CN100342570C - 锂离子电池用多元复合正极材料及其制备方法 - Google Patents

锂离子电池用多元复合正极材料及其制备方法 Download PDF

Info

Publication number
CN100342570C
CN100342570C CNB2003101085244A CN200310108524A CN100342570C CN 100342570 C CN100342570 C CN 100342570C CN B2003101085244 A CNB2003101085244 A CN B2003101085244A CN 200310108524 A CN200310108524 A CN 200310108524A CN 100342570 C CN100342570 C CN 100342570C
Authority
CN
China
Prior art keywords
lithium ion
precipitation
composite positive
lithium
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003101085244A
Other languages
English (en)
Other versions
CN1614801A (zh
Inventor
夏保佳
韩学武
曹辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CNB2003101085244A priority Critical patent/CN100342570C/zh
Publication of CN1614801A publication Critical patent/CN1614801A/zh
Application granted granted Critical
Publication of CN100342570C publication Critical patent/CN100342570C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种低成本、高安全性的锂离子电池用多元复合正极材料及其制备方法。该正极材料的组成为LiCoxNiyMn1-x-yO2(其中0.1≤x≤0.6,0.1≤y≤0.5,x+y≤1)。在2.8V~4.4V的充放电位区间首次放电比容量超过160mAh/g,循环50次后比容量仍高于150mAh/g。本发明采用的制备工艺综合了固相法和液相法的优点。首先选用镍、钴、锰化合物为原料,配制成一定浓度的溶液后与配好的碱溶液混合,同时加入一定量的添加剂;连续搅拌使生成均一的沉淀。然后将此沉淀烘干,与锂化合物按比例混合球磨后在高温下煅烧,再经细化后即得到最终用于锂离子电池的多元复合正极材料。创新点在于突破了掺杂量的限制。该材料能用作手机电池和电动汽车用锂动力电池等。

Description

锂离子电池用多元复合正极材料及其制备方法
所属领域
本发明涉及锂离子电池用新型正极材料及其制备,更确切地说是涉及一种多元复合正极材料及制备方法,用于锂动力电池。属于能源材料领域。
技术背景
目前,随着便携式电子设备如手机、数码相机、笔记本电脑的迅猛发展,市场对高功率、高能量密度电池的需求越来越大。锂离子电池是迄今为止已经实用化的电池中电压最高、能量密度最大的电池,具有良好的发展前景。
在目前商用的锂离子电池正极材料中,锂钴氧(LiCoO2)凭借良好的循环性能(可逆充放电大于500次)和较大的放电容量(140mAh/g)及高的放电平台(3.9V/Li)占据了大于95%的市场份额。但是LiCoO2也有如下的缺点:一是钴属于稀有金属,在地壳中的储量极少,因此价格高,同时钴有毒,对环境不友好;二是LiCoO2的热稳定性很差,在深度充放电条件下(充电截止电压大于4.2V)易发生分解反应生成大量的热,导致电池过热甚至爆炸,影响了其在大电池(如动力电池等)中的应用;三是LiCoO2的可逆循环容量在140mAh/g左右,可利用的实际容量只有130mAh/g左右。因此寻找价格低廉、环境友好、具有更高容量、更好热稳定性的正极材料对锂离子电池的发展具有重要的实用价值。
自上个世纪九十年代以来,价格较低同时环境友好的锂镍氧(LiNiO2)、锂锰氧(LiMn2O4)一直被认为是最有可能替代LiCoO2的材料。近十年的研究表明,LiNiO2的层状结构稳定性差,化学计量的LiNiO2在低温下难以合成,而在高温合成条件下又会发生锂镍的混合占位;通过精确的条件控制(氧气气氛中,750℃温度下焙烧24小时)可以合成LiNiO2,它具有较高的初始容量(初始充电容量达200mAh/g),但是循环性能特别差,在10个循环之后容量即低于LiCoO2。价格更低的LiMn2O4合成简单,但是其容量小(120mAh/g),更为致命的是,由于高价的锰离子在较高的温度下易于与电解液发生反应,LiMn2O4的高温(50℃)循环性能极差。因此在过去的几年,众多的电化研究者都将主要的精力投入到了LiNiO2、LiMn2O4的掺杂改性研究中。鉴于镍与钴的性质相近,同时LiCoO2的循环稳定性好于LiNiO2,因此采用部分钴代替镍来提高LiNiO2的电化学循环性能被大多数研究者所认可。从已有的文献报道及本实验室的试验结果来看,实验室规模的LiNixCo1-xO2材料的制备取得了成功,LiNixCo1-xO2以牺牲容量为代价,大幅度提高了自身的循环性能,不过仍低于LiCoO2。LiNixCo1-xO2的制备工艺比LiCoO2复杂,对原料的要求也更高,导致生产成本上升,同时LiNixCo1-xO2的放电电位较LiCoO2低100mV左右,这限制了LiNixCo1-xO2的大规模工业化生产。另一种正极材料LiMn2O4的制备工艺已经成熟。改性研究主要集中在通过镍、钴、稀土金属的掺杂来提高材料的循环性能,文献表明这方面的研究已经取得了一定的结果,但是由于LiMn2O4的分子量大,其理论比容量偏低(148mAh/g),注定了它无法在锂离子电池最大的市场一手机电池领域与LiCoO2竞争。虽然通过改性能够提高LiMn2O4的常温循环性能,但是在较高温度下的循环性能仍然没有质的提高,因而无法用作动力电池,目前进一步的研究仍在探索中。
发明内容
本发明的目的在于克服现有商用正极材料LiCoO2的缺点,利用一种综合了固相法与液相法优点的方法制备出了一类新型的锂离子电池多元复合正极材料。
本发明提供一种低成本、高可靠性的多元复合正极材料,其组成表达式为:LiCoxNiyMn1-x-yO2,式中0.1≤x≤0.6,0.1≤y≤0.5,x+y≤1。
已有的对正极材料改性均受固体化学中缺陷理论的影响,采用少许的金属(Al,Co,Mg等)或非金属离子(B、F等)对已有的LiCoO2、LiNiO2、LiMn2O4三种正极材料进行掺杂,掺杂量一般不超过20%。本发明突破了掺杂的限制,通过共沉淀一高温晶化工艺合成出镍、钴、锰比例接近的全新的具有层状结构的多元化合物锂镍钴锰氧正极材料。
本发明选用镍、钴、锰化合物为原料,配制成一定浓度的溶液后与配好的碱溶液混合,同时加入一定量的添加剂;并进行连续搅拌使生成均一的沉淀。将此沉淀烘干,与锂化合物按比例混合球磨后高温煅烧,再经细化后即得到最终产品LiCoxNiyMn1-x-yO2
所述的镍、钴、锰的化合物可以是硫酸盐、硝酸盐、氯化物或者其中任意种类配比的化合物。过渡金属总浓度范围在0.05mol/L~10mol/L之间。
所述的用于沉淀镍、钴、锰化合物的可以是任意碱或者氨水或者两者的混合物。碱的浓度对过渡金属原料沉淀的速度和沉淀物的粒度及形貌有较大影响,一般控制在0.05mol/L~10mol/L之间。
所述的使用的添加剂为可以抑制晶核团聚的表面活性剂。添加剂用量为整个溶液质量的0~10-2。如PVP(聚乙烯吡咯烷酮)、十二烷基苯磺酸钠等等。在共沉淀工艺中,添加剂的种类及用量对该工艺中能否合成出性能均一的共沉淀影响显著。添加剂加入量过多不仅使得生产成本提高,同时降低了沉淀速度,延长了生产周期。
所述的所使用的锂源可以是锂的有机盐、无机盐或其氢氧化物。
所述的共沉淀产物经干燥后与锂化合物进一步混合后焙烧。最佳焙烧温度在400~1100℃之间,焙烧时间与选择的温度有关,最佳焙烧时间为1~30小时。
综上所述,本发明提供的多元化合物正极材料LiCoxNiyMn1-x-yO2综合了LiNiO2、LiCoO2、LiMn2O4三者的优点,它的明显优势是生产成本低、比容量高以及热稳定性好。在2.8V~4.4V电位区间,其首次放电比容量超过了160mAh/g,比能量比LiCoO2高10%左右,在50次循环后仍在150mAh/g以上。该材料不仅能用作手机电池,而且还可以用于电动汽车用锂动力电池。工艺制备过程特征是共沉淀一高温焙烧工艺合成,简单又实用。
附图说明
图1:本发明实施例1提供的LiCo0.25Ni0.375Mn0.375O2正极材料的XRD图谱。
图2:以实施例1提供的LiCo0.25Ni0.375Mn0.375O2为正极、锂片作负极组装的钮扣电池后第10循环的充放电曲线。横坐标为容量(mAh),左纵坐标为电压(V),右纵坐标为电流(mA)。
图3:实施例1提供的LiCo0.25Ni0.375Mn0.375O2材料的比容量一循环图(电位区间:2.8V~4.4V,0.5C倍率下)。横坐标为循环次数,纵坐标为比容量(mAh/g)。
具体实施方式
下面通过具体实施例进一步说明本发明的实质性特点和显著进步,但本发明并不局限于实施例。
实施例1:按比例(Co∶Ni∶Mn=2∶3∶3,摩尔比)称取硫酸镍、硫酸钴、硫酸锰配制成4mol/L的溶液,缓慢加入到4mol/L的NaOH中。搅拌速度为600rpm。添加剂(十二烷基苯磺酸钠)用量为溶液质量的10-6。沉淀烘干后与碳酸锂混合(Li/Me(Ni+Co+Mn)=1.05)在600℃下焙烧10小时后再在1000℃下晶化10小时。焙烧产物经细化后即得到最终产物LiCo0.25Ni0.375Mn0.375O2
实施例2:按比例(Co∶Ni∶Mn=1∶3∶3,摩尔比)称取氯化镍、氯化钴、氯化锰配制成4mol/L的溶液,缓慢加入到4mol/L的氨水中。添加剂选用PVP,用量为溶液总质量的1/106。其余与实施例一相同。其XRD图谱和充放电曲线类似于图1-3。
实施例3:按比例(Co∶Ni∶Mn=1∶1∶1,摩尔比)称取氯化镍、硫酸钴、硝酸锰配制成6mol/L的溶液。选用的锂源为草酸锂。未加入添加剂。其余同实施例一。其XRD图谱和充放电曲线亦类似于图1-3。

Claims (5)

1.一类锂离子电池用多元复合正极材料的制备方法,其特征在于采用共沉淀-高温焙烧工艺,具体是选用镍、钴、锰化合物为原料,配制成总浓度在0.05mol/L~10mol/L范围的溶液后与浓度为0.05mol/L~10mol/L的碱溶液混合,同时加入整个溶液质量0~10-2的添加剂;并进行连续搅拌使生成均一的沉淀;经烘干后与锂化合物按LiCoxNiyMn1-x-yO2,式中0.1≤x≤0.6,0.1≤y≤0.5,x+y≤1的比例混合球磨后于400℃~1000℃、1h~30h之间高温煅烧制成。
2.按权利要求1所述的锂离子电池用多元复合正极材料的制备方法,其特征在于所述的镍、钴、锰的化合物为硫酸盐、硝酸盐、氯化物或者其中任意种类配比的化合物。
3.按权利要求1或2所述的锂离子电池用多元复合正极材料的制备方法,其特征在于所述的用于沉淀镍、钴、锰化合物为碱、氨水或者两者的混合物。
4.按权利要求1或2所述的锂离子电池用多元复合正极材料的制备方法,其特征在于所用的添加剂为可抑制晶核团聚的表面活性剂十二烷基苯磺酸钠或聚乙烯吡咯烷酮。
5.按权利要求1或2所述的锂离子电池用多元复合正极材料的制备方法,其特征在于所使用的锂源为锂的有机盐、无机盐或其氢氧化物。
CNB2003101085244A 2003-11-07 2003-11-07 锂离子电池用多元复合正极材料及其制备方法 Expired - Lifetime CN100342570C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101085244A CN100342570C (zh) 2003-11-07 2003-11-07 锂离子电池用多元复合正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101085244A CN100342570C (zh) 2003-11-07 2003-11-07 锂离子电池用多元复合正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN1614801A CN1614801A (zh) 2005-05-11
CN100342570C true CN100342570C (zh) 2007-10-10

Family

ID=34758614

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101085244A Expired - Lifetime CN100342570C (zh) 2003-11-07 2003-11-07 锂离子电池用多元复合正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN100342570C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180226639A1 (en) * 2015-05-28 2018-08-09 Graduate School At Shenzhen Tsinghua University Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342568C (zh) * 2005-09-15 2007-10-10 河北工业大学 含锂锰复合氧化物的正极多元活性材料的制备方法
CN100444432C (zh) * 2006-12-27 2008-12-17 河南师范大学 一种掺杂钴锰羟基氧化镍的制备方法
CN102044664B (zh) * 2010-11-10 2012-12-12 湘西自治州兴湘科技开发有限责任公司 锂离子电池镍钴锰酸锂三元系正极材料的制备方法
CN102832385A (zh) * 2012-08-31 2012-12-19 华南师范大学 用于高容量锂离子电池正极材料Li[Li0.13Ni0.30Mn0.57]O2的制备方法
CN105244495B (zh) * 2015-10-08 2018-08-31 昆明理工大学 一种复合氢氧化物纳米片的制备方法
CN105271444B (zh) * 2015-10-08 2017-03-22 昆明理工大学 一种镍钴锰锂离子电极材料的制备方法
CN106898766B (zh) * 2017-03-10 2019-10-01 郑州科技学院 一种十四面体形纳米镍锰酸锂电池正极材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345101A (zh) * 2000-09-29 2002-04-17 三洋电机株式会社 非水电解质二次电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345101A (zh) * 2000-09-29 2002-04-17 三洋电机株式会社 非水电解质二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180226639A1 (en) * 2015-05-28 2018-08-09 Graduate School At Shenzhen Tsinghua University Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
US10916767B2 (en) * 2015-05-28 2021-02-09 Graduate School At Shenzhen, Tsinghua University Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery

Also Published As

Publication number Publication date
CN1614801A (zh) 2005-05-11

Similar Documents

Publication Publication Date Title
CN101809788B (zh) 非水电解质二次电池用正极活性物质以及使用其的非水电解质二次电池
CN102056844B (zh) 由层状型氧化物形成的用于锂电池的正极材料
CN101662025B (zh) 一种锂离子电池正极活性材料及其制备方法
CN102148372B (zh) 高能复合锂离子电池正极材料
CN101944610B (zh) 一种层状锂离子正极材料的制备
CN102055023A (zh) 锂二次电池的制造方法
CN101694876A (zh) 富锂锰基正极材料及其制备方法
CN101447566A (zh) 层状-尖晶石共生结构锂离子电池正极材料及制备方法
CN103682322B (zh) 一种富锂Fe-Mn基锂离子电池正极材料及其制备方法
CN100495770C (zh) 锂离子二次电池正极材料LixCoyLazMn2-y-zO4及其制备方法
CN104779385B (zh) 一种高比容量锂离子电池正极材料及其制备方法
CN104393277A (zh) 表面包覆金属氧化物的锂离子电池三元材料及其制备方法
CN104201337A (zh) 一种锂离子电池用钠掺杂富锂锰基正极材料及其制备方法
CN105958032A (zh) 一种通过掺杂镍元素提高铁酸锌电化学性能的方法及应用
CN106299295B (zh) 一种具有梭形形貌的多孔微纳结构锂离子电池富锂正极材料及其制备方法
CN102263238A (zh) 一种锂镍钴锰氧化物及其制备方法
CN108550791A (zh) 一种尖晶石包覆的层状正极材料及其制备方法和应用
CN102931394B (zh) 锂镍锰氧材料及其制备方法、含该材料的锂离子电池
CN109088067A (zh) 一种低钴掺杂尖晶石-层状结构镍锰酸锂两相复合正极材料的制备方法
CN102368547A (zh) 一种锂离子电池及其正极活性材料
CN107428559A (zh) 正极材料、以及将其用于正极的锂二次电池
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN102709538A (zh) 正极材料(lnmc)合成的新方法
CN103066271A (zh) 一种高电压锂离子电池正极材料及其制备方法
CN102916171A (zh) 一种浓度渐变的球形镍锰酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20071010

CX01 Expiry of patent term