RU2575471C2 - Способ определения скорости движущихся объектов методом пассивной локации - Google Patents

Способ определения скорости движущихся объектов методом пассивной локации Download PDF

Info

Publication number
RU2575471C2
RU2575471C2 RU2014125295/28A RU2014125295A RU2575471C2 RU 2575471 C2 RU2575471 C2 RU 2575471C2 RU 2014125295/28 A RU2014125295/28 A RU 2014125295/28A RU 2014125295 A RU2014125295 A RU 2014125295A RU 2575471 C2 RU2575471 C2 RU 2575471C2
Authority
RU
Russia
Prior art keywords
moving object
image
speed
moving
aircraft
Prior art date
Application number
RU2014125295/28A
Other languages
English (en)
Other versions
RU2014125295A (ru
Inventor
Александр Иванович Стучилин
Андрей Яковлевич Кобан
Валерий Константинович Золотухин
Original Assignee
Александр Иванович Стучилин
Filing date
Publication date
Application filed by Александр Иванович Стучилин filed Critical Александр Иванович Стучилин
Priority to RU2014125295/28A priority Critical patent/RU2575471C2/ru
Publication of RU2014125295A publication Critical patent/RU2014125295A/ru
Application granted granted Critical
Publication of RU2575471C2 publication Critical patent/RU2575471C2/ru

Links

Images

Abstract

Способ определения скорости движущихся объектов методом пассивной локации включает получение изображения самолета при помощи телевизионной системы с формированием видеокадров перемещения движущегося объекта в поле зрения оптической системы и их оцифровкой, определение величины перемещения изображения движущегося объекта на фотоприемной матрице по перемещению центра тяжести изображения. Также способ включает идентификацию типа движущегося объекта и по типу объекта определение его линейных размеров. Используя величину перемещения и соотношение линейных размеров движущегося объекта, вычисляют линейное перемещение движущегося объекта в поле зрения оптической системы L и определяют скорость движущего объекта. Технический результат - скрытное определение скорости самолета при помощи средств пассивной локации. 2 ил.

Description

Изобретение относится к способам определения скорости движущихся объектов методом пассивной оптической локации, а именно к способам определения скорости по изменению местоположения движущегося объекта.
Известен способ лазерной локации RU 2456637 C1, 20.07.2012. Технический результат достигается тем, что в способе лазерной локации, включающем сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, в качестве генерируемого лазерным локатором сигнала используют цуг по меньшей мере двух импульсов с изменяемыми промежутками времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге. Скорость движущегося объекта определяется по измеренным значениям дальности и угловых координат.
Недостатком данного способа является то, что использование активных излучающих средств (лазера) демаскирует факт локации.
Известны устройство и способ (лазерный локатор) измерения скорости движения движущихся объектов на основе эффекта Доплера (Матвеев И.Н., Протопопов В.В. и др. Лазерная локация. М.: Машиностроение, 1984. - 272 с.) по доплеровскому сдвигу частоты.
Недостаток способа - при траекториях движения объекта, перпендикулярных радиальному направлению излучения локатора, скорость объекта невозможно измерить.
Известно осуществление локации с помощью мобильной оптико-электронной станции «Вереск», в которой с помощью двух телевизионных систем высокой четкости (одна - длиннофокусная, другая - с вариобъективом) производят автоматическое сопровождение, удерживая движущийся объект в центре поля зрения оптической системы, по видеокадрам его изображения определяют угловые координаты объекта, для измерения дальности и скорости движения объекта используется лазерный дальномер с максимальной дальностью действия лазерного канала около 20 км. (Альманах. Вооружение ПВО и РЭС России. М.: Издательство НО «Ассоциация «Лига содействия оборонным предприятиям», 2011).
Недостатки способа: использование лазерного дальномера в средствах измерения скорости демаскирует работу устройств локации; дальность измерения скорости движущегося объекта ограничена дальностью обнаружения его лазерным дальномером.
Наиболее близким по технической сущности является способ навигации движущихся объектов RU 2481557, 10.05.2013. Способ включает: получение оптического изображения движущегося объекта на местности; оцифровку полученного изображения; сравнивание текущего изображения с эталонным изображением местности с определением местоположения движущегося объекта в плановых координатах эталонной карты; получение через промежуток времени Δt второго изображения движущегося объекта на местности; оцифровку полученного изображения; сравнивание текущего изображения с эталонным изображением местности с определением второго местоположения движущегося объекта в плановых координатах эталонной карты; вычисление линейного перемещения по изменению местоположения; определение средней скорости движущегося объекта за промежуток времени Δt.
Недостатки способа: сложность получения пригодных для оцифровки изображений движущегося объекта на местности в различных временах суток и природных условиях; невозможность определения скорости объекта, движущегося в воздухе и по обширной водной глади.
Скорость полета самолета является характеристикой его исправного технического состояния. В ряде случаев использование активной локации - лазера для измерения скорости летящего самолета - не допустимо, таким образом, происходит расширение возможностей локации.
Задачи, на решение которых направлен заявленный способ: расширение возможностей навигации движущихся объектов, в частности измерение скорости полета самолета, невозможность обнаружения антилокационными средствами противника факта локации, независимость от природных условий.
Технический результат достигается за счет осуществления способа следующим образом: осуществляют пассивную локацию движущегося объекта при помощи телевизионной системы высокой четкости с формированием видеокадров перемещения движущегося объекта в поле зрения оптической системы и их оцифровкой; сравнением соотношений линейных параметров движущегося объекта и особенностей его конструкции с данными соответствующих идентификационных баз данных осуществляют идентификацию типа движущегося объекта и по типу движущегося объекта определяют его линейные размеры; формируют начало и конец перемещения центра тяжести изображения движущего объекта на фотоприемной матрице и определяют величину перемещения изображения движущегося объекта Lп за промежуток времени Δt от начального кадра N0 до Ni; определяют линейную длину перемещения движущегося объекта в поле зрения оптической системы L в метрах, используя соотношение линейных размеров движущегося объекта и его изображения на фотоприемной матрице; по измеренным значениям расстояния L и времени Δt определяют скорость движущего объекта V=L/Δt.
Осуществление способа в случае определения скорости полета самолета.
Сущность способа поясняется Фиг. 1 и 2.
Фиг. 1 - изображения самолета на фотоприемой матрице за время одного кадра, где
LФ - длина фюзеляжа;
Lп - расстояние, на которое переместился самолет за время одного кадра.
Фиг. 2 - изображения самолета на фотоприемой матрице за время двух кадров, где Lп - расстояние, на которое переместился самолет за время двух кадров.
Способ осуществляется следующим образом: на временном интервале измерения скорости полета самолета в следящей телевизионной системе высокой четкости отключают режим автоматического сопровождения самолета по центру его изображения и формируют видеокадры перемещения изображения самолета в поле зрения оптической системы и оцифровывают; осуществляют идентификацию типа самолета сравнением соотношений линейных параметров самолета и особенностей его конструкции с данными соответствующих идентификационных баз данных и по типу самолета определяют длину фюзеляжа самолета, формируют начало и конец перемещения центра тяжести изображения самолета на фотоприемной матрице от первого до N-го видеокадра и определяют величину перемещения изображения движущегося объекта Lп за промежуток времени Δt; по соотношению реальных линейных размеров и изображений на фотоприемной матрице вычисляют линейное перемещение самолета в поле зрения телевизионной системы за N кадров, по числу видеокадров наблюдения определяют время, по значению линейного перемещения L и времени наблюдения Δt определяют скорость полета самолета V=L/Δt.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является измерение скорости полета самолета за счет использования видеокадров изображения самолета, полученных с помощью пассивной локации телевизионной системой высокой четкости. В заявляемом способе наилучшая точность измерения скорости достигается на линии наблюдения, перпендикулярной траектории полета самолета.
Пример осуществления способа для определения скорости полета самолета.
В оптико-электронном блоке формируется изображение самолета в виде последовательных видеокадров. С фотоприемной матрицы сформированные видеокадры считываются в запоминающее устройство и передаются далее в блок обработки изображения, в котором формируется изображение, содержащее первый и N-й видеокадр, определяются координаты центра двумерного изображения самолета и величина перемещения центра тяжести двумерного изображения самолета Lп за промежуток времени Δt от первого до N i-го видеокадра. Сравнением соотношений линейных параметров инвариантных к масштабу, например, по отношению ширины фюзеляжа к его длине и/или по отношению размаха крыла к длине фюзеляжа движущегося объекта, особенностей его конструкции, например, по числу двигателей, с данными соответствующих идентификационных баз данных осуществляют идентификацию типа самолета. Информация о типе самолета поступает в блок базы данных, из которого в вычислительный блок поступает значение длины фюзеляжа самолета в метрах. По количеству длин фюзеляжа Lф укладывающихся в Lп определяют расстояние, пролетаемое самолетом L в метрах. По числу видеокадров наблюдения определяют время Δt. Эти данные поступают в вычислительный блок для определения скорости полета самолета V=L/Δt.
Возможность осуществления заявляемого способа показывает следующий пример. Видеокадры высокой четкости изображения были получены с помощью фото- и видеотехники и длиннофокусного фотообъектива. На Фиг. 1 приведено фотографическое изображение самолета (Боинг 747) в полете на дальности 30 км. Время полета Δt=0,25 с. (1 видеокадр). Длина фюзеляжа самолета 70,5 м. Lп/Lф=0,85. Расчеты показали, что скорость полета самолета V=(70,5 х 0,85)/0,25 = 240 м/с = 864 км/ч, что для данной высоты полета является крейсерской (оптимальной). На Фиг. 2 приведены изображения самолета (Боинг 747). Время полета Δt 0,5 с (два кадра).
Заявленный способ позволяет работу оптико-электронных локационных средств делать скрытной, так как исключает использование активных излучающих средств локации.

Claims (1)

  1. Способ определения скорости движущихся объектов методом пассивной локации, заключающийся в том, что получают оптические изображения движущегося объекта, преобразуют полученные изображения в цифровые, по изменению местоположения вычисляют линейное перемещение движущегося объекта за фиксированный интервал времени
    Figure 00000001
    t и определяют скорость перемещения движущегося объекта, отличающийся тем, что оптическое изображение движущегося объекта получают методом пассивной локации при помощи телевизионной системы высокой четкости с формированием видеокадров перемещения движущегося объекта в поле зрения оптической системы и их оцифровкой, при этом сравнением соотношений линейных параметров движущегося объекта и особенностей его конструкции с данными соответствующих идентификационных баз данных осуществляют идентификацию типа движущегося объекта и определяют его линейные размеры; величину перемещения изображения движущегося объекта Lп на фотоприемной матрице определяют по перемещению центра тяжести изображения движущегося объекта за промежуток времени
    Figure 00000002
    t от начального кадра N 0 до N i, при этом линейное перемещение движущегося объекта в поле зрения оптической системы L определяют, используя соотношение линейных размеров движущегося объекта и его изображения на фотоприемной матрице, определяют скорость движущего объекта V=L/
    Figure 00000002
    t.
RU2014125295/28A 2014-06-23 Способ определения скорости движущихся объектов методом пассивной локации RU2575471C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014125295/28A RU2575471C2 (ru) 2014-06-23 Способ определения скорости движущихся объектов методом пассивной локации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014125295/28A RU2575471C2 (ru) 2014-06-23 Способ определения скорости движущихся объектов методом пассивной локации

Publications (2)

Publication Number Publication Date
RU2014125295A RU2014125295A (ru) 2015-12-27
RU2575471C2 true RU2575471C2 (ru) 2016-02-20

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081435C1 (ru) * 1984-04-02 1997-06-10 Товарищество с ограниченной ответственностью "Астрам" Способ селекции объекта на удаленном фоне
US6563101B1 (en) * 2000-01-19 2003-05-13 Barclay J. Tullis Non-rectilinear sensor arrays for tracking an image
US7355627B2 (en) * 2002-01-25 2008-04-08 Japan Microsystems Co., Ltd. Moving object monitoring surveillance apparatus for detecting, tracking and identifying a moving object by zooming in on a detected flesh color
RU2383901C2 (ru) * 2008-05-26 2010-03-10 Федеральное государственное унитарное предприятие "РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР-ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТЕХНИЧЕСКОЙ ФИЗИКИ ИМЕНИ АКАДЕМИКА Е.И. ЗАБАБАХИНА" (ФГУП "РФЯЦ-ВНИИТФ имени академика Е.И. Забабахина") Устройство для обнаружения объектов в окружающем пространстве

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081435C1 (ru) * 1984-04-02 1997-06-10 Товарищество с ограниченной ответственностью "Астрам" Способ селекции объекта на удаленном фоне
US6563101B1 (en) * 2000-01-19 2003-05-13 Barclay J. Tullis Non-rectilinear sensor arrays for tracking an image
US7355627B2 (en) * 2002-01-25 2008-04-08 Japan Microsystems Co., Ltd. Moving object monitoring surveillance apparatus for detecting, tracking and identifying a moving object by zooming in on a detected flesh color
RU2383901C2 (ru) * 2008-05-26 2010-03-10 Федеральное государственное унитарное предприятие "РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР-ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТЕХНИЧЕСКОЙ ФИЗИКИ ИМЕНИ АКАДЕМИКА Е.И. ЗАБАБАХИНА" (ФГУП "РФЯЦ-ВНИИТФ имени академика Е.И. Забабахина") Устройство для обнаружения объектов в окружающем пространстве

Similar Documents

Publication Publication Date Title
Liu et al. TOF lidar development in autonomous vehicle
Chudley et al. High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control
US7944548B2 (en) Increasing measurement rate in time of flight measurement apparatuses
EP3264364B1 (en) Method and apparatus for obtaining range image with uav, and uav
EP1962107B1 (en) High-speed laser ranging system including a fiber laser
KR101996623B1 (ko) Gps 궤적 품질 지표를 이용한 고정밀 지도 데이터 구축 방법 및 시스템
CN108594254A (zh) 一种提高tof激光成像雷达测距精度的方法
JP2019053003A (ja) データ処理装置、データ処理方法およびデータ処理用プログラム
Amzajerdian et al. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies
US10109074B2 (en) Method and system for inertial measurement having image processing unit for determining at least one parameter associated with at least one feature in consecutive images
CN101271590A (zh) 一种获取凸轮廓物体形状的方法
US20130093880A1 (en) Height Measurement Apparatus And Method
US9201146B2 (en) Airborne doppler wind lidar post data processing software DAPS-LV
CN104251994B (zh) 长基线激光测距实现无控制点卫星精确定位系统及方法
US20150092179A1 (en) Light ranging with moving sensor array
Liu et al. Simulation and design of circular scanning airborne geiger mode lidar for high-resolution topographic mapping
RU2575471C2 (ru) Способ определения скорости движущихся объектов методом пассивной локации
KR101392222B1 (ko) 표적 윤곽을 추출하는 레이저 레이더, 그것의 표적 윤곽 추출 방법
CN114019521A (zh) 一种面阵激光雷达多模数据获取方法
Valerievich et al. Experimental assessment of the distance measurement accuracy using the active-pulse television measuring system and a digital terrain model
CN105785318A (zh) 基于飞行时间分布式光脉冲探测的室内定位系统及方法
US20230184950A1 (en) Non-Contiguous 3D LIDAR Imaging Of Targets With Complex Motion
RU2558694C1 (ru) Способ определения высоты летательного аппарата
Charalambous et al. Automated motion detection from space in sea surveilliance
RU2680265C2 (ru) Способ определения дальности до движущегося воздушного объекта методом пассивной локации