限于特定顺序,除非出于技术原因,这些动作或功能不能互换。此外,在一些示例中,单个动作、功能、处理、操作或步骤可包括或者可分为多个子动作、子功能、子处理、子操作或子步骤。除非特别排除,否则这种子动作可包括该单个动作或单个动作的一部分。
此外,下面的权利要求在此并入详细描述,其中每一权利要求可作为单独的示例存在。虽然每项权利要求可单独作为示例,但应当注意,尽管从属权利要求可以在权利要求中表示与一项或多项其他权利要求的特定组合,但其他示例也可以包括从属权利要求与彼此从属或独立权利要求的主题的组合。除非说明不打算进行特定组合,否则这里明确提出这种组合。此外,还将一项权利要求的特征包括至任何其他独立权利要求,即使该权利要求并非直接从属于该独立权利要求。

Claims (17)

1.一种LIDAR传感器,包括:
检测器,被配置为在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号,并且在发射至少一个第二光脉冲之后的所述第一延迟时间处生成至少一个第二检测器信号,其中所述检测器被配置为在发射所述第一光脉冲之后的第二延迟时间处生成第三检测器信号,以及在发射所述第二光脉冲之后的所述第二延迟时间处生成至少一个第四检测器信号;以及
处理器,被配置为基于所述第一检测器信号和所述至少一个第二检测器信号的组合,生成针对所述第一延迟时间的组合信号,并且基于所述第三检测器信号和所述至少一个第四检测器信号的组合,生成针对所述第二延迟时间的组合信号。
2.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为基于针对所述第一延迟时间的组合信号,验证所述第一检测器信号和所述至少一个第二检测器信号是否对应于来自目标的所述第一光脉冲和所述至少一个第二光脉冲的相应反射。
3.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为基于针对所述第二延迟时间的组合信号,验证所述第三检测器信号和所述至少一个第四检测器信号是否对应于来自目标的所述第一光脉冲和所述至少一个第二光脉冲的相应反射。
4.根据权利要求1所述的LIDAR传感器,其中所述第一延迟时间和/或所述第二延迟时间的上限对应于光脉冲的连续发射之间的时间。
5.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为对所述第一检测器信号和所述至少一个第二检测器信号进行低通滤波,以生成所述组合信号。
6.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为计算所述第一检测器信号和所述至少一个第二检测器信号的平均值作为所述组合信号。
7.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为计算所述第一检测器信号和所述至少一个第二检测器信号的最小值作为所述组合信号。
8.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为计算所述第一检测器信号和所述至少一个第二检测器信号的中值作为所述组合信号。
9.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为在预定标准集合中的一个或多个预定标准被满足的情况下检测目标的存在。
10.根据权利要求9所述的LIDAR传感器,其中所述处理器被配置为在所述组合信号的幅度超过预定阈值的情况下检测所述目标的所述存在。
11.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为基于所述组合信号检测干扰源的存在。
12.根据权利要求1所述的LIDAR传感器,其中所述处理器被配置为计算所述第一检测器信号和所述至少一个第二检测器信号之间的变化的测量值作为所述组合信号。
13.根据权利要求12所述的LIDAR传感器,其中所述处理器被配置为在所述变化超过预定阈值的情况下检测干扰源的存在。
14.一种LIDAR传感器,包括:
检测器,被配置为:
在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号采样,并且
在发射至少一个第二光脉冲之后的所述第一延迟时间处生成至少一个第二检测器信号采样,其中所述检测器被配置为在发射所述第一光脉冲之后的第二延迟时间处生成第三检测器信号,以及在发射所述第二光脉冲之后的所述第二延迟时间处生成至少一个第四检测器信号;以及
处理器,被配置为:
测量所述第一检测器信号采样和所述至少一个第二检测器信号采样之间的变化,并且
在所述变化超过预定阈值的情况下检测干扰源的存在。
15.根据权利要求14所述的LIDAR传感器,其中所述处理器被配置为确定所述第一检测器信号采样和所述至少一个第二检测器信号采样的标准差和/或方差。
16.一种LIDAR传感器,包括:
检测器,被配置为
在发射第一光脉冲之后的第一延迟时间处生成第一检测器信号采样,并且
在发射至少一个第二光脉冲之后的所述第一延迟时间处生成至少一个第二检测器信号采样,其中所述检测器被配置为在发射所述第一光脉冲之后的第二延迟时间处生成第三检测器信号,以及在发射所述第二光脉冲之后的所述第二延迟时间处生成至少一个第四检测器信号;以及
处理器,被配置为
对所述第一检测器信号采样和所述至少一个第二检测器信号采样的序列进行低通滤波,以生成针对所述第一延迟时间的低通滤波信号,并且
在所述低通滤波信号超过预定阈值的情况下检测目标的存在。
17.一种LIDAR方法,包括:
发射连续光脉冲序列的第一光脉冲;
在发射所述第一光脉冲之后的第一延迟时间处生成第一检测器信号;
发射所述光脉冲序列的至少一个第二光脉冲;
在发射所述第二光脉冲之后的所述第一延迟时间处生成第二检测器信号,其中第三检测器信号在发射所述第一光脉冲之后的第二延迟时间处被生成,以及至少一个第四检测器信号在发射所述第二光脉冲之后的所述第二延迟时间处被生成;
测量所述第一检测器信号采样和所述至少一个第二检测器信号采样之间的变化;并且
在所述变化超过预定阈值的情况下检测干扰源的存在。
CN201911152490.6A 2018-11-21 2019-11-20 用于lidar系统的干扰检测与缓解 Active CN111208490B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018129246.5 2018-11-21
DE102018129246.5A DE102018129246B4 (de) 2018-11-21 2018-11-21 Interferenzdetektierung und -minderung für lidarsysteme

Publications (2)

Publication Number Publication Date
CN111208490A CN111208490A (zh) 2020-05-29
CN111208490B true CN111208490B (zh) 2023-12-22

Family

ID=70545830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911152490.6A Active CN111208490B (zh) 2018-11-21 2019-11-20 用于lidar系统的干扰检测与缓解

Country Status (4)

Country Link
US (1) US11415671B2 (zh)
KR (1) KR102280072B1 (zh)
CN (1) CN111208490B (zh)
DE (1) DE102018129246B4 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207741A1 (de) * 2019-05-27 2020-12-03 Infineon Technologies Ag Ein LIDAR-System, ein Verfahren für ein LIDAR-System und ein Empfänger für ein LIDAR-System mit ersten und zweiten Umwandlungselementen
US11150348B2 (en) 2019-10-02 2021-10-19 Cepton Technologies, Inc. Techniques for detecting cross-talk interferences in lidar imaging sensors
DE102021202313A1 (de) 2021-03-10 2022-09-15 Zf Friedrichshafen Ag Laufzeitbasiertes Messsystem und Verfahren zum Nachweis einer Fremdstrahlungsquelle bei einem laufzeitbasierten Messsystem
WO2023136533A1 (ko) * 2022-01-11 2023-07-20 삼성전자주식회사 간섭 제거 방법 및 상기 방법을 수행하는 전자 장치
CN116794631A (zh) * 2022-03-14 2023-09-22 上海禾赛科技有限公司 激光雷达的控制方法、计算机存储介质以及激光雷达

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034155A (zh) * 2006-03-07 2007-09-12 徕卡测量系统股份有限公司 提高飞行时间测量设备的测量速率
CN101517397A (zh) * 2006-12-18 2009-08-26 佳能株式会社 利用太赫兹波获取物体信息的信息获取设备和信息获取方法
CN101828128A (zh) * 2007-09-28 2010-09-08 天宝3D扫描公司 距离测量仪器和方法
EP2851704A1 (de) * 2013-09-19 2015-03-25 Pepperl & Fuchs GmbH Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
AT515927A4 (de) * 2014-12-19 2016-01-15 Riegl Laser Measurement Sys Verfahren und Vorrichtung zur Entfernungsmessung
CN206440826U (zh) * 2017-01-18 2017-08-25 浙江神州量子网络科技有限公司 基于量子关联的量子雷达
CN107576994A (zh) * 2016-06-20 2018-01-12 罗克韦尔自动化技术公司 用于基于脉冲的接收器光传感器的系统和方法
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107035A2 (de) * 2002-06-18 2003-12-24 Automotive Distance Control Systems Gmbh Verfahren zur unterdrückung von störungen in systemen zur objekterfassung
DE102007013714A1 (de) * 2007-03-22 2008-10-02 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung einer Entfernung oder einer Entfernungsänderung
KR102136401B1 (ko) * 2013-10-21 2020-07-21 한국전자통신연구원 다-파장 이미지 라이다 센서장치 및 이의 신호처리 방법
KR102673812B1 (ko) * 2016-07-26 2024-06-10 삼성전자주식회사 라이다 장치 및 거리 측정 방법
KR101915858B1 (ko) * 2016-12-06 2018-11-06 전자부품연구원 신호크기에 의한 측정오차를 저감하는 장치 및 방법 그리고 이를 이용한 라이다 센서 시스템
CN110506220B (zh) * 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
CN110431439A (zh) * 2017-02-17 2019-11-08 艾耶股份有限公司 用于激光雷达脉冲冲突消除的方法和系统
US10209359B2 (en) * 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
DE102017113674B4 (de) * 2017-06-21 2019-03-28 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung der Entfernung zu einem Objekt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034155A (zh) * 2006-03-07 2007-09-12 徕卡测量系统股份有限公司 提高飞行时间测量设备的测量速率
CN101517397A (zh) * 2006-12-18 2009-08-26 佳能株式会社 利用太赫兹波获取物体信息的信息获取设备和信息获取方法
CN101828128A (zh) * 2007-09-28 2010-09-08 天宝3D扫描公司 距离测量仪器和方法
EP2851704A1 (de) * 2013-09-19 2015-03-25 Pepperl & Fuchs GmbH Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
AT515927A4 (de) * 2014-12-19 2016-01-15 Riegl Laser Measurement Sys Verfahren und Vorrichtung zur Entfernungsmessung
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
CN107576994A (zh) * 2016-06-20 2018-01-12 罗克韦尔自动化技术公司 用于基于脉冲的接收器光传感器的系统和方法
CN206440826U (zh) * 2017-01-18 2017-08-25 浙江神州量子网络科技有限公司 基于量子关联的量子雷达

Also Published As

Publication number Publication date
DE102018129246B4 (de) 2020-10-15
CN111208490A (zh) 2020-05-29
US11415671B2 (en) 2022-08-16
DE102018129246A1 (de) 2020-05-28
KR20200060682A (ko) 2020-06-01
US20200158825A1 (en) 2020-05-21
KR102280072B1 (ko) 2021-07-23

Similar Documents

Publication Publication Date Title
CN111208490B (zh) 用于lidar系统的干扰检测与缓解
US11703567B2 (en) Measuring device having scanning functionality and settable receiving ranges of the receiver
US11573327B2 (en) Systems and methods for light detection and ranging
JP5596011B2 (ja) 光電センサ並びに物体検出及び距離測定方法
CN111919138B (zh) 检测激光脉冲边沿以进行实时检测
EP3457177B1 (en) Distance measurement apparatus
US20210325515A1 (en) Transmit signal design for an optical distance measurement system
CN109100737B (zh) 用于测量到对象的距离的光电传感器和方法
US11047960B2 (en) Sensor and method for distance measurement
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
US10514447B2 (en) Method for propagation time calibration of a LIDAR sensor
JP2015219120A (ja) 距離測定装置
US20200041651A1 (en) System and method for improving range resolution in a lidar system
EP4016124A1 (en) Time of flight calculation with inter-bin delta estimation
EP4143607A1 (en) Lidar system with fog detection and adaptive response
CN111538026B (zh) 一种激光测距方法及系统
EP3792654A1 (en) Data reduction for optical detection
US20210156973A1 (en) Lidar receiver with multiple detection paths
US11221411B2 (en) Power efficient LIDAR
WO2021146954A1 (en) Systems and methods for light detection and ranging
JP2023528646A (ja) ライダーセンサの保護スクリーンの汚れを識別する方法及び装置
FR3131005A1 (fr) Lidar statique à grand champ de vue
CN114428254A (zh) 距离测量设备和通过使用距离测量设备测量距离的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant