CN100359647C - 等离子体处理方法及后处理方法 - Google Patents

等离子体处理方法及后处理方法 Download PDF

Info

Publication number
CN100359647C
CN100359647C CNB2005100770642A CN200510077064A CN100359647C CN 100359647 C CN100359647 C CN 100359647C CN B2005100770642 A CNB2005100770642 A CN B2005100770642A CN 200510077064 A CN200510077064 A CN 200510077064A CN 100359647 C CN100359647 C CN 100359647C
Authority
CN
China
Prior art keywords
plasma
plasma treatment
chamber
gas
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100770642A
Other languages
English (en)
Other versions
CN1734724A (zh
Inventor
清水昭贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1734724A publication Critical patent/CN1734724A/zh
Application granted granted Critical
Publication of CN100359647C publication Critical patent/CN100359647C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供不仅能够防止处理腔室内的腐蚀,也能够防止搬运系统中的腐蚀的等离子体处理方法及后处理方法。对腔室内的被处理体进行等离子体处理的等离子体处理方法,其特征在于,包括:将至少含有卤素的气体等离子体化,用生成第一等离子体对被处理体进行处理的第一等离子体处理;在第一等离子体处理之后,向所述腔室内供给含氧气体,生成第二等离子体,对所述腔室以及被处理体进行处理的第二等离子体处理;将至少含有氮和氢的气体等离子体化,用生成的第三等离子体对经过第二等离子体处理后的被处理体进行处理的第三等离子体处理。

Description

等离子体处理方法及后处理方法
技术领域
本发明涉及有关等离子体处理方法及后处理方法,具体来说,例如用于对半导体晶片等进行蚀刻处理的等离子体处理方法及后处理方法。
背景技术
在用溴化氢或氯等的腐蚀性气体对半导体晶片等基板进行干蚀刻的工序中,有必要针对由处理腔室内附着的反应生成物的剥离产生的颗粒、腐蚀性气体导致的腔室的劣化等提出相应对策。因此提出了在干蚀刻后用O2等离子体进行清洗的方案(例如,专利文献1)。利用该O2等离子体清洗对在腔室内的卤素气体环境的置换或腔室内的防腐蚀都是有效的,另外,还期望有通过喷射除去基板上吸附的腐蚀性气体的效果。
但是,在蚀刻处理后的基板上发现了反应生成物的堆积,例如在对硅基板蚀刻时,有SiBr4、SiCl4等反应生成物的堆积。通过上述O2等离子体的后处理,难于完全除去这些堆积物。
[专利文献1]特开昭63-5532号公报(权利要求书)
如上所述,通过O2气体等离子体的清洗,难以完全除去基板上的堆积物。基板上残留的上述堆积物,有在开放的空气环境下产生卤素气体等腐蚀性气体的特性。因此,存在向后续的工序移动时,在搬运系统中会由基板上的堆积物产生腐蚀性气体,成为腐蚀搬运系统的原因的问题。一般来说,使用腐蚀性气体进行蚀刻等处理的腔室内面,由铝或氧化铝膜材料构成,因此暂时构成了防腐蚀对策,但是原本未设想搬运系统与腐蚀性气体接触,因此,一旦由于腐蚀产生劣化,将大幅度损害系统全体的耐久性。但是,至今对于搬运系统的防腐蚀几乎没有研究。
发明内容
本发明是鉴于上述问题而完成的,其目的是提供不仅可以防止处理腔室内的腐蚀,也可以防止搬运系统的腐蚀的等离子体处理方法及后处理方法。
为了解决上述问题,根据本发明的第一观点,提供一种对腔室内的被处理体进行等离子体处理的等离子体处理方法,其特征在于,包括:
将至少含有卤素的气体的等离子化,用生成的第一等离子体对被处理体进行处理的第一等离子体处理;
在第一等离子体处理之后,向上述腔室内供给含有氧的气体,生成第二等离子体,对上述腔室和被处理体进行处理的第二等离子体处理;
在第二等离子体处理之后,将至少含有氮和氢的气体的等离子化,用生成的第三等离子体对被处理体进行处理的第三等离子体处理。
这种等离子体处理方法,通过进行第二等离子体处理和第三等离子体处理,不仅可以防止处理腔室内的腐蚀,也可以防止卤素造成的搬运系统的腐蚀。
上述等离子体处理方法中,上述第一等离子体处理至第三等离子体处理均可以在同一腔室内进行。此时,通过在单一的腔室内的通用型(all-in-one)处理,实现腔室的清洗和被处理体表面堆积物的改性。
另外,也可以是上述第一等离子体处理和第二等离子体处理在同一腔室内进行,第三等离子体处理在其他腔室内进行。此时,通过将被处理体移动到其他腔室内,大致可以截断进行了第一等离子体处理的腔室内的卤素气体环境的影响。由此,可以防止搬运系统中腐蚀性气体的产生。
另外,上述等离子体处理方法中,上述卤素优选氯或者溴;上述至少含有氮和氢的气体,优选氨气或氮气和氢气的混合气体。此时,第三等离子体处理中,被处理体上附着的卤化硅,转化为卤化氨,被稳定化。由此,可以防止搬运系统内产生卤素。
上述等离子体处理方法中,优选在上述第三等离子体处理后,含有湿洗净被处理体的洗净处理。此时,可以很容易洗净除去卤化氨。
另外,等离子体处理方法的优选方式中,第一等离子体处理是对硅基板的等离子体蚀刻处理。此时,使用腐蚀性气体可以实现高效率的蚀刻处理,同时可以防止腔室以及搬运系统的腐蚀。
另外,根据本发明的第二观点,提供一种后处理方法,是对腔室内的被处理体,在经过使用腐蚀性气体的处理工序之后,进行后处理的方法,其特征在于,包括:
向上述腔室内供给含有氧气的气体,生成O2等离子体,对上述腔室和被处理体进行处理的O2等离子体处理;
将至少含有氮和氢的气体等离子体化,用生成的NH3等离子体对经过O2等离子体处理后的被处理体进行处理的NH3等离子体处理。
上述后处理方法中,使用上述腐蚀性气体的处理工序、上述O2等离子体处理、上述NH3等离子体处理均可以在同一腔室内进行。此时,通过在单一的腔室内进行的通用型处理,实现腔室的清洗和被处理体表面堆积物的改性。
另外,上述O2等离子体处理和NH3等离子体处理也可以在不同的腔室内进行。此时,通过将被处理体移动到其他的腔室内,可以阻断腐蚀性气体带来的影响。由此,提高NH3等离子体处理中被处理体表面堆积物的改性效率,也能确实地防止腐蚀性气体向搬运系统转移。
在上述后处理方法中,腐蚀性气体是至少含有卤素的气体、上述至少含有氮和氢的气体是氨气、或是氮气和氢气的混合气体时,上述NH3等离子体处理中,被处理体上附着的卤化硅,转化为卤化氨,被稳定化,因此,能够防止在搬运系统内产生卤素。
该后处理方法中,优选包括对经过上述NH3等离子体处理后的被处理体进行湿洗净的洗净处理。此时,能够很容易洗净除去卤化氨。
上述后处理方法的优选方式中,使用腐蚀性气体的处理工序是对硅基板进行的蚀刻处理。此时,可以使用腐蚀性气体进行高效率的蚀刻处理的同时,可达到对腔室和搬运系统的防腐蚀。
本发明的等离子体处理方法及后处理方法,能够防止处理腔室内以及搬运系统中由卤素引起的腐蚀。
附图说明
图1说明第一等离子体处理后的晶片表面的状态的模式图。
图2说明第二等离子体处理时晶片表面状态的模式图。
图3说明第三等离子体处理后的晶片表面的状态的模式图。
图4表示适合实施本发明方法的等离子体处理装置的简要结构图。
图5表示处理单元的断面构造图。
图6表示适合实施本发明方法的其它等离子体处理装置的简要结构图。
符号说明
1等离子体处理装置;2处理单元;3处理单元;82、83蚀刻处理单元;84、85 NH3等离子体处理单元;100等离子体处理装置;201吸附物;202堆积物;203改性物;W晶片。
具体实施方式
本发明中作为被处理体,例如可以举出半导体晶片等基板。
本发明的等离子体处理方法中使用的“至少含有卤素的气体”是,作为构成要素含有氯、溴等卤素元素的气体,具体地可以举出溴化氢气体、氯化氢气体、氯气等。因此,作为第一等离子体处理,例如可以举出使用卤素气体的等离子体蚀刻处理。
另外,作为“含有氧的气体”例如可以使用O2气体、O2气体和稀有气体等惰性气体的混合气体。因此,作为第二等离子体处理,例如可以举出通过O2气体等离子体的O2等离子体处理。该第二等离子体处理中,进行除去由第一等离子体处理物理吸附在被处理体上的卤素气体成分(Cl2、HBr等),用O2气体置换处理腔室内残留的卤素气体的腔室内气体环境的置换,除去腔室壁面上附着的SiCl4、SiBr4等堆积物等的操作。
本发明的等离子体处理方法中,作为“至少含有氮和氢的气体”,例如可以使用NH3气体、N2和H2的混合气体等。因此,作为第三等离子体处理,例如可以举出通过NH3气体等离子体进行的NH3等离子体处理等。
第三等离子体处理中,把由于第一等离子体处理在半导体晶片等的被处理体上堆积的SiCl4、SiBr4等的卤化硅(SiX4,这里,X表示卤素,以下相同),和在被处理体上物理吸附的Cl2、HBr等转化为NH4Cl、NH4Br等的卤化氨(NH4X,这里,X与上述表示相同,以下相同)。卤化氨即使在开放的空气状态下也不会挥发,因此能够抑制搬运系统中产生卤素气体,防止搬运路径的腐蚀。
由第三等离子体处理生成的卤化氨是水溶性物质,因此,可以由湿洗净工序很容易地除去。洗净的条件可以与通常的湿洗净工序相同。
本发明中,第一等离子体处理至第三等离子体处理可以在同一腔室内进行,这时,通过第二等离子体处理对由第一等离子体处理生成的腔室内的卤素气体环境进行置换、除去腔室内的堆积物、除去吸附在被处理体上的卤素分子,通过第三等离子体处理可以改性堆积物(转化为卤化氨)。
另外,也可以是第一等离子体处理和第二等离子体处理在同一腔室内进行,将被处理体移到其他腔室内进行第三等离子体处理。此时,通过第二等离子体处理,对由第一等离子体处理生成的最初的腔室内的卤素气体环境进行置换,除去腔室内的堆积物,除去吸附在被处理体上的卤素气体分子。另外,第三等离子体处理在其他腔室内仅仅对被处理体表面堆积的反应生成物进行改性。此时,被处理体在腔室间的移动优选在真空条件下进行。
等离子体处理的条件没有特别的限定,例如,可以是第一等离子体处理进行50秒,作为后处理的第二等离子体处理和第三等离子体处理分别进行5秒左右。
另外,如有必要,除以上的第一等离子体处理~第三等离子体处理之外还可以添加其他的处理。例如,第一等离子体处理是硅晶片的蚀刻工序时,作为前处理优选添加除去硅晶片表面的自然氧化膜的处理。
本发明的后处理方法是,在使用腐蚀性气体的处理工序之后实施的后处理方法。该后处理方法,对经过腐蚀性气体处理后的被处理体和腔室,进行以下工序:将含有氧的气体等离子体化,用生成的O2等离子体进行O2等离子体处理(清洗处理);将至少含有氮和氢的气体等离子体化,用生成的NH3等离子体对被处理体进行处理的NH3等离子体处理(改性处理)。在此处,作为使用腐蚀性气体的处理,例如可以列举出与上述等离子体处理方法中的第一等离子体处理相同的、使用含有卤素的气体的等离子体蚀刻处理等。另外,O2等离子体处理可以与上述等离子体处理方法中的第二等离子体处理相同地进行,NH3等离子体处理可以与第三等离子体处理相同地进行。
下面,参照图1~图3说明本发明的作用。图1~图3是说明本发明的等离子体处理方法的原理的模式图。图1表示的是,在作为被处理体的半导体晶片(以下,简称“晶片”)W上,使用腐蚀性气体实施第一等离子体处理后的基板表面附近的断面状态的图。通过第一等离子体处理,在基板表面物理吸附有Cl2或HBr等卤素的附着物201,另外还吸附有由SiX4(X表示氯、溴等卤素)等构成的堆积物202。
如果第一等离子体处理后进行第二等离子体处理,由O2等离子体通过喷射除去吸附物201。其结果,如图2所示,大部分吸附物201被除去,但是不能完全除去,而堆积物202几乎保持原状残存在晶片W上。另外,第一等离子体处理使用后的腔室内壁中,以与图2同样机构除去吸附物201的同时,置换腔室内的气体环境,防止腐蚀。
接着,对晶片W进行第三等离子体处理。由NH3等离子体的作用,如图3所示,将堆积物202的SiX4变为卤化氨(NH4X),转化为改性物203。另外,残存的卤素吸附物201也由改性物203固定。改性物203在晶圆盒内等的搬运系统中即使暴露在开放的空气状态下也不会产生卤素气体,因此能够防止搬运系统的腐蚀。另外,通过第三等离子体处理生成的NH4X是水溶性物质,通过湿洗净可以很容易地除去。
下面,参照等离子体处理装置的具体构成示意图,说明本发明的实施方式。图4是表示适合本发明方法实施的等离子体处理装置的概略的水平剖面图。该等离子体处理装置,在规定的真空下,对作为被处理体的晶片W进行蚀刻处理及后处理。
该等离子体处理装置1具备两个处理单元2、3,各处理单元2,3构成为能够实施一贯地进行各自独立的晶片W的蚀刻处理及后处理的通用型工序。各处理单元2、3,分别通过闸门阀(gate valve)G1与样品出入(load lock)室6、7连接。在这些样品出入室6、7的与处理单元2、3相反的一侧,设置有晶片搬入搬出室8,在晶片搬入搬出室8的与样品出入室6、7相反的一侧设置有安装能够容纳晶片W的晶圆盒(FOUP(front-opening unified pods))F的三个连接端口9、10、11。
两个处理单元2、3通过开放各自的闸门阀G1与样品出入室6、7连通,通过关闭各自的闸门阀G1与样品出入室6、7断开。另外,在样品出入室6、7的与晶片搬入搬出室8连接的部分,也设置有闸门阀G2,样品出入室6、7通过开放闸门阀G2与晶片搬入搬出室8连通,通过关闭闸门阀G2与晶片搬入搬出室8断开。
样品出入室6、7内,处理单元2、3与晶片搬入搬出室8之间,分别设置有将作为被处理体的晶片W搬入搬出的晶片搬运装置4、5。
晶片搬入搬出室8的顶部设置有高效微粒空气过滤器(HEPAfilter)(未图示),通过此高效微粒空气过滤器的清净空气在向下流动的状态下供给到晶片搬入搬出室8内,使得在大气压的清净空气的气体环境下,进行晶片W的搬入搬出。在晶片搬入搬出室8的晶圆盒F安装用的三个连接端口9、10、11上分别设置有挡板(shutter)(未图示),容纳晶片W的晶圆盒F或空的晶圆盒F直接安装在这些接触口9、10、11上,安装后,挡板脱落能够防止外部气体进入的同时,与搬入搬出室8连通。另外,在晶片搬入搬出室8的一个侧面,设置有校准腔室(alignment chamber)14,在这里进行晶片W的校准。晶片搬入搬出室8的另一个侧面,设置有洗净腔室15,在这里进行等离子体处理后的晶片W的湿洗净。
晶片搬入搬出室8内,设置了对晶圆盒F进行晶片W的搬入搬出以及对样品出入室6、7进行晶片W的搬入搬出的晶片搬运装置16。该晶片搬运装置16具有多关节臂的构造,可以沿晶圆盒F的排列方向在轨道18上移动,其前端拾取器(pick)17上装载晶片W进行其搬运。晶片搬运装置16的动作等的系统整体的控制由控制部19进行。
这样的等离子体处理装置1中,首先,保持大气压的清净空气的气体环境下,由晶片搬入搬出室8内的晶片搬运装置16,从任一个晶圆盒F中取出一枚晶片W搬入校准腔室14内,对准晶片W的位置。接着,将晶片W搬入样品出入室6、7中的任一个内,将该样品出入室6、7真空排气后,由晶片搬运装置4或5将该样品出入室内的晶片W装入处理单元2或处理单元3中,进行蚀刻,并且继续在同一处理单元内进行后处理。其后,由晶片搬运装置4、5的任一个将晶片搬入样品出入室6、7的任一个内,其中压力回到大气压之后,由晶片搬入搬出室8内的晶片搬运装置16取出样品出入室内的晶片W,插入到洗净腔室15进行湿洗净处理。洗净腔室15中,由水等洗净液进行晶片W的湿洗净,除去改性物NH4X。洗净后的晶片W,再次通过晶片搬运装置16,容纳在晶圆盒F的任一个中。针对1组(lot)的晶片W进行上述操作完成1组的处理。
接着,参照图5详细说明处理单元2。图5是处理单元2的简要断面图。该处理单元2中,如上所述,构成为能够在同一腔室内进行作为“第一等离子体处理”的干蚀刻处理、其后的“后处理”、作为“第二等离子体处理”的O2等离子体处理以及作为“第三等离子体处理”的NH3等离子体处理。
另外,处理单元2构成为,电极板上下相对平行,其一方连接等离子体形成用电源的电容耦合型平行平板等离子体蚀刻装置。
该处理单元2具有,例如由表面进行陶瓷热喷镀处理的铝形成的、成形为圆筒状的作为处理容器的腔室22,该腔室22被保护接地。在上述腔室22内,装载例如由硅构成的、其上形成有规定膜的晶片W,以被支撑部件24支撑的状态设置有作为下部电极的基座(susceptor)23。该支撑部件24通过陶瓷等的绝缘板25,被未图示的升降装置的支撑台26支撑,通过该升降机构,基座23可以升降。支撑台26的下方中央的空气部分,被波纹管(bellows)27覆盖,腔室22内与空气部分分离。
上述支撑部件24的内部设置有制冷室28。该制冷室28中,例如全氟聚醚(Galden fluids)等的制冷剂通过制冷剂导入管28a导入并循环,通过所述基座23将其冷热传递到上述晶片W,由此将晶片W的处理面控制在期望的温度。另外,即使腔室22保持真空,为使制冷室28中循环的冷却剂可以有效冷却晶片W,在被处理体晶片W的背面,设置了供给传热介质例如He气体等的气体通路29,由此传热介质可以有效地将基座23的冷热传递到晶片W,能够精确地控制晶片W的温度。
基座23的上部中央部成形为凸状的圆板形,其上设置有使电极32介于绝缘材料之间的静电夹具31,由连接在电极32上的直流电源33施加直流电压,例如通过库仑力静电吸附晶片W。上述基座23的上端周围边缘部,以包围静电夹具31上装载的晶片W的方式,配置有能够提高蚀刻均匀性的环状聚焦环35。
上述基座23的上方,与该基座23相对平行地设置有作为上部电极起作用的喷淋头(shower head)41。该喷淋头41,夹住绝缘材料42,被支撑在腔室22的上部,其与基座23的对向面44上,设有多个喷出孔43。另外,晶片W的表面与喷淋头41之间,例如有30~90mm程度的间隔,此距离是通过上述升降机构可以进行调节。
上述喷淋头41的中央设置有气体导入口46,该气体导入口46上连接有气体供给管47,并且,该气体供给管47通过阀48连接供给蚀刻气体和清洗气体的气体供给系统。气体供给系统中有Cl2气体供给源50、NH3气体供给源51、O2气体供给源52,这些气体供给源的配管上分别设置有质量流量控制器53以及阀54。
作为蚀刻气体的Cl2气体、作为后处理气体的NH3气体、以及O2气体,从气体供给系统的各自的气体供给源,通过供给配管47、气体导入口46到达喷淋头41的内部空间,由气体喷出孔43喷出。
上述腔室22的侧壁底部附近连接有排气管55,该排气管55上连接有排气装置56。排气装置56具备涡轮分子泵等真空泵,由此构成为能够将腔室22内真空排气到规定的减压气体环境,例如1Pa以下的规定压力。另外,腔室22的侧壁上,设有晶片W的搬入搬出口57和开关此搬入搬出口57的闸门阀G1,在该闸门阀G1开启的状态下,晶片W通过搬入搬出口57在与邻接的样品出入室6(参照图4)之间搬运。
作为上部电极起作用的喷淋头41上连接有高频电源60,其供电线上设有适配器61。该高频电源60,向上部电极喷淋头41供给例如60MHz频率的高频电力,在上部电极喷淋头41与下部电极基座23之间形成等离子体形成用的高频电场。另外,喷淋头41上连接有低通滤波器(LPF)62。
作为下部电极的基座23连接有高频电源70,其供电线上连接有适配器71。该高频电源70向下部电极基座23供给例如13.56MHz频率的高频电力,将等离子体中的离子向晶片W导入,实现各向异性高的蚀刻。另外,该基座23上连接有高通滤波器(HPF)36。
使用图5的装置进行蚀刻时,首先,开启闸门阀G1,将晶片W搬入腔室22内装载在基座23上后,关闭闸门阀G1,使基座23上升,调整基座23上的晶片W表面与喷淋头41之间的距离为30~90mm左右,由排气装置56的真空泵通过排气管55对腔室22内排气,减压腔室22内之后,由直流电源33向静电夹具31内的电极32施加直流电压。
接着,从Cl2气体供给源50将作为蚀刻气体的Cl2气体导入到腔室22内。另外,从高频电源60向喷淋头41施加例如60MHz的高频电力,由此,在上部电极喷淋头41与下部电极基座23之间生成高频电场,将Cl2气体等离子体化。通过生成等离子体,晶片W被静电吸附在静电夹具31上。
利用由此得到的蚀刻气体的等离子体,对晶片W进行蚀刻。此时,由高频电源70向下部电极基座23施加规定频率的高频电极,将等离子体中的离子引到基座23的一侧。
处理单元2中,由O2气体进行作为后处理的清洗处理、或由NH3气体进行改性处理时,作为蚀刻气体的Cl2气体的替代气体,分别使用O2气体、NH3气体,进行同样的等离子体处理。
图6是表示多腔室型的等离子体处理装置的简要结构图。如图6所示,该等离子体处理装置100具备对晶片W进行蚀刻处理以及进行O2等离子体处理的蚀刻处理单元82、83,进行氨等离子体处理的NH3等离子体处理单元84、85。另外,等离子体处理装置100具有六角型的晶片搬运室81,其四个边上有分别连接规定处理单元的连接端口81a、81b、81c、81d。连接端口81a上连接有蚀刻处理单元82,连接端口81b上连接有蚀刻处理单元83,连接端口81c上连接有NH3等离子体处理单元84,连接端口81d上连接有NH3等离子体处理单元85。
另外,晶片搬运室81的其它两边上,分别设有样品出入室86、87。这些样品出入室86、87的与晶片搬运室81的相对的一侧,设置有晶片搬入搬出室88,晶片搬入搬出室88的与样品出入室86、87相反的一侧,设置有安装可以容纳晶片W的晶圆盒(FOUP)F的三个连接端口89、90、91。
蚀刻处理单元82、83,NH3等离子体处理单元84、85以及样品出入室86、87,通过闸门阀G3、G4连接,通过开启这些各自的闸门阀G3、G4与晶片搬运室81连通,通过关闭各自的闸门阀G3、G4与晶片搬运室81断开。另外,样品出入室86、87的与晶片搬入搬出室88相连接的部位,也设置有闸门阀G5,通过开启闸门阀G5样品出入室86、87与晶片搬入搬出室88连通,通过关闭闸门阀G5与晶片搬入搬出室88断开。
晶片搬运室81内,对应蚀刻处理单元82、83,NH3等离子体处理单元84、85和样品出入室86、87,设置有搬入搬出被处理体晶片W的晶片搬运装置92。该晶片搬运装置92设置在晶片搬运室81的约中央部,在能够旋转和伸缩的旋转-伸缩部93的前端设有保持晶片W的两个叶片94a、94b,这两个叶片94a、94b以朝向相反方向的方式安装在旋转-伸缩部93上。另外,该晶片搬运室81内,保持规定的真空度。
晶片搬入搬出室88的项部,设置有高效微粒空气过滤器(HEPAfilter)(未图示),通过该高效微粒空气过滤器的清净空气以向下流动的方式供给到晶片搬入搬出室88内,在大气压的清净空气的气体环境下,进行晶片W的搬入搬出。晶片搬入搬出室88的晶圆盒F安装用三个连接端口89、90、91上,分别设有挡板(未图示),容纳晶片W的晶圆盒F或空的晶圆盒F直接安装在这些连接端口89、90、91上,安装后,挡板脱落能够防止外部气体的入侵,同时与晶片搬入搬出室88连通。另外,晶片搬入搬出室88的一侧侧面设置有校准腔室94,在这里进行晶片W的校准。晶片搬入搬出室88的另一侧侧面,设置有洗净腔室95,在这里进行等离子体处理后的晶片W的洗净。
晶片搬入搬出室88内设置有对晶圆盒F进行晶片W的搬入搬出以及对样品出入室86、87进行晶片W的搬入搬出的搬运装置96。该搬运装置96有多关节臂的构造,可以沿晶圆盒F的排列方向在轨道(rail)98上移动,在其前端拾取器97上装载晶片W进行搬运。晶片搬运装置92、96的动作等的系统整体的控制由控制部99进行。
在该等离子体处理装置100中,首先,在保持大气压的清净空气的气体环境下,由晶体搬入搬出室88内的晶片搬运装置96,从任一个晶圆盒F中取出一枚晶片W搬入校准腔室94内,进行晶片位置的校准。接着,将晶片W搬入样品出入室86、87的任一个中,将此样品出入室真空排气后,由晶片搬运室81内的晶片搬运装置92将此样品出入室内的晶片W取出。
接着,将取出的晶片W装入蚀刻处理单元82或83中进行蚀刻处理,接着进行O2等离子体处理。其后,通过晶片搬运装置92从蚀刻处理单元82或83中取出晶片W,装入NH3等离子体处理单元84或85进行NH3等离子体处理。即,在此等离子体处理装置100中,在蚀刻处理单元82或83中进行蚀刻处理和O2等离子体处理,接着,在不破坏真空状态的原位置,在NH3等离子体处理单元84或85中进行NH3等离子体处理。其后,由晶片搬运装置92将晶片W搬入样品出入室86、87的任一个中,在其内回到大气压之后,由晶片搬入搬出室88内的晶片搬运装置96取出样品出入室内的晶片W,搬入洗净腔室95内。在洗净腔室95中,用水等洗净液湿洗净晶片W,除去改性物NH4X。洗净后,由晶片搬运装置96取出晶片W,容纳于晶圆盒F的任一个中。上述操作针对1组晶片W进行,1组的处理结束。
等离子体处理装置100中的蚀刻处理单元82、83以及NH3等离子体处理单元84、85的构造,除气体供给系统不同外,可以采用与图5基本相同的构造。即,蚀刻处理单元82、83具备作为蚀刻气体的Cl2气体的供给系统和作为清洗气体的O2气体的供给系统,NH3等离子体处理单元84、85中具备作为改性气体的NH3气体的供给系统。另外,等离子体处理装置100中的蚀刻处理、O2等离子体处理、NH3等离子体处理均可以分别按如图5所示的处理单元2中的处理实施。
以下,列举实施例更详细地说明本发明,但本发明并不仅限于此。
实施例1及比较例1~3
作为蚀刻气体使用腐蚀性气体HBr和Cl2进行硅晶片的蚀刻工序的同时,用O2等离子体和NH3等离子体进行的后处理按试验种类变化条件实施,测定晶片上和搬运路径(晶圆盒内)中卤素的量。另外,蚀刻工序和后处理,使用与图5相同的结构的装置实施。
试验种类如表1所示,分别评价了不进行后处理的情况(比较例1)、仅进行O2等离子体处理的情况(比较例2),仅进行NH3等离子体处理的情况(比较例3),进行O2等离子体处理后进行NH3等离子体处理的情况(实施例1)。作为等离子体处理的条件,蚀刻处理进行50秒,后处理的O2等离子体处理和NH3等离子体处理分别进行5秒。结果如表1所示。
表1
    比较例1    比较例2   比较例3   实施例1
晶片上   Cl(μg/晶片)     14.9    17.8   4266.7   504.7
  Br(μg/晶片)     13.3    2.0   746.8   2.6
晶圆盒内   Cl(ppm/晶圆盒)     1.5     2.2   0.0   0.2
如表1所示,不进行后处理的比较例1,和只进行O2等离子体处理的比较例2中,晶圆盒内的氯的含量高。这被认为是,在大气开放的状态下从晶片上残存的堆积物挥发了氯,因此有腐蚀搬运系统的担心。
在只进行NH3等离子体处理的比较例3中,晶圆盒内没有检测出氯,而晶片上的氯和溴的含量高,由此被认为是以改性为氯化氨、溴化氨的状态堆积。另外,虽表1中没有显示,但在腔室内也被确认有大量的堆积物残留。
另一方面,在进行O2等离子体处理后进行NH3等离子体处理的实施例1中,在晶圆盒内仅检测出微量的氯(0.2ppm/晶圆盒),表示出本发明的方法能够有效地防止搬运系统的腐蚀。另外,与比较例3相比,晶片上卤素的量也明显减少,可以用湿洗净完全除去。另外,腔室内也几乎没有堆积物遗留,能够有效地防止腔室的腐蚀。
实施例2和比较例4
作为蚀刻气体使用腐蚀性气体HBr以及Cl2进行硅晶片的蚀刻工序的同时,作为后处理,实施O2等离子体处理和NH3等离子体处理,接着,对处理后的硅晶片实施湿洗净(实施例2)。
该湿洗净,作为药液使用5%氟化氢水溶液(HF+H2O)的稀氟氢酸(Dilute Hydrofluoric Acid,DHF),实施洗净60秒。另外,为进行比较,作为后处理仅进行O2等离子体处理的情况也在同样的条件下用稀氟氢酸(DHF)洗净(比较例4)。
蚀刻工序和后处理使用与图5同样的结构的装置。等离子体处理时间是,蚀刻处理为50秒,后处理的O2等离子体处理和NH3等离子体处理分别为5秒。另外,作为后处理仅进行O2等离子体处理的比较例4的时间是5秒+5秒总共10秒。
测定湿洗净前后硅晶片上的卤素含量。硅晶片上的卤素的量通过将硅晶片浸入100mL的水中溶解卤素后,用离子色谱分离法测定该溶解液的方法得到。结果如表2所示。
表2
          洗净前           洗净后
  比较例4仅O<sub>2</sub>等离子体    实施例2O<sub>2</sub>等离子体+NH<sub>3</sub>等离子体   比较例4仅O<sub>2</sub>等离子体   实施例2O<sub>2</sub>等离子体+NH<sub>3</sub>等离子体
Cl(μg/晶片)   18.3    182.2   0.10   0.07
Br(μg/晶片)   2.9    18.3   0.06   0.02
如表2所示,作为后处理实施O2等离子体处理和NH3等离子体处理的实施例2中,湿洗净前硅晶片上残留有大量的氯和溴。这些卤素认为是改性物中含有的。但是,通过湿洗净氯和溴的含量大幅度降低,降低到与仅实施O2等离子体处理的比较例4相同的水平。从结果可以确定,因NH3等离子体处理在晶片上生成的含有卤素的改性物,通过湿洗净可以容易地除去。
以上,说明了本发明的实施方式,但本发明并不仅限于上述实施方式,可以有各种变化。例如,上述实施方式中,作为第一等离子体处理和使用腐蚀性气体的处理,举例了等离子体蚀刻处理,但并不限于此,只要是使用卤素等的腐蚀性气体的工序同样适用。
另外,上述实施方式中,举例了使用在向上下电极施加高频电力进行蚀刻的平行平板型的等离子体蚀刻装置,但并不限于此,也可以是仅向上部电极或仅向下部电极施加高频电力的类型的装置,也可以是使用永久性磁铁的磁控管RIE等离子体蚀刻装置。另外,并不限于电容耦合型的等离子体装置,也可以使用感应耦合型等的其它各种类型的等离子体蚀刻装置。
产业上的可利用性
本发明方法可以利用于半导体器件的制造工序等处理过程中使用腐蚀性气体的工序中。

Claims (14)

1.一种等离子体处理方法,是对腔室内的被处理体进行等离子体处理的等离子体处理方法,其特征在于,包括:
将至少含有卤素的气体等离子体化,用生成的第一等离子体对被处理体进行处理的第一等离子体处理;
在第一等离子体处理之后,向所述腔室内供给含有氧的气体,生成第二等离子体,对所述腔室以及被处理体进行处理的第二等离子体处理;和
将至少含有氮和氢的气体等离子化,用生成的第三等离子体对经过第二等离子体处理后的被处理体进行处理的第三等离子体处理,其中,
所述卤素是氯或溴。
2.如权利要求1所述的等离子体处理方法,其特征在于:
所述第一等离子体处理至第三等离子体处理均在同一腔室内进行。
3.如权利要求1所述的等离子体处理方法,其特征在于:
所述第一等离子体处理和第二等离子体处理在同一腔室内进行,第三等离子体处理在其他腔室内进行。
4.如权利要求1所述的等离子体处理方法,其特征在于:
所述至少含有氮和氢的气体是氨气,或氮气和氢气的混合气体。
5.如权利要求4所述的等离子体处理方法,其特征在于:
所述第三等离子体处理中,将被处理体上附着的卤化硅转化为卤化氨。
6.如权利要求5所述的等离子体处理方法,其特征在于,包括:
对经过所述第三等离子体处理后的被处理体进行湿洗净的洗净处理。
7.如权利要求1~6中任一项所述的等离子体处理方法,其特征在于:第一等离子体处理是对硅基板的等离子体蚀刻处理。
8.一种后处理方法,对腔室内的被处理体,在使用腐蚀性气体的处理工序后实施的后处理方法,其特征在于,包括:
向所述腔室内供给含有氧的气体,生成O2等离子体,对所述腔室内以及被处理体进行处理的O2等离子体处理;和
将至少含有氮和氢的气体等离子体化,用生成的NH3等离子体对经过O2等离子体处理后的被处理体进行处理的NH3等离子体处理,其中,
所述腐蚀性气体是至少含有卤素的气体,所述卤素是氯或溴。
9.如权利要求8所述的后处理方法,其特征在于:
使用所述腐蚀性气体的处理工序、所述O2等离子体处理以及所述NH3等离子体处理均在同一腔室内进行。
10.如权利要求8所述的后处理方法,其特征在于:
所述O2等离子体处理和NH3等离子体处理在不同的腔室内进行。
11.如权利要求8所述的后处理方法,其特征在于:
所述至少含有氮和氢的气体是氨气,或者氮气和氢气的混合气体。
12.如权利要求11所述的后处理方法,其特征在于:
在所述NH3等离子体处理中,将被处理体上附着的卤化硅转化为卤化氨。
13.如权利要求12所述的后处理方法,其特征在于,包括:
对所述NH3等离子体处理后的被处理体进行湿洗净的洗净处理。
14.如权利要求8~13中任一项所述的后处理方法,其特征在于:
使用所述腐蚀性气体的处理工序是对硅基板的蚀刻处理。
CNB2005100770642A 2004-06-23 2005-06-15 等离子体处理方法及后处理方法 Expired - Fee Related CN100359647C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004184489 2004-06-23
JP2004184489A JP4727170B2 (ja) 2004-06-23 2004-06-23 プラズマ処理方法、および後処理方法

Publications (2)

Publication Number Publication Date
CN1734724A CN1734724A (zh) 2006-02-15
CN100359647C true CN100359647C (zh) 2008-01-02

Family

ID=35779843

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100770642A Expired - Fee Related CN100359647C (zh) 2004-06-23 2005-06-15 等离子体处理方法及后处理方法

Country Status (4)

Country Link
JP (1) JP4727170B2 (zh)
KR (1) KR100743275B1 (zh)
CN (1) CN100359647C (zh)
TW (1) TW200601453A (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823160B2 (ja) 2011-05-11 2015-11-25 東京エレクトロン株式会社 堆積物除去方法
JP5859262B2 (ja) * 2011-09-29 2016-02-10 東京エレクトロン株式会社 堆積物除去方法
CN105097700B (zh) * 2014-04-24 2018-07-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制备方法
JP6749090B2 (ja) 2015-11-12 2020-09-02 東京エレクトロン株式会社 ハロゲン系ガスを用いる処理装置における処理方法
CN108352317A (zh) * 2016-02-05 2018-07-31 应用材料公司 具有多重类型腔室的积层蚀刻系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635532A (ja) * 1986-06-25 1988-01-11 Matsushita Electric Ind Co Ltd プラズマクリ−ニング方法
US5451263A (en) * 1994-02-03 1995-09-19 Harris Corporation Plasma cleaning method for improved ink brand permanency on IC packages with metallic parts
US6372657B1 (en) * 2000-08-31 2002-04-16 Micron Technology, Inc. Method for selective etching of oxides
US20020092541A1 (en) * 2001-01-16 2002-07-18 Kenetsu Yokogawa Dry cleaning method
US6536449B1 (en) * 1997-11-17 2003-03-25 Mattson Technology Inc. Downstream surface cleaning process
US20030141820A1 (en) * 2002-01-30 2003-07-31 Applied Materials, Inc. Method and apparatus for substrate processing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191407B2 (ja) * 1991-08-29 2001-07-23 ソニー株式会社 配線形成方法
JPH06151389A (ja) * 1992-11-10 1994-05-31 Sony Corp ドライエッチングの後処理方法
JPH0799224A (ja) * 1993-09-28 1995-04-11 Hitachi Ltd 多チャンバ型半導体製造装置
JP2002151474A (ja) * 2000-11-08 2002-05-24 Hitachi Ltd 半導体デバイスの製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635532A (ja) * 1986-06-25 1988-01-11 Matsushita Electric Ind Co Ltd プラズマクリ−ニング方法
US5451263A (en) * 1994-02-03 1995-09-19 Harris Corporation Plasma cleaning method for improved ink brand permanency on IC packages with metallic parts
US6536449B1 (en) * 1997-11-17 2003-03-25 Mattson Technology Inc. Downstream surface cleaning process
US6372657B1 (en) * 2000-08-31 2002-04-16 Micron Technology, Inc. Method for selective etching of oxides
US20020092541A1 (en) * 2001-01-16 2002-07-18 Kenetsu Yokogawa Dry cleaning method
US20030141820A1 (en) * 2002-01-30 2003-07-31 Applied Materials, Inc. Method and apparatus for substrate processing

Also Published As

Publication number Publication date
KR20060046505A (ko) 2006-05-17
CN1734724A (zh) 2006-02-15
KR100743275B1 (ko) 2007-07-26
JP2006012940A (ja) 2006-01-12
TW200601453A (en) 2006-01-01
JP4727170B2 (ja) 2011-07-20

Similar Documents

Publication Publication Date Title
KR100809126B1 (ko) 피처리체 처리 장치
US8974601B2 (en) Apparatuses, systems and methods for treating substrate
JP4744175B2 (ja) 基板処理装置
US20130014785A1 (en) Substrate processing method and substrate processing apparatus
JP2015531546A (ja) ヒューム除去装置及び基板処理装置
US20210280410A1 (en) Method of restoring collapsed pattern, substrate processing method, and substrate processing device
CN100359647C (zh) 等离子体处理方法及后处理方法
KR100869865B1 (ko) 기판 처리 방법 및 기판 처리 장치
KR20180075388A (ko) 기판 처리 방법, 기판 처리 장치, 기판 처리 시스템, 기판 처리 시스템의 제어 장치, 반도체 기판의 제조 방법 및 반도체 기판
US20060011580A1 (en) Plasma processing method and post-processing method
KR20190134372A (ko) 기판 처리 장치 및 방법
US11557486B2 (en) Etching method, damage layer removal method, and storage medium
WO2017022086A1 (ja) 半導体装置の製造方法、エッチング方法、及び基板処理装置並びに記録媒体
JPWO2020066172A1 (ja) エッチング方法、エッチング残渣の除去方法、および記憶媒体
KR20220089382A (ko) 플라즈마를 이용한 기판 처리 장치 및 방법
US20050284572A1 (en) Heating system for load-lock chamber
US11551942B2 (en) Methods and apparatus for cleaning a substrate after processing
WO2024190118A1 (ja) 基板処理方法および基板処理装置
KR102600580B1 (ko) 기판 처리 장치 및 방법
JP2001223195A (ja) 枚葉式基板洗浄方法、枚葉式基板洗浄装置および基板洗浄システム
US20090209108A1 (en) Substrate processing method
KR20070054311A (ko) 반도체 제조설비
CN118116837A (zh) 基片处理装置和基片处理方法
KR100892089B1 (ko) 웨이퍼 세정 처리장치
KR20080086017A (ko) 반도체 제조설비 및 그의 제어방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080102

Termination date: 20170615

CF01 Termination of patent right due to non-payment of annual fee