CN100545935C - 记录介质的制造方法、记录设备和读出设备 - Google Patents

记录介质的制造方法、记录设备和读出设备 Download PDF

Info

Publication number
CN100545935C
CN100545935C CNB011119837A CN01111983A CN100545935C CN 100545935 C CN100545935 C CN 100545935C CN B011119837 A CNB011119837 A CN B011119837A CN 01111983 A CN01111983 A CN 01111983A CN 100545935 C CN100545935 C CN 100545935C
Authority
CN
China
Prior art keywords
information
recording medium
dish
data
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011119837A
Other languages
English (en)
Other versions
CN1318834A (zh
Inventor
饭田道彦
三宅邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1318834A publication Critical patent/CN1318834A/zh
Application granted granted Critical
Publication of CN100545935C publication Critical patent/CN100545935C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/12Control of operating function, e.g. switching from recording to reproducing by sensing distinguishing features of or on records, e.g. diameter end mark
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/30Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture with provision for auxiliary signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/32Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on separate auxiliary tracks of the same or an auxiliary record carrier
    • G11B27/327Table of contents
    • G11B27/329Table of contents on a disc [VTOC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1278Physical format specifications of the record carrier, e.g. compliance with a specific standard, recording density, number of layers, start of data zone or lead-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • G11B27/3036Time code signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00456Recording strategies, e.g. pulse sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • G11B7/0062Overwriting strategies, e.g. recording pulse sequences with erasing level used for phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation

Abstract

在记录介质中,记录记录介质的物理特性信息,具体地说,记录盘的配置(形状和尺寸)和转动惯量。这能使记录设备或读出设备容易且准确地确定盘的物理特性,由此适当设置记录或读出操作。

Description

记录介质的制造方法、记录设备和读出设备
技术领域
本发明涉及记录介质,还涉及与这种记录介质兼容的记录设备和读出设备。
背景技术
作为记录介质,压缩盘(CD)是公知的。已经开发普遍使用着各种类型的CD格式盘,如压缩盘数字音频(CD-DA)、压缩盘只读存储器(CD-ROM)、可记录压缩盘(CD-R)、可重写压缩盘(CD-RW)和CD-TEXT,所有这些都属于所谓的″CD家族″。
CD-DA和CD-ROM是只读的,而CD-R是使用记录层上的有机染料可一次写入的介质,CD-RW是使用相变技术的可重写介质。
在这种CD格式盘上,记录如音乐、视频和计算机数据的数据,而且把轨道序号、索引和地址记录为子代码。
轨道序号是表示一段音乐(轨道)的序号。索引是形成轨道的单元,如,划分轨道的运动的单元。
地址包括以覆盖整个盘的连续值表示的绝对地址和以轨道为单元表示的相对地址(也称为以音乐片段为单元表示的“程序”)。因此,通过抽取子代码,盘的每一位置处的绝对地址和相对地址可被识别。
地址以时间值表示,如分/秒/帧。从而在CD格式中,“时间”可与“位置(地址)”同义,例如“绝对时间”相应于“绝对地址”。
例如,在CD格式中,子代码地址以分/秒/帧表示,每一个具有8位。由于8位地址以二数编码的十进制(BCD)表示,它可表示0到99的范围。因此,可从0到99来指定“分钟”。但是,不可避免的是从0到59表示“秒”,而且由于在CD格式中限定如从0到74的75帧。因而从0到74来表达“帧”。
在盘的最内侧部分,记录子代码信息,如内容表(TOC)信息。TOC信息指出表示各个轨道的标题和长度(extent)的地址。地址的内容(地址类型)可通过点信息(point information)识别。
例如,如果点信息指定一特定值,则在相应的子代码帧中描述的信息表示各个轨道的开始地址或第一/最后轨道序号而不是绝对地址或相对地址。
在可记录盘如CD-R和CD-RW中,记录轨道通过摆动槽形成。槽的摆动波形基于绝对地址信息通过调制波形形成,从而绝对地址可通过槽的摆动信息识别。由于子代码还没有记录在没有记录数据的盘上,在记录数据时,地址信息通过摆动槽来读出。
除上述各种类型的CD格式(CD标准)盘外,正在开发高密度的更大容量的盘,也正在开发具有大量物理特性不同的区域的盘,这种盘被称为“混合盘”。盘的材料和配置的种类也正在增多。
在这些情况下,为实现记录设备和读出设备的足够的记录和读出性能,必须根据装载的盘的物理特性优化各种设置。例如,应优化伺服增益、激光功率和存取范围。
但是,难以充分地确定装载在记录设备或读出设备中的各个盘的物理特性。当装载盘时可执行某些校准,即使这样作,仍难以准确地确定装载的盘的物理特性。另外,由于校准操作增加了负担,必须增加软件和硬件量,而且在记录或读出操作开始之前要费花较长时间。
因此,仍有简单而准确地确定盘的物理特性而不损害与公知的CD格式盘之间的兼容性或不增加用在记录设备和读出设备中的硬件和软件的复杂性的需要。
发明内容
因此,考虑上述背景,本发明的一个目的是简单而准确地确定记录介质的物理特性,同时与各种类型的记录介质兼容并维持与公知记录介质的兼容性。
为了实现以上目的,根据本发明的一个方面,提供一种记录介质,包括由所述记录介质上的槽形成的记录轨道,所述槽通过所述槽的摆动表示预定信息,其中表示所述记录介质的形状或尺寸的配置信息被记录为所述槽摆动所表示的信息。
本发明还提供了一种记录介质,包括由所述记录介质上的槽形成的记录轨道,其中在所述记录介质的脊上预形成坑,并且表示所述记录介质的形状或尺寸的配置信息被记录为所述坑所表示的信息。
本发明还提供了一种记录介质,包括由所述记录介质上的槽形成的记录轨道,其中在所述记录介质的预定区域上预形成压印坑,并且表示所述记录介质的形状或尺寸的配置信息被记录为所述压印坑所表示的信息。
本发明还提供了一种记录介质,包括其中记录了表示所述记录介质的形状或尺寸的配置信息的引入区。
在记录介质上,记录轨道可以由槽形成,槽通过槽的摆动表示预定信息。在这种情况下,配置信息可记录为槽摆动所表示的信息。通过对槽进行调频或调相实现槽的摆动。
或者,在记录介质上,记录轨道可以由槽形成,在相邻槽之间的脊上预形成坑。在这种情况下,配置信息可以记录为坑所表示的信息。
或者,在记录介质上,记录轨道可以由槽形成,在预定区域上预形成压印坑。在这种情况下,配置信息可以记录为压印坑所表示的信息。
配置信息可记录在记录介质上形成的引入区中。
记录介质还包括表示记录介质的记录层材料的材料信息。用与记录配置信息的技术相同的技术记录材料信息。
根据本发明的另一方面,提供一种记录介质,包含由所述记录介质上的槽形成的记录轨道,所述槽通过所述槽的摆动表示预定信息,,其中表示所述记录介质的转动惯量的转动惯量信息被记录为所述槽摆动所表示的信息。
本发明还提供了一种记录介质,包括由所述记录介质上的槽形成的记录轨道,其中在所述记录介质的脊上预形成坑,并且表示所述记录介质的转动惯量的转动惯量信息被记录为所述坑表示的信息。
本发明还提供了一种记录介质,包括由所述记录介质上的槽形成的记录轨道,其中在所述记录介质上的预定区域上预形成压印坑,并且表示所述记录介质的转动惯量的转动惯量信息被记录为所述压印坑所表示的信息。
本发明还提供了一种记录介质,包括其中记录了表示所述记录介质的转动惯量的转动惯量信息的引入区。
在记录介质上,记录轨道可以由记录介质上的槽形成,槽通过槽摆动表示预定信息。转动惯量信息可以记录为槽摆动所表示的信息。通过对进行调频或调相实现槽的摆动。
或者,在记录介质上,记录轨道可以由槽形成,在相邻槽之间的脊上预形成坑。在这种情况下,转动惯量信息可以记录为坑所表示的信息。
或者,在记录介质上,记录轨道可以由槽形成,在预定区域上预形成压印坑。在这种情况下,转动惯量信息可以记录为压印坑所表示的信息。
转动惯量信息可记录在记录介质上形成的引入区中。
记录介质还包括表示记录介质的记录层材料的材料信息。用与记录转动惯量信息的技术相同的技术记录材料信息。
根据本发明的另一个方面,提供一种可与记录介质兼容的记录设备,记录介质至少存储配置信息和转动惯量信息中的一种信息,配置信息表示记录介质的形状或尺寸,转动惯量信息表示记录介质的转动惯量。记录设备包括确定单元,通过读出至少配置信息和转动惯量信息中的一种信息确定记录介质的物理特性。记录控制单元根据确定单元确定的物理特性完成记录操作的设置,并允许执行记录操作。
确定单元可以从记录介质上形成的摆动槽中至少读出配置信息和转动惯量信息中的一种信息。通过对槽进行调频或调相可以实现摆动槽的摆动。
在记录介质上,记录轨道可以由槽形成,在相邻槽之间的脊上预形成坑。在这种情况下,确定单元至少可以从坑读出配置信息和转动惯量信息中的一种信息。
或者,在记录介质上,记录轨道可以由槽形成,在预定区域上预形成压印坑。在这种情况下,确定单元至少可以从压印坑读出配置信息和转动惯量信息中的一种信息。
记录控制单元可以根据确定单元确定的物理特性设置对记录介质进行记录操作的记录头的存取范围。
记录控制单元可以根据确定单元确定的物理特性设置驱动记录介质旋转的主轴的伺服参数。
当根据确定单元确定的物理特性确定记录介质不是合适的记录介质时,记录控制单元可以发出警告或弹出记录介质。
根据对记录介质执行的主要数据记录操作,记录控制单元可以通过至少结合来自记录介质的配置信息和转动惯量信息中的一种信息产生主要数据管理信息,并将所产生的主要数据管理信息记录在记录介质上。
根据本发明的再一方面,提供一种可与记录介质兼容的读出设备,记录介质至少存储配置信息和转动惯量信息中的一种信息,配置信息表示记录介质的形状或尺寸,转动惯量信息表示记录介质的转动惯量。读出设备包括确定单元,通过至少读出配置信息和转动惯量信息中的一种信息确定记录介质的物理特性。读出控制单元根据确定单元确定的物理特性完成对读出操作的设置,并允许执行读出操作。
确定单元可以从记录介质上形成的摆动槽上至少读出配置信息和转动惯量信息中的一种信息。通过对槽进行调频或调相操作实现摆动槽的摆动。
在记录介质上,记录轨道可以由槽形成,在相邻槽之间的脊上预形成坑。在这种情况下,确定单元至少可以从坑读出配置信息和转动惯量信息中的一种信息。
或者,在记录介质上,记录轨道可以由槽形成,在预定区域上预形成压印坑。在这种情况下,确定单元至少可以从压印坑读出配置信息和转动惯量信息中的一种信息。
读出控制单元可以根据确定单元确定的物理特性设置对记录介质进行读出操作的读出头的存取范围。
读出控制单元可以根据确定单元确定的物理特性设置驱动记录介质旋转的主轴的伺服参数。
当根据确定单元确定的物理特性确定记录介质不是合适的记录介质时,读出控制单元可以发出警告或弹出记录介质。
在记录介质中,记录记录介质的物理特性信息,例如盘配置(形状和尺寸)和转动惯量。因此,记录设备或读出设备能容易且准确地确定盘的物理特性。
因此,能根据盘的类型完成对记录或读出操作的各种设置,例如主轴电动机的伺服参数和光拾取的存取范围,由此提高记录和读出性能。
校准操作不确定记录介质的物理特性。因此从理论上来说,能100%准确确定它们,且能缩短开始记录或读出操作所需的时间。
此外,由于物理特性信息记录为摆动槽数据,因此能保持与已知记录介质兼容。未被记录的记录介质的盘配置和转动惯量也能确定,从而能为记录操作提供合适的设置。
详细地说是,由于在执行记录操作时要求高度精确地控制主轴旋转。因此,如果能根据记录介质合适地设置伺服参数,就能显著提高记录性能。
此外,可以将记录介质的配置和转动惯量确定为记录介质的物理特性。因此,能确定记录设备或读出设备不能处理的记录介质。在这种情况下,可以向用户或主计算机设备发出警告,或弹出载入的记录介质。
根据对记录介质的主数据记录操作,记录设备通过结合从记录介质读出的配置信息/转动惯量信息产生主数据管理信息(例如,形成TOC的子码)。这使只读装置能根据记录介质的配置和转动惯量在没有解码槽的解码功能的情况下读出该信息,由此为读出操作提供合适的设置。
附图说明
图1A到1D表示根据本发明的一个实施例的盘类型;
图2表示根据一个实施例的标准密度盘和高密度盘;
图3A到3C表示根据本发明的一个实施例的盘类型;
图4A到4C表示根据本发明的一个实施例的混合盘类型;
图5A到5B表示根据本发明的一个实施例的混合盘类型;
图6表示CD-R或CD-RW盘的布局;
图7表示摆动槽;
图8表示ATIP编码;
图9和10表示ATIP波形;
图11表示用在本发明的实施例中的ATIP帧;
图12表示用在本发明的实施例中的ATIP帧的内容;
图13表示图12所示的ATIP帧的一部分的细节;
图14表示包含在图13所示的摆动信息中的材料数据;
图15表示包含在图13所示的摆动信息中的盘密度数据;
图16表示包含在图13所示的摆动信息中的物理结构数据;
图17表示包含在图13所示的摆动信息中的盘配置;
图18A和18B表示图17所示的盘配置数据表示的环状盘;
图19A和19B表示图17所示的盘配置数据表示的三角形盘;
图20A、20B和20C表示图17所示的盘配置数据表示的四边形盘;
图21A和21B表示包含在图13所示的摆动信息中的盘尺寸;
图22表示包含在图13所示的摆动信息中的转动惯量数据的示例;
图23表示包含在图13所示的摆动信息中的转动惯量数据的另一示例;
图24表示记录区格式;
图25表示轨道格式;
图26表示包括固定长度包的盘格式;
图27表示根据本发明的一个实施例的盘的帧结构;
图28A和28B表示根据本发明的一个实施例的子代码帧;
图29A和29B表示根据本发明的一个实施例的盘的子Q(sub-Q)数据的示例;
图30A和30B表示根据本发明的一个实施例的盘的另一子Q数据的另一示例;
图31表示本发明的一个实施例的盘的TOC结构;
图32表示用在本发明的一个实施例中的子Q数据的内容示例;
图33表示包含在用在本发明的一个实施例中的子Q数据中的盘尺寸信息的示例;
图34表示包含在用在本发明的一个实施例中的子Q数据中的盘配置信息的示例;
图35表示包含在用在本发明的一个实施例中的子Q数据中的转动惯量信息的示例;
图36表示包含在用在本发明的一个实施例中的子Q数据中的轨道间距信息的示例;
图37表示包含在用在本发明的一个实施例中的子Q数据中的线速度信息的示例;
图38表示包含在用在本发明的一个实施例中的子Q数据中的介质类型信息的示例;
图39表示包含在用在本发明的一个实施例中的子Q数据中的材料类型信息的示例;
图40表示用在本发明的一个实施例中的子Q数据的内容的另一示例;
图41表示包含在用在本发明的一个实施例中的子Q数据中的盘尺寸/配置信息的另一示例;
图42表示包含在用在本发明的一个实施例中的子Q数据中的轨道间距信息的另一示例;
图43表示包含在用在本发明的一个实施例中的子Q数据中的线速度信息的另一示例;
图44表示包含在用在本发明的一个实施例中的子Q数据中的介质版本信息的另一示例;
图45表示包含在用在本发明的一个实施例中的子Q数据中的介质类型信息的另一示例;
图46表示用在本发明的一个实施例中的子Q数据的内容;
图47A和47B表示根据图46所示的子Q数据的内容进行的存取;
图48是表示根据本发明的一个实施例的盘驱动单元的框图;
图49和50表示根据本发明的一个实施例在盘插入时盘驱动单元执行的处理的流程图;
图51表示根据本发明的一个实施例的盘驱动单元执行的设置处理的流程图;
图52表示根据本发明的一个实施例的盘驱动单元执行的记录处理的流程图;
图53A和53B表示设置用在本发明的一个实施例中的转动惯量的伺服开环的波特(Bade)图;
图54表示用在本发明的实施例中的激光驱动脉冲;
图55表示DVD-RW或DVD-R盘的布局;
图56表示脊预置坑;
图57A、57B和57C表示脊预置坑形成的数据结构;
图58表示脊预置坑数据的字段ID;
图59表示脊预置坑的预置坑块的结构;
图60A和60B表示记录在脊预置坑中的物理特性信息;
图61表示DVD-RAM盘的布局;
图62表示DVD-RAM的引入区的结构;
图63表示DVD-RAM的控制数据区段的块结构;
图64表示根据本发明的一个实施例的物理格式信息的内容;
图65表示图64所示的物理格式信息的一部分;
图66A、66B和66C表示DVD+RW的ADIP单元的相位调制;
图67表示DVD+RW的ADIP单元;
图68A和68B表示DVD+RW的ADIP字的结构;和
图69A和69B表示要被记录在根据本发明的一个实施例的ADIP字中的物理格式信息。
具体实施方式
下面将参考附图通过优选实施例具体描述本发明。
作为本发明的记录介质提供的盘、作为记录设备提供的盘驱动器以及本发明的读出设备以下面的顺序来说明。
1.CD系统信号处理的概况
2.CD格式盘的类型
3.可记录盘和槽
3-1可重写盘
3-2摆动信息
3-3记录区格式
4.子代码和TOC
5.盘驱动单元的配置
6.盘驱动单元的处理示例
7.数字多功能盘(DVD)格式盘的示例
7-1DVD-RW,DVD-R
7-2DVD-RAM
7-3DVD+RW
1.CD系统信号处理的概况
现在描述如CD-DA、CD-ROM、CD-R和CD-RW的CD系统盘的信号处理概况。
CD系统信号处理的概况,详细地说是在盘上记录立体声音频信号的操作如下。
左右声道(L-Ch和R-Ch)的音频信号以44.1kHz的采样频率被采样,并且接着用16位线性量化。16位的音频信号数据被确定为一个字,并被进一步分为若干8位数据单元,每个8位数据单元被确定为一个符号(一个符号=8位=1/2字)。
抽取每个声道的6个采样,即16位×2个声道×6个采样=192位=24个符号,并且向24个符号增加4个符号的纠错码(ECC),作为Q奇偶校验位,结果产生28个符号。在CD系统中,作为ECC产生并增加RS(Reed-Solomon)码。为处理盘基板上的连续的猝发(burst)缺陷,28个符号的音频信号被交织存取(重置)。
之后,把4个符号的RS码(P奇偶校验)再增加到28个符号的音频信号上,结果产生32个符号,并且还增加用于控制操作的一个符号(子代码)。结果产生的信号进行8到14调制(EFM)。根据EFM操作,8位被扩展到14位。
根据EFM操作,16位量化信号被分为上8位和下8位,并且8位信号被设置为最小单元并被转换为14位信号。在这种情况下,连续位的最小数目是3,并且连续位的最大数目是11,即2到10个“0”被插入在“1”之间。在转换后,“1”表示极性反转(不返回到零反转(NRZ-1)记录)。
根据EFM,8位信号被转换为14位信号,其中2到10个“0”被插入在“1”之间,提供3个耦合位来满越过相邻的符号将至少两个“0”插入在“1”之间的条件。因此,在EFM调制信号中,即在记录数据流中,有9种类型的位长,位长范围从最小长度(时间)Tmin=3T(0.9ns)到最大长度(时间)Tmax=11T(3.3ns)。
把形成子代码的帧同步信号和控制信号增加到EFM调制数据(帧),并且最终得到的数据流被记录在盘上。帧同步信号和子代码在后面具体讨论。
相反,当读出上述记录的数据流时,以与记录处理相反的顺序来对它解码。即,对从盘读出的数据流执行EFM解调,并且进一步进行纠错、去除交织存取和声道分离。之后,用16位量化的并以44.1kHz采样的L和R音频数据信号被转换为模拟信号,接着作为立体声音乐信号输出这些模拟信号。
2.CD格式盘的类型
在这个实施例中作为CD格式盘使用的盘的类型将参考图1A到5B来讨论。
图1A到1D简略表示基于记录密度的盘的类型。图1A表示公知的标准记录密度盘。在这个例子中,整个盘以标准记录密度记录。当前使用的盘,如CD-DA、CD-ROM、CD-R和CD-RW对应于这种类型盘。
图1B表示新近开发的高密度盘,在这个例子中,整个盘以高密度记录。例如,通过与标准盘比较,已经开发出开发2倍或3倍的高密度盘。详细地说,已经开发出可记录的高密度盘,如CD-R和CD-RW。
图1C表示内部部分是高密度区、外部部分是标准密度区的混合盘。相反,图1D表示内部部分是标准密度区、外部部分是高密度区的混合盘。
标准密度盘和高密度盘的特性/参数如图2所示。
考虑用户数据(要被记录的主要数据)的容量,标准密度盘具有650Mb(12cm直径的盘)或195Mb(8cm直径的盘),而高密度盘具有1.3Gb(12cm直径的盘)或0.4Gb(8cm直径的盘)。从而高密度盘具有两倍于标准密度盘的容量。
标准密度盘的程序区(用户数据被记录的区)开始位置(半径)距盘中心50mm,而高密度盘的程序区开始位置距盘中心48mm。
标准密度盘的轨道间距(标准密度区)是1.6μm,而高密度盘的轨道间距(高密度区)是1.1μm。
标准密度盘的扫描速度(标准密度区)是1.2到1.4m/s,而高密度盘的扫描速度(高密度区)是0.9m/s。
标准密度(标准密度区)盘的数值孔径(NA)是0.45,而高密度(高密度区)盘的NA是0.55或0.50。
关于纠错方法,把交织的Reed-Solomon码4(CIRC 4)方法用于标准密度盘(标准密度区),而把CIRC 7方法用于高密度盘(高密度区)。
除上述因素之外的特性和参数,如中央孔大小、盘厚、激光波长、调制方法和信道位率对于标准密度盘(标准密度区)和高密度盘(高密度区)是相同的,如图2所示。
当如图1A所示的一个标准密度盘和如图1B所示的一个高密度盘被装载到盘驱动单元中时,盘驱动单元必须确定盘类型。
当图1C或1D所示的混合盘被装载到盘驱动单元中时,盘驱动单元必须确定区类型,即当前记录或读出数据的区是高密度区还是标准密度区。
即,在确定盘类型或区类型后,根据图2指定的参数改变记录/读出操作的设置。
图3A到4C简略地表示根据数据记录/读出系统的盘类型。
图3A表示只读盘,如CD-DA或CD-ROM,其是所有数据都以压印位形式被记录的盘。
图3B表示写入后直接读出(DRAM)盘,如CD-R。在这个DRAM盘中,记录层由有机染料构成,数据通过利用激光照射引起有机染料的变化(反射率的变化)来记录数据。由于仅被记录一次,这种DRAM盘也叫作“一次写入多次读出盘(WROM)”。
图3C表示使用相变技术的可重写盘,如CD-RW。
在图3B所示的DRAM(WORM)盘和图3C所示的可重写盘中,记录轨道由螺旋槽形成。相反,在图3A所示的只读盘中,记录轨道由压印坑串(stream)而不是槽来形成。
如后面具体描述的那样,DRAM(WORM)盘和可重写盘中槽摆动(弯曲),这使得可能表达信息,如绝对地址。因此,在记录数据时,在摆动槽上并基于从摆动槽读出的诸如地址的数据执行跟踪控制(后面有时称为“摆动信息”),可控制记录操作。
相反,在只读盘中,记录轨道通过坑串预先形成,并且诸如地址的数据由子代码记录。从而,不必要提供槽数据。因此,一些只读盘驱动单元不提供读出槽信息功能。
图4A、4B和4C表示混合盘。图4A表示其内侧部分是只读区、外侧部分是DRAM(WORM)区的盘。图4B表示内侧部分是可重写区、外侧部分是只读区的盘。图4C表示内侧部分是DRAM(WORM)区、外侧部分是可重写区的盘。
因此,可利用混合盘,即一张盘具有如只读区、DRAM(WORM)区和可重写区的不同区的混合。
尽管未示出,但也可考虑具有3个区的混合盘。例如,有一种混合盘,其内侧部分是只读区,中间部分是DRAW(WORM)区,外侧部分是可重写区,或一种混合盘,其内侧部分是只读区,中间部分是可重写区,外侧部分是只读区。混合盘还可能具有4个或更多的区。
如上所述,可根据记录密度或记录/读出类型,即根据物理特性区分盘。盘的类型可概括为图5A和5B所示。
图5A表示规则盘类型,即整个盘由具有一种物理特性的区构成(“规则盘”指的是盘不是混合盘)。考虑有两种类型的记录密度,如标准密度和高密度,并考虑有三种记录/读出类型,如只读型、DRAW(WORM)型和可重写型,可考虑如图5A所示考虑类型1到类型6的6种类型的盘。
图5B表示混合盘的类型,每种类型具有物理特性不同的两个区。通过使用图5A所示的类型1到类型6,可考虑30种类型的混合盘,这些混合盘从内侧部分是类型1、外侧部分是类型2的类型HD1到内侧部分是类型6、外侧部分是类型5的类型HD30。
显然,如果考虑其中每种具有物理特性不同的三个或更多个区的混合盘,可利用更多类型的盘。
伴随考虑物理特性的这些盘的种类,盘驱动单元必须准确地确定装载的盘的物理特性(或数据要被记录或读出的区的物理特性)并根据确定的物理特性执行处理。那么,记录/读出性能可增强。
通常,“盘”是盘状介质。但是,如下面所讨论的那样,可提供三角形的“盘”或四边形的“盘”。如果考虑“盘”的形状这些盘听起来很矛盾,在本说明书中除盘状介质以外的介质也被称为“盘”。
3.可记录盘和槽
3-1可重写盘
通常,CD系统盘具有从盘中心(内圆周)到盘的末端(外圆周)的单螺旋记录轨道。
在用户可记录数据的盘上,如CD-R或CD-RW上,在把数据记录到盘上之前在盘基板上仅形成用于引导激光的一个引导槽来作为记录轨道。当用高功率调制的激光被应用于盘时,记录层的反射率或相位被改变了,从而可能在盘上记录数据。相反,在如CD-DA或CD-ROM的只读盘上在物理上不形成作为记录轨道的槽。
在CD-R上,形成由有机染料形成的可写入一次的记录层。高功率激光被应用于盘,从而可能通过穿孔记录数据(在盘上形成坑)。
考虑其记录层可被多次重写的可重写盘,如CD-RW,相变技术被用来记录数据,具体地说,通过使用晶体状态或非晶状态之间的反射率之差来记录数据。
关于物理特性,CD-ROM和CD-R的反射率是0.7或更高,而CD-RW的反射率低至大约0.2。因此,在设计成与0.7或更高的反射系数兼容的读出设备中不能读出CD-RW。从而对这种读出设备增加放大低信号的自动增益控制(AGC)功能。
在CD-ROM中,在盘的内圆周处的引入区被设置在距盘中心46到50mm的范围内,并且没有比引入区更靠内的坑。
相反,在CD-R和CD-RW中,提供比引入区更靠内的程序存储区(PMA)和功率校准区(PCA),如图6所示。
引入区和随后的用于记录用户数据的程序区被用于通过与CD-R或CD-RW兼容的驱动单元执行记录操作,并且还被用于从那里读出数据,与CD-DA中一样。
在PMA中,暂时存储每个轨道的记录信号模式和时间信息,如开始时间和结束时间。当所有的轨道填满记录的数据时,基于存储在PMA中的数据在引入区形成TOC。PCA是在记录数据时为了获得激光功率的最佳值而数据被暂时写入的区。
在CD-R和CD-RW中,为控制主轴的记录位置和旋转,形成数据轨道的槽(引导槽)以摆动(弯曲)形状来形成。
这个摆动槽基于诸如绝对地址的信息调制的信号来形成。即,诸如绝对地址的摆动信息可从摆动槽读出。以摆动槽表示的绝对时间(地址)信息被称为“预置槽中的绝对时间(ATIP)”。
摆动槽以正弦波形轻微摆动,如图7所示,并且槽的中心频率是22.05kHz,摆动量大约是±0.3μm。
在这个实施例中,在摆动槽中,不仅绝对时间信息而且其它类型的信息也通过频率调制(FM)编码。以摆动槽表示的摆动信息的细节下面给出。
3-2摆动信息
根据从CD-R/CD-RW槽在推挽信道检测到的摆动信息,当主轴电机的旋转被控制成使得摆动信息的中心频率变为22.05kHz时,主轴电机以CD系统中限定的线速度旋转(例如标准密度盘的1.2到1.4m/s)。
对于CD-DA或CD-ROM,可依靠在子代码中编码的绝对时间信息。但是,在其上没有记录数据的CD-R或CD-RW(空白盘)中,还没有记录子代码,从而从摆动信息获得绝对时间信息。
在盘上记录数据后,摆动信息的一个扇区(ATIP扇区)等同于主要信道的一个数据扇区(2352字节)。因此,执行记录操作,同时提供数据扇区与ATIP扇区的同步。
ATIP信息实际不在摆动信息中编码。而是,首先进行双相位调制,如图8所示,然后进行相位调制(FM)。这是因为摆动信号也被用于控制主轴电机的旋转。详细地说,根据双相位调制,1和0以预定间隔交替排列,从而1的数目与0的数目的比率变为1∶1,并且FM调制的摆动信号的平均频率变为22.05kHz。
如下面具体讨论的那样,在摆动信息中不仅时间信息而且如用于设置记录激光功率的信息的特定信息也被编码。在CD-RW中,通过扩展特定信息,用于CD-RW的功率和记录脉冲信息被编码。
图11表示摆动信息的一个ATIP帧的配置。
ATIP帧由42位形成,如图11的(a)表示的那样,顺序提供有4位同步模式、3位鉴别符(标识符)、21位摆动信息如物理帧地址,和14位循环冗余校验(CRC)码。
或者,在一些ATIP帧中,提供4位鉴别符和20位摆动信息,如图11的(b)表示的那样。
作为设置在ATIP帧的标题处的同步模式,当前面的位是0时,提供“11100011”,如图9所示,当前面的位是1时,提供“00011101”,如图10所示。
3位或4位鉴别符是指出随后的20或21位的摆动信息内容的标识符,并且被如图12所示来定义。
从图12所示的位M23到M0的24位相应于在图11所示的位位置5到28的24位。
位M23,M22和M21(或位M23,M22,M21和M20)用作鉴别符。当鉴别符的值为“000”时,相应帧的摆动信息的内容(M20到M0)表示引入区、程序区和引出区的地址。当鉴别符的值为“100”时,相应帧的摆动信息的内容(M20到M0)表示引入区的地址。上述地址相应于如上所述ATIP的绝对地址。作为ATIP的时域信息从程序区的标题开始径向向外来记录,并被用于在记录操作期间控制地址。
当鉴别符的值为“101”时,帧的摆动信息(M20到M0)表示特定信息1。当鉴别符的值为“110”时,帧的摆动信息(M20到M0)表示特定信息2。当鉴别符的值为“111”时,帧的摆动信息(M20到M0)表示特定信息3。
当4位被用于鉴别符时,它的值为“0010”,帧的摆动信息(M19到M0)表示特定信息4。
当鉴别符的值为“010”时,帧的摆动信息(M20到M0)表示附加信息1。当鉴别符的值为“011”时,帧的摆动信息(M20到M0)表示附加信息2。当4位被用于鉴别符时,它的值为“0011”,帧的摆动信息(M19到M0)表示增补信息。鉴别符“1000”和“1001”保留为版权信息,其中填充版权保护码。
特定信息1到4、附加信息1和2以及增补信息的内容如图13所示。
特定信息1包括4位目标记录功率、3位参考速度、7位盘应用码、1位盘类型和3位盘子类型。3位保留区是保留数据,将来用于扩展数据。
作为目标记录功率,参考速度处的激光功率电平被记录。作为盘应用码,记录使用的目的,如一般商业目的、特定用途(例如照片CD或卡拉OKCD)或商用音频。作为盘类型,例如,“0”表示DRAW(WORM)盘,“1”表示可重写盘。盘子类型表示旋转速度和恒定角速度(CAV)/恒定线速度(CLV)。
特定信息2包括引入区的开始地址。特定信息3包括引出区的开始地址。
特定信息4包括制造厂家代码、产品类型和材料代码。盘的制造厂家的名字被记录为制造代码。制造厂家制造的产品类型(型号、产品代码等)被记录为产品类型。在材料代码中,记录盘的记录层的材料。
3位材料代码的信息的细节如图14所示。
材料代码“000”表示材料是花青(cyanine)。材料代码“001”表示材料是酞花青(phthalocyanine)。材料代码“010”表示材料是偶氮化合物(azo compound)。上述材料是用于CD-R的有机染料。
相反,材料代码“100”指定用于相变介质的材料。
通常,盘的记录层的材料由制造厂家代码和产品类型确定。这是基于介质制造领域的系统,该系统中,产品和材料彼此一致地注册。
即,通过在盘驱动单元中存储注册的信息,装载的盘的记录层的材料可从制造厂家代码和产品类型识别。
但是,在盘驱动单元制造后,如果新的盘被注册,或如果没有注册的产品类型的盘或没有注册的制造厂家制造的盘被装载,盘驱动单元不能确定盘的材料类型。
从而,通过如上所述提供材料代码,无论注册状态如何,盘驱动单元能正确地确定装载的盘的材料。
因此,可根据材料的类型进行各种设置,如激光功率和激光发射模式,从而实现高准确度的记录操作。
即使装载的盘的材料可从制造厂家代码和产品类型确定,材料代码可被用于确认确定结果。
附加信息1包括涉及主轴电机的旋转和激光功率控制的信息,如最低CLV记录速度、最高CLV记录速度、功率倍增系数ρ、目标γ值和擦除/记录功率比,如图13所示。
附加信息2还包括涉及主轴电机的旋转和激光功率控制的信息,如最低记录速度的目标记录功率和最高记录速度的目标记录功率、最低记录速度的功率倍增系数ρ和最高记录速度的功率倍增系数ρ、最低记录速度的擦除/记录功率和最高记录速度的擦除/记录功率比。
增补信息包括惯性(转动惯量)、盘配置、物理结构、盘密度等。
一位盘密度信息的细节如图15所示。
值“0”表示盘密度是标准密度(单密度),而值“1”表示盘密度是高密度(双密度)。通过确定盘密度类型,盘的特性和参数可通过图2中的表识别。
两位物理结构信息的细节如图16所示。
值“0”表示装载的盘是规则可记录盘,而值“1”表示保留的(reserved)。
两位盘配置信息的细节如图17所示。
值“00”表示作为12cm或8cm盘的规则(圆形)盘。值“01”表示三角形盘。值“10”表示四边形盘。值“11”表示具有除上述盘外的配置的盘。
盘配置的例子如图18A到20C所示。
图18A表示12cm规则盘,图18B表示8cm规则盘。中心孔的直径是15mm。在图18A到20C中,存取范围AC是可由盘驱动单元的光拾取器存取的范围,换言之,可形成记录轨道的径向范围。
尽管可配置不同于上述规则盘的一些盘,可装载它们,并且只要盘的尺寸和配置可被容纳在12cm圆形盘内并且中心孔CH具有15cm直径。可在这些盘上执行记录/读出操作。
图19A和19B表示以盘配置的值“01”表示的三角形盘。详细地说,图19A表示规则三角形盘,图19B表示规则三角形盘之外的另一种三角形形状。这种三角形盘的中心孔CH的直径是15mm。
这种三角形盘的存取范围AC小于规则盘,如图19A和19B所示。但三角形盘可被装载在盘驱动单元中并被用于记录或读出数据。
图20A,20B和20C表示以盘配置的值“10”表示的四边形盘。详细地说,图20A表示正方形盘,图20B表示矩形盘,图20C表示任何类型的四边形盘。这种四边形盘的直径是15mm。
与三角形盘一样,这种四边形盘的存取范围AC小于规则盘。但四边形盘可被装载在盘驱动单元中并被用于记录或读出数据。
具有除三角形和四边形以外的配置的以值“11”表示的盘未示出。但是在这种情况下,五边形盘或六边形盘或具有六边以上的盘或具有除8cm或12cm以外的直径的盘、椭圆盘、如星形盘或云状盘的特殊配置盘也可被考虑。
只要这种盘的尺寸和配置可被容纳在12cm直径盘内并且中心孔CH是15mm,这种盘也被用于记录或读出数据。
如图19A到20C所示的三角形或四边形盘的例子所示,它们并不限于规则三角形或正方形。因此,如果希望这种盘的配置被准确识别,这种盘的尺寸可被记录在例如增补信息的保留区的一部分中(M19到M7)。
或者,作为表示图21A和21B所示的“a”和“h”的位,可把4位如下所示用于“a”和“h”的每一个。
当指出“a”的4位值以Av表示并且指出“h”的4位值以Hv表示时,
a=Av[mm](以1mm的增量来表示0到15mm)
h=Hv/10(以0.1mm的增量来表示0到1.5mm)
增补信息的两位惯性(转动惯量)的细节如图22所示。
当惯性值是“00”时,转动惯量小于0.01g·m2。当惯性值是“01”时,转动惯量是0.01g·m2或更大但小于0.02g·m2。当惯性值是“10”时,转动惯量是0.02g·m2或更大但小于0.03g·m2。当惯性值是“11”时,转动惯量是0.03g·m2或更大。
当转动惯量以J表示时,其由下面的等式表达。
J=∑(mi×ri 2)
其中ri表示距原点(即,盘的旋转中心)的距离,mi表示在位置ri的微质量。
根据上述等式,转动惯量J是微质量mi与距离ri的平方的积的和,并且永远不会为0。因此,盘越大,转动惯量J增加。
转动惯量J的物理含义是旋转等式中表达的量。即下面的等式是正确的。
J×α=T
其中α表示旋转角度θ(=角速度)的二阶微分,T表示力矩(扭矩)。
这个等式揭示了转动惯量J等于粒子旋转等式中的质量。即,转动惯量J是考虑刚性材料旋转时的一种重要的物理质量(mass)。
通常,盘的不均衡Im以下式表达。
Im=∑(mi×ri)
即,不均衡Im是微质量mi与距离ri的积的和,并且永远不会为0。如果盘是非常对称并且厚度是均匀的,不均衡Im是0,但是,尽管不均衡Im是0,转动惯量J不为0,并且转动惯量J与不均衡Im之间没有相关性。
如从前面的描述所见,盘的转动惯量被用于控制旋转盘的主轴电机。
如上所述,盘不限制于8或12cm圆形盘,并且有各种配置和尺寸的盘。盘的转动惯量根据盘的配置和尺寸而不同。因此,通过提供转动惯量,如上所述,主轴电机的旋转驱动系统可被相应地控制(即根据盘的配置和尺寸)。详细地说,可根据盘的配置和尺寸设置最佳主轴伺服增益。
尽管在实施例中以2位表示转动惯量,它可以通过把位M7用于增补信息的保留区而被扩展到3位。在这种情况下,转动惯量以图23所示表示。
值“000”表示转动惯量小于0.004g·m2。值“001”表示转动惯量是0.004g·m2或更大但小于0.01g·m2。值“010”时,转动惯量是0.01g·m2或更大但小于0.02g·m2。值“011”表示转动惯量是0.022g·m2或更大但小于0.032g·m2。值“100”表示转动惯量是0.032g·m2或更大但小于0.037g·m2。值“101”表示转动惯量是0.037g·m2或更大。值“110”和“111”被保留。如果希望有更大的转动惯量的值,上述限定是有效的。
作为例子,考虑标准厚度、配置和质量(材料),60mm盘具有等于“000”的转动惯量,80cm等于“001”的转动惯量,100mm盘具有等于“010”的转动惯量,和120mm盘具有等于“011”的转动惯量。一些120mm盘的转动惯量根据材料类型可以是“100”。具有大于标准厚度的盘,或在径向上具有不均匀的质量分布的盘,例如在外圆周上质量大于内圆周上的盘,可具有等于“101”的转动惯量。
在图22和23所示的例子中,转动惯量以预定范围表示。但是,转动惯量可通过等式求出,在这种情况下,相应的信息被记录。
例如,惯性信息通过使用4位,如M5到M8来记录。当4位值以Jv[hex]表示时,Jcal[g·m2](转动惯量)可以下式表达。
Jcal=Jval×(1/500)
ATIP帧中包含的摆动信息的细节已经被讨论了。
在前述的例子中,盘配置的值“00”表示8和12cm规则(圆形)盘,并且它们不被区分。这是因为通过参考转动惯量的值来区分它们。
具体地说,8cm规则盘的转动惯量小于0.01g·m2,而12cm规则盘的转动惯量是0.03g·m2或更大。因此,如果盘配置的值是00”并且惯性值是“00”,盘是8cm规则盘。相反,如果盘配置的值是“00”并且惯性值是“11”,盘是12cm规则盘。
或者,通过使用增补信息的一部分保留区,可记录用于区分8cm盘和12cm盘的信息。
3-3记录区格式
现在给出当盘驱动单元在可记录盘的记录区中记录数据时的格式的描述。图24表示可记录盘的记录区的格式,图25表示图24所示的轨道格式。
盘驱动单元顺序从盘的内圆周向外圆周格式化记录区,如PCA、PMA、引入区、一个或多个轨道和引出区,如图24所示。
之后,盘驱动单元根据分组写入方法把每个轨道分割成多个分组,如图25所示,并在其上记录用户数据。
图24所示的PCA是执行测试记录以调整激光的输出功率的区。每个轨道是记录用户数据的区。引入区和引出区存储TOC,如每个轨道的开始地址和结束地址,并分别存储涉及相应的光盘的各信息项。PMA是各个轨道的TOC被暂时存储的区。每个轨道由用于记录轨道信息的预置间隙和用于记录用户数据的用户数据区构成。
图25所示的各个分组包括至少一个可读出用户数据块、5个链接块,这5个链接块由设置在用户数据块前面的1个链接块和4个输入(run-in)块构成,以及包括由在用户数据块之后设置的两个输出(run-out)块构成的两个链接块。链接块用于耦合分组。
根据固定长度分组写入方法,多个轨道被形成于可重写盘的记录区,每个轨道被分为多个分组。之后,使用户数据块的数目(块长度)在一个轨道中的分组中相同,并且一次把数据记录在每个分组中。
从而,根据固定长度分组写入方法,以一个轨道内的各个分组的分组长度相同的方式格式化记录区,并且用户数据块的数目在分组中是相同的。
图26表示通过盘驱动单元格式化的光盘的记录区的格式。通过整个或部分用固定长度分组格式化预格式化记录区,格式化的记录区用固定长度分组填充。
4.子代码和TOC
记录在CD格式盘的引入区中的TOC和子代码如下。
可记录在CD格式盘上的最小单元数据是一帧。98帧构成一块。一帧的结构如图27所示。
一帧由588位构成,其中首先的24位是同步数据,随后的14位是子代码数据,剩余的位是数据和奇偶校验码。
如上配置的98帧形成一块,并且从98帧抽取的子代码数据被集合来形成一块的子代码数据(子代码帧),如图28A所示。
从98帧的第一和第二帧(帧98n+1和98n+2)中抽取的子代码数据被用作同步模式。第三到第98帧(帧98n+3和98n+98)形成多个信道数据项,即形成每个具有96位的子代码数据P,Q,R,S,T,U,V和W。
在这些子代码数据中,P信道和Q信道被用于控制存取。但是,由于P信道仅表示轨道之间的停顿,更准确的控制由Q信道(Q1到Q96)执行。96位Q信道数据如图28B所示配置。
4位,即Q1到Q4被用作控制数据,用于识别音频信道数目是2还是4、对在盘上记录的数据(音乐)是否执行重音处理和是否允许数字拷贝。
接着,随后的4位即Q5到Q8被用作(ADR),其表示子Q数据的模式。具体地说,下面的模式(子Q数据的内容)可以4位ADR表示。
0000:模式0...基本上,所有子Q数据是0(CD-RW除外)
0001:模式1...正常模式
0010:模式2...盘的目录号
0011:模式3...国际标准记录码(ISRC)
0100:模式4...用于CD-V
0101:模式5...用于多对话类型,如CD-R,CD-RW和CD-EXTRA
在ADR之后,72位Q9到Q80被用作子Q数据,并且剩余的Q81到Q96被用作CRC。
在ADR表示模式1时,地址(绝对地址和相对地址)可以子Q数据表达。
考虑以子Q数据表示的地址格式,用于已知标准密度盘如CD-DA的格式参考图29A和29B讨论,而用于高密度盘如CD-R和CD-RW的格式参考图30A和30B讨论。在高密度模式中,必须与较大盘容量一起扩展绝对地址的最大值。因此,高密度盘的地址值以小时/分钟/秒/帧表示,而标准密度盘的地址值以分钟/秒/帧表示。
当ADR是模式1时参考图29A到30B描述子Q数据,并且参考图31讨论子Q数据的TOC结构。
存储在盘的引入区中的子Q数据用作TOC信息。即,从引入区读出的Q信道数据的Q9到Q80的72位子Q数据包含图29A或30A所示的信息。图29A或30A所示的子Q数据提供图28B所示的Q信道数据的72位子Q数据(Q9到Q80)。子Q数据被分为8位部分并表示TOC信息。
在如图29A所示的用于标准密度盘的子Q数据中,8位Q9到Q16指定轨道序号(TNO)。在引入区中,轨道序号被设置为“00”。
随后的8位Q17到Q24表示点(POINT)。每一个具有8位的Q25到Q32、Q33到Q40和Q41到Q48分别表示分钟(MIN)、秒(SEC)和帧(FRAME),作为绝对地址。“00000000”被设置在Q49到Q56中。而且PMIN、PSEC、PFRAME被分别记录在Q57到Q64、Q65到Q72和Q73到Q80中。PMIN、PSEC、PFRAME的含义由POINT的值确定。
另一方面,在如图30A所示的用于高密度盘的子Q代码中,通过使用Q49到Q56的8位的每4位,表示比分钟/秒/帧更高的概念“小时”。
具体地说,在引入区中,通过使用4位Q49、Q50、Q51和Q52,作为比“MIN”、“SEC”和“FRAME”更高的概念的时间“HOUR”被记录。通过使用剩余的4位Q53、Q54、Q55和Q56,作为比“PMIN”、“PSEC”和“PFRAME”更高的概念的时间“PHOUR”被记录。
在图29A或30A所示的引入区的子Q数据中,下面的信息以点(POINT)的值限定。
在图29A所示的子Q代码中,当POINT的值以BCD“01”到“9F”表示(或以二近制码中的“01”到“FF”表示)时,它指的是轨道号。在这种情况下,在PMIN、PSEC和PFRAME中,轨道号的开始点(绝对时间地址)的分钟(PMIN)、秒(PSEC)和帧(PFRAME)被记录。
当POINT值为“A0”时,程序区中的第一轨道的轨道序号被记录在PMIN中。盘的规格(类型),如CD-DA、CD-Interactive(CD-I)、CD-ROM(XA规格)可由PSEC的值限定。
当POINT值为“A1”时,程序区中的最后的轨道的轨道序号被记录在PMIN中。
当POINT值为“A2”时,引出区中的开始点被记录在PMIN、PSEC和PFRAME中,作为绝对时间地址(分钟(PMIN)、秒(PSEC)、帧(PFRAME))。
另一方面,在图30A所示的子Q代码中,当POINT值由“01”到“9F”指定时,它指的是轨道号。在这种情况下,在PHOUR、PMIN、PSEC和PFRAME中,轨道号的开始点(绝对时间地址)被记录为小时(PHOUR)、分钟(PMIN)、秒(PSEC)和帧(PFRAME)。
当POINT值为“A0”时,程序区中的第一轨道的轨道序号被记录在PMIN中,并且对话(session)格式可由PSEC值识别。对于通常高密度盘,PSEC被设置为“00”。
当POINT值为“A1”时,程序区中的最后的轨道的轨道序号被记录在PMIN中。
当POI NT值为“A2”时,在PHOUR、PMIN、PSEC和PFRAME中,引出区中的开始点被记录为绝对时间地址(小时(PHOUR)、分钟(PMIN)、秒(PSEC)、帧(PFRAME))。
作为POINT值,考虑已经被限定或在将来要被限定的值,如“A3”,和随后的值,例如“B*”和“C*”。但是省略了对这种值的解释。
在这个实施例中,在POINT值是“F0”时,各种类型的物理信息被记录,并且下面给出其具体解释。
因此,TOC由图29A或30A所示的子Q数据形成。例如,由其上在程序区上记录6个轨道的盘的子Q数据形成的TOC可由图31所示的那样表示。
TOC的所有轨道号TNO不可避免以“00”表示。如上所述,块序号表示作为98帧形成的块数据(子编码帧)的子Q数据的数目。
在TOC数据中,如图31所示,相同的数据被记录在3个连续的块上。POINT“01”到“06”的值分别表示6个轨道(音乐片段),轨道#1到#6,并且第一轨道#1到第六轨道#6的开始点以PHOUR、PMIN、PSEC和PFRAME表示。图31表示的TOC是基于图30A表示的子Q数据,并且如果TOC是根据图29中的子Q数据产生时,则不提供PHOUR。
当POINT值为“A0”时,“01”在PMIN中表示,作为第一轨道序号。盘的类型可由PSEC值识别,并且由于PSEC值是“20”,所以盘是高密度CD。
当POINT值为“A1”时,最后轨道(#06)的轨道序号在PMIN中记录。当POINT值为“A2”时,引出区的开始点在PHOUR、PMIN、PSEC和PFRAME中记录。
在块n+26之后(块n+27等),反复表示块n到n+26的相同的数据。
在图31所示的例子中,仅6个轨道被记录,并且块的数目受到限制,从而POINT值仅指定“A0”、“A1”和“A2”。但是实际上,可有更多块,使得POINT的值指定“A3”和随后的值,例如下面具体讨论的“F0”或“CF”。在这些盘之中轨道数目也不同。因此,一个TOC数据单元并不限制于图31所示的27块。
在存储例如轨道#1到#n的音乐片段的程序区中,并且在引出区中,子Q数据以图29B或30B所示的信息表示。
图29B或30B提供图28B所示的Q信道数据(Q1到Q96)的72位子Q数据(Q9到Q80)的细节。
在图29B所示的子Q数据中,8位Q9到Q16被用于记录轨道序号(TNO)。即,在轨道#1到#n中,BCD中的值“01”到“99”之一被记录。在引出区中,“AA”被记录在轨道序号中。
随后的8位Q17到Q24被用于记录索引(X)。索引可被用于分割各个轨道。
每个具有8位的Q25到Q32、Q33到Q40和Q41到Q48表示MIN(分钟)、SEC(秒)和FRAME(帧),作为在轨道内经过的时间(相对地址)。“00000000”被设置在Q49到Q56中。
每个具有8位的Q57到Q64、Q65到Q72和Q73到Q80中,AMIN、ASEC和AFRAME被分别记录为绝对地址的分钟、秒、帧。绝对地址是从第一轨道(即程序区的标题)的标题到引出区连续提供的地址。
相反,对于图30B所示的子Q数据,轨道序号(TNO)被记录在8位Q9到Q16中。在轨道#1到#n中,二进制代码值“01”到“9F”中的一个被表示。用10进制表示,可记录“0”到“159”,从而可提供直到159的轨道序号。在引出区中,“AA”被记录。
在随后的8位Q17到Q24中记录索引(X)。通过使用索引,可把各个轨道分割成较小的部分。作为索引号,使用二进制值“01”到“9F”。
每个具有8位的Q25到Q32、Q33到Q40和Q41到Q48中,MIN、SEC和FRAME表示在轨道内经过的时间(相对地址)。
通过使用随后的4位Q49到Q52,记录作为比“MIN”、“SEC”和“FRAME”更高概念的时间“HOUR”。因此,相对地址由小时/分钟/秒/帧表示,对于数据盘,hFF,FF,FF,F被用于“MIN、“SEC”、“FRAME”和“HOUR”,从而不使用相对时间。
每个具有8位的Q57到Q64、Q65到Q72和Q73到Q80中,AMIN、ASEC和AFRAME被分别记录为绝对地址的分钟、秒、帧。
通过使用4位Q53到Q56,记录作为比“AMIN、“ASEC”和“AFRAME”更高概念的时间“AHOUR”。因此,与相对地址一样,绝对地址由小时/分钟/秒/帧表示。
绝对地址是从第一轨道的标题(即程序区的标题)到引出区连续提供的地址。
CD格式的子Q代码如上讨论地来表示。在子Q代码中,AMIN、ASEC和AFRAME(和AHOUR)区提供用于表示绝对地址,MIN、SEC和FRAME(和HOUR)区提供用于指定相对地址。另外,作为表示轨道的标题和引出区的地址指针,设置PMIN、PSEC和PFRAME(和PHOUR)。这些值以分钟、秒和帧(和小时)表示地址,每个具有BCD中的8位(和具有4位的小时)。
BCD是表示以4位为单元的“0”到“9”的符号。从而,根据8位BCD,可表示从“00”到“99”的值,即上4位表示10的位置、下4位表示1的位置。根据4位BCD,可表示从“0”到“9”的值。
在图30A和30B所示的例子中,轨道序号(TNO)、点(POINT)和索引(X)以从“00”到“9F”的8位二进制代码排列表示。
具体地说,例如轨道序号(TNO)通过分别采用值“00000000”到“10011111”以“0”到“9F(=159)”的范围表示。因此,在格式上可被管理的轨道数目被扩展到159个。
如图29A、图30A中的例子所示,确定轨道号“00”表示引入区并且“AA”(=10101010)表示引出区。
点(POINT)和索引(X)也可以通过分别采用值“00000000”到“10011111”由从“0”到“9F”的范围表示。从而可能使点(POINT)对应于轨道序号(TNO)。通过使用索引(X),一个轨道可分为159部分。
由二进制码的“00”到“9F”表示轨道序号和索引号的原因如下。
如上所述,在已知的CD格式中,即在图29A所示的子代码信息中,除非POINT表示轨道序号,否则对点(POINT)使用特定的定义,如“A0”、“A2”、“A3”、“B*”或“C*”。在图29A和图30A所示的两个例子中,“F0”可用作POINT的值,其在下面具体讨论。
因此,如果在“9F”之后包括“A0”来表示轨道序号,则在点(POINT)表示轨道序号时必须使用原始用于特定代码的“A0”。
如果点(POINT)使用“A0”、“A2”、“A3”、“B*”或“C*”等作为二进制代码的轨道序号,则必须在标准密度模式和高密度模式之间区分“A1”的定义,这一点对兼容性有害。例如,在记录/读出设备中,软件和硬件的负担增加以配合标准密度模式和高密度模式之间的不同定义。
从而,确定轨道序号仅被扩展到“9F”(=159),并且“A0”和随后的代码不被用于轨道序号。即使在高密度模式,“A0”和随后的代码被用于定义因数而不是轨道序号。
因此,作为点(POINT)的值,把“00”到“9F”用于轨道序号,把“A0”和随后的代码用于特定的定义。
根据对点(POINT)分配的代码,即除特定定义外的“00”到“9F”外,二进制代码中的“00”到“9F”也被分配到索引(X),其在子代码格式上具有相同的位分配。
限制轨道序号到“9F”的另一个原因是使得在标准密度模式中可使用轨道序号“AA”,即在高密度模式中轨道序号的定义表示引出区。
如上所述,在引出区的子Q数据(即TOC数据)中,点(POINT)的值确定子编码帧的信息内容。当点(POINT)表示“01”到“9F”、“A0”、“A1”和“A2”时子编码帧的定义已经进行了讨论。
在这个实施例中,在点(POINT)的值表示“F0”时,如下描述要被记录在子编码帧中的信息。
图32示出了当ADR为1时,即子Q数据处于正常模式时,根据点(POINT)的值的子编码帧的内容,即MIN、SEC、FRAME、HOUR、PHOUR、PMIN、PSEC和PFRAME。
如上讨论的那样,在点(POINT)的值是“01”到“9F”、“A0”、“A1”和“A2”之一时记录以图32的(a)表示的各种类型的信息。
在点(POINT)的值是“F0”时,介质的物理信息被记录在PMIN、PSEC、PFRAME中。
图32所示的子编码帧是基于如图30A所构造的子Q数据的。如果它基于如图29A所构成的子Q数据,在点(POINT)的值是“F0”时,介质的物理信息也可被记录在PMIN、PSEC、PFRAME中。
物理信息的内容以图32的(b)表示。在PMIN、PSEC、PFRAME中,即在Q57到Q80中,记录诸如每个包括4位的材料、介质类型、线速度和轨道间距、每个包括2位的转动惯量、配置和盘大小的信息,如图32的(b)所示。
4位盘大小信息如图33所示。值“0000”表示盘大小是120mm。值“0001”表示盘大小是80mm。其它值被保留。
2位盘配置信息如图34所示。值“00”表示盘为圆形。通常的圆形盘是12或8cm盘。值“01”表示盘是三角形。值“10”表示盘是四边形。值“11”表示盘具有除上述配置之外的配置。其它值被保留。
2位的转动惯量信息如图35所示。值“00”表示转动惯量小于0.01g·m2。值“01”表示转动惯量是0.01g·m2或更大但小于0.02g·m2。值“10”表示转动惯量是0.02g·m2或更大但小于0.03g·m2。值“11”表示转动惯量是0.03g·m2或更大。
通过参考盘配置和转动惯量信息,盘驱动单元能确定它们。另外,盘的各种配置、信息的细节,如盘大小、配置和转动惯量以及这些信息的修改可被省略。但是,这些因数可同时参考摆动信息如上讨论。省略了其解释。
4位轨道间距信息如图36所示。当值为“0000”时,轨道间距是1.05微米。当值为“0001”时,轨道间距是1.10微米。当值为“0010”时,轨道间距是1.15微米。当值为“0011”时,轨道间距是1.20微米。当值为“1000”时,轨道间距是1.50微米。当值为“1001”时,轨道间距是1.55微米。当值为“1010”时,轨道间距是1.60微米。当值为“1011”时,轨道间距是1.65微米。当值为“1100”时,轨道间距是1.70微米。其它值被保留。
轨道间距间接指定盘密度(标准密度/高密度)。即,“0000”到“0011”表示盘是高密度盘,而“1000”到“1100”表示盘是标准密度。
4位线速度信息如图37所示。当值是“0000”时,线速度是0.84m/s。当值是“0001”时,线速度是0.86m/s。当值是“0010”时,线速度是0.88m/s。当值是“0011”时,线速度是0.90m/s。当值是“0100”时,线速度是0.92m/s。当值是“0101”时,线速度是0.94m/s。当值是“0110”时,线速度是0.96m/s。当值是“0111”时,线速度是0.98m/s。当值是“1000”时,线速度是1.15m/s。当值是“1001”时,线速度是1.20m/s。当值是“1010”时,线速度是1.25m/s。当值是“1011”时,线速度是1.30m/s。当值是“1100”时,线速度是1.35m/s。当值是“1101”时,线速度是1.40m/s。当值是“1110”时,线速度是1.45m/s。值“1111”被保留。
线速度可直接指定盘密度(标准密度/高密度)。即,“0000”到“0111”表示盘是高密度盘,而“1000”到“1110”表示盘是标准密度。
4位介质类型信息如图38所示。值“0000”表示介质是只读介质。值“0001”表示介质是DRAW(WORM)介质。值“0010”表示介质是可重写介质。值“0011”被保留。值“0100”表示介质是具有只读区和DRAW(WORM)区的混合介质。值“0101”表示介质是具有只读区和可重写区的混合介质。值“0110”表示介质是具有DRAW(WORM)区和只读区的混合介质。值“0111”表示介质是具有可重写区和DRAW(WORM)区的混合介质。值“1000”表示介质是具有标准密度只读区和高密度只读区的混合介质。其它值被保留。
4位材料信息如图39所示。当值为“0000”时,压印坑形成于记录层上,即记录层的材料是用于只读盘的材料。当值为“1000”时,记录层的材料是用于DRAW(WORM)介质的花青。当值为“1001”时,记录层的材料是用于DRAW(WORM)介质的酞花青。当值为“1010”时,记录层的材料是用于DRAW(WORM)介质的偶氮化合物。当值为“1011”时,记录层的材料是用于可重写介质的相变材料。值“0001”到“0111”和“1100”到“1111”被保留。
如上所述,介质的物理信息被记录在引入区的子Q数据(TOC)中。这使得盘驱动单元容易且准确地确定盘大小、配置、转动惯量、轨道间距、线速度、介质类型和记录层材料。
不用图32到39所示的引入区的子Q数据(TOC)中的记录介质的物理信息,可使用图40所示的物理信息。
作为图32的(a)表示的子Q数据,当ADR为1时子Q数据的内容,即正常模式中的子Q数据的内容如图40的(a)所示。具体地说,示出了根据点(POINT)的值的子编码帧的内容,即MIN、SEC、FRAME、HOUR、PHOUR、PMIN、PSEC和PFRAME的内容。
图40的(a)表示的信息类似于图32的(a)表示的信息。但是,当点(POINT)的值是“F0”时,要被记录在PMIN、PSEC和PFRAME中的介质的物理信息可被记录成图40的(b)所示,而不是图32的(b)所示。
图40的(a)表示的子Q数据与图32的(a)表示的子Q数据一样,是基于图30A所示的子Q数据的结构的。如果它基于如图29A所示的子Q数据结构,并且点(POINT)的值是“F0”,图40的(b)所示的介质的物理信息也可被记录在PMIN、PSEC、PFRAME中。
在图40的(b)所示的物理信息中,在24位的PMIN、PSEC、PFRAME中,即在Q57到Q80中,记录4位介质类型、4位介质版本、4位材料类型、2位线速度、2位轨道间距、3位转动惯量和4位盘大小/配置。
4位盘大小/配置如图41所示。
当值为“0000”时,盘大小是120mm。当值为“0001”时,盘大小是80mm。其它值被保留。通过利用保留值,其它盘大小和配置可被记录。
例如,Q79和Q80可被用于盘大小信息,Q77和Q78可被用于盘配置。
2位盘配置可被定义在图34所示的信息中。具体地说,当值是“00”时,盘是规则圆形盘。当值是“01”时,盘是三角形盘。当值是“10”时,盘是矩形盘。当值为“11”时,盘具有除上述配置外的配置。
或者,如果盘大小和配置的组合类型的数目在16以内,可使用“0000”到“1111”在4位Q77到Q80中定义它们。
作为记录在Q74到Q76中的3位转动惯量信息,可使用图23所示的定义。
具体地说,值“000”表示转动惯量小于0.004g·m2。值“001”表示转动惯量是0.004g·m2或更大但小于0.01g·m2。值“010”表示转动惯量是0.01g·m2或更大但小于0.022g·m2。值“011”表示转动惯量是0.022g·m2或更大但小于0.032g·m2。值“100”表示转动惯量是0.032g·m2或更大但小于0.037g·m2。值“101”表示转动惯量是0.037g·m2或更大。值“110”或和“111”被保留。
2位轨道间距信息如图42所示。当值为“00”时,轨道间距是1.10微米。其它值被保留。
2位线速度信息如图43所示。值“00”表示线速度是0.9m/s。其它值被保留。
作为从Q65到Q68的4位材料类型信息,使用图39所示的从Q7到Q60的定义。
4位介质版本信息如图44所示。值“0000”表示版本是0.9。值“0001”表示版本是1.0。其它值被保留。
4位介质类型信息如图45所示。值“0000”表示盘是高密度(双密度)只读介质。值“0001”表示盘是高密度DRAW(WORM)介质。值“0010”表示盘是高密度可重写介质。其它值被保留。
根据引入区的子Q数据(TOC)中的介质的上述物理信息,盘驱动单元能容易而且正确地确定盘大小、盘配置、转动惯量、轨道间距、线速度、介质类型、记录层材料和版本。
如上所述,在多部分类型中,如CD-R、CD-RW、CD-EXTRA等,子Q数据的ADR的值可以是“0101”,即模式5。
在这个实施例中,当引入区的子Q数据(TOC)中的ADR是模式5时,图46所示的信息根据点(POINT)的值来记录。图46所示的信息用于具有多个每个都具有引入区、程序区、引出区的区的混合盘,这些区被称为用于记录/读出操作的“单元区”。
当点(POINT)的值是“B0”时,随后的单元区的程序区开始的绝对时间(绝对地址)被记录在MIN、SEC、FRAME和HOUR中。在PHOUR、PMIN、PSEC和PFRAME中,盘的最后单元区的引出区开始的绝对时间(绝对地址)被记录。
当点(POINT)的值是“C0”时,上述摆动信息的特定信息1被记录在MIN、SEC、FRAME和HOUR中。在PHOUR、PMIN、PSEC和PFRAME中,盘的第一单元区的引入区开始的绝对时间(绝对地址)被记录。
当点(POINT)的值是“C1”时,上述特定信息1被拷贝在MIN、SEC、FRAME和HOUR中。PHOUR、PMIN、PSEC和PFRAME被保留。
当点(POINT)的值是“CF”时,当前单元区的引出区结束的绝对时间(绝对地址)被记录在MIN、SEC、FRAME和HOUR中。在PHOUR、PMIN、PSEC和PFRAME中,随后的单元区的引入区开始的绝对时间(绝对地址)被记录。
当最后单元区中的点(POINT)的值是“CF”时,因为没有随后的单元区,所以在PHOUR、PMIN、PSEC和PFRAME中的信息被设置为0。或者,不提供点(POINT)为“CF”的子代码帧。
如上所述,在这个实施例中,通过参考混合盘的子Q数据的信息,具体地说,当点(POINT)的值是“CF”时随后的单元区的引入区开始的绝对时间、随后单元区的引入区的位置可被准确地确定。
例如,图47A简略表示具有两个单元区#1和#2的盘,图47B简略表示具有3个单元区#1、#2和#3的盘。根据从单元区的引入区读出的子Q数据,随后的单元区的引入区的位置可被识别,如图41A和41B所示。这使得盘驱动单元顺序存取各个单元区的引入区,如虚线箭头所示,从而容易读出每个单元区的TOC数据。
在每个单元区的引入区的子代码中,单元区的当前引出区结束的绝对时间被记录。从而当前单元区的引出区与随后单元区的引入区之间的任何间隔可被正确识别。
5.盘驱动单元的配置
现在给出对用于执行上述各种类型的盘的记录/读出操作的盘驱动单元的描述。
图48是表示盘驱动单元70的配置框图。在图48中,盘90是CD格式盘,如CD-R、CD-RW、CD-DA或CD-ROM。如参考图1A到5B所示的各种类型盘可被装载到盘驱动单元70中。
盘90被装载在转盘7上,并且在记录/读出操作期间由主轴电机6以CLV或CAV驱动。之后,坑数据由光拾取器1从盘90读出。作为坑数据,当盘90是CD-RW时,由相变形成的坑被读出。当盘90是CD-R时,由有机染料(反射率)改变形成的坑被读出。当盘90是CD-DA或CD-ROM时,压印坑被读出。
光拾取器1包含用作激光源的激光二极管4、用于检测反射光的光电检测器5、用作激光输出端的物镜2和用于经物镜2把激光应用于盘的记录表面并把从盘反射的光引导到光电检测器5的光学系统(未示出)。还对光拾取器1提供用于接收从激光二极管4输出的光的一部分的监视监测器22。
物镜2由在跟踪方向和聚焦方向上可移动的双轴机构3支持。整个光拾取器1可沿着盘的径向由滑板机构8移动。光拾取器1的激光二极管4由来自激光驱动器18的驱动信号(驱动电流)驱动。
来自盘90的反射光信息由光电检测器5检测到并被基于接收光的光量转换为电信号。之后电信号被提供给RF放大器9。
通常,RF放大器9提供有AGC电路。这是由于与CD-ROM相比,由CD-RW反射的光量根据数据是否记录在盘9上或数据当前是否被记录在盘90上而有相当大的变化,并且CD-RW的反射率与CD-ROM或CD-R非常不同。
RF放大器9还提供有电流电压转换电路、矩阵计算/放大电路等,以处理来自构成光电检测器5的多个光接收装置的输出电流,从而通过执行矩阵计算产生信号。例如,产生RF信号(读出数据)、用于执行伺服控制的聚焦误差信号FE和跟踪误差信号TE。
从RF放大器9输出的读RF信号被提供给二进制化电路11,而聚焦误差信号FE和跟踪误差信号TE被提供给伺服处理器14。
如上所述,用于引导记录轨道的槽在如CD-R或CD-RW的盘90上预先形成。槽根据通过对表示盘上的绝对地址的时间信息执行频率调制形成的信号的摆动(弯曲)。因此,记录/读出操作期间,通过参考槽信息,可执行跟踪伺服,并且可获得绝对地址和各种物理信息。RF放大器9通过执行矩阵计算抽取槽信息并把它提供给槽解码器23。
槽解码器23解调接收到的摆动信息WOB以抽取绝对地址并把它提供给系统控制器10。
槽信息还被输入到锁相环(PLL)电路,以获得主轴电机6的旋转速度信息。通过比较旋转速度信息和参考速度信息,主轴误差信号SPE被产生和输出。
可记录盘,如CD-R和CD-RW包括两种类型的盘,如标准密度盘和高密度盘。槽解码器23根据从系统控制器10输出的密度类型信息转换解码系统。具体地说,槽解码器23转换帧同步的区配模式。
在RF放大器9中获得的读RF信号在二进制化电路11中被二进制化,以将其转换为8到14(EFM)信号。EFM信号被提供给编码器/解码器12。
编码器/解码器12具有两个功能,如读出数据需要的解码器功能和记录数据需要的编码器功能。当读出数据时,编码器/解码器12执行EFM解调、CIRC纠错、去交织、CD-ROM解码等,从而输出CD-ROM格式的数据。
编码器/解码器12还从自盘90读出的数据抽取子代码并被它提供给系统控制器10,作为TOC和地址信息,作为子代码(Q数据)。
另外,编码器/解码器12通过执行PLL处理产生与EFM信号同步的读出时钟。并基于读出时钟执行上述解码操作。在这种情况下,编码器/解码器12抽取来自读出时钟的主轴电机6的旋转速度信息,并将它与参考速度信息相比,从而产生主轴误差信号SPE并输出该信号。
编码器/解码器12可根据要被读出或记录的盘(或单元区)是否是标准密度盘或高密度盘来转换处理方法。
在读出操作期间,编码器/解码器12在缓冲存储器20中存储上述解码的数据。当从盘驱动单元70输出读出的数据时,存储在缓冲存储器20中的数据被读出并输出。
接口13连接于外部主计算机80,在二者之间发送和接收记录数据、读出数据和各种命令。作为接口13,使用小型计算机系统接口(SCSI)或AT附属组件接口(ATAPI)。当读出数据时,在缓冲存储器20中解码和存储的读出数据经接口13被传输到主计算机80。
来自主计算机80的读出命令、写入命令和其它命令经接口13被提供给系统控制器10。
当记录数据时,从主计算机80传输记录数据(如音频数据或CD-ROM数据),并且经接口13将其存储在缓冲存储器20中。
在这种情况下,编码器/解码器12对CD-ROM格式数据(当提供的数据是CD-ROM数据时)执行编码处理,如CIRC编码、交织、子代码添加、EFM调制,从而形成CD格式数据。
通过编码器/解码器12的编码处理获得的EFM信号被提供给写入策略单元21,在该单元中,EFM信号的波形被整形。接着,把EFM信号提供给激光驱动器18,作为激光驱动脉冲(写入数据WDATA)。
写入策略单元21提供记录数据的补偿,即根据记录层特性、激光光斑配置和记录线密度精细调整最佳记录功率并整形激光驱动脉冲波形。
激光驱动器18把作为写入数据WDATA提供的激光驱动脉冲提供给激光二极管4,从而驱动激光发射。因此,在盘90上形成(相变坑或染料坑)根据EFM信号的坑。
自动功率控制(APC)电路19控制激光输出以维持在不受温度影响的恒定值,同时从监视检测器22监视激光输出功率。给定系统控制器10的目标激光输出值,APC电路19控制激光驱动器18,使得达到目标值。
伺服处理器14从RF放大器9输出的聚焦误差信号FE和跟踪误差信号TE以及编码器/解码器12或槽解码器23输出的主轴误差信号SPE产生各种伺服驱动信号,如监视检测、跟踪、滑动和主轴信号。
具体地说,伺服处理器14基于聚焦误差信号FE和跟踪误差信号TE分别产生聚焦驱动信号FD和跟踪驱动信号TD并把它们提供给双轴驱动器16。随后,双轴驱动器16驱动光拾取器1的双轴机构3的聚焦线圈和跟踪线圈。因此,跟踪伺服环路和聚焦伺服环路通过光拾取器1、RF放大器9、伺服处理器14、双轴驱动器16和双轴机构3形成。
响应于来自系统控制器10的轨道跳跃命令,跟踪伺服环路被断开,把跳跃驱动信号输出到双轴驱动器16。接着双轴驱动器16执行轨道跳跃操作。
伺服处理器14还基于主轴误差信号SPE产生主轴驱动信号并将它提供给主轴电机驱动器17。响应于主轴驱动信号,主轴电机驱动器17把例如3相驱动信号应用于主轴电机6,然后其以CLV或CAV旋转。
伺服处理器14还基于来自系统控制器10的主轴突跳/制动控制信号产生主轴驱动信号,并使得主轴电机驱动器17开始、停止、加速和减速主轴电机6。
另外,伺服处理器14基于系统控制器10控制的存取产生作为跟踪误差信号TE的低频成分得到的滑动误差信号和滑动驱动信号,并把这些信号提供给滑板驱动器15。响应于滑动驱动信号,滑板驱动器15驱动滑板机构8。滑板机构8提供有主轴、滑板电机和传动齿轮(都未示出),用于支持光拾取器1。通过根据滑动驱动信号由滑板驱动器15驱动滑板机构8,光拾取器1在盘90上滑动。
伺服系统和记录/读出系统的上述各种操作由微计算机形成的系统控制器10控制。
系统控制器10响应于来自主计算机80的命令执行上述操作。例如,当接受到一来自主计算机80的指令,系统控制器10传送某些记录在盘90上的数据的读出命令时,系统控制器10首先控制对指定地址的搜索操作。即,系统控制器10指示伺服处理器14使得光拾取器1访问由搜索命令指定的地址。
此后,系统控制器10执行传输读出的数据到主计算机80所需的操作。即,数据从盘90被读出,并被解码和暂时被存储。接着,所需的数据被传输到主计算机80。
相反,响应于来自主计算机80的写入命令,系统控制器10首先把光拾取器1移动到数据要被写入的地址。之后,编码器/解码器12对从主计算机80传送来的数据执行编码处理,如上所述,以将其转换为EFM信号。
随后,从写入策略单元21输出的写入数据WDATA被提供给激光驱动器18,从而在盘90上记录所需的数据。
在图48所示的例子中,盘驱动单元70被连接于主计算机80。但是,形成本发明的记录/读出设备的盘驱动单元70,如音频CD播放器或CD记录器,不一定连接于主计算机80。在这种情况下,接口13的配置不同于图48所示,例如,接口13可提供有操作单元和显示单元。即,数据可通过用户操作记录和读出,并且可形成输入和输出音频数据的端子。在显示单元上,可显示当前记录的或读出的轨道序号和时间(绝对地址或相对地址)。
可考虑盘驱动单元70的各种其它配置,例如可仅提供记录设备或仅提供读出设备。
6.盘驱动单元的处理示例
下面讨论盘驱动单元70的各种处理示例。
图49是在盘90被插入时盘驱动单元70执行的处理示例流程图。应注意子Q数据形成的TOC被记录在盘90的引入区。如果装载空白盘(未记录的盘)作为CD-R或CD-RW,则执行图50所示的处理,而不是图49所示的处理,这是由于TOC没有记录在这种盘上。
以图49到52的流程图表示的处理由系统控制器10执行。
在图49中,当装载盘90时,在步骤S101中,系统控制器10执行开始操作并读出TOC。具体地说,系统控制器10启动主轴电机6,维持伺服机构在预定的旋转速度,开始激光发射,激活并维持监视检测伺服,以及维持跟踪伺服,从而数据可从盘90读出,之后读出TOC信息。
接着,在步骤F102中,系统控制器10从TOC信息读出盘10的物理信息,从而确定盘90的物理特性。这个操作可通过检查图32到39所示的信息来执行。
然后在步骤F103确定盘90是否为混合盘。这可通过图38所示的介质类型确定。如果步骤F103的结果为否,则处理进行到步骤F104,在这里,根据盘90的类型的物理信息设置记录/读出系统。设置操作下面参考图51来具体描述。
现在在盘90上准备好执行记录/读出操作。在步骤F105中,系统控制器10等待来自主计算机80的命令,并响应于读出命令或记录命令分别执行读出或记录操作。
如果在步骤F103发现盘90是混合盘,则在步骤F106把变量n设置为1,并且执行步骤F107到F112的环路处理。
具体地说,在步骤F107中,将在步骤F102读出的物理信息存储为单元区#(n)的物理信息,即图47A或47b所示的例如单元#1的物理信息。
接着,在步骤F108中,变量n被增加。在步骤f109中,随后的单元区的引入区的开始地址被确定。
如参考图46讨论的那样,在ADR为模式5并且点(POINT)为CF的子代码帧中,随后的单元区的引入区的开始地址被记录。从而,在步骤F109中这个信息被检查。
如果随后的单元区的引入区的开始地址被记录在上述子代码帧中,可自动确认随后单元区的存在,从而处理从步骤F110进行到F111。在步骤F111中,系统控制器10控制伺服处理器14以访问引入区的记录的开始地址。
当光拾取器1到达随后的单元区的引入区时,在步骤F112中,系统控制器10读出TOC信息。TOC信息包含图32到39所示的物理信息。
处理然后返回到其中读出的物理信息作为单元区#(n)的物理信息存储的步骤F107。在这种情况下,单元区#2的物理信息被存储。
反复上述处理直到最后的单元区的物理信息被装入。即,在步骤F109中当随后的单元区的引入区的开始地址从ADR为模式5并且点(POINT)是CF的子代码帧中读出时,地址值是0,或子代码帧自身不存在。在这种情况下,可确定当前单元区是最后的单元区。
因此,在步骤F110确定没有随后的单元区,处理进行到步骤F113。
即,在存储所有单元区的物理信息后系统控制器10等待来自主计算机80的命令,并响应于读出命令或写入命令执行读出或记录操作。之后,在执行记录或读出操作之前,系统控制器10基于数据被读出或记录的单元区的物理特性设置记录/读出系统。
相反,当没有TOC信息的空白盘被装载来作为CD-R或CD-RW时,系统控制器10执行图50所示处理。
在步骤F201中,系统控制器10启动主轴电机6,开始发射激光,并且然后大致维持主轴伺服,激活并维持监视检测伺服,以及在把光拾取器1定位在盘90的内圆周上的同时维持跟踪伺服。可在盘90上执行读出操作。
接着,在步骤F202中,摆动信息从盘90上的槽读出。盘90的物理信息从摆动信息读出,从而确定盘90的物理信息。这个操作可通过检查图13到23所示的信息执行。
接着,在步骤F203中,记录/读出系统根据盘90的物理信息来设置,下面参考图51来具体描述设置信息。
这样在盘90上可执行记录操作。在步骤F204中,系统控制器10等待来自主计算机80的命令,并根据写入命令执行记录操作。
如上所述,在这个实施例中,装载盘90时,从子Q数据(TOC)或摆动信息确定盘90的物理特性,并且根据确定的物理特性进行各种设置。
在图49的步骤F104或图50的F203执行的设置操作可通过例如图51所示的处理执行。
在步骤F301中,首先检查盘配置。即,在摆动信息的情况下,检查参考图17到21b描述的配置信息,并且,如果需要则检查图22所示的转动惯量信息。在子Q数据的情况下,图34所示的配置信息和图35所示的转动惯量信息被检查。
之后,系统控制器10确定盘90的配置是否适合于由盘驱动单元70执行读出或记录操作。这可通过盘驱动单元70的设计如单元自身结构和各种参数的变量范围如伺服系数来确定。
如果在步骤F301发现盘90的配置不适当,则处理进行到F302,输出错误信息。接着,在步骤F303中,弹出盘90并且处理结束。
错误信息被发送到主计算机80,并且可显示在主计算机80的监视显示器上,或可以显示在盘驱动单元70的显示单元上。可发出音频警报。
如果在步骤F301发现盘90的配置适当,处理进行到F304,根据盘密度设置操作模式。在步骤F304中,使用摆动信息时盘密度可通过图15所示的盘密度信息确定。或者,使用子Q数据时,可检查图38所示的介质类型、图36所示的轨道间距或图37所示的线速度。
之后,编码器/解码器12中的处理模式或槽解码器23中的处理模式根据盘密度是高密度还是标准密度来转换。
根据盘密度,也可转换RF增益和RF放大器9的均衡特性、各种伺服增益,如监视检测和跟踪增益以及要求与轨道间距之差配合的用于搜索操作的计算系数的设置。
此后,在步骤F305中,主轴伺服增益根据转动惯量值来设置。
这可参考图53A和53b在下面详细解释。
图53A表示设置用于具有大转动惯量的装载盘的主轴伺服增益时伺服开环的波特(bade)图。根据增益与相位之间的关系,如图53A所示,可得到足够的相位裕量和增益裕量。
图53B表示设置用于具有小转动惯量的装载盘的主轴伺服增益时伺服开环的波特图。
在这种情况下,根据增益与相位,如图53B所示,不可能得到足够的相位裕量和增益裕量,从而损害系统的稳定性。
如果伺服增益从图53B所示的值降低到图53A所示的适当值,则可得到足够的相位裕量和增益裕量。
即,根据盘的转动惯量存在有用于主轴伺服增益的适当值。因此,在步骤F305的处理中,主轴伺服增益通过检查转动惯量被设置成适当值。从而,主轴伺服系统可稳定地以高精度操作。具体地说,由于在执行记录操作中需要高精度地旋转主轴,这个处理是有效的。
在步骤F306中,光拾取器1的移动范围基于盘配置来设置。
如参考图18A到20C所述的那样,存取范围AC根据盘配置改变。因此,基于盘配置(可能是上述尺寸),确定光拾取器1可在盘90的外圆周存取,从而设置光拾取器1的滑板移动范围。从而可能防止光拾取器1的误操作,即,防止激光应用于没有记录轨道的盘90的一部分。
步骤F307仅在盘90是CD-R或CD-RW时执行。基于材料数据,设置要由写入策略单元21执行的处理。材料数据,即记录层的材料可通过包含在摆动信息中的图14所示的材料数据并通过包含在子Q数据中的图39所示的材料类型检查。
在写入策略单元21中,如上所述,脉冲波形被整形为激光驱动脉冲。
在通过染料变化而记录数据的CD-R的情况中,如图54的(b)所示的那些激光驱动脉冲根据如图54的(a)所示的要被记录的坑/脊的长度来产生,从而驱动激光发射。激光驱动脉冲的电平PWr表示激光记录功率。
在CD-R中,可组合以图54的(b)和(c)表示的脉冲,从而合成台阶状激光驱动脉冲,如图54的(d)所示。根据台阶状激光脉冲,激光功率在产生坑的部分脉冲区段中被提高到Pwod,这种部分被称为“过驱动脉冲”。通过应用过驱动脉冲,激光电平更准确地被控制在脉冲周期内。
在通过相变技术用于记录数据的CD-RW情况中,如图54的(e)所示,产生激光驱动脉冲(脉冲串),其中在坑形成区段中在记录功率PWr和冷却功率PWc之间转换激光功率,从而驱动激光。在脊周期期间,激光功率被设置成擦除功率Pwe。
通过根据记录层的材料精细调整用于CD-R和CD-RW的激光驱动脉冲,使记录精度增强。
具体地说,在图54所示的各个脉冲波形中,根据记录层的材料,通过控制以●表示的升高部分和下降部分来执行时序调整(即激光脉冲宽度调整),并通过控制以○表示的脉冲电平执行电平调整(即激光功率调整)。
根据脉冲宽度和激光功率控制脉冲波形的原因如下。
例如,在DRAW(WORM)盘,如CD-R中,为记录更长的坑,记录激光功率与读出激光功率的比率应被增加。因此,积累大量的热以增加引起化学反应的区域。结果,实际记录的坑变得比规定的长。这种现象在盘的记录层的热灵敏性或热传导较高时详细地说值得注意。
要被记录的坑的长度也受到前面的脊的影响。即,由于仅靠要被记录的坑前面的脊变短,在前面的坑中积累的热变得不易散开,从而增加了来自前面的坑的热干扰。
例如,在要被记录的一些坑中,即使坑的长度相同,应用激光和功率的时间相同,与较短的脊相邻的坑也会导致较长的坑。
由于热积累的散失根据记录层的材料而变化,脉冲宽度、脉冲配置(激光发射模式)和脉冲电平(激光电平)根据材料来调整,从而有助于形成高精度的坑串。
如上所述,根据盘90的物理特性,执行图51所示的设置操作,从而提高记录/读出性能。
如果在图49的步骤F103发现盘90是混合盘,则在记录或读出数据的单元区中在步骤F113执行图51所示的设置操作。
图49或50所示的物理特性确定操作和图51所示的设置操作不仅在插入盘时执行,而且当把盘装载在盘驱动单元70中的同时接通电源时也执行,或者在主计算机80产生命令时执行。
TOC最初不被记录在CD-R或CD-RW上,并且盘驱动单元70根据在盘上记录操作数据写入TOC信息。TOC写入操作如图52所示。
图52表示数据被记录在用作CD-R或CD-RW的盘90的程序区之后的处理流程图。步骤F401和F402表示响应于来自主计算机80的命令的记录操作。
一旦完成用户数据的记录,在步骤F403中,系统控制器10根据记录的数据的内容产生TOC数据。
即,系统控制器10从存储在PMA中的值产生信息,如每个轨道的地址,还产生物理信息,如图32到39所示。在这种情况下,物理信息从摆动信息来确定。
具体地说,以图32的(b)表示的信息产生自从摆动信息读出的物理信息。以图32的(b)表示的材料信息的值基于图14所示的材料数据产生。以图32的(b)表示的介质类型(在这种情况下,盘是CD-R或CD-RW,和盘的密度)的值基于图15所示的盘密度、图16所示的物理结构和图13所示的特定信息1的盘类型产生。
以图32的(b)表示的线速度和轨道间距可基于图15所示的盘密度、图13所示的特定信息1和4以及记录用户数据时确定的设置产生。以图32的(b)表示的转动惯量基于图22所示的转动惯量产生。以图32的(b)表示的配置基于图17所示的盘配置产生。以图32的(b)表示的盘大小基于图17所示的盘配置和图22所示的转动惯量产生。
但是如上产生图32的(b)表示的信息并非必不可少的。
在步骤F404中,具有产生的TOC信息的子代码帧被记录在引入区中。
因此,在这个实施例中,考虑没有TOC信息的CD-R或CD-RW,这种盘的物理特性(物理信息)可通过摆动信息确定。当后面记录TOC信息时,从摆动信息确定的物理特性被记录在盘中,作为TOC信息。这使得可能从TOC和摆动信息确定盘的物理特性。
提供有记录功能的盘驱动单元被设计成解码摆动信息。但是,一些只读盘驱动单元不提供用于摆动信息的解码功能。从而,通过把从摆动信息获得的盘的物理信息传输到TOC数据中,这种只读盘驱动单元能确定盘的物理信息并且相应地执行该设置。
7.DVD格式盘的例子
在前述的实施例中,本发明已经对CD-R和CD-RW的来龙去脉进行了讨论。本发明还应用于其它类型盘,可在这些盘上记录其它盘的物理特性,如转动惯量和盘配置。在这种情况下,在记录设备或读出设备执行记录或读出操作中得到类似于前述实施例的优点。
作为其它类型盘的例子,下面讨论DVD格式盘。作为可记录DVD格式盘,已经开发了DVD-RW、DVD-R、DVD-RAM和DVD+RW,这些在下面说明。
尽管由于数据格式、调制/解调方法、光学特性等的差别引起与这种DVD-格式盘兼容的盘驱动单元(记录/读出设备)和与CD格式盘兼容的盘驱动单元70的配置稍有不同,DVD驱动单元的基本配置类似于CD驱动单元。从而省略了其解释。如参考图49到54所述的操作一样,下面讨论的与DVD盘兼容的盘驱动单元能确定装载盘的物理特性,根据物理特性提供各种设置,相应执行记录和读出操作。
下面讨论其中的DVD盘的物理特性的记录。
7-1 DVD-RW,DVD-R
在作为使用相变记录技术的可重写盘的DVD-RW和作为使用有机染料改变技术的DRAW(WORM)盘的DVD-R中,在盘上作为预置格式形成摆动槽,在位于槽之间的脊上形成预置坑(后面称为“脊预置坑”)。
摆动槽用于控制盘的旋转和用于产生记录母时钟。脊预置坑用于确定每个位的准确的记录模式并获得涉及该盘的各项信息,如预置地址。从而把盘的物理特性信息记录在脊预置坑中。
图55表示用作DVD-RW或DVD-R的盘的布局。
把盘的内圆周上的引入区设置在距盘中心45.2到48mm的范围内。在距盘中心116mm的位置处形成引出区。引入区和引出区之间的区域用作记录实时数据的程序区。
在包括引入区、程序区、引出区的信息区中,形成数据轨道的槽(引导槽)以摆动(弯曲)形状形成。另外,在摆动槽G,G之间的脊L的预定位置处形成脊预置坑LPP,如图56所示。
通过光拾取器检测到由盘反射的的光表示的所谓的推挽信号获得摆动槽G信息和脊预置坑LPP信息。
记录为脊预置坑LPP的预格式化数据的结构如下所述。
图57A表示预置坑帧,其是作为脊预置坑LPP的预格式化数据的最小单元。预置坑帧有4位相对地址和8位用户数据构成的12位。接着,16个预置坑帧(PF0到PF5)形成一个预置坑块。各个预置坑帧的4位相对地址表示相应预置坑帧(PF0到PF15)的地址。
预置坑块由6个预置坑帧PF0到PF5构成的部分A和10个预置坑帧PF6到PF15构成的部分B形成。
由于一个预置坑帧有8位用户数据,部分A具有48位(6字节)用户数据。在6字节用户数据中,如图57B所示,3字节用作ECC块地址,3字节用作部分A的奇偶校验A。
由10个预置坑帧PF6到PF15构成的部分B有80位(10字节)用户数据。10字节用户数据具有1字节字段ID、6字节盘信息和3字节用作部分B的奇偶校验B,如图57C所示。
如图58所示,6字节盘信息根据字段ID变化。在字段ID为ID0的预置位块中,部分B的6字节盘的3字节信息用于记录与部分A的ECC块地址相同的值。字段ID为ID0的预置坑块形成于盘的整个表面上。
字段ID为ID1到ID5之一的预置坑块形成于引入区中。在字段ID为ID1的预置坑块中,把应用代码或物理数据作为6字节盘信息来记录。在字段ID为ID2的预置坑块中,把OPC建议码或写入策略码(WS1)作为6字节盘信息来记录。在字段ID为ID3的预置坑块中,把制造厂家ID(MID1)作为盘信息来记录。在字段ID为ID4的预置坑块中,把制造厂家ID(MID2)作为盘信息来记录。在字段ID为ID5的预置坑块中,把写入策略代码(WS2)作为6字节盘信息来记录。
字段ID为ID1的预置坑块的结构细节如图59所示。在这种情况下,预置坑帧的PF7到PF12的用户数据的6字节盘信息由1字节应用代码、1字节盘物理数据、数据可记录区的3字节最后地址和1字节的部分版本/扩展代码构成。
1字节(8位)的盘物理代码的内容如图60A限定。
在bo到b7的8位中,b7表示轨道间距信息。当位b7为“0”时,轨道间距是0.8微米。当位b7为“1”时,轨道间距是0.74微米。位b6表示参考速度。值“0”表示参考速度是3.84m/s,而值“1”表示参考速度是3.49m/s。位b5表示盘大小。值“0”表示盘大小是12cm,而值“1”表示盘大小是8cm。位b4表示反射率。值“0”表示反射率在从45到85%的范围内,而值“1”表示反射率在从18到30%的范围内。
把介质类型记录在位2和位1中。当位2为“1”时,介质类型是相变介质。当位2为“0”时,介质类型是另一种类型。当位1为“0”时,介质类型是可再记录型。当位1为“1”时,介质类型是可重写类型。
在位3和位0中记录转动惯量。当位3和位0的值分别由J1和J2表示时,可通过两位J1和J2定义转动惯量,如图60B所示。
当J1和J2的值为“00”时,转动惯量小于0.01g·m2。当J1和J2的值为“01”时,转动惯量是0.01g·m2或更大但小于0.02g·m2。当J1和J2的值为“10”时,转动惯量是0.02g·m2或更大但小于0.03g·m2。当J1和J2的值为“11”时,转动惯量是0.03g·m2或更大。
在DVD-RW和DVD-R的情况下,如上所述,记录介质的物理信息作为脊预置坑LPP的预置坑块在引入区中记录。这使得盘驱动单元准确且容易地确定盘大小、转动惯量、轨道间距、线速度、介质类型等。因此,盘驱动单元能根据盘的物理特性执行适当的设置,从而相应地执行适当的记录/读出操作。
7-2 DVD-RAM
在作为使用相变记录技术的DVD格式可重写盘的DVD-RAM中,通过使用脊/槽记录方法实施高密度记录。在DVD-RAM中,引入区包括把控制信息作为压印坑记录的部分和信息再写入部分。可把盘的物理特性信息记录在引入区的压印坑区中。
图61表示DVD-RAM的布局。如图61所示,从距盘中心45.2mm位置形成引入区。从45.2到48.0mm的区域是压印坑区,其中记录有控制信息。引入区还延伸到记录数据的可重写区。从115.78到117.2mm形成引出区。把引入区与引出区之间的区域用作记录实时数据的程序区。
引入区的具体配置如图62所示。
引入区主要由压印数据区、镜面区和可重写区构成。在压印数据区中,顺序设置初始区段、一块(ECC块)参考代码区段、31块缓冲区段、192块控制数据区段和32块缓冲区段。
接着,在镜面区(连接区段)之后的可重写区中,顺序设置32块保护轨道区段、64块盘测试区段、112块驱动测试区段、32块保护轨道区段、8块盘标识区段、8块缺陷管理区(DMA)1和8块DMA2。
压印数据区中的控制数据区段的192块的每一个的配置如图63所示。
一块由从扇区0到扇区15的16个扇区构成。一个扇区有2048字节。在扇区0中,记录物理格式信息。在扇区1中记录盘制造信息。上述配置的192块在控制数据区段中记录。
在扇区0中记录的物理格式信息(2048字节)的内容被部分地如图64所示。在2048字节扇区的字节位置0处的标题字节中,记录介质类型和部分版本。
在字节位置1处随后的字节中记录转动惯量、盘大小、最大传输率。这个信息例如具有位0到位7的8位,如图65所示,其中从b0到b 3的4位记录最大传输率,b4和b5的两位记录盘大小。位b6和b7中记录转动惯量。考虑表示盘大小的两位b4和b5,值“00”表示12cm盘,而值“01”表示8cm盘,其它值可被保留。或通过使用两位b4和b5,可表示盘大小和盘配置的组合而不仅是盘大小。指定转动惯量的两位b7和b6或由J1和J2分别表示,并且转动惯量如图60B所示定义。
在图64中,在字节位置2(1字节)处,记录的盘结构为预先规定的。在字节位置3(1字节)处,记录的记录密度为预先规定的。在字节位置32(1字节)处,记录盘类型ID。
考虑DVD-RAM,在引入区的压印数据区中记录记录介质的物理信息。因此,盘驱动单元能准确并容易地确定盘大小/配置、转动惯量、介质类型等。从而可根据盘的物理特性提供适当设置并相应执行适当记录/读出操作。
7-3 DVD+RW
在作为使用相变记录技术的DVD格式可重写盘的DVD+RW中,在盘上通过相位调制摆动槽记录各项信息。从而,在要被记录为相位调制摆动槽的ADIP信息中的地址中包括盘的物理特性信息。
相位调制摆动信息参考图66A、66B和66C来描述。8个摆动形成一个ADIP单元。然后以预定顺序产生正摆动PW和负摆动NW的方式对摆动相位调制。因此,ADIP单元表示同步模式,“0”数据或“1”数据。
正摆动PW的标题指向盘的内圆周,而负摆动NW的标题指向盘的外圆周。
图66A示出了同步模式(ADIP同步单元)。首先的4个摆动(W0到W3)是负的摆动NW,最后的4个摆动(W4到W7)是正摆动PW。
图66B示出了表示“0”数据的ADIP数据单元。第一摆动W0是负摆动NW,其用作位同步,随后的3个摆动(W1到W3)是正摆动PW。在最后的4个摆动中,两个摆动(W4和W5)是正摆动PW,剩余的两个摆动(W6和W7)是负摆动NW。用这种安排,ADIP数据表示“0”数据。
图66C上出了表示“1”数据的ADIP数据单元。第一摆动W0是负摆动NW,其用作位同步,随后的3个摆动(W1到W3)是正摆动PW。在最后的4个摆动中,两个摆动(W4和W5)是负摆动NW,剩余的两个摆动(W6和W7)是正摆动PW。用这种安排,ADIP数据表示“1”数据。
上述ADIP单元的数据结构如下。
记录为摆动槽的ADIP单元信息作为一个单元由两个同步帧构成,如图67所示。两个同步帧具有93个摆动。
一个摆动具有32信道位(32T)并且从而一个同步帧等于1488信道位。一个ADIP单元由两个同步帧(93个摆动)中的8个相位调制的摆动构成。剩余的85个摆动是单调摆动,其不被相位调制。
52个ADIP单元构成一个ADIP字,其等于4个物理扇区。ADIP字的结构如图68A所示。
52个每个具有8个摆动(W0到W7)的ADIP单元构成的ADIP字具有52位信息。ADIP字由一个ADIP同步单元和51个ADIP数据单元构成。因此,52位中,如图68A所示,除了字同步(数据位0)之外数据位1到数据位51可被用于记录51位信息。
图68B示出了52位ADIP字的结构。从数据位2到数据位23的22位被用于记录物理地址。物理地址被提供给每个ADIP字。从数据位24到数据位31的8位被用于记录补充数据。数据位32到数据位51被用作ECC数据。
考虑每个ADIP字的8位补充数据,从连续的256个ADIP数据收集256个补充数据,从而形成256字节表。在这种表中,可记录如图69A所示的物理格式信息,。
图69A仅示出了256字节中字节的位置0到30达到字节,未示出字节位置31到255的其他字节。
在字节位置0处的1字节被用于记录盘类别和版本号。在字节位置1处的1字节被用于记录盘大小。在字节位置2处的1字节被用于记录盘结构。在字节位置3处的1字节被用于记录盘密度。在字节位置4到15处的12个字节被用于记录数据区段分配。在字节位置17处的1字节被用于记录转动惯量和盘配置。
在字节位置17处,例如如图69B所示,两位b7和b6被用于记录转动惯量,两位b5和b4被用于记录盘配置。
当位b7和b6分别以J1和J2表示时,转动惯量可如图60B所示定义。盘配置信息可通过图34的定义通过使用两个位b5和b4来记录。
如上所述,在DVD+RW的情况下,盘的物理信息被作为相位调制摆动而记录。使能一盘驱动单元以正确和容易的确定盘的大小、盘的结构、转动惯量和介质类型等。结果,可能根据物理特性执行适当的设置,从而相应执行适当的记录/读出操作。
尽管本发明参考当前认为是最佳实施例进行了说明,但可对盘驱动单元、单元操作、摆动信息的结构、子Q数据的结构等进行各种修改。

Claims (19)

1.一种可与记录介质兼容的记录设备,所述记录介质存储配置信息和转动惯量信息,所述配置信息表示所述记录介质的形状和尺寸,所述转动惯量信息表示所述记录介质的转动惯量,所述记录设备包括:
确定装置,通过读出至少所述配置信息和转动惯量信息中的一种信息确定所述记录介质的物理特性;以及
记录控制装置,根据所述确定装置确定的物理特性执行记录操作的设置,并允许执行记录操作。
2.根据权利要求1所述的记录设备,其中所述确定装置可以从所述记录介质上形成的摆动槽中至少读出所述配置信息和转动惯量信息中的一种信息。
3.根据权利要求2所述的记录设备,其中通过对所述槽进行调频或调相实现所述摆动槽的摆动。
4.根据权利要求1所述的记录设备,其中记录轨道由所述记录介质上的槽形成,在所述记录介质的脊上预形成坑,其中所述确定装置至少从所述坑读出所述配置信息和转动惯量信息中的一种信息。
5.根据权利要求1所述的记录设备,其中记录轨道由记录介质上的槽形成,在所述记录介质的预定区域上预形成压印坑,其中所述确定装置至少可以从所述压印坑读出所述配置信息和转动惯量信息中的一种信息。
6.根据权利要求1所述的记录设备,其中所述记录控制装置根据确定装置确定的物理特性设置对所述记录介质进行记录操作的记录头的存取范围。
7.根据权利要求1所述的记录设备,其中所述记录控制装置根据所述确定装置确定的物理特性设置驱动所述记录介质旋转的主轴装置的伺服参数。
8.根据权利要求1所述的记录设备,其中当根据所述确定装置确定的物理特性确定所述记录介质不是合适的记录介质时,所述记录控制装置发出警告。
9.根据权利要求1所述的记录设备,其中当根据所述确定装置确定的物理特性确定所述记录介质不是合适的记录介质时,所述记录控制装置弹出所述记录介质。
10.根据权利要求1所述的记录设备,其中,根据对所述记录介质执行的主要数据记录操作,所述记录控制装置通过至少结合来自所述记录介质的配置信息和转动惯量信息中的一种信息产生主要数据管理信息,并将所产生的主要数据管理信息记录在所述记录介质上。
11.一种可与记录介质兼容的读出设备,所述记录介质存储配置信息和转动惯量信息,所述配置信息表示所述记录介质的形状和尺寸,所述转动惯量信息表示所述记录介质的转动惯量,所述读出设备包括:
确定装置,通过至少读出所述配置信息和转动惯量信息中的一种信息确定所述记录介质的物理特性;以及
读出控制装置,根据所述确定装置确定的物理特性完成对读出操作的设置,并允许执行读出操作。
12.根据权利要求11所述的读出设备,其中所述确定装置从所述记录介质上形成的摆动槽上至少读出配置信息和转动惯量信息中的一种信息。
13.根据权利要求12所述的读出设备,其中通过对所述槽进行调频或调相操作实现所述摆动槽的摆动。
14.根据权利要求11所述的读出设备,其中记录轨道由所述记录介质上的槽形成,在所述记录介质的脊上预形成坑,其中所述确定装置至少从所述坑读出所述配置信息和转动惯量信息中的一种信息。
15.根据权利要求11所述的读出设备,记录轨道由所述记录介质上的槽形成,在所述记录介质的预定区域上预形成压印坑,其中所述确定装置至少从所述压印坑读出所述配置信息和转动惯量信息中的一种信息。
16.根据权利要求11所述的读出设备,其中所述读出控制装置根据所述确定装置确定的物理特性设置对所述记录介质进行读出操作的读出头的存取范围。
17.根据权利要求11所述的读出设备,其中所述读出控制装置根据所述确定装置确定的物理特性设置驱动所述记录介质旋转的主轴装置的伺服参数。
18.根据权利要求11所述的读出设备,其中当根据所述确定装置确定的物理特性确定所述记录介质不是合适的记录介质时,所述读出控制装置发出警告。
19.根据权利要求11所述的读出设备,其中当根据所述确定装置确定的物理特性确定所述记录介质不是合适的记录介质时,所述读出控制装置弹出所述记录介质。
CNB011119837A 2000-02-25 2001-02-25 记录介质的制造方法、记录设备和读出设备 Expired - Lifetime CN100545935C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP054411/2000 2000-02-25
JP2000054411 2000-02-25
JP054411/00 2000-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101903626A Division CN101488347A (zh) 2000-02-25 2001-02-25 记录介质的制造方法

Publications (2)

Publication Number Publication Date
CN1318834A CN1318834A (zh) 2001-10-24
CN100545935C true CN100545935C (zh) 2009-09-30

Family

ID=18575668

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB011119837A Expired - Lifetime CN100545935C (zh) 2000-02-25 2001-02-25 记录介质的制造方法、记录设备和读出设备
CNA2008101903626A Pending CN101488347A (zh) 2000-02-25 2001-02-25 记录介质的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2008101903626A Pending CN101488347A (zh) 2000-02-25 2001-02-25 记录介质的制造方法

Country Status (15)

Country Link
US (4) US7164633B2 (zh)
EP (1) EP1128366B1 (zh)
JP (1) JP4816749B2 (zh)
KR (2) KR20010085500A (zh)
CN (2) CN100545935C (zh)
AT (1) ATE488007T1 (zh)
AU (1) AU776791B2 (zh)
DE (1) DE60143413D1 (zh)
DK (1) DK1128366T3 (zh)
ES (1) ES2355116T3 (zh)
HK (1) HK1043236B (zh)
MY (1) MY134877A (zh)
RU (1) RU2277267C2 (zh)
SG (1) SG99889A1 (zh)
TW (1) TW544671B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544671B (en) * 2000-02-25 2003-08-01 Sony Corp Recording medium, recording apparatus, and reading apparatus
JP2002032922A (ja) * 2000-05-12 2002-01-31 Sony Corp 光ディスク及び光ディスク装置
US6965949B1 (en) * 2001-09-06 2005-11-15 Dell Products L.P. Computing system and method for accessing a computer-readable medium device
JP4784030B2 (ja) 2001-09-21 2011-09-28 ソニー株式会社 記録装置、再生装置、記録方法、再生方法
US7355946B2 (en) * 2001-09-25 2008-04-08 Lg Electronics Inc. Method of recording signals onto a recording medium
JP4652641B2 (ja) 2001-10-11 2011-03-16 ソニー株式会社 ディスク記録媒体、ディスクドライブ装置、再生方法
JP2003132587A (ja) * 2001-10-24 2003-05-09 Tdk Corp 光記録媒体及び光記録媒体の評価方法
US7149164B2 (en) * 2002-03-18 2006-12-12 Sanyo Electric Co., Ltd. Optical disc apparatus for processing data according to different optical disc standards to achieve higher recording density
JP3820181B2 (ja) 2002-05-10 2006-09-13 株式会社リコー 記録ストラテジ生成方法及び光情報記録媒体
MXPA05001297A (es) 2002-08-03 2005-04-28 Samsung Electronics Co Ltd Medio de almacenamiento de informacion y metodo de grabacion y/o reproduccion con respecto al medio.
KR100739672B1 (ko) * 2002-09-10 2007-07-13 삼성전자주식회사 광정보 저장매체 및 데이터의 재생 방법
US7889630B2 (en) 2002-11-06 2011-02-15 Koninklijke Philips Electronics N.V. Record carrier
US7532553B2 (en) * 2002-12-31 2009-05-12 Hewlett-Packard Development Company, L.P. Computer-readable medium and method for configuring a digital versatile disc re-writeable device
KR20040069750A (ko) * 2003-01-30 2004-08-06 삼성전자주식회사 광정보 저장 매체
TWI243358B (en) * 2003-07-09 2005-11-11 Lite On It Corp Method of preventing TOC reading error in multi-session disc
US7907492B1 (en) * 2004-03-17 2011-03-15 Doug Carson & Associates, Inc. Data storage medium with improved multi-session recording format
AU2005222766B2 (en) * 2004-03-19 2010-03-11 Lg Electronics Inc. Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US7391694B2 (en) * 2004-07-07 2008-06-24 Dell Products L.P. System and method for embedding optical drive compatibility information in optical media
JPWO2006062117A1 (ja) * 2004-12-09 2008-06-12 日本電気株式会社 記録型光ディスク媒体及びその光ディスク装置
JP4859187B2 (ja) * 2005-11-11 2012-01-25 キヤノン株式会社 記録装置、当該装置の制御方法、及び制御プログラム
KR101357982B1 (ko) 2006-01-09 2014-02-05 톰슨 라이센싱 멀티-뷰 비디오 코딩을 위한 축소 해상도 갱신 모드를제공하는 방법 및 장치
MX2008012382A (es) 2006-03-29 2008-11-18 Thomson Licensing Metodos y aparatos para usarse en un sistema de codificacion de video de multiples vistas.
BRPI0714022A2 (pt) * 2006-07-06 2012-12-04 Thomson Licensing método e aparelho para separar o número do quadro e /ou a contagem de ordem de imagem (poc) para codificação e decodificação de vìdeo multi-visão
CN101496407B (zh) 2006-07-06 2013-02-06 汤姆逊许可证公司 用于针对多视角视频编码和解码解耦合帧号和/或图像顺序计数(poc)的方法和装置
MX2010001015A (es) * 2007-07-26 2010-03-01 Samsung Electronics Co Ltd Dispositivo para procesar flujos y metodo del mismo.
CN109273026B (zh) 2013-09-30 2020-07-28 夏普株式会社 信息记录介质以及再现装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878214A (en) * 1987-09-08 1989-10-31 Alps Electric Co., Ltd. Objective lens supporting device for optical pickup
US5448549A (en) * 1990-05-23 1995-09-05 Deutsche Thomson-Brandt Gmbh Process for stopping a rotating disc-shaped record medium
US5465242A (en) * 1990-09-04 1995-11-07 Matsushita Electric Industrial Co., Ltd. Optical disk device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300455A (ja) 1988-05-28 1989-12-04 Otani Denki Kk テープ走行装置
JPH0684174A (ja) * 1992-09-03 1994-03-25 Hitachi Ltd 光ディスク媒体とそれを用いた情報処理装置
JPH07182218A (ja) * 1993-11-12 1995-07-21 Sony Corp ディスク記録装置及びそのファイル管理方法
BE1008963A3 (nl) * 1994-11-18 1996-10-01 Philips Electronics Nv Schijfvormige registratiedrager, alsmede opteken- en/of uitleesinrichting voor optekening/uitlezing van informatie op/van de registratiedrager.
JP4150084B2 (ja) * 1995-11-24 2008-09-17 ソニー株式会社 ディスク記録媒体
US5890176A (en) * 1996-04-24 1999-03-30 International Business Machines Corp. Object-oriented document version tracking method and apparatus
US5809006A (en) * 1996-05-31 1998-09-15 Cagent Technologies, Inc. Optical disk with copy protection, and apparatus and method for recording and reproducing same
JPH1069646A (ja) 1996-08-29 1998-03-10 Ricoh Co Ltd 光ディスク媒体、光ディスク装置
US5890175A (en) * 1996-09-25 1999-03-30 Wong; Garland Dynamic generation and display of catalogs
US5983242A (en) * 1997-07-01 1999-11-09 Microsoft Corporation Method and system for preserving document integrity
JP4144054B2 (ja) 1997-07-24 2008-09-03 ソニー株式会社 光ディスクの記録方法
JPH11134719A (ja) 1997-10-28 1999-05-21 Sanyo Electric Co Ltd ディスク媒体、記録装置および再生装置
JPH11143754A (ja) * 1997-11-05 1999-05-28 Hitachi Ltd バージョン情報・構成情報表示方法および装置およびバージョン情報・構成情報表示プログラムを記録したコンピュータ読み取り可能な記録媒体
JP4016155B2 (ja) * 1998-04-10 2007-12-05 ソニー株式会社 記録媒体、再生装置及び方法
JPH11345455A (ja) 1998-06-02 1999-12-14 Toshiba Corp ディスク判定方法とディスク回転数決定方法とディスク装置
JP3520203B2 (ja) * 1998-07-23 2004-04-19 太陽誘電株式会社 光情報媒体
JP3509591B2 (ja) 1998-11-20 2004-03-22 ヤマハ株式会社 記録可能型clv方式光ディスクおよびその記録装置
KR100750624B1 (ko) * 1999-09-29 2007-08-20 소니 가부시끼 가이샤 데이터 기록매체, 데이터 기록 및/또는 재생장치 및기록매체 판별방법
TW544671B (en) * 2000-02-25 2003-08-01 Sony Corp Recording medium, recording apparatus, and reading apparatus
JP4374698B2 (ja) 2000-02-25 2009-12-02 ソニー株式会社 記録装置
JP4277452B2 (ja) 2000-02-25 2009-06-10 ソニー株式会社 記録装置、再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878214A (en) * 1987-09-08 1989-10-31 Alps Electric Co., Ltd. Objective lens supporting device for optical pickup
US5448549A (en) * 1990-05-23 1995-09-05 Deutsche Thomson-Brandt Gmbh Process for stopping a rotating disc-shaped record medium
US5465242A (en) * 1990-09-04 1995-11-07 Matsushita Electric Industrial Co., Ltd. Optical disk device

Also Published As

Publication number Publication date
US20060274635A1 (en) 2006-12-07
DK1128366T3 (da) 2011-02-21
RU2277267C2 (ru) 2006-05-27
JP2009123338A (ja) 2009-06-04
MY134877A (en) 2007-12-31
ES2355116T3 (es) 2011-03-23
AU776791B2 (en) 2004-09-23
TW544671B (en) 2003-08-01
US20020012315A1 (en) 2002-01-31
ATE488007T1 (de) 2010-11-15
KR20070077148A (ko) 2007-07-25
US7539093B2 (en) 2009-05-26
EP1128366A3 (en) 2005-10-12
CN101488347A (zh) 2009-07-22
US20060280081A1 (en) 2006-12-14
DE60143413D1 (de) 2010-12-23
JP4816749B2 (ja) 2011-11-16
US7164633B2 (en) 2007-01-16
EP1128366A2 (en) 2001-08-29
HK1043236B (zh) 2010-03-26
KR20010085500A (ko) 2001-09-07
AU2319801A (en) 2001-08-30
HK1043236A1 (en) 2002-09-06
US7616545B2 (en) 2009-11-10
EP1128366B1 (en) 2010-11-10
US7545727B2 (en) 2009-06-09
CN1318834A (zh) 2001-10-24
US20060274634A1 (en) 2006-12-07
SG99889A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
CN100545935C (zh) 记录介质的制造方法、记录设备和读出设备
KR100730645B1 (ko) 기록매체, 기록장치, 재생장치
EP1128383B1 (en) Recording medium, recording apparatus, and reading apparatus
JP3145235B2 (ja) 記録可能ディスク及びその記録装置、記録方法
JPH0773471A (ja) 追記型光ディスクの情報記録装置
JP2001312861A (ja) 記録媒体、記録装置、再生装置
JPH0773470A (ja) 追記型光ディスク及びその記録装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1043236

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20090930

CX01 Expiry of patent term