CN100511885C - 具有可调谐能量带隙的半导体器件 - Google Patents

具有可调谐能量带隙的半导体器件 Download PDF

Info

Publication number
CN100511885C
CN100511885C CNB200580037053XA CN200580037053A CN100511885C CN 100511885 C CN100511885 C CN 100511885C CN B200580037053X A CNB200580037053X A CN B200580037053XA CN 200580037053 A CN200580037053 A CN 200580037053A CN 100511885 C CN100511885 C CN 100511885C
Authority
CN
China
Prior art keywords
semiconductor device
semiconductive
phase
change
semiconductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200580037053XA
Other languages
English (en)
Other versions
CN101048922A (zh
Inventor
A·R·巴尔克南德
E·P·A·M·巴克斯
L·F·费纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101048922A publication Critical patent/CN101048922A/zh
Application granted granted Critical
Publication of CN100511885C publication Critical patent/CN100511885C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission

Abstract

本发明涉及能量带隙可以可逆地改变的半导体器件。本发明的思想是提供一种器件,其基于与在适当寻址时呈现出可逆体积变化的材料机械接触的半导电材料(306),所述体积可逆变化的材料例如为相变材料(307)。该器件可例如用于发光器件、开关器件以及存储器。通过向相变材料施加局部体积膨胀,半导电材料可以可逆地应变。所得到的半导电材料的带隙变化可用于调谐从例如LED或激光器发射的光的颜色。在其它应用领域中,可控制半导体结的接触电阻,这一特征在存储器和开关中是非常有利的。

Description

具有可调谐能量带隙的半导体器件
技术领域
本发明涉及能量带隙可以可逆地改变的半导体器件。
背景技术
在半导电材料中,带隙是重要的参数,其很大程度上决定了半导电材料的性质。带隙定义为价带顶和导带底之间的能量差。该能量差是将电子从价带激发到导带中所需的能量。导带中的电子能够在材料中运动,由此实现导电性。对于发光二极管(LED)带隙的调谐导致发光颜色的变化。当导带中电子落回价带中时,电子以光子的形式释放能量。带隙越大,光子的能量越大。一种以可逆方式调整带隙的方法是使半导体晶格发生应变。已经证实了可以实现大约100meV的带隙变化。该变化足以显著改变例如肖特基二极管的性质。在发光方面,这将导致例如从黄光到绿光的颜色变化。
美国专利No.4,935,935公开了一种电可调谐半导体器件。以向半导体器件传送应力的关系设置至少一层压电物质薄膜,并且来自电路的信号使得压电物质向半导体传递应力,由此改变半导体器件的响应。当将调谐电压施加于压电薄膜时,该薄膜与调谐电压成比例地变形并向半导体施加应力,该应力改变半导体的能隙。
美国专利No.4,935,935中仍存在的问题是,改变半导体能隙的效应仅仅在向压电薄膜施加调谐电压时保持。
发明内容
本发明的一个目的是解决上述问题并且提供能量带隙可改变的半导体器件。通过权利要求1所述的能量带隙可以可逆改变的半导体器件实现该目的。
根据本发明的第一方面,提供了一种器件,其包括半导电材料和设置成呈现可逆体积变化的相变材料,其中该半导电材料设置成与该相变材料机械接触,并且所述体积变化向所述半导电材料施加应力,导致所述半导电材料的能量带隙发生变化。
发明的思想是提供一种器件,该器件基于与当被适当寻址时呈现可逆体积变化的材料(例如,相变材料)机械接触的半导电材料。该器件例如可在发光、开关和存储器应用中实现。通过向相变材料施加局部体积膨胀,半导电材料可以可逆地应变。所得到的半导电材料的带隙变化可用于调谐从LED或激光器发射的光的颜色。这是因为带隙与发射光的频率成比例这一事实。在其它应用领域中,半导体结的接触电阻可得到控制,该特征对于存储器和开关是非常有利的。
对于一般相变材料,从晶相变到非晶相时的体积膨胀约为20%。与光学记录应用相似,加热和冷却速率以及最终温度将决定局部相态。可利用激光实现热处理,但是半导电材料也可用于通过电阻加热来局部加热相变材料。
因为使得LED所发射光的颜色能够被调谐,并且还使得可以用机械刺激代替电刺激来开关电装置,本发明是有利的。因此可避免包括栅极电介质和有限的耗尽宽度在内的问题,这些问题在场效应晶体管(FET)中是常见的。此外,可获得可扩展存储器。使用相变材料的另一个主要优点在于,所导致的带隙变化效应是双稳的,因为该材料要么处于非晶态要么处于晶态。该状态保持,直到相变材料被重写。这对于存储器应用是尤其有利的。
根据本发明的一个实施例,半导电材料包括至少一条半导电纳米线。这是有利的,因为对于相当的应变条件,即,相变材料的体积膨胀相当的情况下,线直径越小,半导电纳米线所受的应力(并且因此纳米线的能量带隙的宽度)会增加。这意味着在这些类型的应用中使用纳米线是非常有利的。此外,如果线的直径小到足以观察到量子限制效应(通常意味着直径小于10-20nm),带隙将由于量子限制而增加。这两种带隙变化效应(即,由施加应力导致的带隙变化或由量子限制导致的带隙变化)彼此增强。例如,当施加压应力时,带隙由于所施加应力而增加,此外,同时带隙由于增加的量子限制效应而增加,量子限制效应增加是由于纳米线的直径减小。
根据本发明的另一个实施例,半导电材料嵌入在相变材料中,当适当的热条件占优势时该嵌入还增加了由相变材料引起的应力。理想的是,半导电材料完全嵌入在相变材料中。本发明的另一些实施例由从属权利要求限定。
在研究了随附的权利要求以及下述说明之后,本发明的其它特征和优点将更加明显。本领域技术人员应该认识到本发明的不同特征可以结合起来产生不同于下述的实施例。
附图说明
将参照附图更加详细地描述本发明的优选实施例。其中:
图1示出了如何生长纳米线的例子,其中阳极化氧化铝模板设置在衬底的导电层上。
图2示出了本发明的实施例,其中相变电材料沉积为纳米线周围的薄层;以及
图3示出了本发明的另一个实施例,其中半导电材料和相变材料设置在衬底的导电层上。
具体实施方式
半导电线和碳纳米管可通过采用公知的气相-液相-固相(VLS)工艺生长。通常在400至800℃的温度范围内执行该工艺。VLS工艺使用小的金属颗粒作为进一步生长的核。当采用足够小的金属颗粒时,可使线直径小于10nm。作为备选方法,可以通过在室温下采用电化学工艺将半导电线和金属沉积在适当的模板中。在任一种工艺中,或者结合这两种工艺,可以生长由例如n和p型半导体材料组成的或者呈现异质结的成段的线。当需要高密度半导电线时,可以采用适当的模板。已知当适当的条件占优势时,铝的电化学氧化(即,阳极化)会产生高度规则的多孔氧化铝。通常,所述孔垂直于它们置于其上的衬底的表面。孔直径非常一致,并且通常可从约5nm变化至300nm。通过局部表面预处理,例如,通过采用电子束或压印,这些孔可以横向有序。备选模板,如径迹蚀刻膜(track-etched membrane),可用来代替阳极化氧化铝。描述了一种制造方法,其基于从适当气相的催化生长或者在模板冲的电化学生长,以及将优选为半导电纳米线的半导电材料嵌入相变材料中。对于纳米线,可使用任何半导电类型的IV、III-V或II-VI材料。
图1示出了如何生长纳米线的一个例子。将阳极化氧化铝模板101置于衬底102的导电层120上。模板的孔103被部分填充了金属沉积物104,例如Au、Fe、Co、Ni等,作为VLS半导体线生长的催化剂。可采用标准VLS生长或者电化学沉积来沉积半导电材料105,例如CdSe、Si或InP。通过在线生长期间改变生长条件,可生长具有例如pn结或异质结的成段的线106。可以用适当的接触金属150进一步填充(例如以电化学方式)已局部填充的孔。之后,通过在1M KOH中蚀刻所述模板,或者通过在4% H3PO4或1.5% CrO3中对其进行部分蚀刻,除去氧化铝(也称为矾土),使得至少所述线的顶部不再嵌入氧化铝中。由此通过蚀刻工艺形成了独立的纳米线。随后,将所述顶部嵌入相变材料中,所述相变材料例如为Ge2Sb2Te5、Sb78Te22、Sb88Tel12、AgInSbTe、GexInySnzSb1-x-y-z
可以图形化由相变材料形成的层,使得可以局部寻址单个线或线的小组。在该嵌入过程之前或之后,抛光上述层的顶部,这通过虚线108表示,并且将电接触(未示出)沉积于其上。在本发明的一个实施例中,纳米线被薄电介质层部分或完全覆盖。
当将金图案直接沉积在Si上(例如,通过使用光刻方法图形化Au薄膜,或者采用自组装方法来沉积胶体Au颗粒)时,可以使用VLS方法在金颗粒的位置处局部生长线。先前已经描述了在Si(100)和Si(111)上外延生长GaP、GaAs、InP和InGaP,而GaN已经外延生长在各种蓝宝石表面(例如,Al2O3(001)、Al2O3(2-10)、Al2O3(100)、Al2O3(101))上。就线取向和线的(底)接触而言,线和衬底之间的外延关系是有利的。该方法在衬底表面产生了独立的线,如在其它实施例中所述的,可以执行进一步的处理。
图2示出了本发明的一个实施例,其中相变材料207沉积为纳米线206周围的薄层。纳米线如参照图1所描述的那样生长。在该特定实施例中,纳米线顶部具有金属209。例如通过化学气相沉积或者与溅射蚀刻相结合的溅射沉积,用具有良好台阶覆盖性的相变材料层覆盖所述线。所述线之间的区减随后用介电材料210填充。抛光所述层的顶部(用虚线208表示),并且在其上沉积电接触(未示出)。
图3示出了本发明的另一个实施例,其中相变材料307设置在衬底302的导电层320上。之后,在其上沉积适当的半导电材料306(例如上述的半导电纳米线),并且向半导电材料306施加形式为金属源电极和漏电极311的电接触。随后,可以在半导电材料306上沉积另一层相变材料312,使得所述半导电材料嵌入在相变材料307、312中。由于该第二层312,半导电材料可以在“全面”被相变材料激励,这增加了所施加应变的效果。当通过例如加热来对相变材料312进行热处理时,其经历可逆的局部体积膨胀,并且半导电材料306可逆地受到应力。所得到的半导电材料306的带隙变化导致半导电材料的电学特性发生改变。
尽管参考特定的示例性实施例描述了本发明,但是对于本领域技术人员而言多种不同的改变、修改等是显而易见的。所描述的实施例因此并不意图限制本发明的范围,本发明的范围由所附权利要求限定。

Claims (11)

1、一种半导体器件,其中能量带隙可以可逆地改变,该器件包括:
半导电材料(306);
相变材料(307),设置成呈现可逆的体积变化;其中
所述半导电材料设置成与所述相变材料机械接触,并且所述体积变化向所述半导电材料施加应力,这导致所述半导电材料的能量带隙变化。
2、根据权利要求1的半导体器件,其中所述半导电材料嵌入相变材料(307,312)中。
3、根据权利要求1或2的半导体器件,其中将电介质层施加于所述半导电材料(306)。
4、根据权利要求1或2的半导体器件,其中在所述半导电材料(306)处设置电接触(311)。
5、根据权利要求1或2的半导体器件,其中所述半导电材料(306)包括至少一条半导电纳米线。
6、根据权利要求4的半导体器件,其中所述半导电材料(306)包括分段的多个半导电纳米线(306)。
7、根据权利要求5的半导体器件,其中所述半导电纳米线并列设置,并且半导电纳米线之间的区域填充有介电材料(210)。
8、根据权利要求1或2的半导体器件,还包括具有导电层(320)的衬底(302),该导电层上设置了所述相变材料(307)。
9、根据权利要求1或2的半导体器件,其中相变材料的体积膨胀由借助于外部能量源进行的热处理引起。
10、根据权利要求1或2的半导体器件,其中相变材料的体积膨胀由借助于所述半导电材料进行的热处理引起。
11、根据权利要求1或2的半导体器件,其中所述半导电材料(306)包含在发光二极管中,从而该半导电材料的变化的能量带隙改变了从所述发光二极管发射的光的颜色。
CNB200580037053XA 2004-10-27 2005-10-20 具有可调谐能量带隙的半导体器件 Expired - Fee Related CN100511885C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04105316 2004-10-27
EP04105316.6 2004-10-27

Publications (2)

Publication Number Publication Date
CN101048922A CN101048922A (zh) 2007-10-03
CN100511885C true CN100511885C (zh) 2009-07-08

Family

ID=35431792

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580037053XA Expired - Fee Related CN100511885C (zh) 2004-10-27 2005-10-20 具有可调谐能量带隙的半导体器件

Country Status (9)

Country Link
US (1) US7550755B2 (zh)
EP (1) EP1807913B1 (zh)
JP (1) JP2008518456A (zh)
KR (1) KR20070084557A (zh)
CN (1) CN100511885C (zh)
AT (1) ATE461543T1 (zh)
DE (1) DE602005020051D1 (zh)
TW (1) TW200633260A (zh)
WO (1) WO2006046178A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034482A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008034483A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
EP1892769A2 (en) * 2006-08-25 2008-02-27 General Electric Company Single conformal junction nanowire photovoltaic devices
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US7850941B2 (en) 2006-10-20 2010-12-14 General Electric Company Nanostructure arrays and methods for forming same
JP2008108924A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
KR100937871B1 (ko) * 2007-08-09 2010-01-21 한국전자통신연구원 Mit 소자를 포함한 광 유도 스위칭 장치
US7897494B2 (en) * 2008-06-24 2011-03-01 Imec Formation of single crystal semiconductor nanowires
FR2934416B1 (fr) * 2008-07-24 2011-09-02 Inst Nat Sciences Appliq Substrat semi-conducteur contraint et procede de fabrication associe.
US8810996B2 (en) 2010-11-22 2014-08-19 The Trustees Of The Stevens Institute Of Technology Inkjet-printed flexible electronic components from graphene oxide
US8878120B2 (en) 2010-12-13 2014-11-04 The Trustees Of The Stevens Institute Of Technology Active bandgap tuning of graphene for tunable photodetection applications
US9738526B2 (en) 2012-09-06 2017-08-22 The Trustees Of The Stevens Institute Of Technology Popcorn-like growth of graphene-carbon nanotube multi-stack hybrid three-dimensional architecture for energy storage devices
US9178129B2 (en) 2012-10-15 2015-11-03 The Trustees Of The Stevens Institute Of Technology Graphene-based films in sensor applications
US20140205841A1 (en) 2013-01-18 2014-07-24 Hongwei Qiu Granules of graphene oxide by spray drying
US9573814B2 (en) 2013-02-20 2017-02-21 The Trustees Of The Stevens Institute Of Technology High-throughput graphene printing and selective transfer using a localized laser heating technique
US8969109B1 (en) 2013-09-05 2015-03-03 International Business Machines Corporation Tunable light-emitting diode
US11330984B2 (en) 2015-06-19 2022-05-17 The Trustees Of The Stevens Institute Of Technology Wearable graphene sensors
US9419102B1 (en) * 2015-12-11 2016-08-16 International Business Machines Corporation Method to reduce parasitic gate capacitance and structure for same
CN106684248B (zh) * 2017-03-24 2019-02-01 中国石油大学(北京) 一种调节太阳能电池吸收波长的方法及制备的太阳能电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676795A (en) * 1970-07-13 1972-07-11 Massachusetts Inst Technology Multiple-frequency laser apparatus and method
US4935935A (en) * 1988-08-31 1990-06-19 Carnegie Mellon University Wavelength tunable electronic and electrooptical semiconductor devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549853B1 (en) 1991-12-16 1997-02-05 International Business Machines Corporation Coupled quantum well tunable laser
US5615224A (en) * 1995-01-04 1997-03-25 The Regents Of The University Of California Apparatus and method for stabilization of the bandgap and associated properties of semiconductor electronic and optoelectronic devices
WO1997049132A1 (en) 1996-06-20 1997-12-24 Jeffrey Frey Light-emitting semiconductor device
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
JP2002098916A (ja) 2000-09-26 2002-04-05 Hamamatsu Photonics Kk 光学装置
US6674932B1 (en) 2000-12-14 2004-01-06 Hewlett-Packard Development Company, L.P. Bistable molecular mechanical devices with a middle rotating segment activated by an electric field for electronic switching, gating, and memory applications
TWI220319B (en) 2002-03-11 2004-08-11 Solidlite Corp Nano-wire light emitting device
US6859304B2 (en) 2002-08-09 2005-02-22 Energy Conversion Devices, Inc. Photonic crystals and devices having tunability and switchability
RU2006124528A (ru) * 2003-12-09 2008-01-20 Риота Пти Лтд (Au) Запоминающее устройство, способ сохранения информации, способ и структурированный материал

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676795A (en) * 1970-07-13 1972-07-11 Massachusetts Inst Technology Multiple-frequency laser apparatus and method
US4935935A (en) * 1988-08-31 1990-06-19 Carnegie Mellon University Wavelength tunable electronic and electrooptical semiconductor devices

Also Published As

Publication number Publication date
US7550755B2 (en) 2009-06-23
EP1807913A1 (en) 2007-07-18
US20090121209A1 (en) 2009-05-14
KR20070084557A (ko) 2007-08-24
ATE461543T1 (de) 2010-04-15
JP2008518456A (ja) 2008-05-29
EP1807913B1 (en) 2010-03-17
DE602005020051D1 (de) 2010-04-29
WO2006046178A1 (en) 2006-05-04
TW200633260A (en) 2006-09-16
CN101048922A (zh) 2007-10-03

Similar Documents

Publication Publication Date Title
CN100511885C (zh) 具有可调谐能量带隙的半导体器件
US7768081B2 (en) Semiconductor device with tunable energy band gap
US7816700B2 (en) Light emitting diode employing an array of nanorods and method of fabricating the same
KR101216124B1 (ko) 반도체 장치 및 나노튜브 접촉부 이용 방법
EP0881691B1 (en) Quantum dot device
TWI430477B (zh) 具有大面積及高能量之高效率第iii族氮化物為基礎之頂部發光型發光裝置及其製造方法
CN100563033C (zh) 具有低阻抗欧姆接触的ⅲa族氮化物半导体器件
KR20050081139A (ko) 인듐갈륨나이트라이드 양자 웰을 가지는 나노막대 어레이구조의 고휘도 발광 다이오드 및 그 제조방법
CN103681996B (zh) 一种紫外发光二极管及其制备方法
WO2007001099A1 (en) Light emitting diode of a nanorod array structure having a nitride-based multi quantum well
JPH10321954A (ja) Iii 族窒化物半導体素子およびその製造方法
KR101547969B1 (ko) 나노 구조체 및 이를 포함하는 나노 디바이스
CN104143595B (zh) 发光器件
CN113571612B (zh) Led外延结构及其应用以及包含该结构的发光二极管及其制备方法
KR101481721B1 (ko) 발광소자 및 그 제조방법
WO2008082244A1 (en) Iii-nitride semiconductor light emitting device
WO2022016183A1 (en) Bottom tunnel junction light-emitting field-effect transistors
JPH1145990A (ja) 二次元的に配置された量子素子
JP4277363B2 (ja) Iii族窒化物半導体発光素子
CN217239489U (zh) 发光二极管芯片
KR101431820B1 (ko) 나노와이어 소자 제조 방법
KR20240005286A (ko) 발광 소자, 이를 포함하는 디스플레이 장치 및 그 제조 방법
JP5042715B2 (ja) 半導体発光素子の製造方法
KR20110118335A (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20111020