CN100481373C - 半导体器件的制造方法 - Google Patents

半导体器件的制造方法 Download PDF

Info

Publication number
CN100481373C
CN100481373C CNB031079032A CN03107903A CN100481373C CN 100481373 C CN100481373 C CN 100481373C CN B031079032 A CNB031079032 A CN B031079032A CN 03107903 A CN03107903 A CN 03107903A CN 100481373 C CN100481373 C CN 100481373C
Authority
CN
China
Prior art keywords
insulating material
separation groove
element separation
semiconductor substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031079032A
Other languages
English (en)
Other versions
CN1447412A (zh
Inventor
中里真弓
笹田一弘
小田真弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1447412A publication Critical patent/CN1447412A/zh
Application granted granted Critical
Publication of CN100481373C publication Critical patent/CN100481373C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

一种制造半导体器件的方法,包括在半导体衬底(1)上形成缓冲膜(10),形成元件隔离沟槽(2),在元件隔离沟槽的表面上形成氧化膜(3),以及用氢氟酸清洗半导体衬底。清洗去除了部分缓冲膜,缓冲膜的端部从元件隔离沟槽的顶边向内去除预定的距离(x)。距离和氧化膜的厚度(d)由表达式0≤x≤(d/2sinθ)表示,其中x表示距离,θ表示平行于半导体衬底的平面和元件隔离沟槽的侧面之间的角度。

Description

半导体器件的制造方法
相关申请的交叉参考
本申请是基于2002年3月22日申请的在先日本专利申请No.2002-080026并要求它的优先权,其整个内容引用在此作为参考。
技术领域
本申请涉及制造半导体器件的方法,更具体地说涉及制造具有元件隔离(partitioning)沟槽的半导体器件的方法。
背景技术
现在,由于半导体器件中的高集成度,在半导体器件中将元件相互隔离的技术变得重要了。在元件隔离技术中,浅槽隔离(STI)工艺比硅的局部氧化(LOCOS)工艺使用得更广泛。
STI包括形成元件隔离沟槽并在元件隔离沟槽中镶嵌绝缘材料。镶嵌的绝缘材料将位于元件隔离沟槽相对面上的元件区相互隔离。
元件隔离沟槽的形成通常包括以下操作:(a)将薄氧化硅膜涂覆在硅衬底的表面上,并将氮化硅膜涂覆在氧化硅膜上;(b)腐蚀并去除其中由氮化硅膜形成的元件隔离沟槽的区域;(c)使用构图的氮化硅膜作为掩模腐蚀硅衬底,在硅衬底上形成元件隔离沟槽;(d)氧化元件隔离沟槽的表面形成薄氧化膜(氧化硅膜);(e)淀积硅膜,硅膜的厚度大于元件隔离沟槽的深度和氮化硅膜的厚度之和,并用绝缘材料嵌入元件隔离沟槽;(f)使用氮化硅膜作为终止层进行化学机械抛光并平坦化氧化硅膜的上表面;以及(g)从硅衬底上腐蚀并去除氮化硅膜或氧化硅膜。进行这些操作形成元件隔离区。
当进行操作(b)或(c)时,制造装置的内壁材料可能被腐蚀并堆积到硅衬底上。为防止在进行操作(d)时仍然留有堆积的材料,在进行操作(d)之前用稀释的氢氟酸酸洗硅衬底的表面和淀积在元件隔离沟槽中的绝缘性材料。然而,酸洗腐蚀了硅衬底和氮化硅膜之间的氧化硅膜。现在参考图1A至1D和2讨论这种腐蚀。
参考图1A,氧化硅膜210和氮化硅膜211淀积在硅衬底201上。之后,构图氮化硅膜211。参考图1B,使用构图的氮化硅膜211作为掩模在硅衬底201上形成元件隔离沟槽202。然后,用稀释的氢氟酸清洗硅衬底201以去除堆积在硅衬底上的金属。在这种状态中,参考图1C,氢氟酸水平地去除了部分氧化硅膜210,暴露给元件隔离沟槽202。因此,在元件隔离沟槽202的每一边,氧化硅膜210位于从硅衬底201中的开口水平地向内的位置。
参考图1D,当在操作(d)中形成氧化膜203时,在氧化膜210的边缘下产生应力。这在硅衬底201上形成了未氧化的突起区205。如图2所示,在随后的操作中不去除突起区205。此外,当在具有元件隔离区204的硅衬底201上形成栅氧化膜时,仍保留突起区205。突起区205可导致变薄,并使栅氧化膜的厚度不均匀。这降低了半导体器件的可靠性。
因此,提出了使氧化硅膜210的水平延伸到元件隔离沟槽202内,如图3A所示。然而,在这种情况下,在操作(d)之后在硅衬底201中产生变形的突起区205a。变形的突起区205a可导致变薄,并降低半导体器件的可靠性。
即使不用氢氟酸进行清洗,腐蚀具有元件隔离的半导体器件可降低制造的半导体器件的可靠性。
发明内容
本发明的一个目的是提供制造具有高可靠性的半导体器件的方法。
为了实现以上目的,本发明提供一种制造半导体器件的方法。该方法包括在半导体衬底上形成缓冲膜,在缓冲膜上形成具有沟槽形成图形的掩模,用掩模形成对应于沟槽隔离图形的元件隔离沟槽,和氧化元件隔离沟槽的表面在该表面上形成氧化膜。元件隔离沟槽的顶边和缓冲膜的端部之间的距离小于或等于沿平行于半导体衬底的平面的氧化膜厚度的一半。
本发明的另一方案是制造半导体器件的方法。该方法包括在半导体衬底上形成缓冲膜,在缓冲膜上形成具有沟槽形成图形的掩模,用掩模形成对应于沟槽形成图形的元件隔离沟槽,和氧化元件隔离沟槽的表面在元件隔离沟槽的表面上形成氧化膜,从元件隔离沟槽的顶边去除缓冲膜一段距离,该距离由下面表达式表示:
0≤x≤(d/2sinθ)
其中x表示缓冲膜的去除距离,θ表示平行于半导体衬底的平面和元件隔离沟槽的侧面之间的角度,d表示氧化膜的厚度。
本发明的再一个方案是制造半导体器件的方法。该方法包括用掩模在半导体衬底上形成元件隔离沟槽,用绝缘材料填充元件隔离沟槽,该绝缘材料是通过高密度等离子体化学汽相沉积而形成的高密度等离子体氧化硅膜,热处理绝缘材料以增加绝缘材料的耐腐蚀性,去除该掩模,以及在半导体衬底上形成驱动元件。
本发明的又一个方案是制造半导体器件的方法的改进。该方法包括在半导体衬底上形成元件隔离沟槽,用绝缘材料填充元件隔离沟槽,该绝缘材料是通过高密度等离子体化学汽相沉积而形成的高密度等离子体氧化硅膜,在半导体器件上形成驱动元件,以及在所述形成元件隔离沟槽和所述形成驱动元件之间用氢氟酸进行腐蚀。该改进包括热处理绝缘材料以减少用氢氟酸腐蚀该绝缘材料的速率。
本发明的又一个方案是一种制造半导体器件的方法。该方法包括在半导体衬底上形成元件隔离沟槽;在该元件隔离沟槽中填充绝缘材料;以及以步进的方式热处理该绝缘材料,以减少该绝缘材料体积变化产生的应力。
本发明的又一个方案是一种制造半导体器件的方法,该方法包括:用掩模在半导体衬底上形成元件隔离沟槽;用绝缘材料填充该元件隔离沟槽;在1,000℃或更高的温度热处理该绝缘材料以增加该绝缘材料的耐腐蚀性;去除该掩模;以及在该半导体衬底上形成驱动元件,并且在1,000℃或更高的温度热处理之前,以小于1,000℃的温度进行热处理。
本发明的又一个方案是一种制造半导体器件的方法的改进,其中该方法包括在半导体衬底上形成元件隔离沟槽,用绝缘材料填充该元件隔离沟槽,在该半导体器件上形成驱动元件,以及在所述形成元件隔离沟槽和所述形成驱动元件之间用氢氟酸进行腐蚀,该改进包括:热处理该绝缘材料以降低用氢氟酸腐蚀该绝缘材料的速率;其中所述热处理包括:在1,000℃或更高的温度热处理;并且在1,000℃或更高的温度热处理之前,以小于1,000℃的温度进行热处理。
本发明的还一个方案是制造半导体器件的方法,包括在半导体衬底上形成元件隔离沟槽,绝缘材料填充元件隔离沟槽,以步进的方式热处理该绝缘材料,以及平坦化绝缘材料的上表面。
本发明的另一个方案是制造半导体器件的方法,包括在半导体衬底上形成缓冲膜,在缓冲膜上形成具有沟槽形成图形的掩模,用掩模形成对应于沟槽形成图形的元件隔离沟槽,以及酸洗该元件隔离沟槽的表面。酸洗去除了与元件隔离沟槽相邻的部分缓冲膜。从元件隔离沟槽的顶边向内去除预定距离的缓冲膜。该方法还包括氧化该元件隔离沟槽的表面在该表面上形成氧化膜。确定酸洗的条件和氧化的条件,以便预定距离小于沿平行于半导体衬底的表面测量的氧化膜厚度的一半。
从下面结合附图利用例子说明本发明原理的描述中,本发明的其它方案和优点将变得很显然。
附图说明
通过参考下面优选实施例结合附图的说明,可以更好地理解本发明及其目的和优点,其中:
图1A至1D是表示现有技术中制造半导体器件工艺的剖面图;
图2是表示通过图1A至1D的工艺制造的半导体器件的剖面图;
图3A和3B是表示在现有技术中制造半导体器件时进行的操作的例子的剖面图;
图4A至4D是表示在本发明的第一实施例中制造半导体器件的工艺的剖面图;
图5是表示相对于热处理的HDP氧化硅膜的氢氟酸的腐蚀速率表;
图6是第一实施例中步进热处理的时间表;以及
图7A至7E是表示在本发明的第二实施例中制造半导体器件的工艺的剖面图。
具体实施方式
现在讨论根据本发明第一实施例制造半导体器件的方法。
图4A至4D示出在本发明的第一实施例中制造半导体器件的工艺的剖面图。参考图4A,例如具有10nm厚的氧化硅膜(缓冲膜)10涂覆到半导体(硅)衬底1。具有150nm厚的氮化硅膜11淀积在氧化硅膜10上。在其中形成元件隔离沟槽的区域腐蚀并去除氮化硅膜11以便在氮化硅膜11上形成沟槽形成图形。使用具有沟槽形成图形的氮化硅膜11作为掩模,腐蚀半导体衬底1例如300nm以形成元件隔离沟槽2。在图4A中,元件隔离沟槽2的侧面和平行于半导体衬底1的表面的水平面之间的角度θ例如为87度。
随后,进行清洗半导体衬底1表面的操作。更具体地,例如用0.125%的氢氟酸清洗30秒该半导体衬底1,然后用水清洗。之后,用过氧化氨混合物(ammonia peroxide mixture)(APM)清洗,其中NF4OH:H2O2:H2O为0.5:1:50,接着用水清洗和干燥。即诸使如腐蚀装置之类的制造装置的内壁材料堆积在半导体衬底1上,该清洗也会从半导体衬底1上清洗掉堆积的材料(金属污染物)。
在清洗操作中,如图4B所示,氢氟酸去除对元件隔离沟槽2暴露的氧化硅膜10的边缘,以便边缘位于半导体衬底1开口的顶边朝内处。向内去除的量(去除距离)x例如为5埃。
然后,参考图4C,在调节到1,100℃温度的氧化气氛中(N2:O2比为6:1)热处理30分钟半导体衬底1。这在元件隔离沟槽2的表面上形成具有厚度d(20nm)的氧化膜3。
当元件隔离沟槽2的表面开始氧化时,确定并设置氢氟酸清洗条件(例如,氢氟酸浓度、清洗温度、清洗时间)和热处理(氧化)条件(氧化剂浓度、氧化温度、氧化时间),以身去除距离x为氧化膜3的水平厚度的一半(y)。水平厚度是指沿半导体衬底1表面测量的厚度。
这减少了氧化硅膜10的边缘下施加的应力并避免了突起区的问题(参考图2)。
参考图4C,氧化膜3的厚度d和水平厚度的一半y之间的关系由下面的方程表示。
d/2=y×cosα=y×cos(90-θ)=y×sinθ
因此,确定清洗条件和氧化条件,以便当开始元件隔离沟槽2的氧化时从半导体衬底1的开口的顶端的氧化硅膜边缘的向内去除量x是在下面的范围中。
0≤x≤(d/2sinθ)
形成氧化膜3之后,例如淀积600nm的绝缘材料(氧化硅膜)以便用绝缘材料填充元件隔离沟槽2。然后使用氮化硅膜11作为终止层进行化学机械抛光以抛光并平坦化氧化硅膜的上表面。使用磷酸去除氮化硅膜11,和使用氢氟酸去除氧化硅膜10。如图4D所示,这在半导体衬底1上形成元件隔离区4。
之后,通过已知的工序在半导体衬底1上形成由元件隔离区4隔开的如晶体管之类的元件。例如,形成牺牲氧化膜,和离子注入形成源或漏。使用氢氟酸去除该牺牲氧化膜并形成栅绝缘膜。由多晶硅制成的栅电极形成在栅绝缘膜上。然后,用层间绝缘膜覆盖包括氧化硅膜和氮化硅膜的半导体衬底1的整个上表面。此外,例如,铝合金电极通过接触孔将栅电极与上接线层电连接。
第一实施例具有下述的优点。
(1)调节在元件隔离沟槽2的表面上形成氧化膜3时氧化硅膜10的向内去除量x,以便它小于或等于氧化膜3的水平厚度的一半(y)。换句话说,将氧化硅膜10的向内去除量调节在0≤x≤(d/2sinθ)的范围内。因此,当形成氧化膜3时,氧化硅膜10的边缘下的应力减少了,并且没有形成突起区205(参考图1D)。因此,形成具有高可靠性的半导体器件。
现在讨论根据本发明的第二实施例的制造半导体器件的方法。
当形成元件隔离沟槽2和诸如晶体管的驱动元件以制造半导体器件时,通常用氢氟酸进行多重清洗操作。然而,该清洗操作(腐蚀)腐蚀了嵌在元件隔离沟槽中的绝缘材料(氧化硅膜)。因此,绝缘材料上表面的水平面变得低于半导体衬底1的水平面。在这种情况下,电场集中在半导体衬底1中开口(元件隔离沟槽2)的上边,并产生漏电流。这可降低半导体器件的可靠性。
在第二实施例中,进行热处理以减少用氢氟酸腐蚀元件隔离沟槽中绝缘材料的速率。因此,绝缘材料上表面的水平面不会变得低于半导体衬底1的水平面。
图5是表示通过高密度等离子体化学汽相淀积(HDP-CVD)形成的HDP(高密度等离子体)氧化硅膜的腐蚀速率表。显然当热处理温度(退火)温度增加时,HDP氧化硅膜的腐蚀速率降低和用氢氟酸腐蚀HDP氧化硅膜变得困难。在相同的温度下,氧降低了腐蚀速率,也是显然的。这是由于HDP氧化硅膜的组分的实际组分配比为SiO2-x而不是SiO2。换句话说,虽然在实际的HDP氧化硅膜中氧是不充分的,但在包括如氧的氧化剂在高温气氛中进行热处理,提供氧给HDP氧化硅膜。因此,HDP氧化硅膜的组分变得接近SiO2。换句话说,通过在包括氧气的高温气氛中进行热处理,HDP氧化硅膜的密度增加了。
以这种方式,热处理增加了HDP氧化硅膜的耐腐蚀性并降低了氢氟酸的腐蚀速率。通过在包括氧气的高温气氛中进行热处理,HDP氧化硅膜的密度进一步增加并且氢氟酸的腐蚀速率进一步降低。然而,在包括氧气的气氛中突然的热处理可迅速改变HDP氧化硅膜的体积。体积的变化对半导体衬底施加大的应力。当大应力施加到半导体衬底时,在半导体衬底中会发生缺陷。这会产生漏电流并降低半导体器件的可靠性。
在第二实施例中,HDP氧化硅膜的热处理温度从低温到高温以步进方式增加。这降低了施加到半导体衬底的应力影响。
现在参考图6和7A至7E叙述在第二实施例中制造半导体器件的方法。
参见图7A,薄氧化硅膜(缓冲膜)110施加到半导体(硅)衬底101。氮化硅膜111淀积在氧化硅膜110上。腐蚀氮化硅膜111形成对应于元件隔离沟槽的沟槽形成图形。使用具有隔离形成图形的氮化硅膜111作为掩模,腐蚀半导体衬底101以形成元件隔离沟槽102。
在氧化气氛中对元件隔离沟槽102的表面进行热处理在元件隔离沟槽102的表面上形成氧化硅膜。淀积通过HDP-CVD形成的HDP氧化硅膜104以便用氧化硅膜104填充元件隔离沟槽102。
为增加HDP氧化硅膜104的密度,对HDP氧化硅膜104进行热处理。如图6所示的以两个步骤进行热处理。在第一步骤中,在第一预定温度(例如,900℃)将HDP氧化硅膜104暴露到氮气氛预定的时间(例如,30分钟)。然后,在第二步骤中,在高于第一预定温度的第二预定温度(例如1,100℃),HDP氧化硅膜104暴露到包括氧气的气氛(N2:O2=4:1)预定的时间(例如20分钟)。通过在小于1,000℃的第一预定温度和大于或等于1,000℃的第二预定温度进行热处理两次,不产生缺陷的半导体衬底101,并且氢氟酸的腐蚀速率降低了。
然后,参见图7B,氮化硅膜111用做终止层,通过CMP抛光和平坦化HDP氧化硅膜104的上表面。参见图7C,使用磷酸去除氮化硅膜111,使用稀释的氢氟酸去除氧化硅膜110。
参见图7D,牺牲的氧化膜105形成在由HDP氧化硅膜104隔开的半导体衬底101。注入离子形成源和漏。参见图7E,使用氢氟酸去除牺牲的氧化膜105。此后,在半导体衬底101上形成栅绝缘膜。
以这种方式,在元件隔离沟槽102中填充的HDP氧化硅膜104经受了热处理以减小用氢氟酸腐蚀HDP氧化硅膜104的速率。因此,即使腐蚀或去除氧化硅膜110和牺牲的氧化膜105,HDP氧化硅膜104的上表面的水平面不会变得低于半导体衬底101的水平面(元件隔离沟槽的上端)。在本说明书中,术语“腐蚀”不限定为使用掩模构图,而去除和清洗是指消除预定的部分。
第二实施例具有下面叙述的优点。
(2)对HDP氧化硅膜104进行热处理以降低以氢氟酸腐蚀HDP氧化硅膜104的速率。因此HDP氧化硅膜104的上表面的水平面不会变得低于半导体衬底101的水平面。
(3)在包括相对低的第一预定温度和相对高的第二预定温度的多个温度下以步进方式对HDP氧化硅膜104进行热处理。因此,HDP氧化硅膜104的体积变化减小了对半导体衬底101的应力影响。
显然对于本领域中的技术人员来说本发明可以用许多其它的具体形式实施,而不脱离本发明的精神或范围。特别应该懂得,本发明可以用下面的形式实施。
形成元件隔离沟槽2,102的沟槽开口图形不必形成在氮化硅膜11和111中。
吸收在具有沟槽开口图形的膜11和111与半导体衬底1和101之间产生的应力的缓冲膜不局限为氧化膜10和110。
在第一实施例中,可以在清洗操作中使用除氢氟酸之外的化合物,在氧化元件隔离沟槽2之前进行该清洗操作。
在第二实施例中,除了氮化气氛外,不包括氧气的气氛例如可以是氩气氛。
在第二实施例中,在相对低的温度进行的第一步骤的热处理可以在不包括氧气的气氛中进行。这增加了HDP氧化硅膜104的密度。
在第二实施例中,HDP氧化硅膜104的热处理温度不限于两个步骤,而且可以以三个或多个步骤进行。
填充元件隔离沟槽的绝缘材料不限于氧化硅或HDP氧化硅。
当去除掩模或形成驱动元件时,可以使用除氢氟酸之外的腐蚀剂。在这种情况下,绝缘材料的热处理增加了绝缘材料的密度并降低了腐蚀速率。此外,当绝缘材料经历多阶段的热处理时,降低了由绝缘材料的体积变化造成的应力影响。
目前的例子和实施例应认为是说明性的而不是限定性的,而且本发明不限于这里给出的细节,而是可以在所附的权利要求书的范围和等效物内修改。

Claims (15)

1.一种制造半导体器件的方法,该方法包括:
用掩模在半导体衬底上形成元件隔离沟槽;
用绝缘材料填充该元件隔离沟槽,该绝缘材料是通过高密度等离子体化学汽相沉积而形成的高密度等离子体氧化硅膜;
热处理该绝缘材料以增加该绝缘材料的耐腐蚀性;
去除该掩模;以及
在该半导体衬底上形成驱动元件。
2.根据权利要求1的方法,其中所述去除该掩模和所述形成驱动元件包括腐蚀。
3.根据权利要求1的方法,其中所述热处理包括增加该绝缘材料的密度。
4.一种制造半导体器件的方法的改进,其中该方法包括在半导体衬底上形成元件隔离沟槽,用绝缘材料填充该元件隔离沟槽,该绝缘材料是通过高密度等离子体化学汽相沉积而形成的高密度等离子体氧化硅膜,在该半导体器件上形成驱动元件,以及在所述形成元件隔离沟槽和所述形成驱动元件之间用氢氟酸进行腐蚀,该改进包括:
热处理该绝缘材料以降低用氢氟酸腐蚀该绝缘材料的速率。
5.根据权利要求4的方法,其中所述热处理包括在1,000℃或更高的温度热处理。
6.根据权利要求5的方法,其中所述热处理包括在1,000℃或更高的温度热处理之前,以小于1,000℃的温度进行热处理。
7.一种制造半导体器件的方法,包括:
在半导体衬底上形成元件隔离沟槽;
在该元件隔离沟槽中填充绝缘材料;以及
以步进的方式热处理该绝缘材料,以减少该绝缘材料体积变化产生的应力。
8.根据权利要求7的方法,其中所述热处理包括以相对低的第一温度暴露该绝缘材料和以相对高的第二温度暴露该绝缘材料。
9.根据权利要求8的方法,其中第一温度小于1,000℃,而第二温度为1,000℃或更高。
10.根据权利要求8的方法,其中该绝缘材料是氧化硅膜,和所述以第二温度暴露该绝缘材料是在包括氧气的气氛中进行。
11.一种制造半导体器件的方法,包括:
在半导体衬底上形成元件隔离沟槽;
在该元件隔离沟槽中填充绝缘材料;
以步进的方式热处理该绝缘材料;以及
平坦化该绝缘材料的上表面。
12.根据权利要求11的方法,其中该绝缘材料是高密度等离子体氧化硅膜,所述热处理包括在不包括氧气的气氛下在第一温度保持该绝缘材料,然后在包括氧气的气氛下在高于第一温度的第二温度保持该绝缘材料。
13.根据权利要求12的方法,其中第一温度小于1,000℃,第二温度为1,000℃或更高。
14.一种制造半导体器件的方法,该方法包括:
用掩模在半导体衬底上形成元件隔离沟槽;
用绝缘材料填充该元件隔离沟槽;
在1,000℃或更高的温度热处理该绝缘材料以增加该绝缘材料的耐腐蚀性;
去除该掩模;以及
在该半导体衬底上形成驱动元件;并且
在1,000℃或更高的温度热处理之前,以小于1,000℃的温度进行热处理。
15.一种制造半导体器件的方法的改进,其中该方法包括在半导体衬底上形成元件隔离沟槽,用绝缘材料填充该元件隔离沟槽,在该半导体器件上形成驱动元件,以及在所述形成元件隔离沟槽和所述形成驱动元件之间用氢氟酸进行腐蚀,该改进包括:
热处理该绝缘材料以降低用氢氟酸腐蚀该绝缘材料的速率;
其中所述热处理包括:
在1,000℃或更高的温度热处理;并且
在1,000℃或更高的温度热处理之前,以小于1,000℃的温度进行热处理。
CNB031079032A 2002-03-22 2003-03-21 半导体器件的制造方法 Expired - Fee Related CN100481373C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002080026A JP4511101B2 (ja) 2002-03-22 2002-03-22 半導体装置の製造方法
JP2002080026 2002-03-22

Publications (2)

Publication Number Publication Date
CN1447412A CN1447412A (zh) 2003-10-08
CN100481373C true CN100481373C (zh) 2009-04-22

Family

ID=28035689

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031079032A Expired - Fee Related CN100481373C (zh) 2002-03-22 2003-03-21 半导体器件的制造方法

Country Status (3)

Country Link
US (1) US6887767B2 (zh)
JP (1) JP4511101B2 (zh)
CN (1) CN100481373C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781033B1 (ko) * 2005-05-12 2007-11-29 주식회사 하이닉스반도체 반도체 소자의 제조방법
CN108039337B (zh) * 2017-11-29 2020-08-28 上海华力微电子有限公司 Fdsoi工艺中浅沟槽隔离结构的形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248346C (zh) * 2000-09-29 2006-03-29 索尼公司 燃料电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1248346A (en) 1985-11-12 1989-01-10 Erik Kersting Curing oven
TW388100B (en) 1997-02-18 2000-04-21 Hitachi Ulsi Eng Corp Semiconductor deivce and process for producing the same
US6087243A (en) * 1997-10-21 2000-07-11 Advanced Micro Devices, Inc. Method of forming trench isolation with high integrity, ultra thin gate oxide
JP3523048B2 (ja) 1998-02-18 2004-04-26 株式会社ルネサステクノロジ 半導体装置の製造方法及び半導体装置
JPH11274287A (ja) 1998-03-24 1999-10-08 Sharp Corp 素子分離領域の形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248346C (zh) * 2000-09-29 2006-03-29 索尼公司 燃料电池

Also Published As

Publication number Publication date
US20030181021A1 (en) 2003-09-25
CN1447412A (zh) 2003-10-08
JP2003282696A (ja) 2003-10-03
JP4511101B2 (ja) 2010-07-28
US6887767B2 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
CN100550340C (zh) 制造半导体器件的方法
US7683455B2 (en) Semiconductor device and method of manufacturing thereof
EP1164636B1 (en) Method to form self aligned, L-shaped sidewall spacers
JP2003017555A (ja) 半導体集積回路装置およびその製造方法
US6825128B2 (en) Method for manufacturing semiconductor device
US20020076877A1 (en) Method to form self-aligned, L-shaped sidewall spacers
CN100481373C (zh) 半导体器件的制造方法
US6784075B2 (en) Method of forming shallow trench isolation with silicon oxynitride barrier film
US7081390B2 (en) Semiconductor device and a method of manufacturing the same
KR100245081B1 (ko) 반도체 소자의 소자분리절연막 형성방법
US6403445B1 (en) Enhanced trench isolation structure
KR100608340B1 (ko) 반도체소자의 게이트 형성방법
US6812148B2 (en) Preventing gate oxice thinning effect in a recess LOCOS process
KR20020005358A (ko) 트렌치 소자분리 방법
KR100545207B1 (ko) 반도체 소자의 분리 방법
KR101098443B1 (ko) 반도체 소자의 소자분리막 형성 방법
KR100277435B1 (ko) 반도체 장치의 트렌치 격리 형성 방법
KR20010014793A (ko) 반도체 장치의 제조 방법
KR19990004577A (ko) 반도체소자의 소자분리절연막 형성방법
KR20000044881A (ko) 반도체 소자의 쉘로우 트랜치 소자분리막 형성방법
KR20000024914A (ko) 반도체장치의 소자분리막 형성방법
TWI304630B (zh)
KR100870303B1 (ko) 플래쉬 메모리 소자의 제조 방법
JP2005277384A (ja) 半導体素子の製造方法
KR19990084622A (ko) 반도체 소자 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090422

Termination date: 20130321