CN100452467C - MgB2高密度超导体块状体的制备方法,最终产品及应用 - Google Patents

MgB2高密度超导体块状体的制备方法,最终产品及应用 Download PDF

Info

Publication number
CN100452467C
CN100452467C CNB028091612A CN02809161A CN100452467C CN 100452467 C CN100452467 C CN 100452467C CN B028091612 A CNB028091612 A CN B028091612A CN 02809161 A CN02809161 A CN 02809161A CN 100452467 C CN100452467 C CN 100452467C
Authority
CN
China
Prior art keywords
magnesium
activation
crystalline boron
boron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028091612A
Other languages
English (en)
Other versions
CN1537335A (zh
Inventor
乔瓦尼·琼基
塞尔焦·切雷萨拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edison SpA
Original Assignee
Edison SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edison SpA filed Critical Edison SpA
Publication of CN1537335A publication Critical patent/CN1537335A/zh
Application granted granted Critical
Publication of CN100452467C publication Critical patent/CN100452467C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Fodder In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

描述了一种方法,用于制备密度接近理论值超导体块状体MgB2,包括以下阶段:晶体硼与活化粉末的形成机械活化;所述粉末多孔锭料的形成;多孔硼锭料和块状体前体金属镁在容器中组合,并从而在在惰性气体或低氧含量气氛中将它们密封;在硼和镁以上组合时以高于700℃的温度的热处理时间大于30分钟,然后通过活化的晶体硼粉末浸透液相镁。

Description

MgB2高密度超导体块状体的制备方法,最终产品及应用
技术领域:
本发明涉及制备高密度化超导体块状体MgB2的方法,相关的固体最终产品及它们的应用。
背景技术:
近来已发现,镁的硼化物具有最高到39K的超导体性质,因而可用于封闭回路低温系统(低温冷却器),该系统比基于使用液氦(Nagamatsu et al.,Nature,410,63;2001)的系统成本低。
如同所有的硼化物那样,已知长达大约半个世纪的化合物镁的硼化物,其特征在于,当其处于高密度化时极高的硬度。
然而镁的硼化物硬化为最终产品,在其化合物粉末紧压作用达到其理论密度(2.63g/cm3)接近100%的值,通常需要使用高压。一般要使用几个Gpa量级的压力。
在文献中还知道,从处于粉末形及块状体的硼和镁的化学计量或非化学计量混合物开始的化合物MgB2的可选择的合成方法。然而在后者情形下,高压的使用对于获得高密度的最终产品是不可缺少的。
一个例子是由Canfieled et al.描述的,从与液体或蒸汽相Mg反应的硼纤维获得MgB2纤维(Phys.Rev.Lett.86,2423(2001)),具有大约80%理论值的的估计密度。
结果只能获得密度最高到接近理论值的镁的硼化物最终产品,因而按已知技术使用高压高温方法,其特征为改进的超导性和机械性质。
然而在高温下使用高压限制了获得的最终产品的的尺寸,并必须使用不适于大量生产的设备。
发明内容:
因而本发明的一个目的是要以克服了已知技术中现存的缺陷的一种方法,获得具有密度接近于理论值的超导体块状体的MgB2
根据本发明,这里提供一种用于制备其密度接近理论值的MgB2超导体块状体的方法,所述的密度是2.25到2.63g/cm3,其特征在于,该方法包括以下步骤:
a)随着活化粉末的形成,晶体硼被机械活化;
b)晶体硼的活化粉末多孔锭料的形成;
c)晶体硼的活化粉末多孔锭料和金属镁块状体前体在容器中组合,并在惰性气体或低氧含量气氛中将它们密封;
d)对按以上组合的硼和镁以高于700℃的温度热处理,时间大于30分钟,然后通过活化的晶体硼粉末浸透液相镁。
本发明的另一个目的涉及借助于本发明的方法获得的具有密度接近理论值的MgB2超导体块状体或固体最终产品。
本发明的再一个的还涉及在步骤c)中包括使用混合有一种或多种较低熔点金属的方法,诸如Ga,Sn,In,Zn,或与所述金属Mg基合金。
本发明还涉及使用改进本发明的方法可获得的MgB2块状体,作为超导体用于电流接通,限流系统中的可变电感元件,悬浮系统中,基本粒子加速器和检测器中,能量积累系统中,线性或非线性电动机,发电机中使用的永久磁体。
根据本发明的方法的基本优点在于这样的事实,即该方法允许以简单和经济的方式产生固体MgB2超导体最终产品,密度达到接近理论值的值,具有对于已知的技术状态方法可获得的产品改进了的特性。从应用的观点而言,这样获得的密度值达到接近理论值的MgB2,允许能够向超导体产品传送的电流增加,并还改进了所述最终产品的力学性质。
进一步的优点还在于这样的事实,即MgB2的高密度化靶允许更成功地使用沉积技术,诸如激光切割或射频溅射,以获得沉积在各种薄膜形式的源基片上沉积的超导体材料。
附图说明:
图1示出硼粉末的X射线衍射图;
图2示出例2中使用的容器和防护衬套;
图3示出例2产品的X射线衍射图;
图4示出例2产品的AC磁化系数图;
图5示出例4产品的AC磁化系数图。
具体实施方式:
具体来说,用于制备密度接近理论值,即密度高于或等于2.25g/cm3的MgB2超导体块状体产生的方法在于,使硼和镁元素在密封容器中在惰性气体或低氧含量(低于20%原子量(atomic))气氛中在高温下反应,其中至少硼是以定义为活化物适当的粒度的粉末形式并具有至少两种类似于菱形体晶胞的晶相出现。
机械活化步骤a)晶体硼薄片,其尺寸为几毫米而纯度高于或等于99.4%,最好以高负荷压缩在“几乎静态”条件下反复碾碎,例如这能够在水压机中实现。这种活化不仅粉末碎片极小化而有微细的颗粒尺寸(例如低于20微米),这一般是旋转球磨的研磨产品,但还允许获得保持出现在开始的薄片中的晶体类型特征的粉末,这样使粉末更多地可浸透到液体镁中。
具体来说,选择活化的晶体硼粉末,使平均体积测定颗粒直径范围从30到70微米,并且具有等于起始晶体硼薄片类型的晶体类型,而且实际上没有氧污染。步骤b)包括形成活化晶体硼粉末的多孔锭料。
活化晶体硼粉末的多孔锭料的形状类似于最终产品形状,且必须有高于晶体硼理论密度(2.35g/cm3)50%的表观密度。
活化晶体硼粉末的锭料另外可包含最高达20%原子量的镁。这种情形下,锭料一般由活化晶体硼粉末和实际上没有氧污染且粒度低于硼的镁粉末构成。锭料还能够由活化晶体硼粉末构成,其金属Mg表面覆盖并通过在惰性气氛中的热处理彼此熔焊,使得保持锭料的多孔性,同时提供对于其处理的力学一致性。
包含镁的锭料还必须满足以上定义的表观密度要求。
后来的步骤c)包括将经受热处理的成分的组合,并在步骤d)转化为最终产品。组合这些成分的容器也是重要的。
步骤c)包括在适当的容器中放入两种成分的组合:第一种成分是以上述活化的晶体硼粉末产生的锭料,其纯度至少高于或等于99.4%,形状类似于最终产品,且表观密度高于菱形体晶体硼的理论密度(2.35g/cm3)D的50%,最好是范围从51%到56%。第二成分由纯度高于99%的一个或多个纯度高于99%的金属Mg块状体组成,其在步骤d)在熔化后通过活化的晶体硼粉末浸透。
液相的镁最好得自金属Mg的块状前体的熔化。实际上也没有氧的污染。
Mg与B之间的比率主要依赖于用于进行该反应所选择的技术。在任何情形下,它们都远离MgB2化合物的化学计量值。具体来说,Mg过量,使得原子量比率Mg/B大于0.5,所述比率最好大于或等于0.55。
当使用Mg与其它金属的混合物时,原子量比率(金属+Mg)/B应当大于0.55,同时Mg/B大于0.5。
低于以上规定限制的原子量比率值Mg/B,或(金属+Mg)/B,引起产生产品局部致密化的反应,这将降低或完全消除关于电流传送的超导性。
实现步骤c)的容器由一种材料构成,该材料不得被硼和镁在温度高达1000℃侵蚀,诸如Nb,Ta,MgO,Bn等或任何抗高温的材料,内部通过以上材料之一的护套衬里。以防止硼锭料和Mg的块状体由于形成容器的元素所至的污染。所述容器的一个例子在图2中提供。
该容器必须保持密封,并在步骤d)全部处理时间期间结构上不变。必须在容器内部呈现一种惰性气体气氛,或替代地低氧(低于20%原子量)含量气氛,其所处压力要保证阶段d)的整个处理期间呈现液相镁。容器的密封和机械的整体性,能够借助于焊接和/或固定在适当的机械中实现,这种机械要能够平衡反应期间所产生的内部压力,并能够防止大气氧的污染。
该方法的步骤d)包括在高于700℃,在惰性气体存在下的热处理至少达30分钟,以允许镁一般以液相通过活化晶体硼粉末锭料的后继浸透。步骤d)最好在温度范围800℃到1000℃进行1-3小时。
容器内的气氛还可以是低氧含量的气氛(低于20%原子量)。
具体来说,浸透可以是通过将活化的硼粉末的多孔锭料浸入保持在惰性气体压力下的熔化的镁中通过渗透而实现。
浸透还可以在密封的容器中进行,在足够高的温度和允许液体镁浸湿活化的硼粉末的气压下,通常在无氧或最小氧含量。
根据本发明的方法以下的详细说明,提供了活化浸透硼粉末的锭料,放入容器内必须的金属Mg的量-为了简化,该容器可由以上所述防止其被高温的镁和硼侵蚀的衬套适当防护的钢制成-其余在惰性气体或低氧含量的气氛中在保证镁在反应温度下以液相呈现的压力收集。在原子量比率Mg/B大于0.5的量呈现金属镁Mg,必须这样安排,使一旦达到超过650℃的高温,允许液体镁通过多孔锭料的浸透。
本发明中使用的晶体硼有一般菱形晶体性,其特征是对不同的晶胞参数存在至少两个不同的相:其必须事先被力学上活化,使得不改变晶体性本身并获得更快速和更有效浸透的粒度。活化硼的一种方法例如是在“几乎静态”状态下,通过高负荷压挤在压力机中碾压几毫米尺寸的浸透薄片,所述碾压不同于在旋转球磨中实现的破碎。实际上后者这一碾压类型不仅产生细得多粒度的粉末(低于20微米),而且还在开始的晶体硼的晶体性中引起不希望有的变化,所述变化借助于来自粉末的X-射线衍射检测,这时衍射线分离的消失,知留下已知的菱形晶体硼相(在数据库JCPDS,card#11-618中有述):这一现象与存在于开始晶体B薄片中的较大的晶胞的消失相关,这种晶胞的存在可认为有利于镁的浸透。
可使用通常的粉末压紧技术制备活化的晶体硼粉末的锭料,并必须有适当的表观密度。另外,该锭料也可在容器本身中产生,通过在内部直接灌注活化晶体硼粉末并将其压紧直到达到所需的表观密度。
如以上所述,活化的晶体硼粉末的锭料可包含最高20%的原子量镁,并可由活化的表面涂敷金属镁的晶体硼粉末构成。
已经惊奇地发现,使用使用如上适当制备的锭料,封闭在包含适当惰性气体含量或有低氧含量的密封容器内,并保持反应物在高于温度700℃至少30分钟,允许在已经由锭料占据的全部容积中形成MgB2的B和Mg和少量金属Mg的反应变换。该产品均匀地分布,而且在最终产品内,偶然存在平均尺寸小于20微米的空区域。不论金属镁的存在或空区域的存在对最终产品的异常超导特性没有明显影响。
替代纯液态镁,使用这种金属和一种或多种较低熔点金属诸如Ga,Sn,In,和Zn,或等价的合金的混合物,后者按所需量存在,最高到对应于等价合金的低共熔点百分比,能够等同地产生高密度化MgB2最终产品,具有与使用纯金属Mg获得的产品有类似的超导体性质。
在MgB2晶格之外并由于合金使用的金属,少数相的存在,已证明不妨碍超导性。熔点低于纯镁的这些合金的使用,通过降低液态金属在典型反应温度的黏滞性,允许反应以更快速的时间和/或以较低的温度发生,并因而是对于降低过程成本的有用方法。
按先前的观察,根据本发明的方法的主要优点在于,该方法允许以简单和经济的方式生产MgB2超导固体最终产品,其密度值最高接近理论值,对于按技术状态已知方法获得的产品有改进的特性。从可应用的观点,使用这样获得的密度值接近理论值的MgB2,允许可向超导体固体最终产品传送的电流增加,并还改进了它们的机械特性。
提供以下的例子是为了更好地理解本发明。
例子1
从尺寸为几毫米的晶体硼薄片出发制备20g的活化晶体硼粉末(纯度99.4%,商业来源:grade K2 of H.C.STARK,Goslar(D)),通过施加高负荷压挤碾压薄片,即将它们放置在位于压力机活塞之间的两个金属板之间,在“几乎静态”条件下向其反复施加高达50吨的负荷。这样碾压的粉末以100微米网格筛子筛选。这样筛选的粉末的X-射线衍射频谱,在较高晶面距离部分,仍然有晶体硼相典型的衍射峰值的分离(在文件JCPBS中描述的菱形晶胞,对应于准六方晶体的晶胞边a0=1.095nm,c0=2.384nm的card#11-618)。出现在活化粉末中的附属的衍射峰值,具有与菱形相可边的密度,并能够解释为属于有类似于对应于对应于准六方晶体的晶胞边a0=1.102nm,c0=2.400nm菱形晶胞的晶胞相,对于规则的菱形晶体硼相带有1.8%相继的平均容积膨胀。作为一例,能够在图1表示的粉末X-射线衍射图中观察到前五个反射的分离(粗线),为了简化该图(细线)还指出从同一起始的薄片但以传统反复即使用旋转球磨获得的硼粉末对应的反射。
例子2
图2示意表示的圆柱体钢铁容器,以厚度100微米的Nb页片衬里(图2,其中1指示钢容器,2指示防护衬套)。页片围绕内壁包裹两次,且厚度相同的两个Nb盘放置在钢圆柱体的底部和插塞之下。两个镁圆柱体,总重量15.2g纯度99%且直径允许它们精确插入Nb衬套内,相继被插入到这样衬里的容器内;例子1的10.7g的活化晶体硼粉末被放置在以上两个Mg圆柱体之间,并通过重力压紧,表观密度等于菱形晶体B的理论密度52%。
反应物重量要使得可获得等于0.63的原子量比率Mg/B。
钢容器放置在氩流中,然后通过把插塞焊接到电极而密封。然后它被放置在一石英管中,在此在氩流中被加热到950℃达3小时。陷阱到钢容器中的气体在950℃产生大约4个大气压的压力,足以保证液态Mg相与MgB2平衡的稳定性(参见Zi-Kui et al.的文章:Preprint in Condensed-Matter Publ.Nr.0103335,March 2001)。
冷却之后,金属容器被打开,并从中心部分取出密度2.4g/cm,直径大约17mm且高度大约30mm的均匀致密化的圆柱体。借助于图3中所示从粉末X-射线衍射的分析,验证出所述致密化圆柱体主要由MgB2构成,存在少量金属Mg相和其它少量不可识别但在任何情形下不归因于MgO的峰值。
然后把这样获得的MgB2圆柱体的一部分取出,以便如图4中所示,通过在交流电中测量其磁感系数控制其临界温度,验证超导过度有39K的初始Tc,以及曲线在转折点的扩展为ΔT=0.5K。
然后从该MgB2圆柱体截取截面等于6.2mm2长度等于28mm的矩形棒,临界电流的阻力测量是在高磁场存在4.2K温度下实现的。
以在对应于100微伏/m电场的临界电流的测量标准(Europeanregulation EN61788-1:1998),获得表1的值:
表1
  磁场(特斯拉)   临界流密度(A/mm<sup>2</sup>)
  9   29.0
  10   12.0
  11   4.5
  12   2.2
例子3(比较)
按照例子2中所述相同的过程,制备一类似的容器,使用相同量的Mg和与例子1相同来源的11.58g晶体硼粉末,但不是根据例子1中所述过程活化的。因而Mg/B反应物之间的原子量比率等于0.58。按衬套在旋转球磨碾碎晶体硼粉末,并以网格100微米的筛子筛选。精细得多的粉末被压紧到表观密度值等于理论晶体硼密度值的57%。
在类似于例子2的热处理后,所得产品从容器中取出,该产品由两个致密化MgB2直径为17mm,高度大约8mm的圆柱体,以及位于两个致密化圆柱体之间的局部反应的硼粉末组成。
例子4
对于容器的准备和使用活化晶体硼粉末的性质和方法,都按照例子2中所述的过程。除了两个圆柱体金属Mg之外,还按以下总量使用金属Zn两个盘(纯度99%):Mg=5.91g,Zn=4.64g,B=5.10g。于是使用以下的原子量比率:(Zn+Mg)/B=0.67;Mg/B=0.52;Zn/Mg=0.29。
在容器中活化的晶体硼粉末被压紧到菱形晶体硼理论值的表观密度54%。
在以850℃进行2小时热处理后,从该容器取出均匀的致密化圆柱体,直径为14mm,高度22mm以及密度=2.57g/cm3,在X-射线衍射分析时,证明主要由MgB2组成,有少量的含Zn相。
然后取出这样获得的MgB2圆柱体的一部分,通过在交流电中测量磁感系数控制其临界温度,图5验证超导过度有38.4K的初始Tc,以及曲线在转折点的扩展为ΔT=1.0K。

Claims (27)

1.一种用于制备其密度接近理论值的MgB2超导体块状体的方法,所述的密度是2.25到2.63g/cm3,其特征在于,该方法包括以下步骤:
a)随着活化粉末的形成,晶体硼被机械活化;
b)晶体硼的活化粉末多孔锭料的形成;
c)晶体硼的活化粉末多孔锭料和金属镁块状体前体在容器中组合,并在惰性气体或低氧含量气氛中将它们密封;
d)对按以上组合的硼和镁以高于700℃的温度热处理,时间大于30分钟,然后通过活化的晶体硼粉末浸透液相镁。
2.根据权利要求1所述的方法,其特征在于,所述的晶体硼的机械活化步骤a)在于通过高负荷压缩实现的反复压挤碾压晶体硼薄片。
3.根据权利要求1所述的方法,其特征在于,所述的活化的晶体硼粉末平均体积测定颗粒直径范围从30到70微米,并具有等于起始晶体硼薄片的晶体类型。
4.根据权利要求1所述的方法,其特征在于,使用通常的粉末压紧技术制备活化的晶体硼粉末锭料。
5.根据权利要求1所述的方法,其特征在于,在容器本身中通过在里面直接灌注活化晶体硼粉末并将其压紧,制备活化的晶体硼粉末锭料。
6.根据权利要求1所述的方法,其特征在于,活化的晶体硼粉末锭料表观密度高于晶体硼理论密度值2.35g/cm3的50%。
7.根据权利要求1所述的方法,其特征在于,活化的晶体硼粉末锭料纯度高于或等于99.4%。
8.根据权利要求1所述的方法,其特征在于,活化的晶体硼粉末锭料,以粒度低于硼粉末粒度的镁粉末的形式,包含高达20%原子量的镁。
9.根据权利要求1所述的方法,其特征在于,活化的晶体硼粉末锭料由表面敷金属镁的活化的晶体硼粉末构成。
10.根据权利要求1所述的方法,其特征在于,多孔硼锭料和金属镁块状前体在容器中组合的步骤c),以纯度高于99%的金属镁块状前体实现。
11.根据权利要求1所述的方法,其特征在于,在步骤c)有过多的Mg,使得原子量比率Mg/B大于0.5。
12.根据权利要求1所述的方法,其特征在于,原子量比率Mg/B高于或等于0.55。
13.根据权利要求1所述的方法,其特征在于,步骤c)使用的容器由不会被硼和镁在温度高达1000℃侵蚀的材料构成。
14.根据权利要求13所述的方法,其特征在于,材料是Nb,Ta,MgO,BN。
15.根据权利要求1所述的方法,其特征在于,步骤c)使用的容器由任何抗高温的材料构成,内部以不会被硼和镁在温度高达1000℃侵蚀的材料构成的衬套衬里。
16.根据权利要求1所述的方法,其特征在于,步骤d)包括在温度范围从800℃到1000℃达1-3小时的热处理。
17.根据权利要求1所述的方法,其特征在于,步骤d)的浸透是通过将活化的晶体硼粉末的多孔锭料浸入保持在惰性气体压力下的熔化的镁中通过渗透而实现。
18.根据权利要求1所述的方法,其特征在于,步骤c)中金属Mg的块状前体由镁和一个或多个低熔点金属或等价的合金的块状体构成。
19.根据权利要求18所述的方法,其特征在于,低熔点金属的出现量使得能够达到对应于该等价合金的低共熔点百分比。
20.根据权利要求18所述的方法,其特征在于,原子量比率低熔点金属+镁/硼大于0.55,并同时原子量比率镁/硼大于0.5。
21.根据权利要求18所述的方法,其特征在于,从Ga,Sn,In及Zn中选择低熔点金属。
22.一种用根据权利要求1所述的方法获得的、其密度接近理论值的MgB2的超导块状体。
23.使用权利要求22所述的MgB2的超导块状体作为诸如激光切割和射频溅射的薄膜真空沉积技术的靶极。
24.使用权利要求22所述的MgB2的超导块状体作为电流接通,限流系统中的可变电感元件,用于悬浮系统中,医用磁共振系统,基本粒子加速器和检测器,能量积累系统,线性或非线性电动机,发电机中的永久磁体。
25.一种用根据权利要求1所述的方法获得的、其密度接近理论值的MgB2的超导固体最终产品。
26.使用权利要求25所述的MgB2的超导固体最终产品作为激光切割和射频溅射的薄膜真空沉积技术的靶极。
27.使用权利要求25所述的MgB2的超导固体最终产品作为电流接通,限流系统中的可变电感元件,用于悬浮系统中,医用磁共振系统,基本粒子加速器和检测器,能量积累系统,线性或非线性电动机,发电机中的永久磁体。
CNB028091612A 2001-05-11 2002-05-10 MgB2高密度超导体块状体的制备方法,最终产品及应用 Expired - Fee Related CN100452467C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2001MI000978A ITMI20010978A1 (it) 2001-05-11 2001-05-11 Metodo per la preparazione di corpi massivi superconduttori di mgb2 altamente densificati relativi manufatti solidi e loro uso
ITMI2001A000978 2001-05-11

Publications (2)

Publication Number Publication Date
CN1537335A CN1537335A (zh) 2004-10-13
CN100452467C true CN100452467C (zh) 2009-01-14

Family

ID=11447642

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028091612A Expired - Fee Related CN100452467C (zh) 2001-05-11 2002-05-10 MgB2高密度超导体块状体的制备方法,最终产品及应用

Country Status (15)

Country Link
US (1) US7396506B2 (zh)
EP (1) EP1390992B1 (zh)
JP (1) JP4431313B2 (zh)
KR (1) KR100904321B1 (zh)
CN (1) CN100452467C (zh)
AT (1) ATE335287T1 (zh)
AU (1) AU2002258044B2 (zh)
CA (1) CA2445104C (zh)
DE (1) DE60213588T2 (zh)
ES (1) ES2269685T3 (zh)
HK (1) HK1069012A1 (zh)
IL (2) IL158460A0 (zh)
IT (1) ITMI20010978A1 (zh)
RU (1) RU2264366C2 (zh)
WO (1) WO2002093659A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016103B2 (ja) * 2003-03-04 2007-12-05 独立行政法人物質・材料研究機構 MgB2超伝導体の製造方法
JP2006127898A (ja) * 2004-10-28 2006-05-18 Sumitomo Electric Ind Ltd 焼結体、焼結体の製造方法、超電導線材、超電導機器、および超電導線材の製造方法
DE102006017435B4 (de) * 2006-04-07 2008-04-17 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Pulver für die Herstellung von MgB2-Supraleitern und Verfahren zur Herstellung dieser Pulver
EP2263269A2 (en) * 2008-03-30 2010-12-22 Hills, Inc. Superconducting wires and cables and methods for producing superconducting wires and cables
US8812069B2 (en) * 2009-01-29 2014-08-19 Hyper Tech Research, Inc Low loss joint for superconducting wire
KR101044890B1 (ko) * 2009-02-18 2011-06-28 한국원자력연구원 이붕소마그네슘 초전도 선재의 제조 방법
DE102009010112B3 (de) * 2009-02-21 2010-09-02 Bruker Eas Gmbh Verfahren zur supraleitenden Verbindung von MgB2-Supraleiterdrähten über eine MgB2-Matrix aus einem Mg-infiltrierten Borpulver-Presskörper
IT1398934B1 (it) * 2009-06-18 2013-03-28 Edison Spa Elemento superconduttivo e relativo procedimento di preparazione
JP2013229237A (ja) * 2012-04-26 2013-11-07 Univ Of Tokyo 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体
FR3034365B1 (fr) * 2015-03-31 2017-05-19 Metrolab Cryostat, vehicule de transport a sustentation magnetique et systeme de transport a sustentation magnetique associes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276734A (ja) * 1991-04-08 1993-10-22 Emerson Electric Co 超電導体モータとそれを構成する方法
JPH07245426A (ja) * 1994-03-07 1995-09-19 Mitsubishi Heavy Ind Ltd 超電導加速器用クライオスタット
JPH08288125A (ja) * 1995-04-13 1996-11-01 Sumitomo Special Metals Co Ltd 超電導磁気浮上装置並びにその超電導体の磁化方法
JPH11234898A (ja) * 1998-02-20 1999-08-27 Mitsubishi Electric Corp 超電導限流器
JPH11248810A (ja) * 1998-02-27 1999-09-17 Rikagaku Kenkyusho 核磁気共鳴装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751048A (en) * 1984-10-19 1988-06-14 Martin Marietta Corporation Process for forming metal-second phase composites and product thereof
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
US4859652A (en) * 1987-11-16 1989-08-22 W. R. Grace & Co.-Conn. Method for preparation of high temperature superconductors using trichloroacetates
US5002926A (en) * 1988-02-12 1991-03-26 W. R. Grace & Co.- Conn. Ceramic composition
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5366686A (en) * 1993-03-19 1994-11-22 Massachusetts Institute Of Technology, A Massachusetts Corporation Method for producing articles by reactive infiltration
US6769473B1 (en) * 1995-05-29 2004-08-03 Ube Industries, Ltd. Method of shaping semisolid metals
US5711366A (en) * 1996-05-31 1998-01-27 Thixomat, Inc. Apparatus for processing corrosive molten metals
KR100413533B1 (ko) * 2001-03-19 2003-12-31 학교법인 포항공과대학교 초전도 마그네슘 보라이드(MgB₂) 박막의 제조 방법 및제조 장치
WO2002103370A2 (en) * 2001-06-01 2002-12-27 Northwestern University Superconducting mg-mgb2 and related metal composites and methods of preparation
ITMI20021004A1 (it) * 2002-05-10 2003-11-10 Edison Spa Metodo per la realizzazione di fili superconduttori a base di filamenti cavi di mgb2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276734A (ja) * 1991-04-08 1993-10-22 Emerson Electric Co 超電導体モータとそれを構成する方法
JPH07245426A (ja) * 1994-03-07 1995-09-19 Mitsubishi Heavy Ind Ltd 超電導加速器用クライオスタット
JPH08288125A (ja) * 1995-04-13 1996-11-01 Sumitomo Special Metals Co Ltd 超電導磁気浮上装置並びにその超電導体の磁化方法
JPH11234898A (ja) * 1998-02-20 1999-08-27 Mitsubishi Electric Corp 超電導限流器
JPH11248810A (ja) * 1998-02-27 1999-09-17 Rikagaku Kenkyusho 核磁気共鳴装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis and Processing of MgB2 powders and wires. C.E.Cunningham et al.Physica C,Vol.353 . 2001
Synthesis and Processing of MgB2 powders and wires. C.E.Cunningham et al.Physica C,Vol.353 . 2001 *

Also Published As

Publication number Publication date
HK1069012A1 (en) 2005-05-06
JP4431313B2 (ja) 2010-03-10
WO2002093659A3 (en) 2003-10-16
CN1537335A (zh) 2004-10-13
IL158460A0 (en) 2004-05-12
CA2445104C (en) 2011-06-21
IL158460A (en) 2011-02-28
WO2002093659A2 (en) 2002-11-21
US7396506B2 (en) 2008-07-08
CA2445104A1 (en) 2002-11-21
ITMI20010978A1 (it) 2002-11-11
AU2002258044B2 (en) 2007-03-15
ITMI20010978A0 (it) 2001-05-11
EP1390992B1 (en) 2006-08-02
EP1390992A2 (en) 2004-02-25
KR20030092102A (ko) 2003-12-03
DE60213588D1 (de) 2006-09-14
KR100904321B1 (ko) 2009-06-23
DE60213588T2 (de) 2007-08-02
RU2003130954A (ru) 2005-04-10
US20040124086A1 (en) 2004-07-01
ATE335287T1 (de) 2006-08-15
ES2269685T3 (es) 2007-04-01
JP2005508278A (ja) 2005-03-31
RU2264366C2 (ru) 2005-11-20

Similar Documents

Publication Publication Date Title
Grünberger et al. Hot deformation of nanocrystalline Nd-Fe-B alloys
CN100452467C (zh) MgB2高密度超导体块状体的制备方法,最终产品及应用
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
DE10134909A1 (de) Kältespeichermaterial, Verfahren zu dessen Herstellung und das Material verwendender Kühlapparat
KR102309177B1 (ko) 망간, 철, 규소, 인 및 탄소를 포함하는 자기열량 물질
EP0251233B1 (en) Anisotropic rare earth magnet material and production process thereof
AU2002258044A1 (en) Method for the preparation of highly densified superconductor massive bodies of MgB2
EP1394112B1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
CN109293364A (zh) 一种碳化硼陶瓷微波合成方法
CN109319748A (zh) 一种具有室温柔性的Cu2X块体热电材料的制备方法
CN109133939B (zh) 一种制备致密超大负热膨胀块体材料的方法
CN102345069A (zh) 大尺寸块体微米晶/纳米晶双相Fe-Al-Cr材料及其制备方法
Ortona et al. Spark plasma sintering of ZrB2–SiC composites with in-situ reaction bonded silicon carbide
Bhagurkar Processing of MgB2 bulk superconductor by infiltration and growth
CN110364324A (zh) 低热滞的Mn-Fe-P-Si基磁制冷材料及其制备方法
CN109928751A (zh) 一种SrMoO3陶瓷靶材的制备方法
Bianconi et al. Controlling the Critical Temperature in Mg 1− x Al x B 2
Shibata et al. Electrical and mechanical properties of ZrO 2 (2Y)/TiN composites and laminates made from these materials
CN108585871B (zh) 一种b4c陶瓷块体的快速制备方法
CN117088683A (zh) 一种含有核壳结构复合增韧相的氧化铝复合陶瓷及其制备方法
Xia et al. Hybrid microwave synthesis of MgCNi3 superconductor
Yeh et al. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering
Imaida et al. Hot isostatic pressing of sendust metal powders
Guo et al. Synthesis of YBa2Cu4O8 ceramics at one atmosphere pressure in oxygen
Yan et al. Mechanical Properties of AlMgB14 prepared by field-activated, pressure-assisted synthesis process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1069012

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1069012

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20150510

EXPY Termination of patent right or utility model