CN100343962C - 埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置 - Google Patents

埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置 Download PDF

Info

Publication number
CN100343962C
CN100343962C CNB031034705A CN03103470A CN100343962C CN 100343962 C CN100343962 C CN 100343962C CN B031034705 A CNB031034705 A CN B031034705A CN 03103470 A CN03103470 A CN 03103470A CN 100343962 C CN100343962 C CN 100343962C
Authority
CN
China
Prior art keywords
silicon carbide
heating furnace
single crystal
gas
soi substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB031034705A
Other languages
English (en)
Other versions
CN1435866A (zh
Inventor
泉勝俊
中尾基
大林義昭
峯啓治
平井誠作
条邊文彥
田中智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
DA BANFU
Hosiden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DA BANFU, Hosiden Electronics Co Ltd filed Critical DA BANFU
Publication of CN1435866A publication Critical patent/CN1435866A/zh
Application granted granted Critical
Publication of CN100343962C publication Critical patent/CN100343962C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0613Third-party assisted
    • G06Q30/0619Neutral agent
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Development Economics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明的目的是在SOI衬底上廉价且方便地形成单晶碳化硅薄膜。第一个步骤是,把表面硅层薄膜(130)厚度不大于10nm并且带有埋置绝缘体(120)的SOI衬底(100)放置到加热炉(200)中,通过将氢气(G1)和碳氢气体(G2)的混合气体(G1+G2)输送到上述加热炉(200)中增加加热炉(200)中的气体温度,这样上述SOI衬底(100)的表面硅层(130)变形为单晶碳化硅薄膜(140);第二个步骤是,通过过分地执行上述第一个步骤在上述单晶碳化硅薄膜(140)上沉积碳薄膜(150);第三个步骤是,用以预定比率混合氧气(G3)的惰性气体(G4)代替上述混合气体(G1+G2),然后将上述SOI衬底(100)加热到550℃或更高,这样通过蚀刻除去上述碳薄膜(150);第四个步骤是用不混合氧气(G3)的纯惰性气体(G4)取代上述其中混合氧气(G3)的惰性气体(G4)的步骤,并且将上述加热炉(200)中的大气温度升高到预定的温度;第五个步骤是在保持上述大气预定温度的条件下,将氢气(G1)和硅烷气(G5)加入加热炉(200)中,这样使新的单晶碳化硅薄膜(160)生长在上述SOI衬底(100)的表面上的单晶碳化硅薄膜(140)上。

Description

埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置
技术领域
本发明涉及埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置。
背景技术
单晶碳化硅(SiC)是下一代半导体装置材料的焦点,因为在它的特性中,单晶碳化硅有极好的热稳定性和化学稳定性,有高的机械强度,并且暴露在辐射下时是稳定的。另外,埋置绝缘体的SOI衬底在增加电路速度和减小能量消耗方面是极佳的,因此它有希望用作下一代LSI衬底。因此,有这两个特性的埋置绝缘体型半导体碳化硅衬底,被期望用作半导体器件的材料。
不过,现在还没有形成带有单晶碳化硅和SOI衬底特性的埋置绝缘体型半导体碳化硅衬底的制作方法。
关于在硅衬底上形成单晶碳化硅薄膜的方法,例如,可以在硅衬底上进行等离子体型气相之类的反应,可以把这样的技术用于SOI衬底,这样在SOI衬底上形成单晶碳化硅薄膜。另外,现在SOI衬底中的表面硅层薄膜厚度超过50nm。
根据在SOI衬底上形成单晶碳化硅薄膜的方法(其中,在单晶碳化硅薄膜和埋置绝缘体之间设置有硅层)来制作半导体衬底存在一个问题。这个问题是,当进行热处理时,在单晶碳化硅薄膜和埋置绝缘体之间设置的硅层扩散到衬底表面上的单晶碳化硅薄膜中,从而使其物理特性恶化。另外,没有得到在埋置绝缘体上形成碳化硅的所需结构。
此外,根据由等离子体型气相反应在SOI衬底上形成单晶碳化硅薄膜的方法进行的薄膜形成工艺必需在高真空中完成,因此需要有复杂结构的制作装置。其中的问题是,由于这制作装置的复杂结构,使形成单晶碳化硅薄膜的费用增加。
另外,当SOI衬底的表面硅层薄膜厚度超过10nm时,变形的单晶碳化硅薄膜局部使得导致晶粒形成的核增长,从而使衬底表面变得粗糙并且带来不利的状况。
发明内容
本发明考虑了上述情况,而本发明的目的是为使得以低成本的可行方式在SOI衬底上形成单晶碳化硅薄膜的埋置绝缘体型半导体碳化硅衬底提供一种制作方法和制作装置。
根据本发明的埋置绝缘体型半导体碳化硅衬底的制作方法包括:第一个步骤,把带有预定薄膜厚度表面硅层和埋置绝缘体的SOI衬底放置到加热炉中,将氢气和碳氢气体的混合气体输送到所述加热炉中并且提高加热炉中的气体温度,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;第二个步骤,通过过分地执行所述第一个步骤在所述单晶碳化硅薄膜上沉积碳薄膜;第三个步骤,用以预定比率混合有氧气的惰性气体代替所述混合气体,并且将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜;第四个步骤,用不混合氧气的纯惰性气体取代所述混合有氧气的惰性气体,并且将所述加热炉中的气体温度升高到预定的温度;第五个步骤,在保持所述大气预定温度的条件下,将氢气和硅烷气加入加热炉中,这样使新的单晶碳化硅薄膜生长在所述SOI衬底的表面上的单晶碳化硅薄膜上。
另外,根据本发明的埋置绝缘体型半导体碳化硅衬底的制作装置包括:加热炉,其中放置了具有预定厚度的表面硅层和埋置绝缘体的SOI衬底,并且所述加热炉有加热SOI衬底的加热装置;供气装置,将各种气体供应到所述加热炉;和排气装置,将加热炉内的气体释放到外部,其中所述制作装置被构造成控制加热装置和供气装置,以实现将氢气和碳氢气体的混合气体输送到所述加热炉中,并提高加热炉中的环境温度到1200到1405℃之间,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;保持变形状态几分钟到几小时之间的一段时间,以在所述单晶碳化硅薄膜上沉积碳薄膜;用以预定比率混合有氧气的惰性气体代替所述混合气体,并将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜。
另外,根据本发明的埋置绝缘体型半导体碳化硅衬底的制作装置包括:加热炉,其中放置了SOI衬底,它具有在衬底内埋置的绝缘体上的预定厚度的表面硅层,并且所述加热炉包括加热所述SOI衬底的加热装置;和供气装置,将各种气体供应到所述加热炉;其中所述制作装置被构造成控制加热装置和供气装置,以实现将氢气和碳氢气体的混合气体输送到所述加热炉中,并提高所述加热炉中的环境温度到1200到1405℃之间,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;保持变形状态几分钟到几小时之间的一段时间,以在所述单晶碳化硅薄膜上沉积碳薄膜;用以预定比率混合有氧气的惰性气体代替所述混合气体,并将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜;用不混合氧气的纯惰性气体取代所述惰性气体,并且将所述加热炉中的环境温度升高到500到1405℃之间,并且在保持所述环境温度的条件下,将氢气和硅烷气加入加热炉中,这样使新的单晶碳化硅薄膜生长在所述单晶碳化硅薄膜上。
附图说明
图1(A)到1(F)是示出根据本发明实施例的埋置绝缘体型半导体碳化硅衬底的制作方法各个步骤的示意图;和
图2是用于根据本发明实施例的埋置绝缘体型半导体碳化硅衬底制作方法的制作埋置绝缘体型半导体碳化硅衬底的制作装置的示意图。
〔标注的说明〕
100   SOI衬底
110   硅层
120   埋置绝缘体
130   表面硅层
140   单晶碳化硅薄膜
150   碳薄膜
160   单晶碳化硅薄膜
具体实施方式
图1(A),1(B),1(C),1(D),1(E)和1(F)是根据本发明实施例的埋置绝缘体型半导体碳化硅衬底的制作方法的各个步骤的示意图;图2是根据依照本发明一个实施例的埋置绝缘体型半导体碳化硅衬底的制作方法的制作埋置绝缘体型半导体碳化硅衬底的制作装置的示意图。这里,为了方便图示,图1中各层厚度的尺寸不成真实的比例。另外,图1确定了埋置绝缘体型半导体碳化硅衬底的制作方法各个步骤中的环境气体。
根据本发明实施例的埋置绝缘体型半导体碳化硅衬底的制作方法有:第一步是,把表面硅层薄膜130厚度不大于10nm并且带有埋置绝缘体120的SOI衬底100放置到加热炉200中,通过将氢气G1和碳氢气体G2的混合气体(G1+G2)输送到上述加热炉200中并且提高加热炉200中的气体温度,这样上述SOI衬底100的表面硅层130变形为单晶碳化硅薄膜140;第二步是,通过过分地执行上述第一个步骤在上述单晶碳化硅薄膜140上沉积碳薄膜150;第三个步骤是,用以预定比率混合氧气G3的惰性气体G4代替上述混合气体(G1+G2),然后将上述SOI衬底100加热到550℃或更高,这样通过蚀刻除去上述碳薄膜150;第四个步骤是用不混合氧气G3的纯惰性气体G4取代上述混合氧气G3的惰性气体G4的步骤,并且将上述加热炉200中的大气温度升高到预定的温度;第五个步骤是在保持上述大气预定温度的条件下,将氢气G1和硅烷气G5加入加热炉200中,这样制成了新的单晶碳化硅薄膜160生长在上述SOI衬底100的表面上的单晶碳化硅薄膜140上。
如图1(A)所示,通过在硅层110中形成作为埋置绝缘体的埋置绝缘体120并且通过在该埋置绝缘体120上形成薄膜厚度不大于10nm的表面硅层130获得上述SOI衬底100。这里,这个SOI衬底100表面硅层130的晶向例如是平面方向(111)。
这里,SOI衬底100的表面硅层130的薄膜厚度通过公知的方法控制,诸如用氢氟酸之类氧化和蚀刻表面硅层130从而保持表面硅层的所需厚度。
另外,电炉能够用作上述加热炉200。如图2所示,该加热炉200的一端有一个可以置入和取出SOI衬底的开口,而另一端连接到排气装置210,在炉壁220周围设置有诸如电加热器之类的加热装置230。另外,在这个加热炉200上连接有供应各种气体到炉子的供气装置300。那么,在这个加热炉200中的压强等于大气压强。
上述供气装置300有供应氢气G1的氢气供应部件310,供应碳氢气G2的碳氢气供应部件320,供应氧气G3的氧气供应部件330,供应惰性气体G4的惰性气体供应部件340(包括纯惰性气体),供应硅烷气体G5的硅烷气体供应部件350,和连接这些气体供应部件310到350的开关阀360。这个供气装置300通过供应管370连接到上述加热炉200。
<第一步>(见图1(B))
在这个第一步骤中,在加热炉200中放置上述SOI衬底100,碳氢气G2与氢气G1混合(碳氢气的比率为1个体积%)的混合气体(G1+G2)供应到加热炉200中。另外,在供应混合气体(G1+G2)的同时,在加热炉200中的大气温度加热到1200℃到1405℃。加热的结果是,SOI衬底100的表面硅层130变形为单晶碳化硅薄膜140。那就是说,在第一个步骤中,SOI衬底100的表面硅层130变形为单晶碳化硅薄膜140。
通过表面硅层130的变形得到上述单晶碳化硅薄膜140,因此单晶碳化硅薄膜140的厚度等于表面硅层130的薄膜厚度。那就是说,根据SOI衬底100的表面硅层130的薄膜厚度能够任意控制单晶碳化硅薄膜140的薄膜厚度。
这里,上述氢气G1是承载气,而丙烷用作碳氢气G2。例如,当氢气供应部件310的氢气G1供应量是1000cc/分钟时,碳氢气供应部件320中的碳氢气G2供应量为10cc/分钟。
<第二步>(见图1(C))
过分执行上述第一步骤,这样在这个第二步骤中在上述单晶碳化硅薄膜140上沉积碳薄膜150。通过连续进行上述第一步骤一段时间,例如从几分钟到几个小时,沉积上述碳薄膜150。
<第三步>(见图1(D))
在第三步中,用惰性气体G4取代由上述碳氢气供应部件320供应的碳氢气G2和由上述氢气供应部件310供应的氢气G1,其中以预定比率混合氧气G3,然后将上述SOI衬底100加热到不低于550℃,(例如大约650℃),这样蚀刻并且除去上述碳薄膜150。例如,氩气可以用作上述惰性气体G4。另外,至于与这个惰性气体G4混合的氧气G3,例如在从惰性气体供应部件340中的惰性气体G4的供应量为1000cc/分钟时,从氧气供应部件330的氧气供应量调整为100cc/分钟。
同时,当惰性气体G4与所提供的氧气G3混合时,通过加热装置230将SIO衬底100加热到大约650℃。将这个条件保持一段时间,从几分钟到几个小时。
作为化学反应C+O2→CO2的结果,在SOI衬底100表面上形成的碳薄膜150改变为二氧化碳气体。这样,就蚀刻并除去了碳薄膜150。这里,通过排气装置210将该二氧化碳气体释放到加热炉200外侧。
<第四步>(见图1(E))
在第四步中,用不混合氧气的纯惰性气体G4取代上述混合有氧气的惰性气体G4,并且在上述加热炉200中的气体温度上升到预定温度。这里,纯氩气用作上述纯惰性气体G4。在第四步中用纯惰性气体G4取代加热炉200中气体的目的是避免当在下面的第五步骤中使用硅烷气G5时,甲基硅烷与氧气的爆炸反应。
至于上述加热炉200中的气体温度,适宜为500℃到1405℃。
这里,通过停止供应在上述第三步骤中向加热炉200供应的氧气G3并且连续供应惰性气体G4,将上述纯惰性气体G4供应到加热炉200。
<第五步>(见图1(F))
在第五步中,氢气G1从氢气供应部件310供应到加热炉200,硅烷气体G5从硅烷气体供应部件350供应到加热炉200,并且保持上述预定的气体温度(500℃~1405℃),这样制成了新的单晶碳化硅薄膜160,生长在上述SOI衬底100的表面上的单晶碳化硅薄膜140上。
例如,对于上述硅烷气体G5,使用了甲基硅烷气体。该甲基硅烷气体分解产生硅,并且硅与单晶碳化硅薄膜140中的碳反应,从而在单晶碳化硅薄膜140上形成了新增的单晶碳化硅薄膜160。
这里,对于上述硅烷气体G5,除了甲基硅烷气体外,能够使用甲硅烷,乙硅烷,二甲基硅烷,二氯硅烷,等等气体。
在上述方法中能够制作有单晶碳化硅薄膜140和160的埋置绝缘体型半导体碳化硅衬底。
这里,虽然分别从氢气供应部件310供应氢气G1,从碳氢气体供应部件320供应碳氢气体G2,从氧气供应部件330供应氧气G3,从惰性气体供应部件340供应惰性气体G4(包括纯惰性气体),以及从硅烷气体供应部件350供应硅烷气体G5,在上述实施例中,可以预先以预定比率混合氢气G1和碳氢气G2制备在第一步骤中需要的混合气体(G1+G2),和预先以预定比率混合惰性气体G4和氧气G3制备在第三步骤中需要的混合气体,并且预先以预定比率混合在第五个步骤中所需的氢气和硅烷气体。
这里,从改变各种气体的混合比率以适合各种化学反应的便利角度来看,分别提供各种气体的系统比以预定比率预先提供混合各种气体来制备混合气体的系统更灵活。
根据本发明的埋置绝缘体型半导体碳化硅衬底的制作方法有放置SOI衬底的步骤,所述SOI衬底的表面硅层薄膜厚度不大于10nm并且有埋置绝缘体,并且它在加热炉中,在加热炉中气体温度增加并且将氢气和碳氢气的混合气体输送到上述加热炉中,这样上述SOI衬底的表面硅层变形到单晶碳薄膜。
因此,根据这个制作方法而不插入硅层将在埋置氧层上直接形成单晶碳化硅薄膜,这将在常规等离子体型气相反应方法中在单晶碳化硅薄膜和埋置氧层之间产生问题。因此,根据这个制作方法制作的埋置绝缘体型半导体碳化硅衬底解决了常规的问题,诸如各种缺陷的出现,在单晶碳化硅薄膜和位于单晶碳化硅薄膜下面分界面的粗糙分界面。另外,这个制作方法只需要简单的加热炉,诸如电炉,并且它也不象现有技术那样需要保持高真空,因此,这个制作方法能够用于简化制作装置和制作工艺,并从而减少制作费用。
另外,当表面硅层的薄膜厚度不大于10nm时,不象薄膜厚度不小于10nm的情况,可以消除由单晶碳化硅生长的局部晶核导致的晶粒存在,这样能够得到极好的表面条件。

Claims (7)

1.一种埋置绝缘体型半导体碳化硅衬底的制作方法,其特征在于,包括:
第一个步骤,把带有预定厚度的表面硅层和埋置绝缘体的SOI衬底放置到加热炉中,将氢气和碳氢气体的混合气体输送到所述加热炉中并且提高加热炉中的气体温度,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;第二个步骤,通过过分地执行所述第一个步骤在所述单晶碳化硅薄膜上沉积碳薄膜;第三个步骤,用以预定比率混合有氧气的惰性气体代替所述混合气体,并且将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜;第四个步骤,用不混合氧气的纯惰性气体取代所述混合有氧气的惰性气体,并且将所述加热炉中的气体温度升高到预定温度;第五个步骤,在保持气体的所述预定温度的条件下,将氢气和硅烷气加入加热炉中,这样使新的单晶碳化硅薄膜生长在所述SOI衬底的表面上的单晶碳化硅薄膜上。
2.如权利要求1所述的埋置绝缘体型半导体碳化硅衬底的制作方法,其特征在于,所述预定厚度的表面硅层的薄膜厚度为10nm或更小。
3.如权利要求2所述的埋置绝缘体型半导体碳化硅衬底的制作方法,其特征在于,所述预定温度的范围为500℃到1405℃。
4.如权利要求1所述的埋置绝缘体型半导体碳化硅衬底的制作方法,其特征在于,在大气压强下完成所有步骤,直到最后所述新的单晶碳化硅薄膜形成在所述S0I衬底的表面上的单晶碳化硅薄膜上。
5.一种埋置绝缘体型半导体碳化硅衬底的制作装置,其特征在于,包括:
加热炉,其中放置了具有预定厚度的表面硅层和埋置绝缘体的SOI衬底,并且所述加热炉有加热SOI衬底的加热装置;
供气装置,将各种气体供应到所述加热炉;和
排气装置,将加热炉内的气体释放到外部,
其中所述制作装置被构造成控制加热装置和供气装置,以实现
将氢气和碳氢气体的混合气体输送到所述加热炉中,并提高加热炉中的环境温度到1200℃到1405℃之间,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;
保持变形状态几分钟到几小时之间的一段时间,以在所述单晶碳化硅薄膜上沉积碳薄膜;
用以预定比率混合有氧气的惰性气体代替所述混合气体,并将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜。
6.一种埋置绝缘体型半导体碳化硅衬底的制作装置,其特征在于,包括:
加热炉,其中放置了SOI衬底,它具有在衬底内埋置的绝缘体上的预定厚度的表面硅层,并且所述加热炉包括加热所述SOI衬底的加热装置;和
供气装置,将各种气体供应到所述加热炉;
其中所述制作装置被构造成控制加热装置和供气装置,以实现
将氢气和碳氢气体的混合气体输送到所述加热炉中,并提高所述加热炉中的环境温度到1200℃到1405℃之间,这样所述SOI衬底的表面硅层变形为单晶碳化硅薄膜;
保持变形状态几分钟到几小时之间的一段时间,以在所述单晶碳化硅薄膜上沉积碳薄膜;
用以预定比率混合有氧气的惰性气体代替所述混合气体,并将所述SOI衬底加热到550℃或更高,这样通过蚀刻除去所述碳薄膜;
用不混合氧气的纯惰性气体取代所述混合有氧气的惰性气体,并且将所述加热炉中的环境温度升高到500℃到1405℃之间,并且在保持所述环境温度的条件下,将氢气和硅烷气加入加热炉中,这样使新的单晶碳化硅薄膜生长在所述单晶碳化硅薄膜上。
7.如权利要求6所述的埋置绝缘体型半导体碳化硅衬底的制作装置,其特征在于,所述加热炉的内部保持为大气压强,直到最后所述新的单晶碳化硅薄膜形成在所述SOI衬底的表面上的单晶碳化硅薄膜上。
CNB031034705A 2002-01-31 2003-01-27 埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置 Expired - Lifetime CN100343962C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002022631 2002-01-31
JP202022631 2002-01-31
JP2002022631A JP3920103B2 (ja) 2002-01-31 2002-01-31 絶縁層埋め込み型半導体炭化シリコン基板の製造方法及びその製造装置

Publications (2)

Publication Number Publication Date
CN1435866A CN1435866A (zh) 2003-08-13
CN100343962C true CN100343962C (zh) 2007-10-17

Family

ID=19192223

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031034705A Expired - Lifetime CN100343962C (zh) 2002-01-31 2003-01-27 埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置

Country Status (7)

Country Link
US (2) US7084049B2 (zh)
EP (1) EP1333482B1 (zh)
JP (1) JP3920103B2 (zh)
KR (1) KR100777544B1 (zh)
CN (1) CN100343962C (zh)
DE (1) DE60321734D1 (zh)
TW (1) TWI264070B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280354A (ja) * 2001-03-19 2002-09-27 Osaka Prefecture 炭素薄膜のエッチング方法及びエッチング装置
US7147715B2 (en) * 2003-07-28 2006-12-12 Cree, Inc. Growth of ultra-high purity silicon carbide crystals in an ambient containing hydrogen
US20070231485A1 (en) * 2003-09-05 2007-10-04 Moffat William A Silane process chamber with double door seal
US7382023B2 (en) * 2004-04-28 2008-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Fully depleted SOI multiple threshold voltage application
JP2005317801A (ja) * 2004-04-28 2005-11-10 Japan Science & Technology Agency 薄膜素子形成法
JP4690734B2 (ja) * 2005-01-28 2011-06-01 エア・ウォーター株式会社 単結晶SiC基板の製造方法
JP4511378B2 (ja) * 2005-02-15 2010-07-28 エア・ウォーター株式会社 SOI基板を用いた単結晶SiC層を形成する方法
JP4563918B2 (ja) * 2005-10-31 2010-10-20 エア・ウォーター株式会社 単結晶SiC基板の製造方法
CN100514562C (zh) * 2006-09-18 2009-07-15 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
WO2008111277A1 (ja) * 2007-03-15 2008-09-18 Kyushu Institute Of Technology 単結晶酸化亜鉛基板
JP5394632B2 (ja) 2007-11-19 2014-01-22 エア・ウォーター株式会社 単結晶SiC基板の製造方法
JP2009158702A (ja) * 2007-12-26 2009-07-16 Kyushu Institute Of Technology 発光デバイス
WO2009113472A1 (ja) * 2008-03-10 2009-09-17 国立大学法人東北大学 グラフェンまたはグラファイト薄膜、その製造方法、薄膜構造および電子デバイス
JP2011243640A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP5585268B2 (ja) 2010-07-22 2014-09-10 セイコーエプソン株式会社 単結晶炭化珪素膜付き基材及び単結晶炭化珪素膜の製造方法並びに単結晶炭化珪素膜付き基材の製造方法
CN102965733B (zh) * 2012-11-02 2015-11-18 中国科学院物理研究所 一种无石墨包裹物的导电碳化硅晶体生长工艺
JP6111678B2 (ja) * 2013-01-17 2017-04-12 信越半導体株式会社 GeOIウェーハの製造方法
JP6136731B2 (ja) * 2013-08-06 2017-05-31 住友電気工業株式会社 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
MD4280C1 (ro) * 2013-09-04 2014-10-31 Государственный Университет Молд0 Procedeu de creştere a structurii pInP-nCdS
WO2016047534A1 (ja) * 2014-09-24 2016-03-31 エア・ウォーター株式会社 SiC層を備えた半導体装置
RU2578104C1 (ru) * 2015-04-07 2016-03-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Способ газофазной карбидизации поверхности монокристаллического кремния ориентации (111), (100)
MD4554C1 (ro) * 2017-10-18 2018-09-30 Государственный Университет Молд0 Procedeu de majorare a eficienţei celulelor fotovoltaice pe baza p+InP-p-InP-n+CdS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191997A (ja) * 1992-10-07 1994-07-12 Kyushu Kogyo Univ SiC結晶膜の形成法
US5415126A (en) * 1993-08-16 1995-05-16 Dow Corning Corporation Method of forming crystalline silicon carbide coatings at low temperatures
US5656404A (en) * 1990-04-26 1997-08-12 Canon Kabushiki Kaisha Light receiving member with an amorphous silicon photoconductive layer containing fluorine atoms in an amount of 1 to 95 atomic ppm
US5759908A (en) * 1995-05-16 1998-06-02 University Of Cincinnati Method for forming SiC-SOI structures
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
US6107168A (en) * 1995-04-13 2000-08-22 Siemens Aktiengesellschaft Process for passivating a silicon carbide surface against oxygen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664944A (en) * 1986-01-31 1987-05-12 The United States Of America As Represented By The United States Department Of Energy Deposition method for producing silicon carbide high-temperature semiconductors
JP2002363751A (ja) 2001-06-06 2002-12-18 Osaka Prefecture 単結晶炭化シリコン薄膜の製造方法及びその製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656404A (en) * 1990-04-26 1997-08-12 Canon Kabushiki Kaisha Light receiving member with an amorphous silicon photoconductive layer containing fluorine atoms in an amount of 1 to 95 atomic ppm
JPH06191997A (ja) * 1992-10-07 1994-07-12 Kyushu Kogyo Univ SiC結晶膜の形成法
US5415126A (en) * 1993-08-16 1995-05-16 Dow Corning Corporation Method of forming crystalline silicon carbide coatings at low temperatures
US6107168A (en) * 1995-04-13 2000-08-22 Siemens Aktiengesellschaft Process for passivating a silicon carbide surface against oxygen
US5759908A (en) * 1995-05-16 1998-06-02 University Of Cincinnati Method for forming SiC-SOI structures
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices

Also Published As

Publication number Publication date
TWI264070B (en) 2006-10-11
CN1435866A (zh) 2003-08-13
EP1333482B1 (en) 2008-06-25
DE60321734D1 (de) 2008-08-07
US20030148586A1 (en) 2003-08-07
JP3920103B2 (ja) 2007-05-30
TW200306627A (en) 2003-11-16
EP1333482A3 (en) 2006-02-01
KR100777544B1 (ko) 2007-11-20
US7128788B2 (en) 2006-10-31
EP1333482A2 (en) 2003-08-06
KR20030065326A (ko) 2003-08-06
US20040173154A1 (en) 2004-09-09
JP2003224248A (ja) 2003-08-08
US7084049B2 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
CN100343962C (zh) 埋置绝缘体型半导体碳化硅衬底的制作方法和制作装置
US7648853B2 (en) Dual channel heterostructure
US8530340B2 (en) Epitaxial semiconductor deposition methods and structures
US20050092235A1 (en) Epitaxial semiconductor deposition methods and structures
JPH01162326A (ja) β−炭化シリコン層の製造方法
CN1049572A (zh) 采用吸附扩散源的掺杂方法
CN101069264A (zh) 具有选择性气体供应的选择性外延制程
US7029995B2 (en) Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
CN1906735A (zh) 沉积碳化硅和陶瓷薄膜的方法
CN112309832B (zh) 可转移氧化镓单晶薄膜的制备方法
CN104412362A (zh) 碳化硅外延晶片及其制备方法
WO2018230301A1 (ja) エピタキシャルウェーハの製造方法
JP2002047066A (ja) SiC成形体およびその製造方法
CN1270350C (zh) 在化学汽相沉积反应器内外延涂覆半导体晶片正面的方法
CN109941991B (zh) 一种直接在绝缘衬底表面制备石墨烯的方法
CN1324169C (zh) 制造埋入的绝缘层型的单晶碳化硅基体用的方法和设备
KR101972056B1 (ko) 비정질 실리콘을 이용한 실리카 나노와이어의 제조방법
CN112136203B (zh) SiC外延基板的制造方法
KR20050107510A (ko) 에피텍셜 반도체 증착 방법 및 구조
CN107500277B (zh) 石墨烯边界调控方法
JP2021031362A (ja) 炭化ケイ素多結晶基板の製造方法
KR102602680B1 (ko) 저마늄-주석 막들을 포함하는 구조들과 소자들 및 이들의 제조 방법
JP2007055821A (ja) グラファイトナノファイバの製造方法
KR20090090100A (ko) 에피택셜 실리콘 박막 제조방법 및 이를 포함하는 전자소자
KR950027902A (ko) 다층 에피텍셜 구조 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090306

Address after: Osaka Japan

Patentee after: OSAKA PREFECTURE UNIVERSITY PUBLIC Corp.

Address before: Osaka, Japan

Co-patentee before: HOSIDEN Corp.

Patentee before: Osaka Prefecture

ASS Succession or assignment of patent right

Owner name: PUBLIC UNIVERSITIES CORPORATE OSAKA PREFECTURE UNI

Free format text: FORMER OWNER: OSAKA PREFECTURE

Effective date: 20090306

ASS Succession or assignment of patent right

Owner name: AIR WATER INC.

Effective date: 20130724

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130724

Address after: Osaka Japan

Patentee after: OSAKA PREFECTURE UNIVERSITY PUBLIC Corp.

Patentee after: AIR WATER Inc.

Address before: Osaka Japan

Patentee before: OSAKA PREFECTURE UNIVERSITY PUBLIC Corp.

ASS Succession or assignment of patent right

Free format text: FORMER OWNER: AIR WATER INC.

Effective date: 20140429

Owner name: AIR WATER INC.

Free format text: FORMER OWNER: PUBLIC UNIVERSITY COOPERATION

Effective date: 20140429

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140429

Address after: Hokkaido, Sapporo, Japan

Patentee after: AIR WATER Inc.

Address before: Osaka Japan

Patentee before: OSAKA PREFECTURE UNIVERSITY PUBLIC Corp.

Patentee before: Air Water Inc.

CX01 Expiry of patent term

Granted publication date: 20071017

CX01 Expiry of patent term