CN100367518C - Ultraviolet detector with gallium nitride Schottky structure and production thereof - Google Patents

Ultraviolet detector with gallium nitride Schottky structure and production thereof Download PDF

Info

Publication number
CN100367518C
CN100367518C CNB2004100335868A CN200410033586A CN100367518C CN 100367518 C CN100367518 C CN 100367518C CN B2004100335868 A CNB2004100335868 A CN B2004100335868A CN 200410033586 A CN200410033586 A CN 200410033586A CN 100367518 C CN100367518 C CN 100367518C
Authority
CN
China
Prior art keywords
gallium nitride
layer
ultraviolet detector
ohmic contact
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100335868A
Other languages
Chinese (zh)
Other versions
CN1681134A (en
Inventor
赵德刚
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CNB2004100335868A priority Critical patent/CN100367518C/en
Publication of CN1681134A publication Critical patent/CN1681134A/en
Application granted granted Critical
Publication of CN100367518C publication Critical patent/CN100367518C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

The present invention relates to an ultraviolet detector with a gallium nitride schottky structure, which is characterized in that the ultraviolet detector with a gallium nitride schottky structure comprises a substrate, an ohm contact layer, an active layer, a covering layer, an ohm electrode and a schottky electrode, wherein the ohm contact layer is manufactured on the substrate; the active layer is manufactured on the ohm contact layer; the area of the active layer is smaller than the ohm contact layer; the covering layer is manufactured on the active layer; the ohm electrode is manufactured on the ohm contact layer; the schottky electrode is manufactured on the covering layer.

Description

Gallium nitride based schottky structure ultraviolet detector and manufacture method
Technical field
The invention belongs to field of semiconductor devices, be meant a kind of novel gallium nitride (GaN) base schottky UV detector structure and manufacture method especially.
Background technology
As third generation semiconductor, gallium nitride (GaN) and series material thereof (comprising aluminium nitride, aluminum gallium nitride, indium gallium nitrogen, indium nitride) are big with its energy gap, spectral region is wide (having covered from ultraviolet to infrared all band), heat-resisting quantity and good corrosion resistance, in optoelectronics and microelectronics field huge using value are arranged.The GaN ultraviolet detector is a kind of very important GaN base optical electronic part, and, military domain civilian in guided missile alarm, the detection of rocket plumage cigarette, ultraviolet communication, chemical and biological weapons detection, aircraft guidance, spaceship, fire monitoring etc. has important use to be worth.Compare with the Si ultraviolet detector, the GaN base ultraviolet detector because have that visible light is blind, quantum efficiency is high, the incomparable advantage of can under high temperature and causticity environment, working or the like, can accomplish that in actual applications false alarm rate is low, highly sensitive, antijamming capability is strong, be subjected to people's attention greatly.
At present, developed the GaN ultraviolet detector of multiple structures such as metal-semiconductor-metal (MSM) structure, Schottky junction structure, pin structure in the world, Schottky junction structure is because the problem of having avoided p type GaN has been subjected to people's attention.But because the existing of surface state (in general, surface density of states is much larger than interface state density), photo-generated carrier is easy in the schottky junction surface recombination, thereby has reduced the quantum efficiency of device, has hindered the practical application of device and further develops.
Summary of the invention
The objective of the invention is to, a kind of gallium nitride based schottky structure ultraviolet detector and manufacture method are provided, it can reduce the surface state influence compound to photo-generated carrier, does not change under the situation of advantage of Schottky junction structure, has improved the external quantum efficiency of detector.
A kind of gallium nitride based schottky structure of the present invention ultraviolet detector is characterized in that, comprising:
One substrate;
One ohmic contact layer, this ohmic contact layer is produced on the substrate;
One active layer, this active layer be produced on ohmic contact layer above, the area of this active layer is less than ohmic contact layer;
One cover layer, this cover layer is produced on the active layer;
One Ohmic electrode, this Ohmic electrode is produced on the ohmic contact layer;
One Schottky electrode, this Schottky electrode is produced on the cover layer.
Wherein said Ohmic electrode is dot structure or loop configuration.
Wherein said substrate is silicon, sapphire, gallium nitride, GaAs or carbofrax material.
Wherein ohmic contact layer is the n type gallium nitride material of high electron concentration.
Wherein active layer is the n type gallium nitride material of low electron concentration.
Wherein cover layer is the N type Al-Ga-N material of low electron concentration, and its al composition is higher than the al composition of active layer.
The manufacture method of a kind of gallium nitride based schottky structure of the present invention ultraviolet detector is characterized in that, comprises the steps:
(1) on substrate, utilizes epitaxial growth equipment growth ohmic contact layer;
(2) active layer of on ohmic contact layer, growing;
(3) cover layer of on active layer, growing;
(4) with active layer on the ohmic contact layer and cover layer partial etching;
(5) on ohmic contact layer, make Ohmic electrode;
(6) on cover layer, make Schottky electrode;
(7) with about substrate thinning to 100 μ m, carry out tube core then and cut apart, be encapsulated on the shell, make the gallium nitride-base ultraviolet detector device.
Wherein said Ohmic electrode is dot structure or loop configuration.
Wherein said substrate is silicon, sapphire, gallium nitride, GaAs or carbofrax material.
Wherein ohmic contact layer is the n type gallium nitride material of high electron concentration.
Wherein active layer is the n type gallium nitride material of low electron concentration.
Wherein cover layer is the N type Al-Ga-N material of low electron concentration, and its al composition is higher than the al composition of active layer.
The present invention compares with common Schottky junction structure, and this novel device architecture can significantly reduce the influence of surface state, thereby improves the quantum efficiency of device.In addition, in the shortwave scope, because concerning same wavelength, Al yGa 1-yThe absorption coefficient of N compares Al xGa 1-xThe absorption coefficient of N is little, and like this, in the shortwave direction, the speed that this novel detective quantum efficiency descends is slower than the decrease speed of ordinary construction, and integrated intensity is also big.In general, this novel GaN based Schottky structure detector can significantly improve the external quantum efficiency of device.
Description of drawings
For further specifying technology contents of the present invention, below in conjunction with embodiment and accompanying drawing describes in detail as after, wherein:
Fig. 1 is the material structure schematic diagram of GaN based Schottky structure UV detector among the present invention;
Fig. 2 is the device architecture schematic diagram of GaN based Schottky structure UV detector among the present invention;
Fig. 3 is the analog computation result of the optogalvanic spectra of two kinds of device architectures.Wherein, solid line is represented the optogalvanic spectra of new device architecture, and dotted line is represented the optogalvanic spectra of common schottky junction structure UV detector;
Fig. 4 is the analog computation result's of new under the different surfaces recombination rate situation, old device architecture comparison, wherein (a) (b) recombination-rate surface of (c) be respectively 1 * 10 5, 1 * 10 7, 1 * 10 10Cm/s;
Fig. 5 is a different al GaN layer thickness to the analog computation of the optogalvanic spectra of new device structure figure as a result.
Embodiment
See also Figure 1 and Figure 2, a kind of gallium nitride based schottky structure of the present invention ultraviolet detector, comprising:
One substrate 10, this substrate 10 is silicon, sapphire, gallium nitride, GaAs or carbofrax material;
One ohmic contact layer 11, this ohmic contact layer 11 is produced on the substrate 10, and this ohmic contact layer 11 is the n type gallium nitride material of high electron concentration;
One active layer 12, this active layer 12 be produced on ohmic contact layer 11 above, the area of this active layer 12 is less than ohmic contact layer 11, this active layer 12 is the n type gallium nitride material of low electron concentration;
One cover layer 13, this cover layer 13 is produced on the active layer 12, and this cover layer 13 is the N type Al-Ga-N material of low electron concentration, and its al composition is higher than the al composition of active layer 12;
One Ohmic electrode 21, this Ohmic electrode are produced on the ohmic contact layer 11, and this Ohmic electrode 21 is dot structure or loop configuration;
One Schottky electrode 20, this Schottky electrode 20 is produced on the cover layer 13.
Please consult Figure 1 and Figure 2 again, the manufacture method of a kind of gallium nitride based schottky structure of the present invention ultraviolet detector comprises the steps:
(1) utilize epitaxial growth equipment growth ohmic contact layer 11 on substrate 10, wherein said substrate 10 is silicon, sapphire, gallium nitride, GaAs or carbofrax material;
(2) growth active layer 12 on ohmic contact layer 11, this active layer 12 is the n type gallium nitride material of low electron concentration;
(3) growth cover layer 13 on active layer 12, this cover layer 13 is the N type Al-Ga-N material of low electron concentration, its al composition is higher than the al composition of active layer 12;
(4) with active layer on the ohmic contact layer 11 12 and cover layer 13 partial etchings, wherein ohmic contact layer 11 is the n type gallium nitride material of high electron concentration;
(5) make Ohmic electrode 21 on ohmic contact layer 11, described Ohmic electrode 21 is dot structure or loop configuration;
(6) on cover layer, make Schottky electrode 20;
(7) substrate 10 is thinned to about 100 μ m, carries out tube core then and cut apart, be encapsulated on the shell, make the gallium nitride-base ultraviolet detector device.
In order to further specify the effect of this device architecture, we are that the GaN Schottky ultraviolet detector of 365nm is the preparation process that example illustrates this device architecture with the response cut-off wavelength, specific as follows: utilizing MOCVD equipment is that substrate 10 grows device architecture with the sapphire, and this structure comprises N +(thickness is that 3 μ m, electron concentration are 5 * 10 to-GaN layer 11 18Cm -3), active area N -(thickness is that 0.4 μ m, electron concentration are 5 * 10 to-GaN layer 12 16Cm -3) and N --Al 0.1Ga 0.9(thickness is that 50nm, electron concentration are 5 * 10 to the N layer 16Cm -3).Die-size is 300 μ m * 300 μ m.Carve ledge structure with methods such as dry etchings, expose N +-GaN layer.Successively make Schottky contacts (Ni/Au electrode with methods such as photoetching, plated films then, wherein Ni, Au thickness are respectively 3nm, 5nm), ohmic contact (Ti/Al electrode), wherein, need realize the Schottky transparency electrode in 5 minutes and improve the Schottky contacts characteristic 500 ℃ of annealing.Carry out attenuate, cutting, pressure welding at last again, be packaged into the ultraviolet detector device example.
We have carried out analog computation to the performance of the new device architecture of proposition of the present invention and common Schottky junction structure detector, and contrast, wherein:
Fig. 3 is the analog computation result of the optogalvanic spectra of two kinds of device architectures.Wherein, solid line is represented the optogalvanic spectra of new device architecture, and dotted line is represented the optogalvanic spectra of common schottky junction structure UV detector;
Fig. 4 is the analog computation result's of new under the different surfaces recombination rate situation, old device architecture comparison, wherein (a) (b) recombination-rate surface of (c) be respectively 1 * 10 5, 1 * 10 7, 1 * 10 10Cm/s;
Fig. 5 is a different al GaN layer thickness to the analog computation of the optogalvanic spectra of new device structure figure as a result.
Analog computation result from above-mentioned compares common device architecture, and the external quantum efficiency of the new GaN schottky junction structure UV detector of surface cover AlGaN layer has improved.
The present invention proposes the surface and be stamped the GaN based Schottky structure UV detector of higher Al component AlGaN layer, analog computation shows that this structure can effectively be avoided the influence of surface state to device performance, can significantly improve the external quantum efficiency of device.

Claims (10)

1. a gallium nitride based schottky structure ultraviolet detector is characterized in that, comprising:
One substrate;
One ohmic contact layer, this ohmic contact layer is produced on the substrate;
One active layer, this active layer be produced on ohmic contact layer above, the area of this active layer is less than ohmic contact layer;
One cover layer, this cover layer is produced on the active layer, and this cover layer is the N type Al-Ga-N material of low electron concentration, and its al composition is higher than the al composition of active layer;
One Ohmic electrode, this Ohmic electrode is produced on the ohmic contact layer;
One Schottky electrode, this Schottky electrode is produced on the cover layer.
2. gallium nitride based schottky structure ultraviolet detector according to claim 1 is characterized in that wherein said Ohmic electrode is dot structure or loop configuration.
3. gallium nitride based schottky structure ultraviolet detector according to claim 1 is characterized in that wherein said substrate is silicon, sapphire, gallium nitride, GaAs or carbofrax material.
4. gallium nitride based schottky structure ultraviolet detector according to claim 1 is characterized in that, wherein ohmic contact layer is the n type gallium nitride material of high electron concentration.
5. gallium nitride based schottky structure ultraviolet detector according to claim 1 is characterized in that, wherein active layer is the n type gallium nitride material of low electron concentration.
6. the manufacture method of a gallium nitride based schottky structure ultraviolet detector is characterized in that, comprises the steps:
(1) on substrate, utilizes epitaxial growth equipment growth ohmic contact layer;
(2) active layer of on ohmic contact layer, growing;
(3) cover layer of on active layer, growing, this cover layer is the N type Al-Ga-N material of low electron concentration, its al composition is higher than the al composition of active layer;
(4) with active layer on the ohmic contact layer and cover layer partial etching;
(5) on ohmic contact layer, make Ohmic electrode;
(6) on cover layer, make Schottky electrode;
(7) with about substrate thinning to 100 μ m, carry out tube core then and cut apart, be encapsulated on the shell, make the gallium nitride-base ultraviolet detector device.
7. the manufacture method of gallium nitride based schottky structure ultraviolet detector according to claim 6 is characterized in that, wherein said Ohmic electrode is dot structure or loop configuration.
8. the manufacture method of gallium nitride based schottky structure ultraviolet detector according to claim 6 is characterized in that, wherein said substrate is silicon, sapphire, gallium nitride, GaAs or carbofrax material.
9. the manufacture method of gallium nitride based schottky structure ultraviolet detector according to claim 6 is characterized in that, wherein ohmic contact layer is the n type gallium nitride material of high electron concentration.
10. the manufacture method of gallium nitride based schottky structure ultraviolet detector according to claim 6 is characterized in that, wherein active layer is the n type gallium nitride material of low electron concentration.
CNB2004100335868A 2004-04-07 2004-04-07 Ultraviolet detector with gallium nitride Schottky structure and production thereof Expired - Fee Related CN100367518C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100335868A CN100367518C (en) 2004-04-07 2004-04-07 Ultraviolet detector with gallium nitride Schottky structure and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100335868A CN100367518C (en) 2004-04-07 2004-04-07 Ultraviolet detector with gallium nitride Schottky structure and production thereof

Publications (2)

Publication Number Publication Date
CN1681134A CN1681134A (en) 2005-10-12
CN100367518C true CN100367518C (en) 2008-02-06

Family

ID=35067627

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100335868A Expired - Fee Related CN100367518C (en) 2004-04-07 2004-04-07 Ultraviolet detector with gallium nitride Schottky structure and production thereof

Country Status (1)

Country Link
CN (1) CN100367518C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568543C (en) * 2008-03-18 2009-12-09 苏州纳米技术与纳米仿生研究所 The preparation method of Schottky indoor temperature nucleus radiation detector
CN101621066B (en) * 2008-07-02 2011-06-01 中国科学院半导体研究所 GaN-based solar-blind UV detector area array and manufacturing method thereof
CN101769941B (en) * 2010-01-27 2013-04-17 中国科学院上海技术物理研究所 Electronic detection method of device structure of GaN base photovoltaic detector
CN102522448B (en) * 2012-01-13 2014-04-16 浙江大学 Magnesium nickel oxide-based multi-band solar-blind region ultraviolet detector and manufacturing method for same
CN104393093B (en) * 2014-11-13 2017-02-01 北京工业大学 High-detectivity gallium-nitride-based Schottky ultraviolet detector using graphene
CN107195724B (en) * 2017-05-16 2019-01-11 江南大学 A method of AlGaN Schottky solar blind ultraviolet detector being prepared on GaN self-supported substrate using Graphene electrodes
CN111564511B (en) * 2020-05-19 2023-03-21 河北工业大学 AlGaN-MSM detector structure based on polarization effect and preparation method thereof
CN112164732B (en) * 2020-09-15 2022-04-05 五邑大学 Ultraviolet photodiode and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137123A (en) * 1999-08-17 2000-10-24 Honeywell International Inc. High gain GaN/AlGaN heterojunction phototransistor
CN1277353A (en) * 1998-12-29 2000-12-20 香港科技大学 Visible-invisible ultraviolet detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277353A (en) * 1998-12-29 2000-12-20 香港科技大学 Visible-invisible ultraviolet detector
US6137123A (en) * 1999-08-17 2000-10-24 Honeywell International Inc. High gain GaN/AlGaN heterojunction phototransistor

Also Published As

Publication number Publication date
CN1681134A (en) 2005-10-12

Similar Documents

Publication Publication Date Title
EP2426743B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
US20050211291A1 (en) Solar cell assembly
CN102361046B (en) Solar blind ultraviolet detector with AlGaN-based MSM (Metal-Semiconductor-Metal) structure and manufacturing method thereof
CN101101934A (en) Ultraviolet detector for improving the performance of GaN base pin structure and its making method
CN109119508B (en) Back incidence solar blind ultraviolet detector and preparation method thereof
CN102201484B (en) AlGaN ultraviolet detector with secondary mesa wrapping electrode and manufacturing method thereof
CN102244146B (en) GaN-base ultraviolet detector area array which does not transmit infrared light and visible light
CN109686809A (en) A kind of III nitride semiconductor visible light avalanche photodetector and preparation method
CN101101935A (en) Ultraviolet detector for improving performance of GaN-based Schottky structure and its making method
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
CN100479201C (en) Gallium nitride-based MSM ultraviolet detector for reducing surface state effect
CN100367518C (en) Ultraviolet detector with gallium nitride Schottky structure and production thereof
CN101777600A (en) Gallium nitride based ultraviolet-infrared two-colour detector and manufacturing method thereof
CN100454585C (en) Gallium nitride-base ultraviolet detector with PIN structure and production thereof
CN110676272A (en) Semiconductor ultraviolet photoelectric detector
CN100369271C (en) Barrier height reinforced ultraviolet detector with gallium nitride schottky and production thereof
CN101621066B (en) GaN-based solar-blind UV detector area array and manufacturing method thereof
CN202134542U (en) AlGaN ultraviolet detector with secondary table top wrapped electrode
Boltar et al. Solid-state photoelectronics of the ultraviolet range
CN106409965A (en) High speed saturated single line carrier ultraviolet photodiode and preparation method
CN111739963B (en) Preparation method of silicon-based wide-spectrum photoelectric detector
CN1956227A (en) Back radiating gallium nitride base Schottky structure UV detector
CN101901850A (en) Ultraviolet two-color detector with new structure based on gallium nitride material
JP2000261025A (en) Light receiving device
CN113903762B (en) Deep ultraviolet array interconnection micro-LED and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080206