CN100568459C - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN100568459C
CN100568459C CNB2007101373057A CN200710137305A CN100568459C CN 100568459 C CN100568459 C CN 100568459C CN B2007101373057 A CNB2007101373057 A CN B2007101373057A CN 200710137305 A CN200710137305 A CN 200710137305A CN 100568459 C CN100568459 C CN 100568459C
Authority
CN
China
Prior art keywords
ion
semiconductor substrate
polycrystal layer
injected
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101373057A
Other languages
English (en)
Other versions
CN101110358A (zh
Inventor
朴真河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DB HiTek Co Ltd
Original Assignee
Dongbu HitekCo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu HitekCo Ltd filed Critical Dongbu HitekCo Ltd
Publication of CN101110358A publication Critical patent/CN101110358A/zh
Application granted granted Critical
Publication of CN100568459C publication Critical patent/CN100568459C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7845Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供一种半导体器件及其制造方法。在该方法中,将半导体衬底上的多晶层蚀刻至预定深度。以预定角度将离子注入到多晶层中。再次蚀刻多晶层以暴露半导体衬底的一部分。由此,将应力施加到多晶栅而不是阻挡层,从而解决在进行接触蚀刻期间,由于阻挡层厚度的影响不能打开阻挡层的问题。此外,将应力施加到与半导体衬底的沟道区直接接触的多晶栅上,使得因多晶栅的应力引起的张力直接导致沟道区的张力,从而提高迁移率,进而显著增强器件特性。

Description

半导体器件及其制造方法
相关申请的交叉引用
本申请要求韩国专利申请No.10-2006-0068303(2006年7月21日申请)的优先权,在此通过参考援引其全部内容
技术领域
本发明涉及一种半导体器件,尤其涉及一种制造该半导体器件的方法,其能够改善器件特性。
背景技术
随着半导体器件高度集成化,器件有源区的尺寸和形成在器件有源区内的金属氧化物半导体(MOS)晶体管的沟道长度都减小。
随着MOS晶体管的沟道长度减小,沟长长度内电子碰撞的可能性增加,从而电子的迁移率可能降低。因此,为了提高电子的迁移率,应该减少电子碰撞的可能性。
为了解决上述局限,在现有技术中提出了通过向作为蚀刻停止件的阻挡层15施加应力来提高电子迁移率的方法。
具体来说,在半导体衬底1中形成限定有源区的器件隔离区3,形成包括氧化物层5和多晶(poly)栅7的栅极9,将栅极9用作掩模在有源区中形成杂质区11,例如为源极区或漏极区,以及在栅极9的横侧上形成间隔件13。之后,在半导体衬底1的整个表面上形成阻挡层15。阻挡层15可由SiN形成,应力被施加到阻挡层15。
在这种情况下,由于阻挡层15中的应力,在阻挡层15中沿着从栅极9起以箭头表示的方向产生张力。由于上述张力,在一个源极/漏极区(例如11)与另一源极/漏极区之间的沟道中沿着箭头表示的方向也产生张力。从而,由于原子间的距离、例如沟道中晶格Si原子间的距离变宽,因此电子与Si碰撞的可能性减少。因此,器件的迁移率提高,从而器件的特性改善。
为了在沟道中增加因应力而引起的张力,应该增加阻挡层15的张力。为了增加阻挡层15的张力,应该增加阻挡层15的厚度。
然而,在增加阻挡层15厚度的情况下,在为了形成接触开口而进行蚀刻时,阻挡层不能被有效地打开。因此,存在增加阻挡层15厚度的限制,从而也限制了电子迁移率的提高。
因此,由于现有技术中的半导体器件存在着提高电子迁移率的限制,器件的特性就不能得到显著改善。
发明内容
本发明的实施例提供一种制造半导体器件的方法,其能够利用施加到栅极的应力来提高器件的迁移率,从而显著增强器件特性。
在本发明的一个实施例中,一种制造半导体器件的方法包括:在半导体衬底上形成具有预定厚度的多晶层;使用光致抗蚀剂图案作为掩模,将该多晶层蚀刻至预定深度;以相对于离子注入方向呈预定角度将离子注入到该多晶层;以及使用该光致抗蚀剂图案作为掩模,蚀刻被注入离子的该多晶层,以暴露该半导体衬底的一部分。
在本发明的另一个实施例中,一种半导体器件包括:半导体衬底;器件隔离区,位于该半导体衬底中并用于限定有源区;栅极,位于该半导体衬底的具有该有源区的部分之上,且包括被注入Ge离子的多晶栅;杂质区,位于该有源区中;以及间隔件,位于该栅极的横侧处。
由于是将应力施加到多晶栅上以提高迁移率,因此无须像现有技术那样,为了提高迁移率而将应力施加到阻挡层和形成厚阻挡层。从而,能够可靠地解决在进行接触孔蚀刻期间由于阻挡层的厚度而造成的阻挡层不能有效打开的问题。此外,将应力施加到与半导体衬底的沟道区直接接触的多晶栅上,以使得因被注入离子的多晶栅的应力引起的张力直接导致半导体衬底的沟道区上的张力,从而使迁移率提高,进而增强器件特性。
在附图和以下的说明书中阐述了各个实施例的细节,来自说明书和附图,以及来自权利要求书的其它的特征将变得很明显。
附图说明
图1为现有技术中为了提高迁移率而将应力施加到阻挡层的半导体器件的横截面图。
图2A至图2F为本发明一个实施例中的半导体器件制造工艺的示意图。
图3为图2C所示的制造工艺在没有注入离子同时没有进行蚀刻的情况下的应力缺陷的示意图。
具体实施方式
下面详细介绍本发明的实施例,其实例在附图中示出。
图2A至图2F为本发明一个实施例中的半导体器件制造工艺的示意图。
参照图2A,在半导体衬底21中形成限定一个或多个有源区的一个或多个器件隔离层23。随后,对半导体衬底21进行热氧化,以生长氧化物层(未示出)。利用化学气相沉积(CVD)工艺在氧化物层上沉积多晶层25。多晶层25可由多晶硅构成(因此,通常包括有多晶硅)。
沉积多晶层25,使其具有下面将描述的栅极的厚度。例如,多晶层25的厚度约为
Figure C20071013730500061
当然,根据对器件的设计,多晶层25可以形成为比
Figure C20071013730500062
更薄或更厚。
参照图2B,在多晶层25上形成用于图案化多晶层25的光致抗蚀剂图案27。
参照图2C,将光致抗蚀剂图案27用作掩模,将多晶层25首先蚀刻到预定深度‘d’。所述蚀刻可以在多晶层25的整个暴露部分(即除了或没有被光致抗蚀剂图案27覆盖的部分)上进行。预定深度‘d’可以大约为多晶层25的厚度‘D’的2/3。例如,预定深度‘d’可以在多晶层25的厚度的60%-80%范围内。
然而,在预定深度‘d’太小的情况下,不能将应力充分施加到随后形成的多晶栅上,因此难以在沟道中产生应力。此外,如果预定深度‘d’太大,为施加应力而注入到多晶栅的离子穿透到衬底中随后将进行杂质区注入的区域内,并可能改变杂质区的特性并降低器件特性。
参照图2D,在半导体衬底21上进行离子注入工艺。在这种情况下,使用一种或多种掺杂剂,例如Si、Ge、P、As、Sb、Ga和/或In(特别是Ge),以10-100KeV的能量和相对于离子注入方向呈20-70°的注入角度,进行所述离子注入。例如,离子注入可包括以20KeV-50KeV的能量和1E14-1E16离子/cm2的剂量注入74Ge+,同时半导体衬底21以相对于离子注入方向35°-55°范围内的斜度倾斜并通过预定角度部件(或倾角晶片保持和旋转装置)进行旋转。预定角度可以是0°、45°、180°或270°。此外,半导体衬底21能够以与预定角度部件无关的恒定速度旋转。20KeV-50KeV的能量是令Ge离子不对半导体衬底21(即在其中形成源极和漏极端的单晶Si)产生影响而设定的能量。此能量对离子的注入作了一个限制,即在多晶层25被蚀刻得比较薄时,防止离子穿过多晶层25注入到半导体衬底21中。在多晶层25具有Ge离子不能穿透多晶层25厚度的情况下,可以使用高于20KeV-50KeV的能量。
离子被注入到多晶层25位于光致抗蚀剂图案27下方的横侧25a、以及多晶层25的暴露的近似水平表面25b(即不存在光致抗蚀剂图案27的位置)。
参照图2E,在完成离子注入的半导体衬底21的表面上进一步进行蚀刻,更具体来说,以暴露出有源区。图2C和图2E中进行的第一和第二蚀刻工艺可通过反应离子蚀刻进行。
由于有光致抗蚀剂图案27用作掩模,多晶层25位于光致抗蚀剂图案下方的部分25a没有被蚀刻。因此,在图2E中的第二蚀刻工艺之后,多晶层25的剩余部分25b(除了多晶层25的部分25a)被完全去除。多晶层25位于光致抗蚀剂图案27下方的部分25a成为多晶栅29,具有与光致抗蚀剂图案27几乎相同的宽度。
参照图2F,通过剥离工艺去除光致抗蚀剂图案27,以形成包括多晶栅29和位于多晶栅29下方的氧化物层(未示出)的栅极。
在这种情况下,Ge离子(或另一种掺杂剂)被注入到多晶栅29而产生应力,由此产生张力。因此,多晶栅29的的张力导致因应力引起的另一张力施加到半导体衬底21的对应于多晶栅29的沟道区A上。由于晶格Si原子间的距离因沟道区A上的张力而变宽,因此电子与Si碰撞的可能性减少,从而器件的迁移率提高,器件特性随之得到改善。
尤其是,在一个实施例中,将应力施加到半导体衬底的沟道区A上方(或者与半导体衬底的沟道区A直接接触)的多晶栅上,以使得因多晶栅的应力引起的张力直接导致沟道区A的另一个张力。相应地,可以更可靠地导致沟道区A的张力,以使晶格Si原子间的距离充分变宽,而减少电子碰撞的可能性。因此,迁移率显著提高,从而器件特性大大增强。
此外,在将应力施加到多晶栅29时,还解决了在形成接触孔时厚阻挡层(用以增加迁移率)不能有效打开的问题。因此,无须施加分离和/或额外的应力到阻挡层。
之后,将栅极用作掩模,在有源区中形成杂质区(未示出),例如源极区和/或漏极区。在将离子注入到衬底21以形成源极/漏极端(例如图1中的11)之前,间隔件13一般形成在栅极的横侧。
在以上描述中,如图2C所示在进行第一(和部分)蚀刻之后,进行离子注入工艺以施加应力。另一方面,当进行离子注入工艺而不进行部分蚀刻时,如图3所示,由于多晶层25的厚度相对于离子注入的深度而言较大,因此注入的离子主要集中在多晶层25的表面。因此,应力主要产生在多晶层25的表面,并且由所述应力引起的张力对半导体衬底的沟道区没有较大影响。从而,在不进行部分蚀刻工艺的情况下,很难导致因应力引起的沟道区的张力,因此不能期望迁移率获得显著提高。参照图2C,在将多晶层25蚀刻至预定深度之后,可进行离子注入。
如上所述,由于实施例是将应力施加到多晶栅上以提高迁移率,因此无须像现有技术那样,为了提高迁移率而将应力施加到阻挡层上并形成厚阻挡层。从而,能够可靠地解决在进行接触孔蚀刻期间由于阻挡层的厚度而造成的阻挡层不能有效打开的问题。
此外,根据实施例,将应力施加到与半导体衬底21的沟道区直接接触的多晶栅上,以使得因被注入离子的多晶栅的应力引起的张力直接导致半导体衬底的沟道区上的张力,从而使迁移率提高,进而增强器件特性。
本说明书中所引用的“一个实施例”、“实例实施例”等等都表示结合该实施例而描述的特定特征、结构或特性包含在本发明的至少一个实施例中。在说明书的各个位置出现这样的用语不一定都表示同一个实施例。此外,当结合任一实施例描述特定特征、结构或特性时,在本领域的技术人员理解范围内,可以结合其它实施例实施所述特征、结构或特性。
尽管在此描述了示范性实施例,但是应该理解的是本领域的技术人员能够想到许多其它改进和备选实施例,其落入本发明原理的精神和范围内。更具体地,在说明书、附图以及所附权利要求书的范围内,可以对主题联合配置的组成部分和/或配置进行各种变更和改进。除了组成部分和/或配置的变更和改进之外,本领域的技术人员显然还可以选择备选应用。

Claims (14)

1.一种制造半导体器件的方法,该方法包括:
在半导体衬底上形成具有预定厚度的多晶层;
使用光致抗蚀剂图案作为掩模,将该多晶层蚀刻至预定深度;
以相对于离子注入方向呈预定角度的方式,将离子注入到该多晶层;以及
使用该光致抗蚀剂图案作为掩模,蚀刻被注入离子的该多晶层,以暴露该半导体衬底。
2.根据权利要求1所述的方法,其中该预定深度处在该多晶层的厚度的60%-80%范围内。
3.根据权利要求2所述的方法,其中该预定深度为该多晶层厚度的2/3。
4.根据权利要求1所述的方法,其中该预定角度在35°-55°范围内。
5.根据权利要求1所述的方法,其中注入离子包括以20KeV-50KeV的能量和1E14-1E16离子/cm2的剂量注入Ge。
6.根据权利要求1所述的方法,其中注入离子还包括利用预定角度单元旋转该半导体衬底。
7.根据权利要求6所述的方法,其中该预定角度部件具有0°、45°、180°或270°的角度。
8.根据权利要求1所述的方法,其中注入离子还包括以恒定的速度旋转该半导体衬底。
9.根据权利要求1所述的方法,其中蚀刻该多晶层包括反应离子蚀刻。
10.根据权利要求1所述的方法,其中蚀刻被注入离子的该多晶层包括反应离子蚀刻。
11.根据权利要求1所述的方法,其中蚀刻被注入离子的该多晶层而形成多晶栅。
12.根据权利要求1所述的方法,其中将离子注入到该多晶层的位于该光致抗蚀剂图案下方的横侧,以及该多晶层被该光致抗蚀剂图案暴露的表面。
13.一种半导体器件,包括:
半导体衬底;
器件隔离区,位于该半导体衬底中,用于限定有源区;
栅极,位于该半导体衬底的具有该有源区的部分之上,且包括被注入Ge离子的多晶栅;
杂质区,位于该有源区中;以及
间隔件,位于该栅极的横侧处,
其中注入的Ge离子形成在该栅极的横侧处以施加应力。
14.根据权利要求13所述的半导体器件,其中该栅极还包括位于该半导体衬底上且位于该多晶栅下方的栅极介电层。
CNB2007101373057A 2006-07-21 2007-07-20 半导体器件及其制造方法 Expired - Fee Related CN100568459C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060068303 2006-07-21
KR1020060068303A KR100772836B1 (ko) 2006-07-21 2006-07-21 반도체소자의 제조 방법

Publications (2)

Publication Number Publication Date
CN101110358A CN101110358A (zh) 2008-01-23
CN100568459C true CN100568459C (zh) 2009-12-09

Family

ID=38971964

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101373057A Expired - Fee Related CN100568459C (zh) 2006-07-21 2007-07-20 半导体器件及其制造方法

Country Status (3)

Country Link
US (1) US7687384B2 (zh)
KR (1) KR100772836B1 (zh)
CN (1) CN100568459C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461034B2 (en) * 2010-10-20 2013-06-11 International Business Machines Corporation Localized implant into active region for enhanced stress
CN103943485B (zh) * 2014-04-28 2016-09-07 上海华力微电子有限公司 形成水平方向功函数可变的栅极的方法
KR102497125B1 (ko) * 2015-12-22 2023-02-07 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163489A (zh) * 1996-02-07 1997-10-29 松下电器产业株式会社 半导体器件及其制造方法
US5747356A (en) * 1995-12-06 1998-05-05 Korea Information & Communication Co., Ltd. Method for manufacturing ISRC MOSFET

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309975B1 (en) * 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
KR100316028B1 (ko) 1999-12-22 2001-12-13 박종섭 메모리소자의 메탈 전극 형성방법
KR20030052481A (ko) * 2001-12-21 2003-06-27 주식회사 하이닉스반도체 반도체 소자의 제조 방법
KR100446302B1 (ko) * 2002-06-05 2004-08-30 삼성전자주식회사 음의 기울기를 가지는 게이트를 포함하는 반도체 소자 및그 제조방법
JP2004172389A (ja) 2002-11-20 2004-06-17 Renesas Technology Corp 半導体装置およびその製造方法
US7157730B2 (en) * 2002-12-20 2007-01-02 Finisar Corporation Angled wafer rotating ion implantation
JP3744895B2 (ja) * 2002-12-27 2006-02-15 富士通株式会社 Cmos型半導体装置の製造方法
CN1291445C (zh) * 2004-06-18 2006-12-20 清华大学 离子注入机中的靶盘角度控制与扫描运动机构
US20050287747A1 (en) 2004-06-29 2005-12-29 International Business Machines Corporation Doped nitride film, doped oxide film and other doped films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747356A (en) * 1995-12-06 1998-05-05 Korea Information & Communication Co., Ltd. Method for manufacturing ISRC MOSFET
CN1163489A (zh) * 1996-02-07 1997-10-29 松下电器产业株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
US7687384B2 (en) 2010-03-30
US20080020556A1 (en) 2008-01-24
CN101110358A (zh) 2008-01-23
KR100772836B1 (ko) 2007-11-01

Similar Documents

Publication Publication Date Title
KR100440840B1 (ko) 반도체 장치의 제조 방법 및 반도체 장치
KR101546537B1 (ko) 반도체 소자 및 그 제조 방법
KR100426482B1 (ko) 플래쉬 메모리 셀의 제조 방법
CN100568459C (zh) 半导体器件及其制造方法
WO2006053338A2 (en) System and method for improved dopant profiles in cmos transistors
CN1933175A (zh) 半导体结构及其制造方法
US6194293B1 (en) Channel formation after source and drain regions are formed
JP3524461B2 (ja) Cmosデバイスのデュアル・ゲート構造を製造するプロセス
JPH09190983A (ja) 半導体装置の製造方法
KR100422819B1 (ko) 반도체 장치 제조 방법
KR100396691B1 (ko) 반도체 소자의 살리사이드층 형성 방법
EP0817247A1 (en) Process for the fabrication of integrated circuits with contacts self-aligned to active areas
KR100514516B1 (ko) 듀얼 게이트 절연막 제조 방법
KR101164981B1 (ko) 반도체 소자 제조 방법
KR100705211B1 (ko) 반도체 소자의 트랜지스터 제조 방법
KR100273225B1 (ko) 반도체소자의금속확산방지막형성방법
KR100342864B1 (ko) 반도체 소자의 듀얼 게이트 형성 방법
KR100431300B1 (ko) 플래쉬 메모리 셀 형성 방법
KR100756766B1 (ko) 반도체 소자의 제조 방법
KR20060098646A (ko) 스페이서를 갖는 모스 트랜지스터의 제조방법
KR100266635B1 (ko) 반도체산화막형성방법
KR20000041468A (ko) 비정질실리콘막을 이용한 폴리사이드 게이트 전극 형성방법
KR100386616B1 (ko) 미세구조의 폴리층 형성 방법
KR100307540B1 (ko) 반도체소자의 제조방법
KR0146242B1 (ko) 반도체소자의 트랜지스터 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091209

Termination date: 20130720