CN100527362C - 成膜装置和成膜方法 - Google Patents

成膜装置和成膜方法 Download PDF

Info

Publication number
CN100527362C
CN100527362C CNB2006800082024A CN200680008202A CN100527362C CN 100527362 C CN100527362 C CN 100527362C CN B2006800082024 A CNB2006800082024 A CN B2006800082024A CN 200680008202 A CN200680008202 A CN 200680008202A CN 100527362 C CN100527362 C CN 100527362C
Authority
CN
China
Prior art keywords
compound
film forming
mentioned
film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006800082024A
Other languages
English (en)
Other versions
CN101142662A (zh
Inventor
千田二郎
大岛元启
石田耕三
富永浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Doshisha Co Ltd
Original Assignee
Horiba Ltd
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Doshisha Co Ltd filed Critical Horiba Ltd
Publication of CN101142662A publication Critical patent/CN101142662A/zh
Application granted granted Critical
Publication of CN100527362C publication Critical patent/CN100527362C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31637Deposition of Tantalum oxides, e.g. Ta2O5
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明所涉及的成膜装置可以高速且重现性良好地形成减少氧欠缺的金属氧化膜或金属氮化膜,同时实现装置的小型化。本发明所涉及的成膜装置,具有将基板(2)保持在内部的成膜室(3)和将液体原料直接喷射到成膜室(3)内的喷射阀(4),上述液体原料为含有金属化合物和低沸点有机化合物的混合溶液,所述成膜室内的压力被减压、并且使上述成膜室(3)内的压力大于与上述低沸点有机化合物混合前的上述金属化合物的蒸气压,且小于上述混合溶液的蒸气压。

Description

成膜装置和成膜方法
技术领域
本发明涉及成膜装置和成膜方法,尤其涉及形成金属氧化膜或金属氮化膜的成膜装置和成膜方法。
背景技术
一般地,在化学气相沉积法(CVD法,Chemical Vapor Deposition)的过程中,当气化液体材料时,主要是通过加热使液体材料气化、再在减压条件下供给液体材料,在加工对象的对象基板上堆积薄膜。
一直以来,在使用室温下为液体、在100℃中蒸气压为1Torr以下的金属化合物,例如五乙氧基钽(Ta(OC2H5)5),形成五氧化钽(Ta2O5)膜的情况下,使五乙氧基钽(Ta(OC2H5)5)成为约110℃、基板温度加热到约400℃进行成膜。这样的情况下,有必要将液体原料高温气化、并使供给气化液体原料至成膜室内的原料供给管为高温状态。因为若在原料供给管内存在比上述被加热的液体原料低温的部分,即使只有一部分,也会引起气化液体的再冷凝,从而产生向成膜室的供给量发生变化、成膜的重现性变差的问题。
因为必须使液体原料的容器和供给至成膜室的原料供给管维持在高温状态,所以存在装置的规模变大、装置成本和能耗增大的问题。
为解决这样的问题,如专利文献1所述,目前采取将五乙氧基钽(Ta(OC2H5)5)原料以液体状态送至蒸发器,通过蒸发器使之气化,输送至成膜室内的方法。
但是,即使是这样的方法,也依然有必要使从蒸发器至成膜室的原料供给管保持在高温,还不能完全解决以上问题。
因此,如对比文献2所示,采取在成膜室的上部配置喷射阀从而直接供给至成膜室的方法。
但是,以这样的方法将原料供给至成膜室时,由于必须使原料完全气化,因此必须在约0.02Torr以下的真空度的高成膜条件下成膜,导致五氧化钽(Ta2O5)膜中的氧欠缺而不能得到高品质的五氧化钽(Ta2O5)膜这样的问题。
专利文献1:特开2004-197134
专利文献2:特开2004-197135
发明内容
发明要解决的课题
本发明正是为了同时解决上述问题应运而生,所期望的课题是:能够高速且以良好的重现性形成氧欠缺的金属氧化膜或金属氮化膜,同时实现装置的小型化。
解决课题的手段
本发明所涉及的成膜装置是使液体原料气化,使其堆积在基板上而成膜的成膜装置,其特征在于,该装置具有将上述基板保持在内部的成膜室和将上述液体原料直接喷射到上述成膜室内的喷射阀,上述液体原料为含有金属化合物和低沸点有机化合物的混合溶液,所述成膜室内的压力被减压、并且使上述成膜室内的压力大于与上述低沸点有机化合物混合前的上述金属化合物的蒸气压,且小于上述混合溶液的蒸气压。
这样的话,通过将低沸点有机化合物混合入金属化合物中,能够在不升高温度的情况下使用于成膜的含有金属化合物的液体原料的蒸气压上升,能够在将成膜室的压力维持在与以前相比低的真空度的状态下成膜,因此,能够抑制金属氧化膜中的氧欠缺或金属氮化膜中的氮欠缺的发生,得到高品质的金属氧化膜和金属氮化膜。进而,由于直接将液体原料喷射至成膜室内,能够高速且以良好的重现性成膜,能够不需使用加热原料供给管的加热器,从而实现装置的小型化。
作为具体的实施方式,优选上述金属化合物为有机钽化合物或有机铌化合物。
进而,上述有机钽化合物或有机铌化合物,最好具有这样的特征:即使为大气压中的100℃以上,其蒸气压为1Torr以下。并且,最好具有这样的特征:上述有机钽化合物或有机铌化合物,在大气压中的40℃以下的温度下为液体。
此外,上述有机钽化合物或有机铌化合物为醇盐系、胺系、β-二酮络合物、苯化合物系或五元环化合物系。
具体地,作为这样的有机钽化合物或有机铌化合物,可以举出如图4所示的有机钽化合物和如图5所示的有机铌化合物。
另一方面,作为上述低沸点有机化合物最好具有这样的特征:即使是20℃以下,在大气压下的蒸气压为1Torr以上。
进而,优选上述低沸点有机化合物是能够用CxH2x+2(5≤X≤7)表示的化合物。
本发明所涉及的成膜方法是气化液体原料,使其堆积在基板上而成膜的成膜方法,其特征在于,将含有金属化合物和低沸点有机化合物的混合溶液作为液体原料直接喷射到将上述基板保持在内部的上述成膜室内,所述成膜室内的压力被减压、并且使上述成膜室内的压力大于与上述低沸点有机化合物混合前的上述金属化合物的蒸气压,且小于上述混合溶液的蒸气压。
发明效果
根据这样的发明,通过在金属化合物内混合低沸点有机化合物,能够在不升高温度的情况下,使用于成膜的含有金属化合物的液体原料的蒸气压上升,以将成膜室的压力维持在与以往相比低的真空度的状态下成膜,因此能够抑制金属氧化膜中的氧欠缺或金属氮化膜中的氮欠缺的发生,得到高品质的金属氧化膜和金属氮化膜。进而,由于直接将液体原料直接喷射至成膜室内,因此能够高速且以良好的重现性成膜,能够不需使用加热原料供给管的加热器,从而实现装置的小型化。
附图说明
图1:本发明的实施方式所涉及的成膜装置的概略构成图。
图2:表示五乙氧基钽(Ta(OC2H5)5)和低沸点有机化合物的混合溶液的两相区域的蒸气压值的表。
图3:表示五氧化钽(Ta2O5)膜的绝缘击穿耐压的表。
图4:表示有机钽化合物的种类的表。
图5:表示有机铌化合物的种类的表。
图6:表示五乙氧基铌(Nb(OC2H5)5)和低沸点有机化合物的混合溶液的两相区域的蒸气压值的表。
图7:表示五氧化铌(Nb2O5)膜的绝缘击穿耐压的表。
图8:其他实施方式所涉及的成膜装置的概略构成图。
图9:其他实施方式所涉及的成膜装置的概略构成图。
具体实施方式
以下参考附图对本发明所涉及的成膜装置的实施方式进行说明。
如图1所示,本实施方式所涉及的成膜装置1是在作为加工对象的基板2上形成五氧化钽(Ta2O5)膜的成膜装置,将液体原料气化,使薄膜在基板2上堆积,由此成膜。具体的主要结构包括:将基板2保持在内部的成膜室3、将上述液体原料直接喷射到上述成膜室3内的喷射阀4和向喷射阀4提供液体原料的原料提供管5。
在本实施方式中使用有机钽化合物--五乙氧基钽(Ta(OC2H5)5)和低沸点有机化合物--正戊烷(n-C5H12)的混合物作为液体原料。所述五乙氧基钽(Ta(OC2H5)5)和正戊烷(n-C5H12)的混合溶液,保存在诸如不锈钢制的容器6中。然后,利用压入该容器6内的加压氮气N2(或氩气Ar)穿过原料供给管5、再通过喷射阀4提供到成膜室3内部。进而,液体原料在从喷射阀4被喷射到成膜室3内的同时被气化,充满成膜室3内。
成膜室3通过保持装置将加工对象—基板2保持在内部,并具有用来加热基板2的基板加热器7。成膜室3通过真空泵8被减压。此外,还设置有氧气供给管9,供给用于使五氧化钽(Ta2O5)膜充分氧化的氧气(O2)。该氧气供给管9通过质流控制器(MFC)10控制氧气(O2)的供给流量。由于保持装置比较常规,所以省略了详细说明和图示。
进而,成膜室3通过真空泵8进行压力调节以使被喷射到成膜室3内的混合溶液中的五乙氧基钽(Ta(OC2H5)5)气化。即,成膜室3内的压力大于与上述正戊烷(n-C5H12)混合前的五乙氧基钽(Ta(OC2H5)5)的蒸气压,且小于正戊烷(n-C5H12)与五乙氧基钽(Ta(OC2H5)5)的混合溶液的蒸气压。
喷射阀4是将作为液体原料的混合溶液直接喷射到成膜室3内的元件,其被设置为在成膜室3的上部正对基板2的表面。然后,通过用于控制喷射阀3开关的喷射阀控制器11来控制开关。
接着,将按照这样构成的成膜装置1的实施例表示如下。
首先,将五乙氧基钽(Ta(OC2H5)5)与作为低沸点有机化合物的丙酮、甲醇、乙醇、丙烷、丁烷、戊烷及己烷混合并调节蒸气压后的结果,与没有混合低沸点有机化合物的情况进行比较,并示于图2的表格中。这里,混合比率以摩尔分数为{(Ta(OC2H5)5)/(Ta(OC2H5)5)+低沸点有机化合物)}=0.2(mol比率)。由此可知,若将五乙氧基钽(Ta(OC2H5)5)和低沸点有机化合物混合,则形成两相区域,蒸气压增大约5倍左右。
本实施例中液体原料的混合比率为{(Ta(OC2H5)5)/(Ta(OC2H5)5)+(n-C5H12))}=0.2(mol比率)。又,加压N2的压力设为约0.15~0.50MPa。设定基板加热器7以使基板温度成为400℃~500℃,保持氧气流量为500ml/min,成膜室内的压力约为0.1Torr。以这样的状态使喷射阀4开闭进行1000秒钟的成膜。
结果,五氧化钽(Ta2O5)膜的厚度约为150nm。成膜速度约为9nm/min。
接着,测定成膜后的五氧化钽(Ta2O5)膜的电特性。
使硅基板(Si)2热氧化,在约200nm的二氧化硅(SiO2)膜上形成约100nm的铂(Pt)膜,在其上形成厚约50nm的五氧化钽(Ta2O5)膜。
然后,用真空蒸镀法形成厚度0.5mm的金(Au)膜,以铂(Pt)和金(Au)为电极,求得五氧化钽(Ta2O5)膜的绝缘击穿场强。结果示于图3的表中。五氧化钽(Ta2O5)膜是将按以往的成膜方法成膜时成膜室3的压力为0.01Torr的情况与本实施方式涉及的成膜方法中成膜时的成膜室的压力为0.1Torr的情况进行比较。
根据图2的结果,本实施例的成膜室3的压力范围可以设定在约0.02~0.1Torr的范围内。较好的是将成膜室3的压力设定为无限接近0.1Torr。
调查五氧化钽(Ta2O5)膜的绝缘击穿耐压的结果,以往的成膜方法的情况下整体上较小。这表明五氧化钽(Ta2O5)膜中存在很多缺陷,认为这些缺陷成分是氧。在这种膜的情况下,需要通过在以往成膜后的氧氛围中进行退火处理,使氧的缺陷减少。
本实施例中,能够将氧分压增大10倍左右。
根据这样结构的本实施方式的成膜装置1,通过在金属化合物中混合低沸点有机化合物,能够在不升高温度的情况下使用于成膜的含有金属化合物的液体原料的蒸气压上升,能够在将成膜室3的压力维持在与以前相比低的真空度的状态下成膜,因此,能够抑制金属氧化膜中的氧欠缺或金属氮化膜中的氮欠缺的发生,得到高品质的金属氧化膜和金属氮化膜。进而,由于直接将液体原料喷射至成膜室3内,所以能够高速且以良好的重现性成膜,不需使用加热原料供给管5的加热器从而能够实现装置1的小型化。因此,能够制成各种使用金属氧化膜和金属氮化膜的设备和传感器,特别地,可以用作为半导体元件中的电容器用绝缘膜。又,由于能够在as-depo膜中得到高品质的膜,就没有必要再进行以往的后续工序(热处理工序等),具有减少工时、在设备成本上的优点以及对环境能源上的优点。
还有,本发明并不局限于上述实施方式。
例如,虽然上述实施方式中是一种使用五乙氧基钽(Ta(OC2H5)5)作为有机钽化合物、使用正戊烷作为低沸点有机化合物来形成五氧化钽(Ta2O5)膜的成膜装置,但是并不局限于此,也可以使用如图4所示的有机钽化合物,形成五氧化钽(Ta2O5)膜。
又,虽然上述实施方式中是形成五氧化钽(Ta2O5)膜的成膜装置,但也可以是形成五氧化铌(Nb2O5)膜的成膜装置。这样的情况下,作为有机铌化合物,可以使用如图5所示的有机铌化合物。
作为此时的实施例,将五乙氧基铌(Nb(OC2H5)5)与作为低沸点有机化合物的丙酮、甲醇、乙醇、丙烷、丁烷、戊烷及己烷混合,并将测得的蒸气压的结果与未混合在低沸点有机化合物的情况进行比较,示于表6。其结果,本实施例的成膜室的压力范围可以从图6设定在0.02~0.4Torr的范围。此时,优选成膜室的压力无限接近0.4Torr。进而,五氧化铌(Nb2O5)膜的绝缘击穿场强示于图7的表。
还有,有机钽化合物和有机铌化合物中,对于在构成元素中不含氧原子者,不向成膜室内提供氧,而是如图8所示提供氨气(NH3),藉此,也能够形成氮化钽(TaN)膜或氮化铌(NbN)膜。
进而,虽然在上述实施方式中,使喷射阀与基板相对,将喷射阀设置在成膜室的上部,但是也可以如图9所示,使喷射阀与基板相对,将喷射阀设置在成膜室的下部。此外,也可以使喷射阀与基板相对,将喷射阀设置在成膜室的侧面。
此外,可以在不脱离本发明宗旨的范围内做各种变形。
产业上的可利用性
如上所述,本发明所涉及的成膜装置和成膜方法,通过在金属化合物中混合低沸点有机化合物,能够在不升高温度的情况下使用于成膜的含有金属化合物的液体原料的蒸气压上升,能够在将成膜室的压力维持在与以前相比低的真空度的状态下成膜,因此,能够抑制金属氧化膜中的氧欠缺或金属氮化膜中的氮欠缺的发生,得到高品质的金属氧化膜或金属氮化膜。进而,由于直接将液体原料喷射至成膜室内,能够高速且以良好的重现性成膜,能够不需使用加热原料供给管的加热器,从而实现装置的小型化。

Claims (10)

1.一种成膜装置,该装置是使液体原料气化,使其堆积在基板上而成膜的成膜装置,其特征在于,
该装置具有将上述基板保持在内部的成膜室和将上述液体原料直接喷射到上述成膜室内的喷射阀,
上述液体原料为含有金属化合物和低沸点有机化合物的混合溶液,所述成膜室内的压力被减压、并且使上述成膜室内的压力大于与上述低沸点有机化合物混合前的上述金属化合物的蒸气压,且小于上述混合溶液的蒸气压。
2.如权利要求1所记载的成膜装置,其特征在于,上述金属化合物为有机钽化合物或有机铌化合物。
3.如权利要求2所记载的成膜装置,其特征在于,即使在大气压中的100℃以上,上述有机钽化合物或有机铌化合物的蒸气压为1Torr以下。
4.如权利要求2所记载的成膜装置,其特征在于,在大气压中的40℃以下的温度时,上述有机钽化合物或有机铌化合物为液体。
5.如权利要求2所记载的成膜装置,其特征在于,上述有机钽化合物或有机铌化合物为醇盐系、胺系、β-二酮络合物、苯化合物系或五元环化合物系。
6.如权利要求1所记载的成膜装置,其特征在于,即使在20℃以下,上述低沸点有机化合物在大气压下的蒸气压为1Torr以上。
7.如权利要求1所记载的成膜装置,其特征在于,上述低沸点有机化合物是能够用CxH2x+2表示的化合物,其中5≤X≤7。
8.如权利要求1所记载的成膜装置,其特征在于,上述低沸点有机化合物是能够用CxH2x+1OH表示的化合物,其中1≤X≤4。
9.一种成膜方法,该方法使液体原料气化,使其堆积在基板上而成膜,
其特征在于,
将含有金属化合物和低沸点有机化合物的混合溶液作为上述液体原料直接喷射到将上述基板保持在内部的成膜室内,
所述成膜室内的压力被减压、并且使上述成膜室内的压力大于与上述低沸点有机化合物混合前的上述金属化合物的蒸气压,且小于上述混合溶液的蒸气压。
10.如权利要求9所记载的成膜方法,其特征在于,上述金属化合物为有机钽化合物或有机铌化合物。
CNB2006800082024A 2005-03-16 2006-03-10 成膜装置和成膜方法 Expired - Fee Related CN100527362C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP075835/2005 2005-03-16
JP2005075835 2005-03-16

Publications (2)

Publication Number Publication Date
CN101142662A CN101142662A (zh) 2008-03-12
CN100527362C true CN100527362C (zh) 2009-08-12

Family

ID=36991582

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800082024A Expired - Fee Related CN100527362C (zh) 2005-03-16 2006-03-10 成膜装置和成膜方法

Country Status (6)

Country Link
US (1) US20090297706A1 (zh)
JP (1) JP5248855B2 (zh)
KR (1) KR101230692B1 (zh)
CN (1) CN100527362C (zh)
DE (1) DE112006000596T5 (zh)
WO (1) WO2006098237A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100953A1 (ja) * 2005-03-18 2006-09-28 Horiba, Ltd. 成膜方法及び成膜装置
JP2008007838A (ja) * 2006-06-30 2008-01-17 Horiba Ltd 成膜装置及び成膜方法
JP5051023B2 (ja) * 2008-06-23 2012-10-17 スタンレー電気株式会社 成膜装置および半導体素子の製造方法
JP2011082196A (ja) * 2009-10-02 2011-04-21 Hitachi Kokusai Electric Inc 気化器、基板処理装置及び半導体装置の製造方法
WO2011130174A1 (en) * 2010-04-15 2011-10-20 Novellus Systems, Inc. Gas and liquid injection methods and apparatus
JP5946052B2 (ja) * 2011-03-03 2016-07-05 国立研究開発法人情報通信研究機構 フォトニック結晶を用いた光検出方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102066C2 (de) * 1981-01-23 1984-04-05 Dynamit Nobel Ag, 5210 Troisdorf Farbstabilisierte Phenolharzschäume
US4980204A (en) * 1987-11-27 1990-12-25 Fujitsu Limited Metal organic chemical vapor deposition method with controlled gas flow rate
US5164040A (en) * 1989-08-21 1992-11-17 Martin Marietta Energy Systems, Inc. Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
DE4033357A1 (de) * 1990-10-19 1992-04-23 Iot Entwicklungsgesellschaft F Sensor zum stoffnachweis
JPH04350167A (ja) * 1991-05-28 1992-12-04 Fujitsu Ltd 高誘電体薄膜の製造方法
JPH05247650A (ja) * 1992-03-02 1993-09-24 Nikko Kyodo Co Ltd 化学気相蒸着用金属アルコキシド組成物及びそれを用いた絶縁膜の製造方法
US5393564A (en) * 1993-05-14 1995-02-28 Micron Semiconductor, Inc. High efficiency method for performing a chemical vapor deposition utilizing a nonvolatile precursor
FR2707671B1 (fr) * 1993-07-12 1995-09-15 Centre Nat Rech Scient Procédé et dispositif d'introduction de précurseurs dans une enceinte de dépôt chimique en phase vapeur.
US5492724A (en) * 1994-02-22 1996-02-20 Osram Sylvania Inc. Method for the controlled delivery of vaporized chemical precursor to an LPCVD reactor
US5451260A (en) * 1994-04-15 1995-09-19 Cornell Research Foundation, Inc. Method and apparatus for CVD using liquid delivery system with an ultrasonic nozzle
JP3591218B2 (ja) * 1996-07-12 2004-11-17 東京エレクトロン株式会社 成膜方法及びその装置
US6361755B1 (en) * 1998-03-24 2002-03-26 Board Of Regents, The University Of Texas System Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
US6296711B1 (en) * 1998-04-14 2001-10-02 Cvd Systems, Inc. Film processing system
US6275649B1 (en) * 1998-06-01 2001-08-14 Nihon Shinku Gijutsu Kabushiki Kaisha Evaporation apparatus
US20030101938A1 (en) * 1998-10-27 2003-06-05 Applied Materials, Inc. Apparatus for the deposition of high dielectric constant films
JP3169934B2 (ja) * 1999-03-16 2001-05-28 株式会社トリケミカル研究所 導電性Ta系膜形成材料、導電性Ta系膜形成方法、及び配線膜形成方法、並びにULSI
KR100385952B1 (ko) * 2001-01-19 2003-06-02 삼성전자주식회사 탄탈륨 산화막을 가진 반도체 커패시터 및 그의 제조방법
KR100434516B1 (ko) * 2001-08-27 2004-06-05 주성엔지니어링(주) 반도체 제조장치
JP4110952B2 (ja) * 2002-01-16 2008-07-02 株式会社村田製作所 誘電体薄膜の形成方法
JP2004063807A (ja) * 2002-07-29 2004-02-26 Elpida Memory Inc 半導体装置の製造方法
JP4148401B2 (ja) * 2002-10-03 2008-09-10 東北リコー株式会社 液体原料用cvd装置
JP4447216B2 (ja) * 2002-12-17 2010-04-07 二郎 千田 液体材料気化供給装置および液体材料気化供給方法
JP2004353024A (ja) * 2003-05-28 2004-12-16 Asahi Denka Kogyo Kk 組成物、該組成物を含有してなる化学気相成長用原料及びこれを用いた薄膜の製造方法
EP1536036B1 (en) * 2003-11-14 2007-06-20 Sharp Kabushiki Kaisha Thin film forming apparatus
US7387811B2 (en) * 2004-09-21 2008-06-17 Superpower, Inc. Method for manufacturing high temperature superconducting conductors using chemical vapor deposition (CVD)
JP4490777B2 (ja) * 2004-09-27 2010-06-30 株式会社堀場製作所 製膜条件特定方法
US20060093746A1 (en) * 2004-11-04 2006-05-04 Tokyo Electron Limited Method and apparatus for atomic layer deposition
CN101473413B (zh) * 2006-02-01 2011-01-26 Nxp股份有限公司 脉冲化学制剂分配系统和脉冲化学制剂分配方法
JP2008007838A (ja) * 2006-06-30 2008-01-17 Horiba Ltd 成膜装置及び成膜方法
US20080141937A1 (en) * 2006-12-19 2008-06-19 Tokyo Electron Limited Method and system for controlling a vapor delivery system

Also Published As

Publication number Publication date
JPWO2006098237A1 (ja) 2008-08-21
KR20070112767A (ko) 2007-11-27
US20090297706A1 (en) 2009-12-03
JP5248855B2 (ja) 2013-07-31
WO2006098237A1 (ja) 2006-09-21
DE112006000596T5 (de) 2008-01-24
CN101142662A (zh) 2008-03-12
KR101230692B1 (ko) 2013-02-07

Similar Documents

Publication Publication Date Title
CN100527362C (zh) 成膜装置和成膜方法
US7008669B2 (en) Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7723245B2 (en) Method for manufacturing semiconductor device, and substrate processing apparatus
JP3588334B2 (ja) 組成勾配を有する金属メタロイド酸化物および窒化物の堆積方法
US6787186B1 (en) Method of controlled chemical vapor deposition of a metal oxide ceramic layer
JP3611392B2 (ja) キャパシタおよび高容量キャパシタの製造方法
TWI283713B (en) Method for metal oxide thin film deposition via MOCVD
WO2000037712A1 (en) Liquid delivery mocvd process for deposition of high frequency dielectric materials
JPH0883793A (ja) 強誘電体薄膜の形成方法
KR20030022710A (ko) 화학기상성장법에 의한 막 형성방법
JP2002211924A (ja) 多相鉛ゲルマネート膜およびその堆積方法
JP4542807B2 (ja) 成膜方法および成膜装置、ならびにゲート絶縁膜の形成方法
JP2003133310A (ja) 強誘電体pzt被膜の形成方法
TWI324364B (zh)
JP2004079687A (ja) キャパシタ構造、成膜方法及び成膜装置
JPH06349324A (ja) 強誘電体薄膜の形成方法
KR100621765B1 (ko) 반도체 소자에서의 박막 형성방법 및 그에 따른 박막형성장치
Regnery et al. (Ba, Sr) TiO3 thin film growth in a batch processing MOCVD reactor
TW593734B (en) A method and system for metal organic chemical vapor deposition (MOCVD) and annealing of lead germanite (PGO) thin films
US20070215572A1 (en) Substrate processing method and substrate processing apparatus
JPH0776778A (ja) 強誘電体薄膜の製造方法
JP5491147B2 (ja) 成膜方法及び成膜装置並びに積層膜
JPH06145992A (ja) 半導体装置用誘電体の製造装置
Dubourdieu et al. The perovskite SrTiO3 on Si/SiO2 by liquid injection MOCVD
US20030012875A1 (en) CVD BST film composition and property control with thickness below 200 A for DRAM capacitor application with size at 0.1mum or below

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

Termination date: 20150310

EXPY Termination of patent right or utility model