CN100380595C - 用于改善等离子氮化栅极电介质层中氮分布的方法 - Google Patents

用于改善等离子氮化栅极电介质层中氮分布的方法 Download PDF

Info

Publication number
CN100380595C
CN100380595C CNB038119269A CN03811926A CN100380595C CN 100380595 C CN100380595 C CN 100380595C CN B038119269 A CNB038119269 A CN B038119269A CN 03811926 A CN03811926 A CN 03811926A CN 100380595 C CN100380595 C CN 100380595C
Authority
CN
China
Prior art keywords
chamber
nitrogen
substrate
annealing
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038119269A
Other languages
English (en)
Other versions
CN1656604A (zh
Inventor
克里斯托弗·S·奥尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1656604A publication Critical patent/CN1656604A/zh
Application granted granted Critical
Publication of CN100380595C publication Critical patent/CN100380595C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/913Diverse treatments performed in unitary chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种方法,其中,在一个系统的室中被等离子氮化的栅极电介质薄膜随后在同一系统的另一个室中被加热或“退火”。可以控制处理延迟,使得在系统中被处理的全部晶片经历类似的氮含量。

Description

用于改善等离子氮化栅极电介质层中氮分布的方法
相关申请的交叉引用
本专利申请要求2002年6月12日递交的临时专利申请No.60/388,599以及2002年7月30日递交的临时专利申请No.60/339,765的优先权,这两个申请通过全文引用而被包含于此。
技术领域
本发明涉及半导体处理,更具体地,涉及用于改善等离子氮化栅极电介质层中的氮分布的方法。
背景技术
被用于晶体管制造的栅极电介质薄膜经常用氮离子被氮化,以提高它们的电容量。这种薄膜中的一小部分氮在被加入到薄膜中之后,在进一步处理之前被丢失了。由于工艺延迟中的差异,不同晶片之间总的氮含量可能不同,使得不同晶片的晶体管具有电容量显著不同的电介质层。
发明内容
提供了一种方法,其中,在一个系统的室中被氮化的栅极电介质薄膜随后在同一系统的另一个室中被加热或者“退火”。可以控制处理延迟,使得在系统中被处理的全部晶片经历类似的氮损耗。
附图说明
参考附图,以示例的方式进一步描述本发明,附图中:
图1是用于处理衬底的系统的平面图;
图2是图示了在被插入图1的系统之前的晶片衬底的横截面侧视图;
图3是图示了系统被如何操作以将衬底插入其多个室中的一个中的流程图;
图4是具有其中插入衬底的室的快速加热装置的横截面侧视图;
图5是图4的装置的盖子的仰视图;
图6是图示了衬底在图4的装置中被如何处理的流程图;
图7是晶片衬底在图4的装置中被处理之后类似于图2的横截面侧视图;
图8是具有其中插入衬底的另一个室的等离子反应器的立体图;
图9是图示了图8的系统的室的横截面侧视图;
图10图示了图8和图9的系统如何能够被用于将氮加入到二氧化硅栅极电介质层中;
图11是图示了不同时间段之后的氮水平的示图;
图12是图示了在比图1更小的时间段上经过不同时间段后的氮水平的示图;
图13是图示了当在退火步骤中使用不同温度斜率时的氮的百分比的示图;
图14是图示了当类似的薄膜分别在低压氧环境和高压氮环境中被退火时的氮的保持率的示图。
具体实施方式
附图中的图1图示了用于处理半导体晶片的系统10。系统10包括工厂集成单元12,第一和第二批量负载固定(loadlock)组件14A和14B,传递室18,第一、第二和第三晶片处理室20A、20B、20C和20D。
各晶片处理室20A、20B或20C直接通到传递室18。相应的缝隙阀82A、82B和82C被安装用于打开或关闭传递室18与相应的一个晶片处理室20A、20B、20C或20D之间的通路。
机械手84位于传递室18内。机械手84具有铲86,当机械手84被操作时,铲86可以将晶片从室20A、20B或20C中的一个传递到另一个。基座88位于室20的每一个中,晶片可以被铲86放置在该基座88上。
图2图示了在被插入系统10之前的衬底60。衬底60由硅制成,具有外延硅形成的上层,该层已经被清洁使得其是暴露的。
控制器(未示出)被用于控制图1所示的系统10的各种部件。
控制器通常是具有处理器的计算机,处理器被编程以执行程序,控制系统10的所有部件。程序包括处理器可执行代码,并通常被存储在盘或者其他计算机可读介质上,然后被加载进计算机的存储器中,计算机的处理器从该存储器处读取并执行程序,以控制系统10的部件。从下面的讨论中,程序的具体特征以及它是如何编制的,对本领域的技术人员来说将是明显的。
图3是帮助图示如何操作系统10的流程图。
缝隙阀42初始时被关闭,使得传递室18的边界不与负载固定室24连通。负载固定室24初始时被抽真空,以去除杂质。负载固定室24然后用例如氮气的惰性气体回填。缝隙阀82是打开的,使得晶片处理室20与传递室18连通。传递室18和晶片处理室20被例如氮气的惰性气体填充。第一负载固定组件14A的门40是打开的。
位于工厂集成单元12中的机械手(未示出)然后将总共25个衬底加载到第一负载固定组件14A中的晶片盒上(步骤1)。门40然后被关闭,使得衬底被隔离在负载固定室24中(步骤2)。
缝隙阀42然后被打开(步骤7)。机械手84然后从负载固定室24中的晶片盒移出一个衬底,并将该衬底放置在第一晶片处理室20A中。缝隙阀82然后被关闭,使得晶片处理室20与传递室18隔离开(步骤9)。
如图4和图5所图示的,晶片处理室20A是冷壁室,并构成快速加热装置100的一部分。如图1所示,快速加热装置100包括由侧壁114和底壁115包围的真空处理室20A。侧壁114和底壁115优选地由不锈钢制成。室20A的侧壁114的上部通过“O”形环116被密封到窗组件117上。辐射能光导管组件118被布置在窗组件117上方,并耦合到窗组件117上。辐射能组件118包括多个钨卤素灯119,例如Sylvania EYT灯,每个灯被安装到可以是不锈钢、黄铜、铝或其他金属的光导管121中。
衬底60在其边缘通过由碳化硅制成的支撑环162被支撑在室20A中。支撑环162被安装在可旋转的石英圆柱163上。通过旋转石英圆柱163,可以使得支撑环162和衬底60旋转。可以使用附加的碳化硅接合环来允许处理不同直径的晶片(例如,150mm以及200mm)。支撑环162的外侧边缘优选地从衬底60的外径伸出不到两英寸。室20A的容积近似是两升。
装置100的底壁115包括镀金的上表面111,用于将能量反射到衬底60的背面。另外,快速加热装置100包括多个穿过装置100的底壁115布置的光纤探头170,以便在其底部表面上的多个位置探测衬底60的温度。衬底60的背面与反射表面111之间的反射产生了黑体腔,使得温度测量与晶片背面的发射率无关,从而提供了精确的温度测量能力。
快速加热装置100包括穿过侧壁114形成的气体入口169,用于将处理气体注入到室20A中,以使得能够在室20A中实施各种处理步骤。耦合到气体入口169上的是诸如O2之类的含氧气体的例如罐的源,以及诸如H2之类的含氢气体的例如罐的源。在侧壁114中,布置在气体入口169相对侧上的是气体出口168。气体出口168被耦合到真空源,例如泵,以从室20A排出处理气体,降低室20A中的压力。在处理期间处理气体被连续地送入室中的同时,真空源保持希望的压力。
灯119包括被卷成线圈的灯丝,其轴线平行于灯罩的轴线。大多数光线垂直于轴线朝向周围的光导管的壁发射。光导管长度被选择为至少与相关联的灯一样长。只要到达晶片的功率不会由于增加的反射而显著地衰减,光导管的长度可以更长。光组件118优选地包括布置成六角形阵列或者“蜂房形”的187个灯,如图2所示。灯119被布置成充分覆盖支撑环162和衬底60的整个表面区域。灯119按区域分成组,它们可以被独立地控制以提供对衬底60非常均匀的加热。可以通过在各个热导管之间流过例如水的冷却剂来冷却热导管121。含有多个光导管121和相关联的灯119的辐射能量源118允许使用薄石英窗来提供用于对真空处理室中的衬底进行加热的光端口。
窗组件117包括多个短光导管141,它们被铜焊接到上/下法兰盘上,法兰盘的外边缘被密封到外壁144上。例如水的冷却剂可以被注入光导管141之间的空间中,用于冷却光导管141和法兰。光导管141对准照明器的光导管121。水冷法兰被夹在两个石英窗147和148之间,该法兰具有与灯壳体对准的光导管图案。在法兰的圆周附近,这些板用“O”形环149和151被密封到法兰上。上和下法兰盘板含有沟槽,这些沟槽提供了光导管之间的连通。通过经由连接到光导管141中的一个上,从而又连接到法兰的其余部分上的管道153进行抽气,可以在多个光导管141中产生真空。这样,当该夹层结构被放在处理室20A上时,一般是不锈钢的并且具有良好机械强度的金属法兰提供了足够的结构支撑。实际密封了处理室20A的下石英窗148由于两侧是真空,所以承受很小的压差或者没承受压差,因而可以被做得很薄。窗组件117的接合板的原理允许石英窗被容易地更换,用于清洗或者分析。另外,窗组件117的石英窗147和148之间的真空提供了防止有毒气体从反应室漏出的额外水平的保护。
快速加热装置100是能够以25~100℃/秒的速率倾斜改变衬底60温度的单晶片反应室。因为在氧化工艺期间,晶片温度比室侧壁114的温度至少高400℃,所以该快速加热装置100被称作“冷壁”反应室。加热/冷却流体可以被循环穿过侧壁114和/或底壁115,以将壁维持在希望的温度。对于使用本发明的现场水汽生成(insitu moisture generation)的蒸气氧化工艺,室壁114和115被维持在大于室温(23℃)的温度,以便防止凝结。快速加热装置100优选地被构造为包括负载固定装置和具有机械手的传递室的“工具组(cluster too1)”的一部分。
根据本发明的快速热氧化工艺中的水汽或蒸气的现场生成方法被图示在图6的流程图300中。本发明的方法将相对于在图4和图5所图示的快速加热装置中的现场水汽生成工艺来描述。应当认识到,本发明的现场水汽生成氧化工艺可以被用于氧化任何形态的硅,包括外延的、无定形的或者多晶的,包括掺杂的以及无掺杂的形式。另外,该工艺可以被用于钝化或者氧化其他器件或者电路特征,包括但不限于发射器和电容器二极管、互连线路和沟槽,以及被用于形成栅极电介质层。
如框302中所表示的,根据本发明的第一个步骤是将晶片或者衬底,例如衬底60,移到真空室20A中。如同利用现代工具组的典型情况那样,衬底60将被机械手从负载固定装置通过传递室被传递,并被面向上的放置在位于室20A中的碳化硅支撑环162上,如图1所示。衬底60一般将在传递压力近似20托的氮气(N2)气氛中被传递到真空室20A中。室20A然后被封闭。
接着,如在框304中所表示的,通过经由气体出口168抽空氮气(N2)气氛,室20A中的压力被进一步降低。室20A被抽空至足够去除氮气气氛的压力。室20A被抽气至预反应压力,该预反应压力低于将会发生现场水汽生成的压力,优选地,室20A被抽气至小于1托的压力。
与预反应抽气同时地,向灯119提供功率,而灯119照射衬底60和碳化硅支撑环162,从而将衬底60和支撑环162加热到稳定温度。衬底60的稳定温度小于引发被用于现场水汽生成的含氢气体和含氧气体的反应所要求的温度(反应温度)。在本发明优选实施例中的稳定温度约为500℃。
一旦达到了稳定温度和预反应压力,则室20A被希望的处理气体的混合物回填,如框306所示。处理气体包括反应物气体混合物,该混合物含有两种反应物气体:含氢气体和含氧气体,它们可以一起反应,在400℃到1250℃之间的温度上,生成水汽(H2O)。含氢气体优选地是氢气(H2),但也可以是其他含氢气体,例如但不限于氨(NH3)、氘(重氢)和例如甲烷(CH4)的烃。含氧气体优选地是氧气(O2),但也可以是其他类型的含氧气体,例如但不限于一氧化二氮(N2O)。如果需要,可以在处理气体混合物中包括其他气体,例如但不限于氮气(N2)。含氧气体和含氢气体优选地在室20A中混合在一起,以形成反应物气体混合物。
接着,如框308中所表示的,给灯119的功率被增加,使得衬底60的温度倾斜升高到处理温度。衬底60优选地以10℃/秒到100℃/秒之间,优选的是至少50℃/秒的速率从稳定温度倾斜变化至处理温度。本发明的优选处理温度在600℃到1150℃之间,优选的是950℃。处理温度必须至少在通常是至少600℃的温度(即,必须至少是可以通过衬底60引发含氧气体与含氢气体之间的反应的温度)。应当注意,实际的反应温度依赖于反应物气体混合物的分压以及反应物气体混合物的浓度比(concentrationratio),可以在400℃与1250℃之间。
随着衬底60的温度倾斜升高至处理温度,它经过了反应温度,并引起含氢气体与含氧气体的反应,以形成水汽或蒸气(H2O)。由于快速加热装置100是“冷壁”反应器,所以室20A中足够热而引发反应的表面只有衬底60和支撑环162。这样,在本发明中,水汽生成反应发生在距离衬底60表面约1cm附近。在本发明中,水汽生成反应被限定在大约为衬底60的两英寸的范围内,或者大约为支撑环162伸出衬底60外侧边缘的量的范围内。由于是晶片(和支撑环)的温度引发或者“开启”水汽生成反应,所以该反应被称作是被衬底60(和支撑环162)的温度热控制的。此外,本发明的水汽生成反应被称作是“表面催化”的,因为晶片的被加热表面对于反应的发生是必需的;但是,它在生成水汽的反应中并不被消耗。
接着,如框310所表示的,一旦已经达到了希望的处理温度,则衬底60的温度在充足的一段时间中被保持恒定,以使得从含氢气体与含氧气体的反应中生成的水汽可以使硅或薄膜氧化,以形成SiO2。衬底60通常将在30秒到120秒之间被保持在处理温度。处理时间和温度一般由所希望的氧化薄膜的厚度、氧化的目的以及处理气体的类型和浓度来规定。
接着,如框312中所表示的,给灯119的功率被降低或者关闭,以降低衬底60的温度。衬底60的温度降低(倾斜下降)得与其能够冷却的速度(大约50℃/秒)一样快。同时,N2吹扫气体被送入室20A中。当衬底60和支撑环162降到反应温度以下时,水汽生成反应终止。同样,是衬底温度(和支撑环)规定了水汽反应何时被“开启”或“关闭”。
接着,如框314中所表示的,室20A被抽气,优选地降到低于1托,以保证在室20A中不存在残余的含氧气体和含氢气体。室然后被N2气体回填至大约20托的希望的传递压力,衬底60被传递出室20A,以完成处理。此时,新的晶片可以被传递进入室20A,并重复在流程图300中所表示的处理。
再次参考图1,衬底60然后放置在传递室18中。图7图示了被移到传递室18中之后的衬底60。薄二氧化硅层62被形成在晶片衬底60上。
铲86立即将衬底60从处理室20A经由传递室18传递到处理室20B中。传递时间一般小于30秒,但是理想地是小于10分钟,更优选地是小于两分钟。
如图8和图9中所图示的,氮化处理室20B构成等离子反应器210的一部分。等离子反应器210包括室20B、衬底夹具214、射频(RF)线圈216和电极板218。
具体参考图8,等离子反应器210还包括下传递室226和传递机构228。室20B位于传递室226的顶部。传递室226的内部容积230被布置为通过室20B基底中的圆形开口232与室20B的内部容积224相连通。衬底夹具214固定在传递机构228的顶部,传递机构228可以被用于升起或降下衬底夹具214。
使用中,传递机构228被操作使得衬底夹具214被降到传递室226的内部容积230中。然后,位于与机械手连接的铲上的晶片衬底60通过传递室226壁中的缝隙阀开口被传递到内部容积230中。传递机构228然后被操作以升起衬底夹具214,使得衬底夹具214接触晶片衬底的下表面,并将晶片衬底升高离开铲。然后铲从传递室226中移走,此后,传递机构228再次被操作以将衬底夹具214升起到开口232中。位于衬底夹具214上的晶片衬底的上表面于是被暴露于室20B的内部容积224。
室20B主要包括导电主体236和电介质石英上壁238。导电主体236构成了室20B的下部,上壁238构成了室20B的上部。导电主体236和上壁238一起界定内部容积224。
穿过导电主体236到内部容积224中,形成了四个气体喷嘴端口240。气体喷嘴端口240围绕衬底夹具214以90°间隔布置。导电主体236还在其一侧上界定有真空抽气通道242。气体喷嘴端口240通过阀被连接到气体歧管,真空抽气通道242被连接到泵。当泵工作时,气体通过真空抽气通道242从内部容积224中被抽出,以降低内部容积224中的压力。可以操作阀以允许气体通过阀和气体喷嘴端口240从歧管进入内部容积224。
现在更具体地参考图9,上壁238具有拱形形状,电极板218具有与上壁238外表面相符合的拱形形状。电极板218实际上直接位于上壁238上。电极板218在上壁238中心上方界定有圆形开口244。上壁238和电极板218围绕纵轴246是对称的。
线圈216围绕纵轴246和开口244盘旋。线圈216位于电极板218上,并与电极板218的拱形形状相符合。线圈216的一端连接到RF源250,线圈216的相对的一端连接到地252。
现在结合在一起参考图9和图10。将晶片衬底插入等离子反应器210中的目的是将氮(N)加入到二氧化硅层62中,用于改变或改善其电介质特性。在内部容积224中产生氮离子等离子体222(N2 +)。氮离子具有由等离子体的特性所定义的能量,该能量导致氮离子被加入到二氧化硅层62中。
通过首先将内部容积224中的压力降低到预定水平来产生等离子体。然后将含氮气体引入到内部容积224中。含氮气体例如可以是纯氮气(N2)、氮气和氦气的混合物(N2/He)、氮气和氖气的混合物(N2/Ne)或者氮气和氩气的混合物(N2/Ar)。为了进一步讨论,给出气体是纯氮气的示例。
RF源250然后被操作,以向线圈216提供频率为12.56MHz的RF电流。RF线圈216产生RF场,该RF场通过电极板218跨过上壁238传播。圆形开口244允许RF场穿过上壁238进入内部容积224。RF场然后与内部容积224中的氮气耦合。RF场最初激发少量的自由电子。自由电子然后与其他原子碰撞,以从这些原子中释放出更多电子。过程持续,直到达到稳态条件,其中等离子体222具有稳定数量的自由电子和自由离子、稳定的电子温度和相对于地的恒定电压。于是在内部容积224中产生了离子“库”,并且等离子体222的电势帮助从这个库中将离子加入到二氧化硅层62中。在整个处理期间,衬底和衬底夹具214的电势自由浮动,但是等离子体222的电压与衬底夹具214的电压是有差异的,该差值驱动离子的加入。衬底温度被保持在25℃到30℃之间,室20B中的压力为10毫托左右。
再次参考图1,衬底60然后在板86上通过传递室18从处理室20B移出,然后立即被移动到退火处理室20C中。从处理室20B到退火处理室20C的传递一般小于30秒,但是优选地是小于10分钟,更加优选地是小于两分钟。
图11图示了不同时间段之后剩余的氮。相对于氮化与后期退火之间的延迟,示出了氮百分比的X射线光电子能谱(XPS)测量结果。可以通过衬底60在室20B中被处理之后立即在室20C中进行处理,来最小化二氧化硅层中的氮的损耗。此外,通过控制在一个系统10中的处理,可以控制室20B和室20C中的处理之间的时间差。例如,如果衬底首先被传递到外部环境中(例如,空气中),然后在另一个系统中被处理,则处理中的时间差不能被控制。此外,不同的衬底可以不同地被处理,使得在处理中,一个衬底可以例如具有几分钟的延迟,而另一个衬底可以例如具有几小时的延迟。这样的延迟差异将引起在不同衬底上的不同氮损耗和不同的电介质层电容。
处理室20C可以构成与图4所示的装置完全相同的装置的一部分。氢气被引入到处理室20C中。在另一个实施例中,可以使用氮气或者其他气体。处理室20C中的热量对电介质层进行“退火”。最佳的温度可以在700℃到1100℃之间。在本示例中,温度大约是1000℃,压力在0.5托到5托之间。衬底被退火大约15秒。电介质层退火的效果是氮损耗被大大降低了。代替地,衬底可以从处理室20B直接被传递返回处理室20A,电介质层可以在这里被退火。可以在系统中的另一个室中,例如室20D中,实施进一步的处理,例如形成多晶硅栅极电介质层,或者衬底60可以被移出系统。因为处理之间的时间被控制并且是可重复的,所以不同的晶片将具有电容类似的电介质层。衬底以图3中所示顺序的相反顺序被移出。
相信由于薄膜中的氮与薄膜上方的气体之间的化学不平衡,SiOxNy薄膜顶部部分中的氮首先离开薄膜。离最终的晶体管沟道最远的氮,即在顶部表面的氮,也是最重要要被保持的。保留顶部表面的氮改善了氮分布,并潜在地改善了电介质性能。薄膜顶部的氮的损耗可以在一个工艺中被降低,该工艺降低氮丢失的总量。
例如,图12图示出在等离子氮化之后的第一个五分钟期间,最多的氮被丢失。在等离子氮化之后的第一个两分钟之内,优选地在第一分钟之内的退火步骤可以极大地降低总的氮丢失,尤其是在薄膜顶部的氮丢失。
温度斜率也可以影响氮的丢失,如图13所示。温度斜率优选地高于60℃/s,以最小化达到大于800℃的温度的时间,并从而最小化任何潜在的氮丢失。
如图14所示,在其中实施退火步骤的压力和环境也可以显著地影响薄膜中的氮保持率的大小。在0.5托的氧环境中实施的退火产生8.3%的氮保持率,而在100托的氮气氛中温度只有800℃的退火在薄膜中产生大约8.45%的氮保持率。相信氮气氛和更高的压力这两者在薄膜中的氮与薄膜上方的气体之间产生较低的化学不平衡,相应地具有氮从薄膜中丢失的较低的比率。对在100托的氮环境中不同温度处的氮保持率的归纳显示出在1000℃温度处100托的氮环境中实施的退火步骤可以产生约8.6%的氮保持率。在另一个实施例中,压力可以至少是50托。在另一个实施例中,室20C可以具有至少是50%体积的氮。
虽然已经在附图中示出并描述了本发明的某些示例实施例,但是应当理解,这些实施例仅仅是示例性的,而非对本发明的限定,并且因为本领域的普通技术人员可以想到各种修改,所以本发明并不限于所示出和描述的特定结构和安排。

Claims (19)

1.一种处理衬底的方法,包括:
当所述衬底位于系统的氮化室中时,将氮加入到形成在所述衬底上的栅极电介质层中;
在不将所述衬底传递出所述系统的情况下,将所述衬底传递到所述系统的退火室中;以及
当在所述退火室中时,通过将所述衬底加热到比所述衬底在所述氮化室中的温度高的温度,退火所述栅极电介质层,并且在退火时将所述衬底暴露到氧气。
2.根据权利要求1所述的方法,其中,在所述氮被加入之后的五分钟之内,所述衬底被退火。
3.根据权利要求2所述的方法,其中,在所述氮被加入之后的两分钟之内,所述衬底被退火。
4.根据权利要求3所述的方法,其中,在所述氮被加入之后的一分钟之内,所述衬底被退火。
5.根据权利要求1所述的方法,其中,所述衬底在所述退火室中的温度斜率至少是60℃/秒。
6.根据权利要求5所述的方法,其中,所述退火室是冷壁室。
7.根据权利要求5所述的方法,其中,所述衬底在所述退火室中被加热到至少800℃。
8.根据权利要求1所述的方法,其中,所述衬底在所述退火室中被加热到至少800℃。
9.根据权利要求1所述的方法,其中,所述电介质层暴露到的气体包括至少50%体积的氮。
10.根据权利要求1所述的方法,其中,所述退火室中的压力至少为50托。
11.根据权利要求1所述的方法,其中,所述退火室中的压力至少为50托。
12.根据权利要求1所述的方法,其中,在所述氮被加入之后的五分钟之内,所述电介质层被退火,所述退火室中的所述衬底的温度斜率至少是60℃/秒,并且当所述电介质层被退火时,所述退火室至少部分地用氮气填充。
13.根据权利要求1所述的方法,其中,通过将所述电介质层暴露给氮等离子体,所述氮被加入。
14.根据权利要求1所述的方法,其中,所述电介质层是二氧化硅。
15.一种处理衬底的方法,包括:
将氮加入到形成在所述衬底上的栅极电介质层中;以及
在所述氮被加入之后的两分钟之内,通过将所述衬底加热到比当加入氮时所述衬底的温度高的温度,在氧气存在的情况下退火所述栅极电介质层。
16.根据权利要求15所述的方法,其中,在所述氮被加入之后的一分钟之内,所述衬底被退火。
17.根据权利要求15所述的方法,其中,所述衬底在所述退火室中的温度斜率至少是60℃/秒。
18.根据权利要求15所述的方法,其中,所述退火室中的压力至少为50托。
19.一种用于处理半导体晶片的系统,包括:
传递室;
在所述传递室中的机械手;
通到所述传递室的氮化室;
通到所述传递室的退火室;和
控制系统,所述控制系统被编程以(i)用所述机械手将晶片传递到所述氮化室中,(ii)在所述氮化室中,将氮加入到形成在每个晶片上的电介质层中,(iii)用所述机械手将每个相应的晶片从所述氮化室经由所述传递室传递到所述退火室中,以及(iv)在所述退火室中在氧气存在的情况下退火所述电介质层。
CNB038119269A 2002-06-12 2003-06-12 用于改善等离子氮化栅极电介质层中氮分布的方法 Expired - Lifetime CN100380595C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38859902P 2002-06-12 2002-06-12
US60/388,599 2002-06-12
US39976502P 2002-07-30 2002-07-30
US60/399,765 2002-07-30

Publications (2)

Publication Number Publication Date
CN1656604A CN1656604A (zh) 2005-08-17
CN100380595C true CN100380595C (zh) 2008-04-09

Family

ID=29740043

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038119269A Expired - Lifetime CN100380595C (zh) 2002-06-12 2003-06-12 用于改善等离子氮化栅极电介质层中氮分布的方法

Country Status (6)

Country Link
US (1) US7122454B2 (zh)
EP (1) EP1512170A2 (zh)
JP (2) JP2005530344A (zh)
KR (1) KR101118462B1 (zh)
CN (1) CN100380595C (zh)
WO (1) WO2003107399A2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067439B2 (en) * 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
US7429540B2 (en) * 2003-03-07 2008-09-30 Applied Materials, Inc. Silicon oxynitride gate dielectric formation using multiple annealing steps
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
KR100624290B1 (ko) * 2004-06-14 2006-09-19 에스티마이크로일렉트로닉스 엔.브이. 플래쉬 메모리 소자의 제조 방법
US7709814B2 (en) * 2004-06-18 2010-05-04 Axcelis Technologies, Inc. Apparatus and process for treating dielectric materials
KR101005953B1 (ko) 2004-11-04 2011-01-05 도쿄엘렉트론가부시키가이샤 절연막 형성 방법
JP2006278531A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 工程管理システム、工程管理方法及び半導体装置の製造方法
US7429538B2 (en) * 2005-06-27 2008-09-30 Applied Materials, Inc. Manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric
US20070010103A1 (en) * 2005-07-11 2007-01-11 Applied Materials, Inc. Nitric oxide reoxidation for improved gate leakage reduction of sion gate dielectrics
US7550381B2 (en) * 2005-07-18 2009-06-23 Applied Materials, Inc. Contact clean by remote plasma and repair of silicide surface
US20070020890A1 (en) * 2005-07-19 2007-01-25 Applied Materials, Inc. Method and apparatus for semiconductor processing
US20070049043A1 (en) * 2005-08-23 2007-03-01 Applied Materials, Inc. Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement
US8454749B2 (en) * 2005-12-19 2013-06-04 Tokyo Electron Limited Method and system for sealing a first assembly to a second assembly of a processing system
JP5070702B2 (ja) 2006-01-19 2012-11-14 富士通セミコンダクター株式会社 半導体装置の製造方法及び製造装置
US7964514B2 (en) * 2006-03-02 2011-06-21 Applied Materials, Inc. Multiple nitrogen plasma treatments for thin SiON dielectrics
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
JPWO2007132884A1 (ja) * 2006-05-17 2009-09-24 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
TWI435376B (zh) 2006-09-26 2014-04-21 Applied Materials Inc 用於缺陷鈍化之高k閘極堆疊的氟電漿處理
US20080119057A1 (en) * 2006-11-20 2008-05-22 Applied Materials,Inc. Method of clustering sequential processing for a gate stack structure
JP4820801B2 (ja) * 2006-12-26 2011-11-24 株式会社Sumco 貼り合わせウェーハの製造方法
US7638442B2 (en) * 2008-05-09 2009-12-29 Promos Technologies, Inc. Method of forming a silicon nitride layer on a gate oxide film of a semiconductor device and annealing the nitride layer
CN102194727B (zh) * 2010-03-11 2013-09-04 中芯国际集成电路制造(上海)有限公司 一种改进的机器人伸缩臂
JP6038503B2 (ja) * 2011-07-01 2016-12-07 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
CN107154354B (zh) 2016-03-03 2020-12-11 上海新昇半导体科技有限公司 晶圆热处理的方法
US10510545B2 (en) 2016-06-20 2019-12-17 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10103027B2 (en) 2016-06-20 2018-10-16 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10847360B2 (en) * 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
CN109541140A (zh) * 2018-11-23 2019-03-29 上海华力微电子有限公司 一种监测缓冲腔体氧气浓度的方法
WO2021150625A1 (en) 2020-01-23 2021-07-29 Applied Materials, Inc. Method of cleaning a structure and method of depositiing a capping layer in a structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981399A (en) * 1995-02-15 1999-11-09 Hitachi, Ltd. Method and apparatus for fabricating semiconductor devices
US6110842A (en) * 1996-06-07 2000-08-29 Texas Instruments Incorporated Method of forming multiple gate oxide thicknesses using high density plasma nitridation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913929A (en) * 1987-04-21 1990-04-03 The Board Of Trustees Of The Leland Stanford Junior University Thermal/microwave remote plasma multiprocessing reactor and method of use
JPH05160114A (ja) * 1991-12-06 1993-06-25 Oki Electric Ind Co Ltd 絶縁膜形成方法
TW276353B (zh) * 1993-07-15 1996-05-21 Hitachi Seisakusyo Kk
JP3338915B2 (ja) * 1994-10-13 2002-10-28 富士通株式会社 半導体装置の製造方法
JP2871530B2 (ja) * 1995-05-10 1999-03-17 日本電気株式会社 半導体装置の製造方法
JPH09153616A (ja) * 1995-09-28 1997-06-10 Toshiba Corp 半導体装置およびその製造方法
JPH09219400A (ja) * 1995-12-07 1997-08-19 Applied Materials Inc 絶縁膜形成方法
JP3899150B2 (ja) * 1996-12-05 2007-03-28 シャープ株式会社 絶縁膜の形成方法
EP0847079A3 (en) * 1996-12-05 1999-11-03 Texas Instruments Incorporated Method of manufacturing an MIS electrode
JP3191728B2 (ja) * 1997-06-23 2001-07-23 日本電気株式会社 半導体装置及びその製造方法
JP3063898B2 (ja) * 1997-09-22 2000-07-12 日本電気株式会社 半導体装置の製造方法
US6140024A (en) * 1997-12-31 2000-10-31 Texas Instruments Incorporated Remote plasma nitridation for contact etch stop
US6090653A (en) * 1998-03-30 2000-07-18 Texas Instruments Method of manufacturing CMOS transistors
US6143593A (en) * 1998-09-29 2000-11-07 Conexant Systems, Inc. Elevated channel MOSFET
US6255231B1 (en) * 1998-10-02 2001-07-03 Taiwan Semiconductor Manufacturing Co., Ltd Method for forming a gate oxide layer
US6245616B1 (en) * 1999-01-06 2001-06-12 International Business Machines Corporation Method of forming oxynitride gate dielectric
JP4403321B2 (ja) * 1999-01-25 2010-01-27 ソニー株式会社 酸化膜の形成方法及びp形半導体素子の製造方法
JP4255563B2 (ja) * 1999-04-05 2009-04-15 東京エレクトロン株式会社 半導体製造方法及び半導体製造装置
JP2000349285A (ja) * 1999-06-04 2000-12-15 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP4582837B2 (ja) * 1999-09-09 2010-11-17 シャープ株式会社 半導体装置の製造方法
US6342437B1 (en) * 2000-06-01 2002-01-29 Micron Technology, Inc. Transistor and method of making the same
JP2002009169A (ja) * 2000-06-20 2002-01-11 Nec Corp 半導体装置とその製造方法
US6800830B2 (en) * 2000-08-18 2004-10-05 Hitachi Kokusai Electric, Inc. Chemistry for boron diffusion barrier layer and method of application in semiconductor device fabrication
JP3916565B2 (ja) * 2001-01-22 2007-05-16 東京エレクトロン株式会社 電子デバイス材料の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981399A (en) * 1995-02-15 1999-11-09 Hitachi, Ltd. Method and apparatus for fabricating semiconductor devices
US6110842A (en) * 1996-06-07 2000-08-29 Texas Instruments Incorporated Method of forming multiple gate oxide thicknesses using high density plasma nitridation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Controlled nitrogen incorporation at the gate oxide surface. S.V.Hattangady, H.Niimi, G.Lucovsky.APPLIED PHYSICS LETTERS,Vol.66 No.25. 1995 *

Also Published As

Publication number Publication date
US7122454B2 (en) 2006-10-17
EP1512170A2 (en) 2005-03-09
KR101118462B1 (ko) 2012-03-06
JP5586651B2 (ja) 2014-09-10
KR20050010782A (ko) 2005-01-28
WO2003107399A2 (en) 2003-12-24
WO2003107399A3 (en) 2004-03-25
US20040038487A1 (en) 2004-02-26
CN1656604A (zh) 2005-08-17
JP2005530344A (ja) 2005-10-06
JP2012199555A (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
CN100380595C (zh) 用于改善等离子氮化栅极电介质层中氮分布的方法
US11088002B2 (en) Substrate rack and a substrate processing system and method
US20030124873A1 (en) Method of annealing an oxide film
US6410456B1 (en) Method and apparatus for insitu vapor generation
US6037273A (en) Method and apparatus for insitu vapor generation
JP5081437B2 (ja) 酸化物形成方法
JP2012094879A (ja) シリコン/金属複合膜堆積物を選択的に酸化するための方法及び装置
CN100447963C (zh) 通过生长具有定制的厚度分布的牺牲膜层而进行材料平面化的方法
US20090209095A1 (en) Manufacturing Method for Semiconductor Devices and Substrate Processing Apparatus
US20230377958A1 (en) Cluster processing system for forming a metal containing material
US20020168840A1 (en) Deposition of tungsten silicide films
Lian et al. Photo‐enhanced chemical vapor deposition: System design considerations
JP4679369B2 (ja) 基板処理装置および半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080409