JP2000261025A - Light receiving device - Google Patents

Light receiving device

Info

Publication number
JP2000261025A
JP2000261025A JP11065881A JP6588199A JP2000261025A JP 2000261025 A JP2000261025 A JP 2000261025A JP 11065881 A JP11065881 A JP 11065881A JP 6588199 A JP6588199 A JP 6588199A JP 2000261025 A JP2000261025 A JP 2000261025A
Authority
JP
Japan
Prior art keywords
layer
light receiving
light
group iii
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11065881A
Other languages
Japanese (ja)
Inventor
Naoki Shibata
直樹 柴田
Toshiaki Sendai
敏明 千代
Koichi Ota
光一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP11065881A priority Critical patent/JP2000261025A/en
Publication of JP2000261025A publication Critical patent/JP2000261025A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent electrons or holes from being trapped by carriers in a light receiving layer and to increase energy conversion efficiency of the light receiving device, by laminating an n-type group III nitride semiconductor layer, a light receiving layer made of an undoped InXGa1-XN, and a p-type group III nitride semiconductor layer. SOLUTION: A light receiving device 1 has a structure, in which a buffer layer 11, an n-type group III nitride semiconductor layer 12, a light receiving layer 13, a p-type nitride semiconductor layer 14 are sequentially laminated on a sapphire substrate 10. The light receiving layer 13 is made of an un-doped InXGa1-XN (0<X<1). The undoped InXGa1-XN is an n-type in an un-doped state, but the carrier electrons in the light receiving layer 13 are minority. Therefore, among holes generated in the light receiving layer 13 through the irradiation of light, number of holes trapped by the carrier electrons in the light receiving layer 13 is small. Therefore, this suppresses loss of the number of holes moving to the p-layer 14 from the light receiving layer 13, thereby increasing the energy conversion efficiency of the light receiving device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 この発明は半導体受光素子に関
する。特にIII族窒化物系半導体を利用した受光素子に
関し、太陽電池、フォトダイオード、光センサ等に適用
できる。
The present invention relates to a semiconductor light receiving element. In particular, the present invention relates to a light receiving element using a group III nitride semiconductor, and can be applied to a solar cell, a photodiode, an optical sensor, and the like.

【0002】[0002]

【従来の技術】III族窒化物系半導体(InAl
1−a−bN、0≦a≦1、0≦b≦1、0≦a+b
≦1)は、広範囲の波長に感度を有する材料として太陽
電池、フォトダイオード等の受光素子への活用が考えら
れている。特に、短い波長の光に対して感度を有するた
め注目されている。また、III族窒化物系半導体は直接
遷移型であるので、それを用いた受光素子では変換効率
が高いという利点がある。従来、III族窒化物系半導体
を利用した受光素子として、受光層にInGa 1−X
N(0<X<1)を用いたものがある(特開平7−28
8334号公報参照)。この受光素子では、InGa
1−XN(0<X<1)からなる受光層をn型III族窒
化物系半導体とp型III族窒化物系半導体層とで挟んだ
構造を有する。受光層であるInGa1−XN(0<
X<1)層には、適当なドナー不純物又は/及びアクセ
プター不純物がドープされている。
2. Description of the Related Art A group III nitride semiconductor (InaAlbG
a1-abN, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b
≦ 1) is a material that is sensitive to a wide range of wavelengths.
Possible use for light-receiving elements such as batteries and photodiodes
Have been. In particular, it has sensitivity to short wavelength light.
Attention. In addition, group III nitride semiconductors are directly
Since it is a transition type, the conversion efficiency is
There is an advantage that is high. Conventional group III nitride semiconductor
As a light receiving element utilizingXGa 1-X
There is one using N (0 <X <1) (JP-A-7-28)
No. 8334). In this light receiving element, InXGa
1-XThe light-receiving layer composed of N (0 <X <1) is
Between a nitride semiconductor and a p-type group III nitride semiconductor layer
Having a structure. In which is the light receiving layerXGa1-XN (0 <
In the X <1) layer, a suitable donor impurity and / or
Putter impurities are doped.

【0003】[0003]

【発明が解決しようとする課題】上記受光素子の受光層
では外部からの光の照射(光子)により、エレクトロン
・ホール(電子・正孔)ペアが生じる。発生したエレク
トロン及びホールは、pn或いはnp接合における内部
電界により、受光層に接合するn型半導体層及びp型半
導体層へとそれぞれ移動していく。このエレクトロン及
びホールを外部に取り出すことにより電流が発生する。
上記従来の受光素子では、受光層にドナー不純物又は/
及びアクセプター不純物がドープされているため、受光
層で生じたエレクトロン或いはホールのいくらかは、受
光層を移動中に受光層に存在するホール或いはエレクト
ロンに補足され消失してしまう。このため、電流発生に
関与するエレクトロン、ホールの数が減少し、その結果
受光素子のエネルギー変換効率が低下することとなる。
In the light-receiving layer of the light-receiving element, an electron-hole (electron-hole) pair is generated by external light irradiation (photon). The generated electrons and holes move to the n-type semiconductor layer and the p-type semiconductor layer joined to the light receiving layer, respectively, due to the internal electric field at the pn or np junction. A current is generated by extracting the electrons and holes to the outside.
In the above-mentioned conventional light receiving element, donor impurities or / and / or
And the acceptor impurity is doped, some of the electrons or holes generated in the light receiving layer are lost by being captured by the holes or electrons existing in the light receiving layer while moving through the light receiving layer. For this reason, the number of electrons and holes involved in current generation decreases, and as a result, the energy conversion efficiency of the light receiving element decreases.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決すべくなされたものであり、エネルギー変換効率の高
いIII族窒化物系半導体受光素子を提供することを目的
とする。その構成は次の通りである。n型III族窒化物
系半導体層と、ノンドープのInGa1−XN(0<
X<1)からなる受光層と、p型III族窒化物系半導体
層と、が積層された構造を備えてなるIII族窒化物系半
導体受光素子。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a group III nitride semiconductor light receiving device having high energy conversion efficiency. The configuration is as follows. and n-type Group III nitride semiconductor layer, undoped In X Ga 1-X N ( 0 <
A group III nitride semiconductor light receiving element having a structure in which a light receiving layer made of X <1) and a p-type group III nitride semiconductor layer are stacked.

【0005】このように構成された受光素子では、受光
層にノンドープのIII族窒化物系半導体層を用いている
ため、受光層にキャリア(エレクトロン或いはホール)
がほとんど存在しない。その結果、外部からの光の照射
により受光層で生じたエレクトロン又はホールが受光層
に存在するキャリアに補足されることがほとんどなく、
効率の良いエネルギー変換が達成される。
In the light-receiving element thus configured, since a non-doped group III nitride semiconductor layer is used for the light-receiving layer, carriers (electrons or holes) are formed in the light-receiving layer.
Is almost nonexistent. As a result, electrons or holes generated in the light-receiving layer due to external light irradiation are hardly captured by carriers present in the light-receiving layer,
Efficient energy conversion is achieved.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図を参照し
ながら説明する。図1は本発明の一の例である受光素子
1の断面図である。受光素子1はサファイア基板10の
上にバッファ層11、n型III族窒化物系半導体層(以
下、n層とする)12、受光層13、p型III族窒化物
系半導体層(以下、p層とする)14が順次積層された
構成である。ここでIII族窒化物系半導体とは、一般的
にはAlInGa1−X−YN(0≦X≦1、0≦
Y≦1、0≦X+Y≦1)で表される。n層12、受光
層13、及びp層14の一部をエッチングしてn電極1
5が設けられている。また、p層14のほぼ全面にわた
る透光性電極16及びp電極17が設けられている。さ
らに、基板のn層12、受光層13及びp層14が積層
される面と反対の面には裏面反射層9が設けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a light receiving element 1 according to one example of the present invention. The light receiving element 1 includes a buffer layer 11, an n-type group III nitride semiconductor layer (hereinafter, referred to as n layer) 12, a light receiving layer 13, and a p-type group III nitride semiconductor layer (hereinafter, p) on a sapphire substrate 10. 14) are sequentially stacked. Here, the group III nitride semiconductor, typically Al X In Y Ga 1-X -Y N (0 ≦ X ≦ 1,0 ≦
Y ≦ 1, 0 ≦ X + Y ≦ 1). The n layer 12, the light receiving layer 13, and a part of the p layer 14 are etched to
5 are provided. Further, a translucent electrode 16 and a p-electrode 17 are provided over substantially the entire surface of the p-layer 14. Further, on the surface of the substrate opposite to the surface on which the n-layer 12, the light-receiving layer 13 and the p-layer 14 are laminated, a back surface reflection layer 9 is provided.

【0007】サファイア基板10の上に設けられるバッ
ファ層11は、Ga1−YAlN(0≦Y≦1)から
なる。好ましくはGaN又はAlNとする。
The buffer layer 11 provided on the sapphire substrate 10 is made of Ga 1-Y Al Y N (0 ≦ Y ≦ 1). Preferably, it is GaN or AlN.

【0008】図1の例においてn層12は、Ga1−Y
AlN(0≦Y≦1)に、Si、Ge、Sn等のドナ
ー不純物をドープしてn型としたものである。n層12
を、受光層側の低電子濃度n層と、バッファ層側の高
電子濃度n層の二層とすることができる。
In the example of FIG. 1, the n-layer 12 is Ga 1-Y
Al Y N (0 ≦ Y ≦ 1) is doped with a donor impurity such as Si, Ge, or Sn to be n-type. n-layer 12
Can be a two-layer structure of a low electron concentration n layer on the light receiving layer side and a high electron concentration n + layer on the buffer layer side.

【0009】受光層13はノンドープのInGa
1−XN(0<X<1)である。InGa1−X
(0<X<1)はノンドープの状態ではn型となるが、
受光層に存在するキャリア電子は少数である(例えば、
InGa1−XN、X=0.07では、キャリア電子
濃度<5×1017/cm)。そのため、光の照射に
より受光層内に生じた正孔の中で、受光層13内に存在
するキャリア電子に捕捉される正孔の数は少ない。その
結果、受光層13からp層14へ移動する正孔の数の損
失が抑えられ、もって、受光素子のエネルギー変換効率
が高くなる。仮に、InGa1−XN(0<X<1)
にSi、Ge等の適当なドナー不純物をドープしてn型
とした場合には、受光層内に存在するキャリア電子の濃
度が高くなり、その結果、光の照射により生じた正孔の
中で受光層内のキャリア電子に捕捉される正孔の数が多
くなる。即ち、受光層からp層へ移動する正孔の量が減
少し、その結果、受光素子の変換効率が低下する。ま
た、InGa1−XN(0<X<1)にZn、Mg等
の適当なアクセプター不純物をドープしてp型とした場
合には、受光層内に多数のキャリア(ホール)が存在す
ることとなる。そのため、光の照射により受光層内で生
じた電子の多数が受光層内のキャリア(ホール)に捕捉
され、受光層からn層へ移動する電子の数が減少してし
まう。即ち、受光素子のエネルギー変換効率が低下する
こととなる。尚、前記の通り、ノンドープの状態のIn
Ga1−XN(0<X<1)はn型となり少数のキャ
リア電子が存在するので、このキャリア電子濃度を減少
させる目的の限度においてアクセプター不純物をドープ
することは差し支えない。
The light receiving layer 13 is made of non-doped In x Ga.
1−X N (0 <X <1). In X Ga 1-X N
(0 <X <1) is n-type in a non-doped state,
A small number of carrier electrons exist in the light-receiving layer (for example,
In X Ga 1-X N, the X = 0.07, the carrier electron concentration <5 × 10 17 / cm 3 ). Therefore, among holes generated in the light receiving layer due to light irradiation, the number of holes captured by carrier electrons existing in the light receiving layer 13 is small. As a result, the loss of the number of holes moving from the light receiving layer 13 to the p layer 14 is suppressed, and the energy conversion efficiency of the light receiving element is increased. If, In X Ga 1-X N (0 <X <1)
When an n-type semiconductor is doped with an appropriate donor impurity such as Si or Ge, the concentration of carrier electrons present in the light-receiving layer increases, and as a result, the holes generated by the light irradiation generate The number of holes captured by carrier electrons in the light receiving layer increases. That is, the amount of holes moving from the light receiving layer to the p layer decreases, and as a result, the conversion efficiency of the light receiving element decreases. Also, when In X Ga 1 -XN (0 <X <1) is doped with a suitable acceptor impurity such as Zn or Mg to form a p-type, a large number of carriers (holes) exist in the light receiving layer. Will be done. Therefore, many of the electrons generated in the light receiving layer due to light irradiation are captured by carriers (holes) in the light receiving layer, and the number of electrons moving from the light receiving layer to the n layer decreases. That is, the energy conversion efficiency of the light receiving element decreases. As described above, the undoped In
Since XGa1 - XN (0 <X <1) is n-type and has a small number of carrier electrons, doping with an acceptor impurity may be performed within the limit of reducing the carrier electron concentration.

【0010】 受光素子は、ダブルへテロ型の他、超格子
構造、シングルヘテロ型、ホモ型のものなどを用いるこ
とができる。
[0010] The light receiving element is a double-hetero type, super lattice
Use a structure, single hetero type, homo type, etc.
Can be.

【0011】p層14はGa1−YAlN(0≦Y≦
1)に、Zn、Mg、Ca等のアクセプター不純物をド
ープしてp型としたものである。p層14を、受光層側
の低ホール濃度p層と、電極側の高ホール濃度p
の二層とすることができる。
The p-layer 14 is made of Ga 1-Y Al Y N (0 ≦ Y ≦
1) is obtained by doping an acceptor impurity such as Zn, Mg and Ca into a p-type. The p layer 14 can be a two-layered structure including a low hole concentration p layer on the light receiving layer side and a high hole concentration p + layer on the electrode side.

【0012】n電極15は周知の方法でn層12、受光
層13、及びp層14の一部をエッチングした後n層1
2上に形成される。n電極15の材料としては、Al、
V、Au、Rh等が挙げられる。透光性電極16及びp
電極はAu、Pt、Pd、Co、Ni又はこれらを含む
合金等の材料からなる。n電極15、透光性電極16及
びp電極17は周知の蒸着法によりそれぞれ形成され
る。透光性電極16は、変換効率を高めるために重要な
役割をする。p層14は、正孔キャリア濃度が高くなら
ないために抵抗率が高い。よって、透光性電極16がな
い場合、p電極17から遠い場所で発生したキャリアは
p層14を移動してくる間に消失し、結果的に発電に寄
与しないことになる。p層といえども発生した正孔キャ
リアを短い距離で外部に取り出すことが重要である。
The n-electrode 15 is formed by etching a part of the n-layer 12, the light-receiving layer 13, and the p-layer 14 by a known method.
2 is formed. As a material of the n-electrode 15, Al,
V, Au, Rh and the like. Translucent electrode 16 and p
The electrode is made of a material such as Au, Pt, Pd, Co, Ni, or an alloy containing these. The n-electrode 15, the translucent electrode 16 and the p-electrode 17 are each formed by a known vapor deposition method. The translucent electrode 16 plays an important role to increase the conversion efficiency. The p layer 14 has a high resistivity because the hole carrier concentration does not increase. Therefore, when the translucent electrode 16 is not provided, carriers generated at a location far from the p-electrode 17 disappear while moving through the p-layer 14, and as a result do not contribute to power generation. It is important to take out the generated hole carriers to the outside in a short distance even in the p layer.

【0013】裏面反射層9は発電に寄与せず通過した光
をもう一度反射させ受光層13に導入させて発電に寄与
させようとするものであり、Ag、Ti、Al等を含ん
でなる。
The back surface reflection layer 9 reflects the light that has passed without contributing to power generation and introduces the light into the light receiving layer 13 to contribute to power generation, and includes Ag, Ti, Al, and the like.

【0014】[0014]

【実施例】図1は本発明の一の実施例である受光素子1
の断面図である。受光素子1は基板10、バッファ層1
1、n層12、受光層13、p層14、n電極15、透
光性電極16及びp電極17で構成され、その具体的な
スペックは次の通りである。 層 : 組成:ドーパント (膜厚) p電極17 : Au/Ni (5,000Å / 1,000Å) 透光性電極16 : Au/Co (60Å / 15Å) p層14 : p型GaN:Mg (500Å) 受光層13 : ノンドープ In0.15Ga0.85N (0.1〜3μm) n電極15 : Al/V (18,000Å / 175Å) n層12 : n型GaN:Si (2.5μm) バッファ層11 : AlN (500Å) 基板10 : サファイア (300μm) 裏面反射層9 : Ti (1000Å) 各半導体層は周知のMOVPE法により形成される。こ
の成長法においては、アンモニアガスとIII族元素のア
ルキル化合物ガス、例えばトリメチルガリウム(TM
G)、トリメチルアルミニウム(TMA)やトリメチル
インジウム(TMI)とを適当な温度に加熱された基板
上に供給して熱分解反応させ、もって所望の結晶を基板
の上に成長させる。p層14を形成した後、p層14、
受光層13及びn層12の一部をエッチングして、n電
極15を取り付けるための部分をn層12に形成する。
n電極15及びp電極17の構成は上記の通りであり、
蒸着により形成される。その後、裏面反射層9を周知の
蒸着法又はスパッタ法にて形成する。最後にアロイ処理
を経て個々のチップに分離される。
FIG. 1 shows a light receiving element 1 according to one embodiment of the present invention.
FIG. The light receiving element 1 is a substrate 10, a buffer layer 1
1, an n-layer 12, a light-receiving layer 13, a p-layer 14, an n-electrode 15, a translucent electrode 16 and a p-electrode 17, the specific specifications of which are as follows. Layer: Composition: Dopant (thickness) P electrode 17: Au / Ni (5,000 / 1,000) Translucent electrode 16: Au / Co (60/15) P layer 14: p-type GaN: Mg (500) Light receiving Layer 13: non-doped In 0.15 Ga 0.85 N (0.1 to 3 μm) n electrode 15: Al / V (18,000Å / 175Å) n layer 12: n-type GaN: Si (2.5 μm) buffer layer 11: AlN ( 500 mm) Substrate 10: sapphire (300 μm) Back reflection layer 9: Ti (1000 mm) Each semiconductor layer is formed by a well-known MOVPE method. In this growth method, ammonia gas and an alkyl compound gas of a group III element, for example, trimethylgallium (TM
G), trimethylaluminum (TMA) or trimethylindium (TMI) is supplied to a substrate heated to an appropriate temperature to cause a thermal decomposition reaction, thereby growing a desired crystal on the substrate. After forming the p-layer 14, the p-layer 14,
The light-receiving layer 13 and a part of the n-layer 12 are etched to form a part for attaching the n-electrode 15 on the n-layer 12.
The configurations of the n-electrode 15 and the p-electrode 17 are as described above,
It is formed by vapor deposition. After that, the back reflection layer 9 is formed by a well-known vapor deposition method or sputtering method. Finally, it is separated into individual chips through alloy processing.

【0015】図1の素子は光を電極側から入射する場合
であって、サファイアが透光性であることを利用してサ
ファイア側から入射することも可能である。この場合に
は、裏面反射層9は不要であり、さらに、変換効率を高
めるために透光性電極16の代わりとして高反射率の電
極材料を使用することもできる。かかる電極材料として
は可視光に対して高い反射率を有し且つオーミック特性
を有する、例えばAg、Rhを含んだ材料を用いられ
る。このときは、チップ裏面で反射した光を有効に利用
し変換効率を高めるために、チップ形成プロセスで支障
をきたさない範囲で高反射率の電極と受光層13のサイ
ズ及び形状とを同じとすることが好ましい。
In the device shown in FIG. 1, light is incident from the electrode side, and light can be incident from the sapphire side by utilizing the fact that sapphire is translucent. In this case, the back reflection layer 9 is unnecessary, and an electrode material having a high reflectance can be used instead of the translucent electrode 16 in order to increase the conversion efficiency. As such an electrode material, a material having high reflectivity to visible light and having ohmic characteristics, for example, containing Ag or Rh is used. In this case, in order to effectively use the light reflected on the back surface of the chip and increase the conversion efficiency, the size and shape of the high-reflectivity electrode and the light-receiving layer 13 are made the same within a range that does not hinder the chip formation process. Is preferred.

【0016】[0016]

【試験例】次に上記実施例の受光素子1を用いた試験例
を示す。図2は、0.35mm□の受光素子1のn電極
15及びp電極17間を直流電流計に接続し、p電極側
からHgランプの光源から光を照射した場合の受光素子
の太陽電池特性(電流電圧特性)を示すグラフである。
参考図は光を照射しない場合である。図2より、実施例
の受光素子1は典型的な受光素子特性を示すことがわか
る。
Test Example Next, a test example using the light receiving element 1 of the above embodiment will be described. FIG. 2 shows a solar cell characteristic of the light receiving element 1 when the n-electrode 15 and the p-electrode 17 of the light-receiving element 1 of 0.35 mm square are connected to a DC ammeter and light is irradiated from the light source of the Hg lamp from the p-electrode side. 6 is a graph showing (current-voltage characteristics).
The reference diagram is a case where no light is irradiated. FIG. 2 shows that the light receiving element 1 of the example shows typical light receiving element characteristics.

【0017】図3は、受光素子1のエネルギー変換効率
を測定した結果を示すグラフである。試験には0.35
mm□の受光素子1のチップを用い、光をp電極側から
照射した場合の変換効率を測定した。光の照射に必要な
電力に対する起電力を変換効率とした。尚、試験に用い
た受光素子1の透光性電極16の透過率は60%であ
る。印加する電圧に応じて変換効率が変化し、電圧2.
2V付近で最大の変換効率約1.9%が得られた。透過
率100%の透光性電極が得られた場合は、3.2%に
相当する。これは太陽電池として実用に資するものであ
る。
FIG. 3 is a graph showing the result of measuring the energy conversion efficiency of the light receiving element 1. 0.35 for the test
The conversion efficiency when light was irradiated from the p-electrode side was measured using a chip of the light receiving element 1 of mm □. The electromotive force for the power required for light irradiation was defined as the conversion efficiency. The transmissivity of the translucent electrode 16 of the light receiving element 1 used in the test is 60%. The conversion efficiency changes according to the applied voltage.
A maximum conversion efficiency of about 1.9% was obtained at around 2V. When a light-transmitting electrode having a transmittance of 100% is obtained, this corresponds to 3.2%. This contributes to practical use as a solar cell.

【0018】この発明は、上記発明の実施の形態及び実
施例の説明に何ら限定されるものではない。特許請求の
範囲の記載を逸脱せず、当業者が容易に想到できる範囲
で種々の変形態様もこの発明に含まれる。
The present invention is not at all limited to the description of the above-described embodiments and examples. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art.

【0019】以下次の事項を開示する。 (10) n型III族窒化物系半導体層と、ノンドープ
のInGa1−XN(0<X<1)からなる受光層
と、p型III族窒化物系半導体層と、が積層されてなる
積層体。 (11) 前記n型III族窒化物系半導体層が、Siを
ドナーとしてドープしたn型III族窒化物系半導体であ
る、ことを特徴とする(10)に記載の積層体。 (20) n型III族窒化物系半導体層と、実質的にキ
ャリアの存在しないInGa1−XN(0<X<1)
からなる受光層と、p型III族窒化物系半導体層と、が
積層された構造を備えてなる太陽電池。 (21) n型III族窒化物系半導体層とp型III族窒化
物系半導体層との間に、InGa1−XN(0<X<
1)からなる受光層であって、光が照射されたときに該
受光層に生ずる電子及びホールの実質的に全部を前記n
型III族窒化物系半導体層及び前記p型半導体層にそれ
ぞれ供給することができる受光層、を挟んだ構造を備え
てなるIII族窒化物系半導体受光素子。
The following items are disclosed below. (10) and the n-type Group III nitride semiconductor layer, a light-receiving layer of non-doped In X Ga 1-X N ( 0 <X <1), and p-type Group III nitride semiconductor layer, it is laminated Laminate. (11) The laminate according to (10), wherein the n-type group III nitride-based semiconductor layer is an n-type group III nitride-based semiconductor doped with Si as a donor. (20) and the n-type Group III nitride semiconductor layer, the absence of substantially carrier In X Ga 1-X N ( 0 <X <1)
A solar cell having a structure in which a light-receiving layer made of GaN and a p-type group III nitride-based semiconductor layer are stacked. (21) between the n-type Group III nitride semiconductor layer and the p-type Group III nitride semiconductor layer, In X Ga 1-X N (0 <X <
1) wherein substantially all of the electrons and holes generated in the light-receiving layer when irradiated with light are converted into n.
A group III nitride-based semiconductor light-receiving element having a structure sandwiching a type III group nitride-based semiconductor layer and a light-receiving layer that can be respectively supplied to the p-type semiconductor layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である受光素子1の断面図であ
る。
FIG. 1 is a sectional view of a light receiving element 1 according to an embodiment of the present invention.

【図2】実施例の受光素子1を用いた太陽電池特性を示
すグラフである。
FIG. 2 is a graph showing solar cell characteristics using the light receiving element 1 of the example.

【図3】同じくエネルギー変換効率を示すグラフであ
る。
FIG. 3 is a graph showing energy conversion efficiency.

【符号の説明】[Explanation of symbols]

1 受光素子 9 裏面反射層 10 サファイア基板 11 バッファ層 12 n型III族窒化物系半導体層 13 受光層 14 p型III族窒化物系半導体層 15 n電極 16 透光性電極 17 p電極 REFERENCE SIGNS LIST 1 light receiving element 9 back reflection layer 10 sapphire substrate 11 buffer layer 12 n-type group III nitride-based semiconductor layer 13 light receiving layer 14 p-type group III nitride-based semiconductor layer 15 n electrode 16 translucent electrode 17 p electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 光一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 Fターム(参考) 5F049 MA02 MA03 MA04 MB07 MB12 NA01 PA04 PA07 PA11 PA14 QA02 QA06 QA16 QA18 SE05 SE12 SE16 SS01 SZ16  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Ota 1 Ochiai, Nagahata, Kasuga-cho, Nishi-Kasugai-gun, Aichi F-term (reference) 5F049 MA02 MA03 MA04 MB07 MB12 NA01 PA04 PA07 PA11 PA14 QA02 QA06 QA16 QA18 SE05 SE12 SE16 SS01 SZ16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型III族窒化物系半導体層と、ノンド
ープのInGa1−XN(0<X<1)からなる受光
層と、p型III族窒化物系半導体層と、が積層された構
造を備えてなるIII族窒化物系半導体受光素子。
1. An n-type group III nitride-based semiconductor layer, a light-receiving layer made of non-doped In X Ga 1-X N (0 <X <1), and a p-type group III nitride-based semiconductor layer A group III nitride semiconductor light receiving device having a laminated structure.
【請求項2】 前記n型III族窒化物系半導体層が、S
iをドナーとしてドープしたn型III族窒化物系半導体
である、ことを特徴とする請求項1に記載のIII族窒化
物系半導体受光素子。
2. The method according to claim 1, wherein the n-type group III nitride semiconductor layer is
2. The group III nitride semiconductor light receiving device according to claim 1, wherein the group III nitride semiconductor semiconductor is an n-type group III nitride semiconductor doped with i as a donor.
【請求項3】 n型III族窒化物系半導体層と、ノンド
ープのInGa1−XN(0<X<1)からなる受光
層と、p型III族窒化物系半導体層と、が積層された前
記構造がサファイアからなる基板上に形成され、基板の
III族窒化物系半導体層と反対の面に光反射層を有す
る、ことを特徴とする請求項1に記載のIII族窒化物系
半導体受光素子。
3. An n-type group III nitride-based semiconductor layer, a light-receiving layer made of non-doped In X Ga 1-X N (0 <X <1), and a p-type group III nitride-based semiconductor layer The laminated structure is formed on a substrate made of sapphire, and
The group III nitride semiconductor light receiving device according to claim 1, further comprising a light reflection layer on a surface opposite to the group III nitride semiconductor layer.
JP11065881A 1999-03-12 1999-03-12 Light receiving device Withdrawn JP2000261025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11065881A JP2000261025A (en) 1999-03-12 1999-03-12 Light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11065881A JP2000261025A (en) 1999-03-12 1999-03-12 Light receiving device

Publications (1)

Publication Number Publication Date
JP2000261025A true JP2000261025A (en) 2000-09-22

Family

ID=13299777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11065881A Withdrawn JP2000261025A (en) 1999-03-12 1999-03-12 Light receiving device

Country Status (1)

Country Link
JP (1) JP2000261025A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304187A (en) * 2003-03-28 2004-10-28 Samsung Electronics Co Ltd Light-receiving element and manufacturing method therefor
WO2009028560A1 (en) * 2007-08-30 2009-03-05 Japan Science And Technology Agency Semiconductor material, solar cell using the semiconductor material, and method for manufacturing the semiconductor material and the solar cell
JP2012009783A (en) * 2010-06-28 2012-01-12 Meijo Univ Group iii nitride-based solar cell
WO2012090636A1 (en) * 2010-12-28 2012-07-05 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
CN103715284A (en) * 2013-12-30 2014-04-09 沈阳工程学院 Flexible substrate solar cell with adjustable band gap quantum well structure and preparation method
JP2022540991A (en) * 2019-07-15 2022-09-21 エスエルティー テクノロジーズ インコーポレイテッド Power photodiode structure, method of making the same, and method of using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273672A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film photoelectric transfer element
JPH03232279A (en) * 1989-10-19 1991-10-16 Hamamatsu Photonics Kk Photosensor
JPH07288334A (en) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd Gallium nitride based compound semiconductor light receiving element
WO1997011494A1 (en) * 1995-09-19 1997-03-27 Astralux, Incorporated X-ray detector
JPH09219563A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Semiconductor light element, and application system using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273672A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film photoelectric transfer element
JPH03232279A (en) * 1989-10-19 1991-10-16 Hamamatsu Photonics Kk Photosensor
JPH07288334A (en) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd Gallium nitride based compound semiconductor light receiving element
WO1997011494A1 (en) * 1995-09-19 1997-03-27 Astralux, Incorporated X-ray detector
JPH09219563A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Semiconductor light element, and application system using it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304187A (en) * 2003-03-28 2004-10-28 Samsung Electronics Co Ltd Light-receiving element and manufacturing method therefor
WO2009028560A1 (en) * 2007-08-30 2009-03-05 Japan Science And Technology Agency Semiconductor material, solar cell using the semiconductor material, and method for manufacturing the semiconductor material and the solar cell
US8728854B2 (en) 2007-08-30 2014-05-20 Japan Science And Technology Agency Semiconductor material, solar cell using the semiconductor material, and methods for producing the semiconductor material and the solar cell
JP2012009783A (en) * 2010-06-28 2012-01-12 Meijo Univ Group iii nitride-based solar cell
WO2012090636A1 (en) * 2010-12-28 2012-07-05 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
CN103715284A (en) * 2013-12-30 2014-04-09 沈阳工程学院 Flexible substrate solar cell with adjustable band gap quantum well structure and preparation method
CN103715284B (en) * 2013-12-30 2016-03-09 沈阳工程学院 The flexible substrate solar cell of gap tunable quantum well structure and preparation method
JP2022540991A (en) * 2019-07-15 2022-09-21 エスエルティー テクノロジーズ インコーポレイテッド Power photodiode structure, method of making the same, and method of using the same
JP7329126B2 (en) 2019-07-15 2023-08-17 エスエルティー テクノロジーズ インコーポレイテッド Power photodiode structure, method of making the same, and method of using the same

Similar Documents

Publication Publication Date Title
US11695088B2 (en) Self-bypass diode function for gallium arsenide photovoltaic devices
US8076686B2 (en) Light emitting diode and manufacturing method thereof
US9768329B1 (en) Multi-junction optoelectronic device
JP2010512664A (en) Zinc oxide multi-junction photovoltaic cell and optoelectronic device
JP7228176B2 (en) Group III nitride semiconductor light emitting device
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP2010118667A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
EP0179896A1 (en) Solar cells and photodetectors
US8796711B2 (en) Light-emitting element
CN110047955B (en) AlGaN ultraviolet avalanche photodiode detector and preparation method thereof
US20100282304A1 (en) Solar cell and method of manufacturing the same
US20150179857A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
US10957808B2 (en) Flexible double-junction solar cell
KR20150063449A (en) Excitonic energy transfer to increase inorganic solar cell efficiency
US7238972B2 (en) Photodetector
US11271128B2 (en) Multi-junction optoelectronic device
JP2009510737A (en) Photoelectric semiconductor element
JP2010186915A (en) Solar cell
JP2000261025A (en) Light receiving device
KR20110086096A (en) Optoelectronic semiconductor component
KR100751632B1 (en) Light emitting device
JP2012129298A (en) Semiconductor light-emitting element and method for manufacturing the same
CN208256703U (en) Laser photovoltaic cell and photoelectric converter
JPH0955522A (en) Tunnel diode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060705