CN100365841C - 层叠型压电陶瓷元件的制造方法 - Google Patents

层叠型压电陶瓷元件的制造方法 Download PDF

Info

Publication number
CN100365841C
CN100365841C CNB021597979A CN02159797A CN100365841C CN 100365841 C CN100365841 C CN 100365841C CN B021597979 A CNB021597979 A CN B021597979A CN 02159797 A CN02159797 A CN 02159797A CN 100365841 C CN100365841 C CN 100365841C
Authority
CN
China
Prior art keywords
sintering
volume
temperature
piezoelectric
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021597979A
Other languages
English (en)
Other versions
CN1430291A (zh
Inventor
加地敏晃
吉野芳正
大宫季武
山田耕市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001394061A external-priority patent/JP2003197997A/ja
Priority claimed from JP2001394060A external-priority patent/JP4069622B2/ja
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1430291A publication Critical patent/CN1430291A/zh
Application granted granted Critical
Publication of CN100365841C publication Critical patent/CN100365841C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了压电特性更好、可靠性更佳的压电陶瓷元件的制造方法。该方法具备在含铅元素化合物的压电陶瓷材料的陶瓷生片上涂布含有以银为主成分的合金的导电性浆料后,将该陶瓷生片层叠为层叠体的层叠工序;以及在烧结时的升温过程和保温过程中的氧气浓度在21体积%以上,且降温过程中的氧气浓度在0.05体积%以上、3体积%以下的氛围气中烧结该层叠体的的烧结工序。

Description

层叠型压电陶瓷元件的制造方法
技术领域
本发明涉及压电共振子、压电调节器、压电滤波器、压电蜂鸣器、压电变压器等中使用的压电陶瓷元件的制造方法。特别涉及用以银为主成分的合金作为内部电极的压电陶瓷元件的制造方法。
背景技术
众所周知,在压电共振子、压电调节器、压电滤波器、压电蜂鸣器、压电变压器等中使用的压电陶瓷元件中,为了满足不同的用途,使之结构上没有缺陷、具有较高可靠性的良好元件特性,在最佳条件进行烧结是必不可少的,人们已经进行了不懈的努力。
例如,在特开平2-74566号公报中,揭示了达到烧结温度以前的升温过程中,炉内氛围气保持在氧气浓度50体积%以上,在烧结温度下的保温过程中,炉内氛围气保持在氧气浓度是升温过程的1/2~10体积%的条件下进行烧结的工艺。籍此提出以下方法,即在氧气浓度50体积%以上的高氧氛围气条件下的升温过程中,提高这个时期形成陶瓷的闭气孔内的氧气浓度,在烧结温度下的保温过程中,把氧气浓度控制在升温过程的1/2~10体积%,使上述陶瓷闭气孔内和外部的氧气浓度差变大,从而增大氧气扩散速度,所以由氧化物构成的压电陶瓷烧结致密,可以批量生产。
在特开平4-357164号公报和特开平10-956653号公报等中,全烧结曲线显示在氧气浓度为80体积%以上的氛围气条件下进行烧结的工艺。籍此确定,抑制陶瓷烧结体的空孔和结构缺陷,可以得到致密性好、可靠性高的压电陶瓷元件,特别是压电共振子。
此外,还有不依靠内部电极的种类,全烧结曲线显示在大气中即氧气浓度为约21体积%的氛围气中烧结的工艺,它适用于各种压电陶瓷元件的生产。
但是,在如上所述的压电陶瓷元件一直采用的现有烧结工艺的情况下,存在这样一个问题,即如果烧结内部电极是由以银为主成分的合金组成的未烧结层叠体的时候,内部电极中包含的银会进入到压电陶瓷层中陶瓷颗粒的内部,引起压电陶瓷特性劣化。
因此,本发明的目的就在于提供压电特性进一步提高、可靠性更佳的层叠型压电陶瓷元件的制造方法。
发明内容
为了达到上述目的,本发明的层叠型压电陶瓷元件的制造方法的特征是具备以下2道工序,即,在包含压电陶瓷材料的陶瓷生片上涂布含有以银为主成分的合金的导电性浆料后,将该陶瓷生片层叠为层叠体的工序;以及在烧结时的升温过程和保温过程中的氧气浓度在21体积%以上,且降温过程中的氧气浓度在0.05体积%以上、3体积%以下的氛围气中对该层叠体进行烧结的工序。
烧结时的降温过程中的氧气浓度限定在0.05体积%以上、3体积%以下的理由如下所述。
在0.05体积%以上、3体积%以下的氧气氛围气条件下进行烧结时,由于氧气浓度低,升温过程和保温过程中固溶在陶瓷颗粒内的银在降温过程中会在晶粒边界析出,变成接近于固溶前的压电陶瓷的状态,所以不会影响到压电特性和可靠性,因此使压电特性和可靠性得以提高。
但是,超过3体积%的情况下,不能充分发挥前述进入到陶瓷颗粒内部的银在陶瓷晶粒边界析出的效应,所以不能提高压电特性和可靠性。
另外,小于0.05体积%的情况下,压电陶瓷的表面有异相析出,该异相的存在会影响到压电特性和可靠性,所以不能提高压电特性和可靠性。
在烧结时的升温过程和保温过程中氧气浓度限定在21体积%以上的理由如下所述。
在低于21体积%以下时,不能得到充分的烧结,所以可能引起特性下降。
在升温过程和保温过程中,例如钛锆酸铅(PZT)系化合物就是在氧气浓度约21体积%的大气氛围气或氧气浓度约21体积%以上的氛围气条件下烧结而成的。最高温度区的烧结温度是在上述氛围气条件下完成层叠体烧结的温度,具体来说,设定为层叠烧结体的充填密度达到理论密度的99%以上的温度。另外,在最高温度区的保持时间也按上述烧结温度的设定思想设定。
钛锆酸铅(PZT)系化合物的升温速度和降温速度都设定在每分钟1~10℃的范围内,最高温度区的保持时间设定在1~10小时的范围内。
但是,烧结条件并不限定于上述条件,可以根据含有铅元素化合物的压电陶瓷材料的种类(组成系),选择最佳烧结温度、升温速度、保持时间和降温速度。
另外,作为上述陶瓷生片中的压电陶瓷材料,除了如上所述的钛锆酸铅(PZT)系化合物之外,还包括含有钛酸铅(PbTiO3)系化合物、偏铌酸铅(PbNb2O6)系化合物、偏钽酸铅(PbTa2O6)系化合物等的材料。
内部电极用导电性浆料中所含的导体是以银为主成分构成的,银含量为100重量%或钯含量在50重量%以下。
因此,本发明的层叠型压电陶瓷元件的制造方法中,通过在烧结时的升温过程和保温过程中氧气浓度在21体积%以上、且降温过程中氧气浓度为0.05体积%~3体积%的氛围气中同时烧结含有以银为主成分的合金的内部电极和陶瓷层,使在烧结时的升温过程和保温过程中进入粒内的银在降温过程析出于晶粒边界,可改善因银的进入而导致的压电特性的下降,故可以提高压电特性,特别是可提高压电变形常数(d),充分确保高可靠性。
因此,可制得压电特性和可靠性都更加优异的层叠型压电陶瓷元件。
为了达到上述目的,本发明的层叠型压电陶瓷元件的制造方法的特征是具有以下道工序,即,在含压电陶瓷材料的陶瓷生片上涂布含有以银为主成分的合金的导电性浆料后,将该陶瓷生片层叠为层叠体的层叠工序;对该层叠体进行初次烧结的工序(以下称作正烧结);以及在氧气浓度10体积%以下的氛围气中再次烧结该层叠烧结体的工序(以下称作再烧结)。
在此,再烧结中的氧气浓度之所以设定在10体积%以下是由于如果超过10体积%,在正烧结中进入陶瓷粒内的银在晶粒边界析出的效果得不到充分发挥,导致压电特性和可靠性不能提高。另一方面,对再烧结中的氧气浓度的下限值虽然没有特别的限定,但如果为0.05体积%,则可得到理想的效果,因烧结条件不同,进一步降低氧气浓度也可以。
关于正烧结,例如,钛锆酸铅(PZT)系化合物是在氧气浓度约21体积%的大气氛围气或氧气浓度约21体积%以上的氛围气条件下烧结而成的。最高温度区的烧结温度设定为在上述氛围气条件下完成层叠体的烧结的温度。具体来说,设定为层叠烧结体的充填密度为理论密度99%以上时的温度。最高温度区的保持时间也按与上述烧结温度相同的设定思想设定。
另外,在正烧结中,温度保持在最高温度区之后,也可以降温到300℃以下,或者暂且冷却至室温,然后实施再烧结。
例如为钛锆酸铅(PZT)系化合物的情况下,正烧结中的升温速度和降温速度都设定在每分钟1~10℃范围内,最高温度区中的保持时间设定在1~10小时的范围内。
例如为钛锆酸铅(PZT)系化合物的情况下,再烧结在氧气浓度10体积%以下的氛围气条件下进行烧结。再烧结中的最高温度区的烧结温度设定为低于正烧结时的最高温度区的烧结温度。例如,为钛锆酸铅(PZT)系化合物的情况下,再烧结的最高温度比正烧结的最高温度低约20℃~50℃,这是为了防止铅蒸发而造成压电特性下降。
例如,为钛锆酸铅(PZT)系化合物的情况下,再烧结中的升温速度和降温速度都设定在每分钟1~10℃的范围内,最高温度区的保持时间设定在1~10小时的范围内。
但是,正烧结和再烧结的烧结条件并不限于上述条件,可以按含铅元素化合物的压电陶瓷材料的种类(组成体系)不同,选择最佳烧结温度、升温速度、保持时间和降温速度。
作为上述陶瓷生片中的压电陶瓷材料,除了如上所述的钛锆酸铅(PZT)系化合物之外,还包括含钛酸铅(PbTiO3)系化合物、偏铌酸铅(PbNb2O6)系化合物、偏钽酸铅(PbTa2O6)系化合物等的材料。
内部电极用导电性浆料中含有的导体是以银为主成分的合金构成的,含银100重量%或含钯50重量%以下。
上述氧气浓度在10体积%以下的氛围气是以氮气为主成分的氛围气。
在该氛围气气体中,除了氮气之外,以不对压电特性产生不良影响为前提,还包含氩气和二氧化碳等惰性气体。
在实施正烧结和再烧结的时候,最好分别使用各自的烧结装置。这是由于这样能对烧结工艺的氛围气进行高精度的控制。
因此,按本发明的层叠型压电陶瓷元件的制造方法,在含有以银为主成分的合金的内部电极中插入陶瓷层而形成层叠型压电陶瓷元件,对上述陶瓷层和上述内部电极同时进行烧结而获得的元件在氧气浓度10体积%以下的氛围气中进行再烧结,使烧结时进入陶瓷粒内的银经再烧结工艺析出在晶粒边界,可改善因银进入陶瓷粒内而导致的压电特性的下降,所以能够提高压电特性,充分确保高可靠性。
因此,能够制得压电特性和可靠性都更优异的层叠型压电陶瓷元件。
附图说明
图1是表示本发明一个实施例的层叠型压电陶瓷调节器的侧视图。
图2是图1所示的层叠型压电陶瓷调节器的a-b方向的剖视图。
图3是本发明制得的喷墨用层叠型压电陶瓷元件的侧视图。
图4是表示本发明的实施例1和2的层叠型压电陶瓷元件的制造方法中的烧结温度和时间关系的曲线图。
图5是表示本发明的实施例3和4的层叠型压电陶瓷元件的制造方法中的烧结温度和时间关系的曲线图。
符号说明:10为层叠型压电陶瓷调节器,11为内部电极,12为外部电极13为压电陶瓷,30为喷墨用层叠型压电陶瓷元件,31为压电陶瓷,32为内部电极,33为外部电极。
具体实施方式
以下,通过图4和实施例,以作为本发明的层叠型压电陶瓷元件的一个例子的层叠型压电调节器的制造方法为例,对本发明的实施方式进行详细说明。
实施例1
首先准备Pb3O4、TiO2、ZrO2、SrCO3作为初始原料。然后,为了得到组成为Pb0.98Sr0.02(Zr0.45Ti0.55)O3的压电陶瓷组成物,称量上述原料,用球磨机进行湿法混合。再将上述混合物进行脱水、干燥,在800℃下煅烧2小时,经粉碎得到煅烧粉末。
然后,在此煅烧粉末中添加丙烯酸系有机粘结剂、有机溶剂和增塑剂等添加剂,用球磨机进行湿法混合,得到浆料。
将此浆料用流延法成型,制成约40μm厚的陶瓷生片。
用网版印刷法在此陶瓷生片上涂布含有比例为Ag/Pg=80重量%/20重量%的导体的导电性浆料,使烧结后的厚度为1.0~3.0μm,干燥后得到形成了内部电极用层的陶瓷生片。
此后,层叠该陶瓷生片,用热压法压接,得到一体化的层叠体。
接着,在大约500℃的温度下先将该层叠体中的粘结剂成分除去,然后使用表1所示的烧结曲线和烧结氛围气进行烧结。
升温速度为每分钟3℃,保温过程的保持时间为2小时,降温速度为每分钟4℃。
表1中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内的。
表1
烧结氛围气条件No.     氧气浓度条件(单位:体积%)
    升温过程600℃~1050℃     保温过程1050℃ 降温过程1050℃~300℃
J1<sup>*</sup>     21     21 5
J2     21     21 3
J3     21     21 1
J4     21     21 0.5
J5     21     21 0.05
J6<sup>*</sup>     21     21 0.03
J7     90     90 1
J8     90     90 0.5
J9<sup>*</sup>     21     21 21
J10<sup>*</sup>     90     90 90
J11<sup>*</sup>     1     21 21
将此烧结后的层叠体切成规定大小后,涂布外部电极后进行烧结,得到与内部电极进行了电气连接的压电陶瓷元件。
然后,置60℃的绝缘线圈中,施加4.0kV/mm的直流电场60分钟进行极化处理。在120~200℃的空气中进行30~60分钟的老化处理,得到图1、图2所示的作为目标的层叠型压电调节器10。另外,在图1和图2中,11表示内部电极,12表示外部电极,13表示压电陶瓷。
求得这些层叠型压电调节器的压电变形系数|d31|和压电陶瓷的电阻率ρ。其结果列于表2。
另外,|d31|是采用激光多普勒振动计测定变形量,算出31方向的压电变形系数而求得的。ρ是插入了陶瓷层的内部电极间施加DC50V的电压30秒种时的绝缘电阻,将该绝缘电阻乘以电极面积,再将所得值除以内部电极间的陶瓷层厚度而求得的。
在表2中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表2
    试样编号     烧结氛围气条件     特性
    |d<sub>31</sub>|(10<sup>-12</sup>C/N)     ρ(10<sup>-12</sup>Ω·cm)
    1     J1<sup>*</sup>     208     0.40
    2     J2     207     6.5
    3     J3     211     7.8
    4     J4     206     5.4
    5     J5     209     6.2
    6     J6<sup>*</sup>     190     0.44
    7     J7     210     6.4
    8     J8     210     6.5
    9     J9<sup>*</sup>     188     0.55
    10     J10<sup>*</sup>     193     0.58
    11     J11<sup>*</sup>     195     0.54
由表1、2可知,本发明范围内的试样2~5的压电陶瓷的电阻率ρ和压电变形系数d31得到了提高。
但是,另一方面还可知在600℃~1050℃的升温过程、1050℃的保温过程以及1050℃~300℃的降温过程的烧结温度范围内,全过程都是在氧气浓度21体积%和90体积%的烧结氛围气中的试样9和10,升温过程中的氧气浓度为1体积%、保温过程和降温过程的氧气浓度都为21体积%的烧结氛围气的试样编号,与本发明范围内的试样2~5相比,压电陶瓷的电阻率ρ和压电变形系数d31没有充分提高。
这可以认为是由于烧结的降温过程中,氛围气中的氧气浓度降低所得到的效果。
也就是说,在升温过程或者保温过程中,包括本发明范围内的试样2~5在内的上述任何情况下,因为都是在氧气浓度为21体积%的高氧气氛围气条件下烧结的,所以层叠型压电调节器的内部电极中所含的银进入到压电陶瓷的粒内,形成和银的固溶体。
保持这一状态不变,在降温过程,如果在本发明范围之外的氧气氛围气条件下烧结,就会有影响到压电特性和可靠性的倾向。
但是,在降温过程中,如果采用本发明的0.05体积%以上、3体积%以下的氧气氛围气条件进行烧结,则因为氧气浓度降低,陶瓷粒内有固溶银在晶粒边界析出,变成与固溶前的压电陶瓷接近的状态,所以不会影响到压电特性和可靠性。
另外,在上述烧结温度范围内,如试样1的在升温过程和保温过程中氧气浓度为21体积%,且降温过程中氧气浓度为5体积%的烧结氛围气条件下进行烧结的情况与本发明范围内的试样2~5的情况比较,可知压电变形系数d31大致相同,但压电陶瓷的电阻率ρ变低,不能充分确保绝缘性。
这可以认为是由于在降温过程的氧气浓度为5体积%的烧结氛围气中,通过如上所述的降低氧气浓度,使已固溶在陶瓷粒内的银在晶粒边界上析出来,影响到压电特性和可靠性的原因。因此,这一条件不理想。
另外,如试样6的在升温过程和保温过程的氧气浓度都是21体积%,而降温过程的氧气浓度为0.03体积%的烧结氛围气条件下进行烧结的情况与本发明内的试样2~5的情况比较,压电变形系数d31低,而且压电陶瓷的电阻率ρ也低,可知压电特性和可靠性都不能充分确保。
这可以认为在降温过程的氧气浓度为0.03体积%的烧结氛围气中,压电陶瓷的表面有异相生成,该异相的存在导致压电特性和可靠性变差。因此,至少可以认为这一条件是不理想的。
另外,如试样7和8的在升温过程和保温过程的氧气浓度都为90体积%,降温过程的氧气浓度为0.5体积%以上、1体积%以下的烧结氛围气条件下进行烧结的情况,压电陶瓷的电阻率ρ提高,压电变形系数d31低也保持在同等水平。
也就是说,得到了与上述试样2~5具有同等水平的特性。
如上所述,通过满足降温过程的氧气浓度0.05体积%以上、3体积%以下的烧结氛围气条件,而且满足升温过程和保温过程的氧气浓度都在21体积%以上的烧结氛围气条件,能够提高压电特性和可靠性。
实施例2
首先准备Pb3O4、TiO2、ZrO2、Nb2O5、NiO和Fe2O3作为初始原料。然后,为了得到含有作为主成分的99重量%的Pb100{Ni1/3Nb2/3}0.40Zr0.25Ti0.35}O3和作为添加物的1重量%的Fe2O3的压电陶瓷组成物,称量上述原料,用球磨机进行湿法混合。
再将上述混合物脱水、干燥,在800℃下煅烧2小时,经粉碎得到煅烧粉末。
然后,采用与上述实施例1同样的方法,得到如图1和图2所示的作为目标的层叠型压电调节器10。
求得这些层叠型压电调节器的压电变形系数|d31|和压电陶瓷的电阻率ρ。其结果列于表3。
另外,|d31|是采用激光多普勒振动计测定变形量,算出31方向的压电变形系数而求得的。ρ是插入了陶瓷层的内部电极间施加DC50V的电压30秒种时的绝缘电阻,将该绝缘电阻乘以电极面积,再将所得值除以内部电极间的陶瓷层厚度而求得的。
在表3中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表3
    试样编号     烧结氛围气条件No.     特性
    |d<sub>31</sub>|(10<sup>-12</sup>C/N)     ρ(10<sup>-12</sup>Ω·cm)
    12     J1<sup>*</sup>     295     0.35
    13     J2     310     8.5
    14     J3     309     6.4
    15     J4     315     6.6
    16     J5     315     5.8
    17     J6<sup>*</sup>     290     0.74
    18     J7     306     5.4
    19     J8     307     5.8
    20     J9<sup>*</sup>     280     0.49
    21     J10<sup>*</sup>     285     0.63
    22     J11<sup>*</sup>     290     0.46
由表1、3可知,本发明范围内的试样13~16的压电陶瓷的电阻率ρ和压电变形系数d31都得到了提高。
但是,另一方面还可知在600℃~1050℃的升温过程、1050℃的保温过程以及1050℃~300℃的降温过程的烧结温度范围内,其全过程都是在氧气浓度21体积%和90体积%的烧结氛围气条件的试样20和21,升温过程中氧气浓度为1体积%、保温过程和降温过程中氧气浓度都为21体积%的烧结氛围气下的试样22,与本发明范围内的试样13~16相比,压电陶瓷的电阻率率ρ和压电变形系数d31没有提高很多。
这可以认为是由于烧结的降温过程中,氛围气的氧气浓度降低所得到的效果。
也就是说,在升温过程或者保温过程的阶段,包括本发明范围内的试样13~16在内的上述任何情况下,因为都是在氧气浓度为21体积%的高氧气氛围气条件下烧结的,所以层叠型压电调节器的内部电极中所含的银进入到压电陶瓷的粒内,形成和银的固溶体。
保持这一状态不变,在降温过程,如在本发明的范围之外的氧气氛围气条件下烧结,就会有影响压电特性和可靠性的倾向。
但是,在降温过程中,如果采用本发明的0.05体积%以上、3体积%以下的氧气氛围气条件下进行烧结,则因为氧气浓度降低,陶瓷粒内有固溶银在晶粒边界析出,变成与固溶前的压电陶瓷接近的状态,所以不会影响压电特性和可靠性。
另外,在上述烧结温度范围内,如试样12的在升温过程和保温过程中氧气浓度都为21体积%,且降温过程中氧气浓度为5体积%的烧结氛围气条件下进行烧结的情况与本发明范围内的试样13~16比较,可知压电变形系数d31在同等水平,但压电陶瓷的电阻率ρ变低,不能充分确保绝缘性。
这可以认为是由于在降温过程的氧气浓度为5体积%的烧结氛围气中,通过如上所述的降低氧气浓度,使已固溶在陶瓷粒内的银在晶粒边界上析出来,影响到压电特性和可靠性的原因。因此,这一条件不理想。
另外,如试样17的在升温过程和保温过程中氧气浓度都为21体积%,而降温过程中氧气浓度为0.03体积%的烧结氛围气条件下进行烧结的情况与本发明内的试样13~16的情况比较,压电变形系数d31低,而且压电陶瓷的电阻率ρ也低,可知压电特性和可靠性都不可能充分确保。
这可以认为在降温过程的氧气浓度为0.03体积%的烧结氛围气中,压电陶瓷的表面有异相生成,该异相的存在会影响到压电特性和可靠性。因此,这一条件是不理想的。
另外,如试样18和19的在升温过程和保温过程氧气浓度都是90体积%,降温过程氧气浓度为0.5体积%以上、1体积%以下的烧结氛围气条件下进行烧结的情况,压电陶瓷的电阻率ρ提高,压电变形系数d31低也保持在同等水平。
也就是说,得到了与上述试样13~16具有同等水平的特性。
如上所述,通过满足降温过程的氧气浓度0.05体积%以上、3体积%以下的烧结氛围气条件,而且满足升温过程和保温过程的氧气浓度都在21体积%以上的烧结氛围气条件,能够提高压电特性和可靠性。
另外,通过图5和实施例,对作为本发明的层叠型压电陶瓷元件的一例的层叠型压电调节器的制造方法的实施方式进行详细说明。
实施例3
首先准备Pb3O4、TiO2、ZrO2、SrCO3作为初始原料。然后,为了得到组成为Pb0.98Sr0.02(Zr0.45Ti0.55)O3的压电陶瓷组成物,称量上述原料,用球磨机进行湿法混合。
再将上述混合物进行脱水、干燥,在800℃下煅烧2小时,经粉碎得到煅烧粉末。
然后,在此煅烧粉末中添加丙烯酸系有机粘结剂、有机溶剂和增塑剂等添加剂,用球磨机进行湿法混合,得到浆料。
将此浆料用流延法成型,制成约40μm厚的陶瓷生片。
用网版印刷法在此陶瓷生片上涂布含有比例为Ag/Pd=80重量%/20重量%的导体的导电性浆料,使烧结后的厚度为1.0~3.0μm,干燥后得到形成了内部电极用层的陶瓷生片。
然后,层叠该陶瓷生片,用热压法压接,得到一体化的层叠体。
接着,在大约500℃的温度下,先将该层叠体中的粘结剂成分除去,然后使用表4所示的烧结曲线和烧结氛围气进行正烧结和再烧结。
另外,正烧结和再烧结分别在各自的烧结装置上进行,正烧结和再烧结的升温速度都是每分钟3℃,在最高温度区的保持时间为2小时,降温速度为每分钟4℃。
在表4中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表4
烧结氛围气条件No. 烧结氛围气(体积%) 正烧结 再烧结
升温过程600~1050℃     保温过程1050℃   降温过程1050~300℃   升温过程600~1030℃   保温过程1030℃   降温过程1030~300℃
J1     氧气 21     21   21   0.05   0.05   0.05
    氮气 79     79   79   99.95   99.95   99.95
J2     氧气 21     21   21   1   1   1
    氮气 79     79   79   99   99   99
J3     氧气 21     21   21   10   10   10
    氮气 79     79   79   89   89   89
J4<sup>*</sup>     氧气 21     21   21   21   21   21
    氮气 79     79   79   79   79   79
将再烧结后的层叠体切成规定大小后,涂布外部电极,再进行烧结,得到与内部电极进行了电连接的压电陶瓷元件。
然后,置60℃的绝缘线圈中,施加4.0kV/mm的直流电场60分钟进行极化处理。接着,在120~200℃的空气中进行30~60分钟的老化处理,得到如图1所示的作为目标的层叠型压电调节器10。图1中,11表示内部电极,12表示外部电极,13表示压电陶瓷。
已求得这些层叠型压电调节器的压电变形系数|d31|和压电陶瓷的电阻率ρ。其结果列于表5。
|d31|是采用激光多普勒振动计测定变形量,算出31方向的压电变形系数而求得的。ρ是插入了陶瓷层的内部电极间施加DC50V的电压30秒种时的绝缘电阻,将该绝缘电阻乘以电极面积,再将所得值除以内部电极间的陶瓷层厚度而求得的。|d31|表示平均值(在表中,记作AVE)和3σ(σ指标准偏差),ρ表示平均值。
在表5中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表5
    试样编号   烧结氛围气条件No.     特性
    |d<sub>31</sub>|(10<sup>-12</sup>C/N)     ρ(10<sup>-12</sup>Ω·cm)
    AVE     3σ     AVE
    1   J1     158     16     7.0
    2   J2     160     15     6.5
    3   J3     156     18     7.2
    4<sup>*</sup>   J4<sup>*</sup>     130     43     0.83
由表4、5可知,在正烧结之后,与大气中即氧气浓度为21%的氛围气中再烧结的试样4相比较,氧气浓度分别是0.05体积%、1体积%、10体积%的各氮气氛围气中再烧结的试样1、2、3的压电陶瓷的压电变形系数d31以及电阻率ρ都提高,d31的特性分散性也降低。
这可以认为主要是在再烧结的氛围气中,降低了氧气浓度所致。
也就是说,这是由于烧结时进入到粒内的银在再烧结过程中在晶粒边界析出,可改善由于银进入而造成的元件压电特性的下降。
如上所述,作为烧结氛围气的条件,在正烧结后的再烧结工艺中,通过满足氧气浓度在10体积%以下的氮气氛围气条件,可以提高压电特性和绝缘性。
实施例4
首先准备Pb3O4、TiO2、ZrO2、Cr2O3和Sb2O3作为初始原料。然后,为了得到97重量%的Pb(Zr0.47Ti0.53)O3中含有作为添加物的1重量%的Cr2O3和2重量%的Sb2O3的压电陶瓷组成物,称量上述原料,用球磨机进行湿法混合。再将上述混合物进行脱水、干燥,在800℃下煅烧2小时,经粉碎得到煅烧粉末。
然后,在此煅烧粉末中添加丙烯酸系有机粘结剂、有机溶剂和增塑剂等添加剂,用球磨机进行湿法混合,得到浆料。
将此浆料用流延法成型,制成约80μm厚的陶瓷生片。
用网版印刷法在此陶瓷生片上涂布含有比例为Ag/Pd=80重量%/20重量%的导体的导电性浆料,使烧结后的厚度为1.0~3.0μm,干燥后得到形成了内部电极用层的陶瓷生片。
此后,层叠该陶瓷生片,用热压压接,得到一体化的层叠体。
接着,在大约500℃的温度下,先将该层叠体中的粘结剂成分除去,然后使用表6所示的烧结曲线和烧结氛围气进行正烧结和再烧结。
另外,正烧结和再烧结分别在各自的烧结装置上进行,正烧结和再烧结的升温速度都是每分钟3℃,在最高温度区的保持时间为2小时,降温速度均为每分钟4℃。
在表6中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表6
烧结氛围气条件No. 烧结氛围气(体积%) 正烧结 再烧结
升温过程600~1000℃     保温过程1000℃ 降温过程1000~300℃   升温过程600~970℃ 保温过程970℃     降温过程970300℃
  J1     氧气 21     21 21   0.05   0.05     0.05
氮气 79 79 79 99.95 99.95 99.95
  J2     氧气 21     21 21   1   1     1
氮气 79 79 79 99 99 99
  J3     氧气 21     21 21   10   10     10
氮气 79 79 79 89 89 89
  J4<sup>*</sup>     氧气 21     21 21   21   21     21
氮气 79 79 79 79 79 79
将再烧结后的层叠体切成规定大小后,涂布外部电极,进行烧结得到与内部电极进行了电连接的层叠型压电调节器。
然后,置60℃的绝缘线圈中,施加4.0kV/mm的直流电场60分钟进行极化处理。接着,在120~200℃的空气中进行30~60分钟的老化处理,与实施例3同样,得到如图1所示的作为目标的层叠型压电调节器10。
采用阻抗分析仪测定上述层叠型压电调节器的电气机械结合系数K31和机械品质系数Qm31
ρ是插入了陶瓷层的内部电极间施加DC50V的电压30秒种时的绝缘电阻,将该绝缘电阻乘以电极面积,再将所得值除以内部电极间的陶瓷层厚度而求得的。
其结果列于表7中。K31、Qm31、ρ值都是平均值(表中记作AVE)。
在表7中,带*号的数据是本发明范围以外的数据,除此之外的所有数据都在本发明范围之内。
表7
    试样编号     烧结氛围气条件No.   特性
  K<sub>31</sub>(%)   Qm<sub>31</sub>(Ω)    ρ(10<sup>-12</sup>Ω·cm)
  AVE   AVE     AVE
    5     J1   30.0   420     6.8
    6     J2   30.4   430     6.9
    7     J3   30.1   440     7.5
    8<sup>*</sup>     J4<sup>*</sup>   28.6   380     0.63
由表6、7可知,在正烧结之后,与大气中即氧气浓度为21%的氛围气中再烧结的试样8相比较,氧气浓度分别是0.05体积%、1体积%、10体积%的各氮气氛围气中再烧结的试样5、6、7的层叠型压电调节器的电气机械结合系数K31和机械品质系数Qm31以及电阻率ρ都有所提高。
这可以认为主要是在再烧结的氛围气中,降低了氧气浓度所致。
也就是说,这是由于烧结时进入到粒内的银在再烧结过程中在晶粒边界析出,改善了由于银进入而造成的元件的压电特性下降的缘故。
如上所述,作为烧结氛围气的条件,在正烧结后的再烧结工艺中,通过满足氧气浓度在10体积%以下的氮气氛围气条件,可以提高压电特性和绝缘性。
另外,虽然在上述实施例中仅就层叠型压电陶瓷调节器的情况进行了说明,但本发明并不限于这种情况,它适用于利用压电效应的压电共振子、压电滤波器、压电蜂鸣器和压电变压器等所有层叠型压电陶瓷元件。图3表示应用本发明制得的喷墨用层叠型压电陶瓷元件30的侧视图。31表示压电陶瓷,32表示内部电极,33表示外部电极。
如上所述,按照本发明的层叠型压电陶瓷元件的制造方法,在烧结时升温过程和保温过程的氧气浓度在21体积%以上,降温过程的氧气浓度为0.05体积%以上、3体积%以下的氛围气中同时烧结含有以银为主成分的合金的内部电极和陶瓷层,使烧结时升温过程和保温过程进入到粒内的银在降温过程中在晶粒边界析出,改善了由于银进入造成的压电特性的下降,可以提高压电特性,特别是压电变形系数(d),充分确保高可靠性能。因此,能够得到压电特性和可靠性更加优异的层叠型压电陶瓷元件。
按照本发明的层叠型压电陶瓷元件的制造方法,在含有以银为主成分的合金的内部电极中插入陶瓷层而形成层叠型压电陶瓷元件,对上述陶瓷层和上述内部电极同时进行烧结而获得的元件在氧气浓度10体积%以下的氛围气中进行再烧结,使烧结时进入陶瓷粒内的银经再烧结工艺析出在晶粒边界,可改善因银进入陶瓷粒内而导致的压电特性的下降,所以能够提高压电特性,充分确保高可靠性。

Claims (1)

1.层叠型压电陶瓷元件的制造方法,其特征在于,具备在含铅元素化合物的压电陶瓷材料的陶瓷生片上涂布含有以银为主成分的合金的导电性浆料后,将该陶瓷生片层叠为层叠体的工序;以及在烧结时的升温过程和保温过程中的氧气浓度在21体积%以上、且降温过程中的氧气浓度在0.05体积%以上、3体积%以下的氛围气中烧结该层叠体的工序。
CNB021597979A 2001-12-26 2002-12-26 层叠型压电陶瓷元件的制造方法 Expired - Lifetime CN100365841C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001394061 2001-12-26
JP2001394060 2001-12-26
JP2001394061A JP2003197997A (ja) 2001-12-26 2001-12-26 積層型圧電セラミック素子の製造方法
JP2001394060A JP4069622B2 (ja) 2001-12-26 2001-12-26 積層型圧電セラミック素子の製造方法

Publications (2)

Publication Number Publication Date
CN1430291A CN1430291A (zh) 2003-07-16
CN100365841C true CN100365841C (zh) 2008-01-30

Family

ID=26625285

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021597979A Expired - Lifetime CN100365841C (zh) 2001-12-26 2002-12-26 层叠型压电陶瓷元件的制造方法

Country Status (3)

Country Link
US (1) US6749706B2 (zh)
KR (1) KR100533578B1 (zh)
CN (1) CN100365841C (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982267B2 (ja) * 2002-01-16 2007-09-26 株式会社村田製作所 積層型圧電セラミック素子の製造方法
WO2005024966A1 (ja) 2003-09-04 2005-03-17 Nec Corporation 圧電セラミックス素子および携帯機器
JP2005174974A (ja) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd 積層圧電体部品の製造方法
EP2003706B1 (en) * 2006-03-07 2018-05-02 Kyocera Corporation Method for manufacturing ceramic member, and ceramic member for gas sensor, fuel cell, and multi-layer piezoelectric device
DE102008036837A1 (de) * 2008-08-07 2010-02-18 Epcos Ag Sensorvorrichtung und Verfahren zur Herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU724476A1 (ru) * 1978-02-13 1980-03-30 Предприятие П/Я А-3481 Способ спекани пьезоэлектрической керамики на основе цирконата- титаната свинца
JPH0562857A (ja) * 1991-08-29 1993-03-12 Tdk Corp セラミツク電子部品の製造方法
JPH06164014A (ja) * 1992-11-24 1994-06-10 Toyota Motor Corp 圧電磁器の製造方法
US5405466A (en) * 1992-09-11 1995-04-11 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer ceramic electronic component
JPH1095665A (ja) * 1996-09-20 1998-04-14 Tdk Corp 圧電磁器組成物及びその製造方法
US6045893A (en) * 1997-12-09 2000-04-04 Hitachi Metals, Ltd. Multilayered electronic part with minimum silver diffusion
US6129886A (en) * 1997-03-31 2000-10-10 Tdk Corporation Method of preparation of piezoelectric ceramics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652425B2 (ja) 1988-09-10 1997-09-10 松下電器産業株式会社 圧電セラミツクスの製造方法
JPH04357164A (ja) 1991-05-31 1992-12-10 Kyocera Corp 圧電磁器の製造方法
DE4443365A1 (de) * 1994-12-06 1996-06-13 Philips Patentverwaltung Brenn- und Sinterverfahren für ein keramisches elektronisches Bauteil
US5935485A (en) * 1996-10-31 1999-08-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Piezoelectric material and piezoelectric element
JPH11163433A (ja) 1997-11-27 1999-06-18 Hitachi Metals Ltd 積層型圧電セラミックス振動子および製造方法
JPH11274595A (ja) * 1998-03-23 1999-10-08 Hitachi Metals Ltd 圧電セラミックス、積層型圧電セラミックス振動子およびその製造方法
JP3982267B2 (ja) * 2002-01-16 2007-09-26 株式会社村田製作所 積層型圧電セラミック素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU724476A1 (ru) * 1978-02-13 1980-03-30 Предприятие П/Я А-3481 Способ спекани пьезоэлектрической керамики на основе цирконата- титаната свинца
JPH0562857A (ja) * 1991-08-29 1993-03-12 Tdk Corp セラミツク電子部品の製造方法
US5405466A (en) * 1992-09-11 1995-04-11 Murata Manufacturing Co., Ltd. Method of manufacturing multilayer ceramic electronic component
JPH06164014A (ja) * 1992-11-24 1994-06-10 Toyota Motor Corp 圧電磁器の製造方法
JPH1095665A (ja) * 1996-09-20 1998-04-14 Tdk Corp 圧電磁器組成物及びその製造方法
US6129886A (en) * 1997-03-31 2000-10-10 Tdk Corporation Method of preparation of piezoelectric ceramics
US6045893A (en) * 1997-12-09 2000-04-04 Hitachi Metals, Ltd. Multilayered electronic part with minimum silver diffusion

Also Published As

Publication number Publication date
US6749706B2 (en) 2004-06-15
KR100533578B1 (ko) 2005-12-06
KR20030055136A (ko) 2003-07-02
US20030196740A1 (en) 2003-10-23
CN1430291A (zh) 2003-07-16

Similar Documents

Publication Publication Date Title
KR100557520B1 (ko) 세라믹 재료 및 이를 이용한 압전소자
EP2181976B1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
US7498725B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
EP0534378B1 (en) Non-reducible dielectric ceramic composition
EP1382587B1 (en) Piezoelectric porcelain and method for preparation thereof, and piezoelectric element
US7507347B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4403967B2 (ja) 圧電デバイスの製造方法
US7528531B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
US6916754B2 (en) Dielectric ceramic material and method for producing the same
CN100365841C (zh) 层叠型压电陶瓷元件的制造方法
US7305743B2 (en) Method of producing piezoelectric ceramic device
JP4640092B2 (ja) 積層型圧電素子及びその製造方法
US7564176B2 (en) Laminated piezoelectric element and production method of the same
US10002714B2 (en) Dielectric film and dielectric element
US20080067897A1 (en) Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element
CN114823135A (zh) 电介质组合物及电子部件
JP2007230839A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP4735837B2 (ja) 積層型圧電素子の製造方法及び積層型圧電素子
JP2003012369A (ja) 圧電体磁器組成物
JPH0435884B2 (zh)
JPH0435883B2 (zh)
JP2007099585A (ja) 圧電磁器組成物用原料混合粉末及び圧電磁器組成物の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080130