CN100439819C - 极低温冷冻机 - Google Patents

极低温冷冻机 Download PDF

Info

Publication number
CN100439819C
CN100439819C CNB038197928A CN03819792A CN100439819C CN 100439819 C CN100439819 C CN 100439819C CN B038197928 A CNB038197928 A CN B038197928A CN 03819792 A CN03819792 A CN 03819792A CN 100439819 C CN100439819 C CN 100439819C
Authority
CN
China
Prior art keywords
refrigerator unit
refrigerator
unit
temperature
drive motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038197928A
Other languages
English (en)
Other versions
CN1675505A (zh
Inventor
田中秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002239550A external-priority patent/JP4445187B2/ja
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of CN1675505A publication Critical patent/CN1675505A/zh
Application granted granted Critical
Publication of CN100439819C publication Critical patent/CN100439819C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/002Gas cycle refrigeration machines with parallel working cold producing expansion devices in one circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1428Control of a Stirling refrigeration machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

在电源(20)与管理冷冻机单元(10)的吸排气循环时间的吸排气阀驱动用马达(14)之间设置反相器(22),根据检测冷冻机单元(10)的热负荷部(11)的温度的温度传感器(24)的输出控制上述反相器(22)的输出频率。由此能够不用电加热器而用可靠性较高的方法调整各冷冻机的温度。

Description

极低温冷冻机
技术领域
本发明涉及极低温冷冻机,特别涉及适用于低温泵、超导磁铁、极低温测量装置、简易液化机等中的、能够进行温度调节的极低温冷冻机。
背景技术
极低温冷冻机一般具备存放蓄冷材料并在内部具有膨胀室的膨胀式冷冻机单元和存放压缩机主体的压缩机单元,上述冷冻机单元被安装到要冷却到极低温度下的装置或容器等内。并且,将用压缩机单元压缩到高压的制冷气体输送给冷冻机单元,这里,用蓄冷材料冷却该高压制冷气体后使其膨胀再冷却,使该低压制冷气体回到压缩机单元,通过反复进行这样的冷冻循环而获得极低的温度。
在用这样的冷冻机进行温度调节时,以往通过在冷冻机单元中配设电加热器,加入热负荷来调节温度。
但是,由于是在极低的温度环境下使用,因此加热器的可靠性低,经常发生绝缘不良或由此引起的漏电而造成紧急停止等问题。
而作为其他的方法,也考虑了例如记载在日本专利特开2000-121192中的,用反相器控制压缩机主体的旋转速度调整气体量来调整温度的方法。该方法虽然在用1台压缩机单元运行1台冷冻机单元时有效,但在用1台或多台压缩机单元运行多台冷冻机单元时,存在不能分别调整各冷冻机单元的温度这样的问题。
而且,当用1台或多台压缩机单元运行多台冷冻机单元时,由于各冷冻机单元启动时的配气定时不变,因此流经各冷冻机单元中的气体流量不均匀(当吸气时机不重叠时先吸气的冷冻机单元中流过的量多),还存在冷冻机单元之间的冷冻能力不均匀的问题。
发明内容
本发明就是为了解决上述以往的问题,第一课题是通过设置在常温部中的温度控制机构使得能够调节温度。
本发明的第二课题是消除用1台或多台压缩机单元运行多台冷冻机单元时的冷冻机单元之间的冷冻能力的不均匀。
而且,本发明的第三个课题是降低电力消耗。
本发明通过在极低温冷冻机中具备:设置在电源与管理冷冻机单元的吸排气循环时间的吸排气阀驱动用马达之间的、可改变该吸排气阀驱动用马达的频率的机构,检测冷冻机单元的热负荷部的温度的温度传感器,根据该温度传感器的输出信号、控制可改变上述吸排气驱动用马达的频率的机构的控制器;从而解决了上述第1课题。
并且,在用1台或多台压缩机单元运行多台冷冻机单元时,通过构成使用了上述机构的冷冻机单元,解决了上述第二课题。
本发明通过在极低温冷冻机中使用具有如下的压缩机单元,由多台上述冷冻机单元和1台或多台上述压缩机单元构成,从而解决了上述第三课题,所述压缩机单元的特征在于具有:设置在电源与压缩机单元的压缩机主体马达之间的、可改变该压缩机主体马达的频率的机构;安装在连接上述压缩机主体的排出口与上述冷冻机单元的制冷剂供给口的高压制冷剂管线上的高压压力传感器;安装在连接上述压缩机主体的吸入口与上述冷冻机单元的制冷剂排出口的低压制冷剂管线上的低压压力传感器;根据上述高压压力传感器和上述低压压力传感器的输出信号、控制可改变上述压缩机主体马达的频率的机构的控制器。
本发明还通过在极低温冷冻机中使用如下的压缩机单元,由多台上述冷冻机单元和1台或多台上述压缩机单元构成,从而解决了上述第三课题,所述压缩机单元的特征在于具有:设置在电源与压缩机单元的压缩机主体马达之间的、可改变该压缩机主体马达的频率的机构;安装在高压制冷剂管线与低压制冷剂管线之间的差压压力传感器,所述高压制冷剂管线连接上述压缩机主体的排出口和上述冷冻机单元的制冷剂供给口,所述高低压制冷剂管线连接上述压缩机主体的吸入口和上述冷冻机单元的制冷剂排出口;根据该差压压力传感器的输出信号、控制可改变上述压缩机主体马达的频率的机构的控制器。
并且,本发明通过提供特征为具备上述冷冻机单元或极低温冷冻机的低温泵来解决上述第一课题,而且解决了上述第二、第三课题。
本发明通过提供具备以下特征的低温泵,解决了上述第一课题,并解决了上述第二、第三课题,所述低温泵的特征在于具有:检测低温泵的低温板的任意位置的温度的温度传感器,根据该温度传感器的输出、控制可改变管理冷冻机单元的吸排气的循环时间的吸排气阀驱动用马达的频率的机构的控制器。
本发明通过提供特征为具备上述冷冻机单元或极低温冷冻机的超导磁铁,解决了上述第一课题,而且解决了上述第二、第三课题。
本发明通过提供具备以下特征的超导磁铁,解决了上述第一课题,而且解决了上述第二、第三课题,所述超导磁铁的特征在于具有:检测超导磁铁的任意位置的温度的温度传感器,根据该温度传感器的输出、控制可改变管理冷冻机单元的吸排气的循环时间的吸排气阀驱动用马达的频率的机构的控制器。
并且,本发明通过提供特征为具备上述冷冻机单元或极低温冷冻机的极低温测量装置,解决了上述第一课题,而且解决了上述第二、第三课题。
本发明通过提供具备以下特征的极低温测量装置而解决了上述第一目的,并解决了上述第二、第三课题,所述极低温测量装置的特征在于具有:检测极低温测量装置的任意位置的温度的温度传感器;根据该温度传感器的输出、控制可改变管理冷冻机单元的吸排气循环的时间的吸排气阀驱动用马达的频率的机构的控制器。
本发明通过提供特征为具备上述冷冻机单元或极低温冷冻机的简易液化机而解决上述第一目的,并解决了上述第二、第三课题。
本发明通过提供具备以下特征的简易液化机而解决了上述第一课题,而且解决了上述第二、第三课题,所述简易液化机的特征在于具有:检测简易液化机的任意位置的温度的温度传感器;根据该温度传感器的输出、控制可改变管理冷冻机单元的吸排气的循环时间的吸排气阀驱动用马达的频率的机构的控制器。
本发明通过提供具备以下特征的简易液化机而解决了上述第一课题,而且解决了上述第二、第三课题,所述简易液化机的特征在于具有:简易液化机的液体容器内的液面检测机构;根据该液面检测机构的输出、控制可改变管理冷冻机单元的吸排气的循环时间的吸排气阀驱动用马达的频率的机构的控制器。
附图说明
图1是表示本发明的极低温冷冻机的第1实施方式的结构的方框图。
图2是将第1实施方式的效果与以往例比较表示的曲线图。
图3是表示本发明的第2实施方式的结构的管路图。
图4是表示本发明的第3实施方式的结构的管路图。
图5是表示本发明的第4实施方式的结构的管路图。
图6是本发明的第5实施方式的低温泵的概略结构图。
图7是本发明的第6实施方式的超导磁铁的概略结构图。
图8是本发明的第7实施方式的极低温测量装置的概略结构图。
图9是本发明的第8实施方式的简易液化机的概略结构图。
图10是本发明的第9实施方式的在简易液化机中使用了液面计时的概略结构图。
具体实施方式
下面参照附图详细说明本发明的实施方式。
本发明的第1实施方式如图1所示,将本发明用于调整2级G-M(吉福德-麦克马洪)循环冷冻机的冷冻机单元10的第一级低温部11的温度,具备:反相器22,设置在电源20与吸排气阀驱动用马达14之间,所述吸排气阀驱动用马达14用来管理冷冻机单元10的吸排气循环时间的;温度传感器24,用来检测作为冷冻机单元10的热负荷部的第一级低温部11的温度;控制器26,根据该温度传感器24的输出反馈控制上述反相器22的输出频率。图中,12为上述冷冻机单元10的第二级低温部。
在本实施方式中,反相器22的输出频率由控制器26根据温度传感器24检测到的第一级低温部11的温度进行反馈控制,由吸排气阀驱动用马达14调整冷冻机单元10的吸排气循环时间。因此,当第一级低温部11的温度比目标值低时,可以通过延长冷冻机的吸排气循环时间来提高第一级低温部11的温度。反之,当第一级低温部11的温度比目标值高时,可以通过缩短冷冻机的吸排气循环时间来降低第一级低温部11的温度。
图2表示使负荷变化为15W、5W和0W时第一级低温部的温度(称为第一级温度)的变化状态。当像以往一样将冷冻机转速固定在72rpm时,第一级温度如虚线所示,随着负荷的减少,从100.9K减为65K、45K,与此相对照,本发明当负荷为5W时将冷冻机的转速下降为42rpm,当负荷为0W时下降为30rpm,如实线所示能够稳定地将第一级温度维持在大致100K。
下面说明本发明的第2实施方式。
本实施方式如图3所示,将本发明应用在用1台压缩机单元30运行3台2级G-M循环冷冻机的冷冻机单元10A、10B、10C时的场合,各冷冻机单元10A、10B、10C与第1实施方式一样设置有反相器22A、22B、22C,温度传感器24A、24B、24C以及控制器26A、26B、26C。
在本实施方式中,由于各冷冻机单元能够控制吸排气的循环时间以使第一级低温部的温度成为目标值,因此能够消除冷冻机单元之间的温度不均。
下面说明本发明的第3实施方式。
本实施方式如图4所示,将本发明应用在用1台压缩机单元30运行3台2级G-M循环冷冻机的冷冻机单元10A、10B、10C时的场合,各冷冻机单元10A、10B、10C与第1实施方式一样设置有反相器22A、22B、22C,温度传感器24A、24B、24C以及控制器26A、26B、26C。
在本实施方式中,还具备:第二反相器40,设置在电源20与压缩机单元30之间;压力传感器42、44,分别配设在连接压缩机单元30和冷冻机单元10A、10B、10C的工作气体管路的高压气体管线32及低压气体管线34上;第二控制器46,根据该压力传感器42、44的输出信号计算高压气体与低压气体之间的压差,通过控制第二反相器40的输出频率调整压缩机的转速,由此来调整压差。
在本实施方式中,首先,由于冷冻机的冷冻能力由高压气体与低压气体的压差决定,因此根据压力传感器42、44的输出将压差控制为一定值。此时,热负荷较小的冷冻机单元通过用反相器22A、22B或22C延长其吸排气循环的时间,来减少气体的流量,将温度调整到需要的温度。此时,虽然由于流到该冷冻机单元中的气体流量减少而增加了压差,但由于通过反相器40降低压缩机30的转速以使压差一定,因此能够降低整体电力的消耗。
根据本实施方式,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
下面说明本发明的第4实施方式。
本实施方式如图5所示,将本发明应用在用1台压缩机单元30运行3台2级G-M循环冷冻机的冷冻机单元10A、10B、10C时的场合,各冷冻机单元10A、10B、10C与第1实施方式一样设置有反相器22A、22B、22C,温度传感器24A、24B、24C以及控制器26A、26B、26C。
在本实施方式中,还具备:第二反相器40,设置在电源20与压缩机单元30之间;差压压力传感器48,配设在连接压缩机单元30和冷冻机单元10A、10B、10C的工作气体管路的高压气体管线32及低压气体管线34上;第二控制器46,根据该差压压力传感器48的输出信号控制第二反相器40的输出频率,由此调整压缩机单元30的转速来调整压差。
在本实施方式中,首先,由于冷冻机的冷冻能力由高压气体与低压气体的压差决定,因此通过差压压力传感器48的输出将压差控制在一定值。此时,热负荷较小的冷冻机单元通过用反相器22A、22B或22C延长其吸排气循环的时间,减少气体的流量,将温度调整到需要的温度。此时,虽然由于流过该冷冻机单元的气体流量减少而增加了压差,但由于反相器40降低压缩机30的转速以使压差为一定值,因此能够降低整体的电力消耗。
根据本实施方式,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
图6表示将本发明应用于低温泵的第5实施方式。该图为将本发明的第3实施方式应用于低温泵的方式,与图4中具有相同结构、相同作用的部分用相同的附图标记表示,并省略有关该部分的说明。
在本实施方式中,50A、50B、50C为安装到冷冻机单元10A、10B、10C中的泵容器,52A、52B、52C为例如在半导体制造装置中被排气成真空的容器。温度传感器24A、24B、24C并不局限于安装到冷冻机单元的第一级或第二级热负荷部,可以安装在低温泵的低温板的任意位置上。
根据本实施方式,如用第3实施方式说明过的那样,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
另外,虽然在本实施方式中低温泵与冷冻机单元是1对1组合,但也可以用于在对应1台低温泵而使用多台冷冻机单元的系统中。并且也可以使用第1实施方式、第2实施方式及第4实施方式。
图7表示将本发明应用于超导磁铁的第6实施方式。该图为将本发明的第3实施方式应用于超导磁铁的方式,与图4中具有相同结构、相同作用的部分用相同的附图标记表示,并省略有关该部分的说明。
在本实施方式中,60A、60B、60C为安装有冷冻机单元10A、10B、10C的超导磁铁,62A、62B、62C为例如核磁共振成像(MRI)装置。温度传感器24A、24B、24C并不局限于安装到冷冻机单元的第一级或第二级热负荷部,可以安装在超导磁铁的任意位置上。
根据本实施方式,如用第3实施方式说明过的那样,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
另外,虽然在本实施方式中超导磁铁与冷冻机单元是1对1组合,但也可以用于对应1台超导磁铁而使用多台冷冻机单元的系统中。并且也可以使用第1实施方式、第2实施方式及第4实施方式。
这里虽然就医疗领域中使用的MRI进行了说明,但本发明也可以应用于其他领域中使用的超导磁铁(例如MCZ等)的场合。
图8表示将本发明应用于极低温测量装置的第7实施方式。该图为将本发明的第3实施方式应用于极低温测量装置的方式,与图4中具有相同结构、相同作用的部分用相同的附图标记表示,并省略有关该部分的说明。
在本实施方式中,70A、70B、70C为安装到冷冻机单元10A、10B、10C中的极低温测量装置(例如X射线衍射测量装置、透光测量装置、光致发光测量装置、超导体测量装置、霍耳效应测量装置等)。温度传感器24A、24B、24C并不局限于安装到冷冻机单元的第一级或第二级热负荷部,可以安装在极低温测量装置的任意位置上。
根据本实施方式,如用第3实施方式说明过的那样,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
另外,虽然在本实施方式中极低温测量装置与冷冻机单元是1对1组合,但也可以应用于对应1台极低温测量装置而使用多台冷冻机单元的系统中。并且也可以使用第1实施方式、第2实施方式及第4实施方式。
下面,图9表示将本发明应用于简易液化机的第8实施方式。该图为将本发明的第3实施方式应用于简易液化机的方式,与图4中具有相同结构、相同作用的部分用相同的附图标记表示,并省略有关该部分的说明。
在本实施方式中,80A、80B、80C为安装有冷冻机单元10A、10B、10C的液体容器,82A、82B、82C为气体管线。温度传感器24A、24B、24C并不局限于安装到冷冻机单元的第一级或第二级热负荷部,可以安装在简易液化机的任意位置上。
根据本实施方式,如用第3实施方式说明过的那样,可以实现用各冷冻机单元中设置的反相器22A、22B和22C调节每台冷冻机的温度,由此能够消除冷冻机单元之间的温度不均,此外还能够用压缩机单元30中设置的第二反相器40降低电力的消耗。
在本实施方式中,像图10所示的第9实施方式那样,在上述液体容器80A、80B、80C的内部安装液面传感器28A、28B、28C来代替温度传感器24A、24B、24C,根据该液面传感器的输出进行控制,通过这样也能获得与第3实施方式相同的效果。
另外,虽然在本实施方式中简易液化机与冷冻机单元是1对1组合,但也可以应用于对应1台简易液化机而使用多台冷冻机单元的系统中。并且也可以使用第1实施方式、第2实施方式及第4实施方式。
虽然在上述实施方式中都是控制2级G-M循环冷冻机,但本发明的适用对象并不局限于此,很明显,同样可以用于一般的冷冻机(例如单级G-M循环冷冻机、3级G-M循环冷冻机、变形索尔维循环冷冻机、脉管式冷冻机等)的温度控制。并且,管理吸排气时间的机构也并不局限于吸排气阀驱动用马达。
工业实用性
根据本发明,由于构成温度控制机构的反相器和控制器设置在常温部,因此与将电加热器设置在低温部时相比可靠性较高,能够进行冷冻机的温度调节。并且,即使在用1台或多台压缩机单元运行多台冷冻机单元时也能分别调整各冷冻机单元的温度,能够消除冷冻机单元之间的温度不均。
特别是与压缩机单元的反相器控制结合时,在系统中能够调整压缩机的转速以获得最合适的气体流量,能够降低电力消耗。

Claims (11)

1.一种极低温冷冻机,其特征在于,
所述极低温冷冻机由多台冷冻机单元和1台或多台压缩机单元构成,
所述冷冻机单元,具有:
设置在电源与管理冷冻机单元的吸排气循环时间的吸排气阀驱动用马达之间的、可改变该吸排气阀驱动用马达的频率的机构;
检测冷冻机单元的热负荷部的温度的温度传感器;以及
根据该温度传感器的输出信号控制可改变上述吸排气阀驱动用马达的频率的机构的控制器;
所述压缩机单元具有:
设置在电源与压缩机单元的压缩机主体马达之间的、可改变该压缩机主体马达的频率的机构;
安装在连接上述压缩机主体的排出口与上述冷冻机单元的制冷剂供给口的高压制冷剂管线上的高压压力传感器;
安装在连接上述压缩机主体的吸入口与上述冷冻机单元的制冷剂排出口的低压制冷剂管线上的低压压力传感器;以及
根据上述高压压力传感器与上述低压压力传感器的输出信号、控制可改变上述压缩机主体马达的频率的机构的控制器。
2.一种极低温冷冻机,其特征在于,
所述极低温冷冻机由多台冷冻机单元和1台或多台压缩机单元构成,
所述冷冻机单元,具有:
设置在电源与管理冷冻机单元的吸排气循环时间的吸排气阀驱动用马达之间的、可改变该吸排气阀驱动用马达的频率的机构;
检测冷冻机单元的热负荷部的温度的温度传感器;以及
根据该温度传感器的输出信号控制可改变上述吸排气阀驱动用马达的频率的机构的控制器;
所述压缩机单元具有:
设置在电源与压缩机单元的压缩机主体马达之间的、可改变该压缩机主体马达的频率的机构;
安装在高压制冷剂管线与低压制冷剂管线之间的差压压力传感器,所述高压制冷剂管线连接上述压缩机主体的排出口和上述冷冻机单元的制冷剂供给口,所述低压制冷剂管线连接上述压缩机主体的吸入口和上述冷冻机单元的制冷剂排出口;以及
根据该差压压力传感器的输出信号控制可改变上述压缩机主体马达的频率的机构的控制器。
3.一种低温泵,其特征在于,具备权利要求1或2所述的极低温冷冻机。
4.如权利要求3所述的低温泵,其特征在于,具有:
检测低温泵的低温板的任意位置的温度的温度传感器;以及
控制器,根据该温度传感器的输出,对可改变吸排气阀驱动用马达的频率的机构进行控制,该吸排气阀驱动用马达管理冷冻机单元的吸排气的循环时间。
5.一种超导磁铁,其特征在于,具备权利要求1或2所述的极低温冷冻机。
6.如权利要求5所述的超导磁铁,其特征在于,具有:
检测超导磁铁的任意位置的温度的温度传感器;以及
控制器,根据该温度传感器的输出,对可改变吸排气阀驱动用马达的频率的机构进行控制,该吸排气阀驱动用马达管理冷冻机单元的吸排气的循环时间。
7.一种极低温测量装置,其特征在于,具备权利要求1或2所述的极低温冷冻机。
8.如权利要求7所述的极低温测量装置,其特征在于,具有:
检测极低温测量装置的任意位置的温度的温度传感器;以及
控制器,根据该温度传感器的输出,对可改变吸排气阀驱动用马达的频率的机构进行控制,该吸排气阀驱动用马达管理冷冻机单元的吸排气的循环时间。
9.一种简易液化机,其特征在于,具备权利要求1或2所述的极低温冷冻机。
10.如权利要求9所述的简易液化机,其特征在于,具有:
检测简易液化机的任意位置的温度的温度传感器;以及
控制器,根据该温度传感器的输出,对可改变吸排气阀驱动用马达的频率的机构进行控制,该吸排气阀驱动用马达管理冷冻机单元的吸排气的循环时间。
11.如权利要求9所述的简易液化机,其特征在于,具有:
简易液化机的液体容器内的液面检测机构;以及
控制器,根据该液面检测机构的输出,对可改变吸排气阀驱动用马达的频率的机构进行控制,该吸排气阀驱动用马达管理冷冻机单元的吸排气的循环时间。
CNB038197928A 2002-08-20 2003-06-12 极低温冷冻机 Expired - Lifetime CN100439819C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP239550/2002 2002-08-20
JP2002239550A JP4445187B2 (ja) 2002-04-18 2002-08-20 極低温冷凍機

Publications (2)

Publication Number Publication Date
CN1675505A CN1675505A (zh) 2005-09-28
CN100439819C true CN100439819C (zh) 2008-12-03

Family

ID=31943859

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038197928A Expired - Lifetime CN100439819C (zh) 2002-08-20 2003-06-12 极低温冷冻机

Country Status (6)

Country Link
US (1) US7555911B2 (zh)
KR (1) KR20050058363A (zh)
CN (1) CN100439819C (zh)
DE (1) DE10393146B4 (zh)
TW (1) TWI247871B (zh)
WO (1) WO2004018947A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184996A (zh) * 2011-12-27 2013-07-03 住友重机械工业株式会社 低温泵系统、超低温系统、压缩机单元的控制装置及其控制方法
TWI600832B (zh) * 2014-12-17 2017-10-01 住友重機械工業股份有限公司 Cryogenic pump, cryogenic pump control method and freezer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127901B2 (en) * 2001-07-20 2006-10-31 Brooks Automation, Inc. Helium management control system
US7165407B2 (en) * 2004-03-23 2007-01-23 Praxair Technology, Inc. Methods for operating a pulse tube cryocooler system with mean pressure variations
GB0620977D0 (en) * 2006-10-21 2006-11-29 Acton Elizabeth Controlled rate freezing equipment
JPWO2009028450A1 (ja) * 2007-08-28 2010-12-02 キヤノンアネルバ株式会社 クライオポンプシステム
GB2453721B (en) * 2007-10-15 2010-11-17 Siemens Magnet Technology Ltd Helium compressor with control for reduced power consumption
JP2012503199A (ja) 2008-09-19 2012-02-02 ブルックス オートメーション インコーポレイテッド 放出電流およびバイアス電圧を制御する電離真空計
JP4642156B2 (ja) * 2008-09-30 2011-03-02 キヤノンアネルバ株式会社 真空排気システム、真空排気システムの運転方法、冷凍機、冷凍機の運転方法、基板処理装置、電子デバイスの製造方法
CN102171454B (zh) * 2008-09-30 2014-03-12 佳能安内华股份有限公司 真空抽吸系统、衬底处理设备、电子装置的制造方法和真空抽吸系统的操作方法
SG176036A1 (en) * 2009-07-15 2011-12-29 Ulvac Inc Pressure reduction system and vacuum treatment device
JP5084794B2 (ja) * 2009-07-22 2012-11-28 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの監視方法
JP5907965B2 (ja) * 2010-07-30 2016-04-26 ブルックス オートメーション インコーポレイテッド 多冷却器高速クライオポンプ
JP5632241B2 (ja) * 2010-09-13 2014-11-26 住友重機械工業株式会社 クライオポンプ及び極低温冷凍機
TWI705187B (zh) * 2011-03-04 2020-09-21 美商艾德華真空有限責任公司 低溫冷凍系統以及用於控制氦氣冷凍劑之供給的方法
JP5669659B2 (ja) * 2011-04-14 2015-02-12 住友重機械工業株式会社 クライオポンプ及び真空排気方法
JP5679910B2 (ja) * 2011-06-03 2015-03-04 住友重機械工業株式会社 クライオポンプ制御装置、クライオポンプシステム、及びクライオポンプの真空度保持判定方法
GB2496573B (en) * 2011-09-27 2016-08-31 Oxford Instr Nanotechnology Tools Ltd Apparatus and method for controlling a cryogenic cooling system
JP6067423B2 (ja) * 2013-03-04 2017-01-25 住友重機械工業株式会社 極低温冷凍装置、クライオポンプ、核磁気共鳴画像装置、及び極低温冷凍装置の制御方法
JP5943865B2 (ja) * 2013-03-12 2016-07-05 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、及び圧縮機ユニット
JP6086835B2 (ja) * 2013-07-23 2017-03-01 住友重機械工業株式会社 圧縮機および冷却システム
DE102014010102A1 (de) * 2014-07-08 2016-01-14 Linde Aktiengesellschaft Verfahren zur Druck- und Temperaturreglung eines Fluids in einer Serie von kryogenen Verdichtern
JP2018127929A (ja) * 2017-02-07 2018-08-16 住友重機械工業株式会社 極低温冷凍機のための圧縮機ユニット、及びクライオポンプシステム
CN112639288B (zh) * 2018-09-03 2022-05-13 住友重机械工业株式会社 低温泵及低温泵的监视方法
EP3828577A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH System for medical data acquisition with two scanner units sharing a common infrastructure unit
KR102554000B1 (ko) * 2022-09-08 2023-07-18 크라이오에이치앤아이(주) 크라이오 펌프 시스템
KR102567685B1 (ko) * 2022-09-26 2023-08-18 크라이오에이치앤아이(주) 크라이오 펌프 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106263A (ja) * 1985-11-05 1987-05-16 株式会社日立製作所 蓄冷器式冷凍機及びその運転方法
JPS6433474A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Cooling device and operating method thereof
JPH07146020A (ja) * 1993-11-22 1995-06-06 Sumitomo Heavy Ind Ltd 極低温冷凍機
CN2200163Y (zh) * 1994-07-12 1995-06-07 浙江大学 微机实时控制脉管制冷机配气装置
JPH07294036A (ja) * 1994-04-27 1995-11-10 Sanyo Electric Co Ltd 極低温冷凍装置
JPH11182960A (ja) * 1997-12-25 1999-07-06 Daikin Ind Ltd 極低温冷凍装置
JP2001012817A (ja) * 1999-06-28 2001-01-19 Central Japan Railway Co 極低温冷凍機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543794A (en) * 1983-07-26 1985-10-01 Kabushiki Kaisha Toshiba Superconducting magnet device
JPS6346351A (ja) 1986-08-12 1988-02-27 株式会社東芝 極低温冷凍機
JPH0518227Y2 (zh) 1987-08-25 1993-05-14
US5752385A (en) * 1995-11-29 1998-05-19 Litton Systems, Inc. Electronic controller for linear cryogenic coolers
JP3573384B2 (ja) 1996-02-20 2004-10-06 住友重機械工業株式会社 極低温冷凍装置
JPH1054369A (ja) 1996-05-21 1998-02-24 Ebara Corp 真空ポンプの制御装置
JP2000121192A (ja) * 1998-10-21 2000-04-28 Daikin Ind Ltd 極低温冷凍装置
JP2000249056A (ja) 1999-02-26 2000-09-12 Suzuki Shokan:Kk クライオポンプの運転制御方法および運転制御装置
JP2002106991A (ja) 2000-09-29 2002-04-10 Sanyo Electric Co Ltd ヘリウム圧縮機ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106263A (ja) * 1985-11-05 1987-05-16 株式会社日立製作所 蓄冷器式冷凍機及びその運転方法
JPS6433474A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Cooling device and operating method thereof
JPH07146020A (ja) * 1993-11-22 1995-06-06 Sumitomo Heavy Ind Ltd 極低温冷凍機
JPH07294036A (ja) * 1994-04-27 1995-11-10 Sanyo Electric Co Ltd 極低温冷凍装置
CN2200163Y (zh) * 1994-07-12 1995-06-07 浙江大学 微机实时控制脉管制冷机配气装置
JPH11182960A (ja) * 1997-12-25 1999-07-06 Daikin Ind Ltd 極低温冷凍装置
JP2001012817A (ja) * 1999-06-28 2001-01-19 Central Japan Railway Co 極低温冷凍機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JJP昭64-33474A 1989.02.03
JJP特开2001-12817A 2001.01.19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184996A (zh) * 2011-12-27 2013-07-03 住友重机械工业株式会社 低温泵系统、超低温系统、压缩机单元的控制装置及其控制方法
CN103184996B (zh) * 2011-12-27 2016-05-25 住友重机械工业株式会社 低温泵系统、超低温系统、压缩机单元的控制装置及其控制方法
TWI600832B (zh) * 2014-12-17 2017-10-01 住友重機械工業股份有限公司 Cryogenic pump, cryogenic pump control method and freezer

Also Published As

Publication number Publication date
DE10393146B4 (de) 2015-07-02
DE10393146T5 (de) 2005-09-15
US7555911B2 (en) 2009-07-07
CN1675505A (zh) 2005-09-28
TW200403418A (en) 2004-03-01
US20060101836A1 (en) 2006-05-18
KR20050058363A (ko) 2005-06-16
WO2004018947A1 (ja) 2004-03-04
TWI247871B (en) 2006-01-21

Similar Documents

Publication Publication Date Title
CN100439819C (zh) 极低温冷冻机
TWI583903B (zh) Very low temperature refrigeration equipment, and very low temperature refrigeration device control method
JP4445187B2 (ja) 極低温冷凍機
TWI646264B (zh) 低溫冷凍系統以及用於控制氦氣冷凍劑之供給的方法
KR101527072B1 (ko) 크라이오펌프 시스템, 크라이오펌프 시스템의 운전방법, 및 압축기유닛
JP2007303815A (ja) 極低温冷凍機の運転方法
TWI599720B (zh) Cryogenic pump system, and cryogenic pump system operation method
GB2455737A (en) Variable charge compressor
JP7201447B2 (ja) 極低温冷凍機の起動方法
US10921041B2 (en) Movable platen cooling apparatus and movable platen cooling system
CN103917833A (zh) 用于控制低温冷却系统的装置和方法
CN105020922B (zh) 一种冷库群节能系统及其控制方法
JP3976649B2 (ja) 極低温冷凍装置、及び、その運転方法
JP2001511243A (ja) 極低温冷凍機の圧力低下検出器
JP2004301445A (ja) パルス管冷凍機
JP2020186841A (ja) 冷媒回収システム及び冷媒回収システム制御方法
CN115371313B (zh) 一种制冷机控制方法及制冷机
JPH0420754A (ja) 冷凍機及びその冷凍能力の調整方法
KR20220164842A (ko) 극저온 펌프 시스템 및 극저온 펌프 시스템 제어방법
JP2003279185A (ja) 極低温冷凍機
JPS6346351A (ja) 極低温冷凍機
JP2006207886A (ja) 蓄熱式冷凍装置
JP3616761B2 (ja) 冷凍機運転方法
JP2001153472A (ja) 冷凍機制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20081203

CX01 Expiry of patent term