AT503451A4 - Festkörperlaser - Google Patents

Festkörperlaser Download PDF

Info

Publication number
AT503451A4
AT503451A4 AT0100406A AT10042006A AT503451A4 AT 503451 A4 AT503451 A4 AT 503451A4 AT 0100406 A AT0100406 A AT 0100406A AT 10042006 A AT10042006 A AT 10042006A AT 503451 A4 AT503451 A4 AT 503451A4
Authority
AT
Austria
Prior art keywords
laser
resonator
solid
state laser
holding plate
Prior art date
Application number
AT0100406A
Other languages
English (en)
Other versions
AT503451B8 (de
AT503451B1 (de
Original Assignee
Ctr Carinthian Tech Res Ag
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ctr Carinthian Tech Res Ag, Avl List Gmbh filed Critical Ctr Carinthian Tech Res Ag
Priority to AT0100406A priority Critical patent/AT503451B8/de
Priority to US12/308,250 priority patent/US20100195679A1/en
Priority to JP2009514591A priority patent/JP2009540582A/ja
Priority to PCT/AT2007/000287 priority patent/WO2007143769A2/de
Priority to EP07718498A priority patent/EP2041847A2/de
Application granted granted Critical
Publication of AT503451A4 publication Critical patent/AT503451A4/de
Publication of AT503451B1 publication Critical patent/AT503451B1/de
Publication of AT503451B8 publication Critical patent/AT503451B8/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Description

12399
Die Erfindung betrifft einen Festkörperlaser mit einem monolithisch aufgebauten Resonator bestehend aus einem Lasermedium, an dem ein passiver Q-Switch und mindestens ein Resonatorspiegel direkt angeformt sind, sowie mit mehreren Laserdioden, die als Pumpmedium seitlich in den Resonator einstrahlen.
Die Mehrzahl der verfügbaren Laser mit hoher Leistung sind für stationäre Anwendungen konzipiert. Dadurch sind Größe und Gewicht ebenso wenig ein vorrangiges Problem wie Leistungsaufnahme und Wirkungsgrad. Der Ort der Laserlichterzeugung und der Einsatzort der Laserenergie sind zudem häufig räumlich getrennt und nur durch optische Lichtleiter verbunden. Dies hat den Vorteil, dass die eigentliche Laserlichtquelle, unabhängig von der Anwendung, unter kontrollierten, für den Betrieb des Lasers optimierten Umgebungsbedingungen betrieben werden kann.
In den letzten Jahren wurden eine Reihe von Anwendungen entwickelt, für welche mobile Laserlichtquellen erforderlich oder zumindest vorteilhaft wären. Derartige Applikationen reichen von Laserbasierten Markierungssystemen über die Zündung von Kraftstoff/Luft-Gemischen mittels Laser bis zu chemisch-physikalisch Analysensystemen, beispielsweise laserinduzierte Plasmaspektroskopie (LIPS, LIBS) oder gezielter Laserablation. Für derartige Anwendungen werden Laserlichtquellen mit kompakter Bauform und/oder einem möglichst geringen Energiebedarf bei gleichzeitig hoher Leistung benötigt. Zudem müssen diese Laserlichtquellen direkt vor Ort, unter für den Laserbetrieb unter Umständen nicht optimalen Umgebungsbedingungen wie beispielsweise mechanischen Vibrationen und/oder erhöhten bzw. wechselnden Temperaturen, betrieben werden können. Hier stellen die etablierten und kommerziell verfügbaren Laserbauformen in der Regel keine tauglichen Lösungen dar.
Aus der Literatur ist eine Reihe von Ansätzen zum Bau kompakter Laserlichtquellen mit hoher Leistung bekannt, die jedoch durchwegs - teils kritische - Einschränkungen in der praktischen Anwendbarkeit aufweisen. Kritische Punkte sind insbesondere der Wirkungsgrad und, damit verbunden, der Energiebedarf sowie die Robustheit und die damit verbundene Verwendbarkeit des Lasers unter Betriebsbedingungen.
Bei Festkörperlasern werden, je nach Ausführung und Betriebszustand, bis zu 90% und mehr der eingebrachten Energie in Wärme und nur ein kleiner Teil in nutzbare Laserenergie umgesetzt. Zudem stellt die Temperaturetabilisierung von kompakten Lasern insgesamt ein prioritäres Problem beim Bau von Laserdiodengepumpten Festkörperlasern dar, da die Emissionswellenlängen von Halbleiter-Laserdioden signifikant von der Betriebstemperatur abhängen und das • ··· ♦ ·· · · • · · · · · ♦·♦ - 2 -
Emissionsmaximum um typischerweise ~ 0,3 nm/K driftet. Dies stellt insbesondere bei Verwendung von Festkörper-Lasermedien mit einem schmalen Absorptionsband, wie beispielsweise Neodym-dotiertem Yttrium-Aluminium-Granat (Nd:YAG), ein Problem dar. Für eine effiziente Energieeinkopplung ist es hier erforderlich, die Betriebstemperatur der Halbleiter-Pumpdioden auf typischerweise < ± 2 K zu stabilisieren.
Zur Lösung dieses Problems sind eine Reihe von Ansätzen publiziert. Beispielsweise schlägt EP 0471707 Bl eine Temperierung mittels gasförmigen oder flüssigen Temperiermedien durch Kühlkanäle vor, wobei das Temperiermedium extern temperiert wird. Eine Temperierung über Temperiermedien ist allerdings nur bei näherungsweise gleich bleibenden Betriebszuständen praktikabel; bei raschen Temperaturänderungen, insbesondere in Folge von Lastwechseln am Laser, sind derartige Systeme zu träge für einen praktischen Einsatz. Dementsprechend wird z.B. in DE 4229500 A oder EP 1034584 Bl vorgeschlagen, das Problem der Temperierung einer Pump-Laserdiode sowie des Lasermediums mittels thermoelektrischer Elemente, insbesondere von Peltierelementen, zu lösen. Ein derartiges rein thermoelektrisches System ist allerdings nur für eine Temperierung innerhalb eines engen Temperaturbereichs anwendbar. Für Anwendungen bei denen mit einer signifikanten Änderung der Umgebungstemperaturen zu rechnen ist sind derartige Temperiersysteme zudem rasch überfordert und somit ungeeignet.
Eine technisch prinzipiell gangbare Alternative ist eine Kombination aus diesen beiden Methoden, wie z.B. in EP 1519038 Al und EP 1519039 Al für den Aufbau einer kompakten Laserlichtquelle für die Zündung von Kraftstoff-Luft-Gemischen dargelegt. Der Aufwand für ein derartiges Temperiereystem ist allerdings beträchtlich. In den zitierten Schriften wird die Temperaturetabilisierung über ein mehrstufiges Temperiersystem, bestehend aus "mindestens zwei, vorzugsweise drei verschiedenen Kühlsystemen" bewerkstelligt. Im Detail wird eine Kombination aus Kreisläufen fluider Temperiermedien mit Peltierelementen vorgeschlagen, was mit einem beträchtlichen konstruktiven wie regeltechnischen Aufwand verbunden ist. Zudem ist, insbesondere bei hohe Leistungen erfordernden Laseranwendungen, ein rascher Transfer von beträchtlichen Wärmemengen notwendig, was eine entsprechend große Wärmetauscherfläche erfordert. Dies erfordert, insbesondere bei kompakten Aufbauten, eine Vielzahl enger und/oder langer Strömungskanäle, was konstruktiv aufwendig und mit einem beträchtlichen Energieaufwand für die Umwälzung des Temperiermediums verbunden ist. Zudem ist die Verwendung von thermoelektrischen Bauelementen für die Temperierung mit einem hohen Energiebedarf verbunden, was den Gesamtwirkungsgrad der Laserlichtquelle senkt. - 3 -
Ein weiteres Problem, das insbesondere dann auftritt, wenn ein Festkörperlaser besonders kompakt und robust auszuführen ist, wie etwa bei der Verwendung als Zündquelle in einer Brennkraftmaschine mit innerer Verbrennung oder einer Flugzeugturbine, besteht darin, Fehlerquellen bei der Justierung der einzelnen Komponenten zu vermeiden und insgesamt den Justieraufwand weitestgehend zu minimieren. Ebenso soll durch maximale Robustheit auch bei widrigen Umgebungsverhältnissen ein zuverlässiger Betrieb sichergestellt werden.
Zur Minimierung der Lagevariabilitäten und der daraus resultierenden Notwendigkeit der präzisen Justierung der erforderlichen optischen Komponenten wird vorgeschlagen, anstelle der üblichen, diskret aufgebauten Laserresonatoren monolithische Laserresonatoren zu verwenden. Derartige, integrierte Systeme sind beispielsweise aus WO 2004034523 A2 bekannt. Die Verwendung eines monolithischen Laserresonators ermöglicht, alle Bauteile eines Laserresonators - Lasermedium, (passiver) Q-Switch und Resonatorspiegel, in einem einzigen Bauteil zu integrieren. Dies hat eine Reihe von praktischen Vorteilen, sowohl bezüglich Konstruktion und Betrieb des Lasers als auch der Lebensdauer der optischen Komponenten.
Aus konstruktiver Sicht wird, durch die Integration in ein Bauelement und den damit verbundenen Wegfall der Lagevariabilitäten, die Anzahl der für die optischen Komponenten des Laserresonators erforderlichen Befestigungselemente minimiert und Justierelemente entfallen vollständig. Dies ermöglicht in Folge den Aufbau kompakter und gegenüber externen Einflüssen weitgehend unempfindlicher Laserlichtquellen. Gleichzeitig entfällt die aufwändige Justierung der Einzelkomponenten bei Zusammenbau oder Wartung, wodurch die Kosten für derartige Laserlichtquellen im Vergleich zu diskret aufgebauten Systemen signifikant reduziert werden können.
Der zweite Vorteil liegt in der Reduktion von Grenzflächen im optischen Pfad des Laserresonators. Insbesondere bei Lasern mit hoher Energiedichte stellt jede Grenzfläche eine potentielle Schwachstelle sowie eine Leistungsminderung dar. Durch die Integration von Lasermedium, Q-Switch und vorteilhafterweise den Resonatorepiegeln in ein einzelnes, monolithisches Bauelement kann die Anzahl der Grenzflächen minimiert und in Folge der Wirkungsgrad wie auch die Lebensdauer eines derartigen Lasers im Vergleich zu diskret aufgebauten Systemen deutlich verbessert werden.
Die vorliegende Erfindung geht von einem solchen monolithischen Festkörperlaser aus. Damit lässt sich zwar das Problem des Justieraufwandes und der mechanischen Robustheit grundsätzlich in Griff bekommen, es bleibt jedoch die
• · ♦ • · - 4 -
Frage eines geeigneten Kühlsystems in Zusammenhang mit der Abhängigkeit der Emissionswellenlängen von Halbleiterlaserdioden von der Temperatur zu lösen.
Aufgabe der vorliegenden Erfindung ist es, einen Festkörperlaser der oben beschriebenen Art so weiterzubilden, dass ein einfacher kompakter und robuster Aufbau erreicht wird, wobei insbesondere auch bei einem einfachen Kühlsystem eine weitgehende Unabhängigkeit von äußeren thermischen Bedingungen und der Last des Festkörperlasers gegeben ist. Eine weitere Aufgabe ist es insgesamt, eine hohe Effizienz des Lasersystems zu gewährleisten.
Erfindungsgemäß werden diese Aufgaben dadurch gelöst, dass der Resonator an einem Ende in einer ersten Halteplatte gehalten ist und an seinem anderen Ende in einer zweiten Halteplatte gehalten ist und dass zwischen der ersten und der zweiten Halteplatte mindestens ein Trägerring eingespannt ist, der mehrere Laserdioden trägt, die passiv wellenlängenstabilisiert sind.
Ein erster Aspekt der vorliegenden Erfindung ist es, passiv wellenlängenstabilisierte Laserdioden zu verwenden. Dadurch wird zunächst ein höherer Toleranzbereich für die Temperatur der Laserdioden gewährleistet, was es ermöglicht, das Kühlsystem entsprechend zu vereinfachen. Diese Möglichkeit der Vereinfachung wird durch die besondere konstruktive Gestaltung genützt, so dass sich ein besonders einfacher und robuster Aufbau ergibt, der sich insbesondere für die Verwendung als Zündquelle in Strahltriebwerken, Brennkraftmaschinen mit innerer Verbrennung oder aber auch in mobilen LIBS-Analysegeräten eignet.
Passiv wellenlängenstabilisierte Laserdioden sind an sich bekannt, wie etwa aus Volodin et al.: "Volume stabilization and spectrum narrowing of high power mul-timode laser diodes and arrays by use of volume bragg gratings" in Optics Leiters 2004, Vol. 29, Seiten 1891ff oder aus WO 2005/013439 A.
Die Verwendung passiv wellenlängenstabilisierter Laserdioden als Pumplichtquellen für die Anregung des Lasermediums einer kompakten Laserlichtquelle hat eine Reihe praktischer Vorteile. Zunächst reduziert die Verwendung einer passiv wellenlängenstabilisierten Pumpquelle das Problem des thermischen Drifts des Emissionsmaximums der Anregungslichtquelle. Der thermische Drift für eine Halbleiter-Laserdiode mit auf die Emissionsfläche aufgesetztem holographischem Gitter, beispielsweise einem „Volume Bragg Gräting", beträgt typischerweise 0,01 nm/K. Für den praktischen Betrieb ist es somit ausreichend, die Temperatur derartiger Laserdioden auf typischerweise ± 15 K zu stabilisieren. Somit ist ein effizienter Betrieb der Pumplaser auch ohne präzise aktive Regelung der Temperatur und/oder des Diodenstroms, wie in aktiv wellenlängenstabilisierten Laserdioden üblich und erforderlich, möglich. Dadurch wird es im Vergleich zu • ·· · ♦ · ·· · ♦ ♦ • · · · · ·· · · • · · ♦ · · · · · ♦♦· ······· ·· · -5 -............ vorbekannten Systemen möglich, die Temperierung, insbesondere in Hinblick auf die erforderliche Regelgenauigkeit, wesentlich zu vereinfachen.
Ein weiterer Vorteil des erweiterten Betriebstemperaturbereichs ist das Verhalten des Lasers bei einem Lastwechsel. Ein Lastwechsel, beispielsweise eine Änderung der Pulsrate des Lasers, ist grundsätzlich mit einer Änderung der Verlustleistung verbunden, wodurch sich, zumindest temporär, die Temperatur der Pumpdioden ändert. Bei vorbekannten Systemen verändert sich dadurch die Emissionswel-lenlänge der Pumpdioden und in Folge die Lasereffizienz. Bei nicht ausreichend rascher Kompensation durch die Temperatur-Regelung ist dadurch mit instabilen Betriebszuständen bis hin zu einem Aussetzen der Laseremission des Festkörperlasers zu rechnen. Analog dazu benötigen vorbekannte Laserdioden-ge-pumpte Festkörperlaser üblicherweise eine Vorlaufzeit um einen stabilen Betriebszustand zu erreichen. Im Gegensatz dazu weisen mit einer passiv wellenlängenstabilisierten Pumpquelle gepumpte Festkörperlaser eine deutlich höhere Betriebsstabilität bei Lastwechseln auf, stellen deutlich geringere Anforderungen an das dynamische Regel verhalten der Temperierung und sind typischerweise ohne Vorlaufzeit sofort einsetzbar.
Somit ist es durch die Verwendung passiv wellenlängenstabilisierter Pumpdioden möglich, auf komplexe, energie- und kostenaufwändige rasch reagierende Temperatur-Regelungen zu verzichten. Durch den signifikant reduzierten Temperatureinfluss ist, sowohl im Gleichlast-Dauerbetrieb als auch im Lastwechselbetrieb, eine einfache, robuste und kostengünstige aber vergleichsweise trägere Temperierung mit signifikant geringeren Anforderungen an die Genauigkeit der Temperierung als bei vorbekannten Systemen ausreichend. Je nach abzuführender Verlustleistung des Lasers können wahlweise eine aktive oder passive Luftkühlung oder, für höhere Leistungen, eine Flüssigkeitstemperierung mit externem Temperiergerät verwendet werden. Dadurch sind nach dem beschriebenen Prinzip aufgebaute Festkörperlaser bei vergleichbarer Leistung kompakter konstruierbar, robuster, betriebs- und ausfallssicherer und kostengünstiger in Herstellung und Betrieb als vergleichbare vorbekannte Systeme.
Ein weiterer Vorteil der Verwendung passiv wellenlängenstabilisierter Pumpdioden liegt in einer Erhöhung der Einkoppeleffizienz der Pumpenergie in das Lasermedium des Festkörperlasers. Durch das externe Gitter reduziert sich die Halbwertsbreite der Emission einer Halbleiter-Laserdiode von typischerweise 3 nm (FWHM) auf typischerweise 1 nm (FWHM). Insbesondere bei Lasermedien mit einem engen Absorptionsquerschnitt, wie beispielsweise Nd:YAG mit einer Halbwertsbreite des Absorptionsquerschnitts von etwa 1,5 nm, ist dadurch eine signifikante Verbesserung der Einkoppeleffizienz zu erreichen. - 6 -
Insgesamt ist es durch die Verwendung von, vorzugsweise durch externe Reflexionelemente, besonders vorzugsweise auf Basis holographischer Gitter, passiv wellenlängenstabilisierten Halbleiter-Laserdioden als Pumpquelle für Festkörperlaser möglich, die Betriebsstabilität von Festkörperlasern entscheidend zu verbessern, die Gesamteffizienz zu erhöhen und den Aufwand für die Kühlung zu minimieren.
Durch den erfindungsgemäßen Aufbau ist es erstmals möglich, Festkörperlaser mit hoher und/oder variabler Pulsfrequenz, bzw. Leistung mit ausgezeichneter Betriebsstabilität auch bei Lastwechsel oder Änderung der Umgebungsbedingungen und hoher Ausfallssicherheit in kompakten kostengünstigen Bauformen zu realisieren.
Eine besonders hohe Leistungsdichte und/oder eine einfache Skalierbarkeit der Laserleistung können dadurch erreicht werden, dass mehrere Trägerringe hintereinander vorgesehen sind. Auf diese Weise kann die gesamte Umfangsfläche des Resonators zur Einkoppelung von Strahlung verwendet werden.
Ein weiterer Vorteil der Verwendung mehrerer Trägerringe ist, dass dadurch eine Erhöhung der Frequenz der Pumppulse über das für einzelne Laserdiode maximal mögliche Maß hinaus aus einfachem Weg möglich wird. Dazu werden die Laserdioden der verschiedenen Trägerringe zueinander zeitlich versetzt gepulst, womit eine insgesamt hohe Pump-Pulsfrequenz bei geringerer Pulsfrequenz und somit reduzierter Belastung der einzelnen Pump-Laserdioden erzielt werden kann.
Eine Ausführungsvariante der Erfindung sieht vor, dass in jedem Trägerring eine ungerade Anzahl von Laserdioden in gleichmäßigen Abständen angeordnet ist. Dabei kann durch geeignete optische Maßnahmen, wie etwa Verspiegelungen oder dergleichen sichergestellt werden, dass ein hoher Anteil der eingestrahlten Lichtleistung im Resonator verbleiben und zum Pumpen des Lasers zur Verfügung stehen.
Eine besonders effiziente Kühlung kann erreicht werden, wenn Kühlkanäle vorgesehen sind, die sich durch die erste und die zweite Halteplatte, sowie durch den mindestens einen Trägerring hindurch erstrecken.
Bei einer ersten besonders bevorzugten Ausführungsvariante der vorliegenden Erfindung ist in der ersten und in der zweiten Halteplatte ein Hüllrohr eingespannt, das den Resonator umgibt und zwischen dem Resonator und dem Hüllrohr ist ein Strömungsraum für ein flüssiges Kühlmedium vorgesehen. Zwischen dem Resonator und dem Hüllrohr wird dabei ein Ringraum gebildet, der von einem flüssigen Kühlmedium durchströmt ist. Diese Kühlung kann einerseits in Form eines Zwangsumlaufe realisiert werden, bei weniger belasteten Systemen kann jedoch auch auf eine rein konvektive Kühlung in der Art einer Heat Pipe zurückgegriffen werden. Um etwaige Verluste zu vermeiden, die aus der Durchstrahlung des Resonators erfolgen, ist es besonders bevorzugt, wenn das Hüllrohr reflektiv beschichtet ist, wobei die Verspiegelung Im Bereich der Laserdioden Fenster aufweist. Die Verspiegelung ist nur an den Stellen durchbrochen, an denen die Laserdioden in den Resonator einstrahlen.
Eine alternative Ausführungsvariante der vorliegenden Erfindung ist dadurch gekennzeichnet, dass der Raum zwischen dem Resonator und den Trägerringen mit einem isolierenden Kühlmedium gefüllt ist. Diese Ausführungsvariante ist besonders einfach, da hier kein Hüllrohr erforderlich ist. Um einen Kurzschluss in der Kontaktierung der Laserdioden zu vermeiden, ist ein isolierenden Kühlmedium vorgesehen, wie etwa flüssige Perfluorpolyether.
In der Folge wird die vorliegende Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert.
Es zeigen Fig. 1 eine erste Ausführungsvariante der vorliegenden Erfindung in einer teilweise geschnittenen axonometrischen Darstellung, Fig. 2 die Ausführungsvariante von Fig. 1 im Längsschnitt, Fig. 3 einen Schnitt nach Linie III - III in Fig. 2, Fig. 4 einen erfindungsgemäßen Laserresonator im Detail, Fig. 5 ein Hüllrohr gemäß einer bevorzugten Ausführungsvariante der Erfindung und Fig. 6 und 7 eine weitere Ausführungsvariante in der Darstellung entsprechend Fig. 2 und 3, wobei Fig. 7 ein Schnitt nach Linie VII-VII in Fig. 6 ist.
Ein allgemein mit 1 bezeichneter Resonator ist über Befestigungselemente 33, 34 an einem Ende in einer ersten Halteplatte 31 und am anderen Ende in einer zweiten Halteplatte 32 gehalten. Zwischen den Halteplatten 31, 32 sind zwei Trägerringe 21 eingespannt, die an ihrem inneren Umfang jeweils mehrere Laserdioden 22 tragen. Ein Hüllrohr 42, das auch als Flow-Tube bezeichnet wird, umgibt des Resonator 1, um einen Strömungsraum für ein Kühlmedium zu bilden. Kühlkanäle 41, die sich von der ersten Halteplatte 31 über die Trägerringe 21 bis zur zweiten Halteplatte 32 erstrecken, stehen mit dem Strömungsraum in Verbindung, um ein geschlossenes Kühlsystem zu bilden.
Durch die erfindungsgemäße Kombination der Verwendung passiv wellenlängenstabilisierter Laserdioden hoher Leistung 22 und eines monolithischen Laserresonators 1 ist es erstmals und exklusiv möglich, mit einer Laserlichtquelle mit einer typischer Baugröße von 40 mm Durchmesser und 70 mm Länge ohne integrierte Steuerelektronik bzw. 50 mm Durchmesser und 120 mm Länge mit integrierter Steuerelektronik Laserlichtpulse mit einer typischer Pulsleistung von 30 mJ und einer typischen Pulsdauer im Bereich von 2 - 10 ns zu generieren. Der Laser kann, bei minimalem Temperierungsaufwand, mit variablen, regelbaren Pulsraten • « • · ♦ ♦·· • · • ·· · · • · · · ··· - 8 - im Bereich von typischerweise 0 - 150 Hz betrieben werden, bei reduzierter Pulsleistung mit Pulsraten bis zu etwa 1 kHz.
Der Laser emittiert somit, bei einer typischen Gesamt-Leistungsaufnahme (inklusive Steuerung, exklusive externer Temperierung) von 100 Watt (elektrisch) Laserlicht mit einer mittleren Leistung von etwa 5 Watt (optisch). Der emittierte Laserstrahl hat dabei eine typische Strahldivergenz < 5 mrad bei einem, vom Durchmesser des Lasermediums abhängigen, Strahldurchmesser von typischerweise < 3 mm.
Die passiv wellenlängenstabilisierten Laserdioden 22 sind in der erfindungsgemäßen Anordnung, analog zu vorbekannten Anordnungen, ringförmig in einer zentralen Ausnehmung eines geeigneten Trägerrings 21 angeordnet und bilden gemeinsam einen Pumpring 2. Die Anzahl der verwendeten Laserdioden hängt von der Baugröße der Laserlichtquelle, der Laserdioden 22 und der erforderlichen Pumpleistung ab. Vorzugsweise werden pro Pumpring drei bis acht Laserdioden eingesetzt, beispielsweise sechs passiv wellenlängenstabilisierte Laserdioden 22 pro Pumpring 2.
Bei höherem Leistungsbedarf ist es möglich und vorteilhaft, unter Verwendung eines monolithischen Laserresonators 1 mit längerem Festkörper-Lasermedium 11 mehrere Pumpringe 2 hintereinander zu schalten, wie in Fig. 1 exemplarisch für eine Anordnung mit zwei Pumpringen dargestellt. Dies ergibt bessere Effizienzen und eine kleinere Bauform als die Verwendung von nur einem Pumpring mit einer höheren Anzahl an Laserdioden und erleichtert zudem die Temperierung. Die Laserdioden aufeinander folgender Pumpringe werden bei derartigen Anordnungen vorzugsweise "auf Lücke" ausgerichtet, im gezeigten Fall mit sechs Laserdioden werden die Pumpringe somit vorzugsweise gegeneinander um 30° bezüglich der Hauptachse der Laserlichtquelle verdreht, wie in Fig. 1 und 2 dargestellt.
Zur Temperierung der Laserlichtquelie sind in die Trägerringe 21 der passiv wellenlängenstabilisierten Laserdioden 22 Temperierkanäle 41 eingearbeitet. Die Form und Anzahl dieser Temperierkanäle wird dabei der maximal zu übertragenden Wärmeleistung der Laserlichtquelle entsprechend gewählt. Zusammen mit in die vordere 31 und die hintere 32 Endkappe der Laserlichtquelle eingearbeiteten Kanälen und einer vom Temperiermittel durchströmten, den monolithischen Laserresonator umgebenden Flow-Tube 42 ergibt sich daraus ein Temperiermittelkreislauf.
Der Temperiermittelkreislauf 4 wird für Laser-Anwendungen mit hoher mittlerer Leistung vorzugsweise an ein externes Temperieraggregat angeschlossen, wobei die Laserlichtquelie vorzugsweise von außen nach innen durchströmt wird, d.h. • ♦ · · ♦·· · ♦· · · • t · · · · ·# · ··· • · · · · · · · · · -*9 -.......... das Temperiermittel zunächst die Temperierkanäle 41 der Trägerringe 21 durchströmt und danach den Bereich zwischen dem monolithischen Laserresonator 1 und der Flow-Tube 42. In dieser Ausführungsform sind Eingang und Ausgang separiert und vorzugsweise in der hinteren Endkappe 32 angeordnet. Für Anwendungen mit geringerer Leistung kann häufig auf eine externe Temperierung verzichtet werden. Anstelle der getrennten Ein- und Ausgänge werden beide Endkappen 31, 32 den Außen- und Innenkreis verbindend ausgeführt, der Temperiermittelkreislauf 4 mit einem geeigneten Temperiermedium gefüllt und versiegelt. Die anfallende Verlustwärme wird durch Wärmeleitung sowie Konvektion im Temperiermittelkreislauf von innen nach außen transportiert und über die Oberfläche der Laserlichtquelle an die Umgebung abgegeben. Dazu kann es anwendungsabhängig vorteilhaft sein, die äußere Oberfläche der Laserlichtquelle mit Kühlrippen zur Vergrößerung der Wärmeübergangsfläche und/oder einem Ventilator, etc. zur Verbesserung des Wärmeübergangs auszustatten.
In beiden Betriebsarten bewirkt die Verwendung passiv wellenlängenstabilisierter Laserdioden als Pumplichtquellen eine Minimierung des Temperieraufwandes und eine Erhöhung der Betriebsstabilität. Die Zuverlässigkeit der Laseremission ist, auch bei bzw. während signifikanten Lastwechseln, beispielsweise in Folge einer Änderung der Pulsrate, oder sonstigen Änderungen des thermischen Zustands voll gewährleistet.
Der erfindungsgemäß verwendete monolithische Laserresonator 1 besteht aus dem eigentlichen Lasermedium 11, in dem die Pumpenergie in Laserenergie umgesetzt wird, einem damit, vorzugsweise durch Bonding auf molekularer Ebene (Interface I), fest verbundenen sättigbaren Absorber (passiver Q-Switch, 12) sowie zwei Resonatorspiegeln 13, 14. Als Resonatorspiegel werden vorzugsweise auf die jeweilige Laser-Emissionswellenlänge ausgelegte dielektrische, besonders vorzugsweise mehrschichtige dielektrische, Spiegel verwendet, die direkt auf die Endflächen des Lasermediums bzw. des daran gebondeten sättigbaren Absorbers aufgebracht werden. Der Spiegel an der emittierenden Seite 13 wird dabei partiell reflektierend, mit einem Reflexionsgrad von beispielsweise 50% ausgeführt, der zweite Spiegel hochreflektierend, mit einem typischen Reflexionsgrad von > 99% bei der Emissionswellenlänge des Festkörperlasers.
Ergänzend ist es möglich und vorteilhaft, die beiden verspiegelten Endflächen 13, 14 der monolithischen Laserresonators geometrisch an den Laserbetrieb anzupassen. Neben planer Endflächen sind für bestimmte Anwendungen insbesonders axialsymmetrisch gekrümmte, konvexe oder konkave Flächen vorteilhaft, um damit beispielsweise das Auftreten von Temperaturgradienten und dadurch entstehenden thermischen Linsen zu kompensieren, die Modenverteilung im Laser • ·· · · · ·· · · ♦ • · · · ··· t ♦· · · • · · · · · ·· »··· ······· · · · -*io-......... zu beeinflussen oder den emittierten Strahl zur Übergabe an eine externe Strahloptik zu konditionieren. Für die beschriebene Anordnung ist die Verwendung eines zylindrischen Laserresonators 1 sowohl in Hinblick auf die Kompaktheit als auch die Minimierung des Aufwandes für Einbau, Befestigung und Justierung besonders vorteilhaft, es sind aber auch quaderförmige Ausführungen mit viereckigem, quadratischem oder sonstigem polygonalen Querschnitt für besondere Anwendungen möglich und realisierbar. Bei derartigen Ausführungsformen ist es vorteilhaft, Form, Anzahl und Ausrichtung der Flächen des polygonen Quaders und Anzahl und Anordnung der Laserdioden im verwendeten Pumpring aufeinander abzustimmen.
Durch den monolithischen Aufbau des Laserresonators 1 ist der Einbau bzw. die Befestigung in der Laserlichtquelle, insbesonders bei Verwendung eines zylindrisch ausgeführten monolithischen Laserresonators 1 mit minimalem konstruktivem Aufwand möglich. Vorzugsweise wird der monolithische Laserresonator 1 mit zwei, beispielsweise als Klemmschrauben ausgeführten, Befestigungselementen 33, 34 in den Halteplatten 31, 32 fixiert. Dazu sind weder Justierelemente notwendig noch kann sich der Laserresonator durch mechanische und/oder thermische Belastungen dejustieren. In Kombination mit den passiv wellenlängenstabilisierten Laser-Pumpdioden 22 kann dadurch ein zuverlässiger Betrieb auch unter rauen Anwendungsbedingungen gewährleistet werden. 4
Die Befestigungselemente 33, 34 des Laserresonators 1 können anwendungsabhängig gestaltet werden. Die in Fig. 1 und Fig. 2 gezeigte mögliche Ausführung mit einem optisch zugänglichen hochreflektierenden Endspiegel 14 ermöglicht die Einkopplung der durch den Spiegel 14 transmittierten Laserenergie beispielsweise in eine optische Faser und die Verwendung dieses Signals beispielsweise zur Laserüberwachung, als Trigger-Signal, etc., ohne in den Nutzstrahlengang des Lasers zusätzliche optische Komponenten einbauen zu müssen.
Zusätzlich zur erfmdungsgemäß notwendigen Verwendung von passiv wellenlängenstabilisierten Laserdioden als Pumplichtquellen und eines monolithischen Laserresonators ist es zur Erhöhung des Wirkungsgrades häufig sinnvoll, weitere Maßnahmen zur Optimierung der Einkoppeleffizienz des Pumplichts in das Lasermedium zu treffen. Hiezu wird erfindungsgemäß, insbesonders bei Verwendung von Festkörper-Lasermedien mit kleinem Durchmesser und entsprechend geringerer Einkoppeleffizienz, die Verwendung einer Energiesammelnden Flow-Tube vorgeschlagen.
Vorbekannte Flow-Tubes bestehen aus einem für die Anregungswellenlänge transparenten Material, wie beispielsweise Glas, Quarzglas oder Saphir. In diesen Anordnungen tritt vom Lasermedium nicht absorbierte Pumpstrahlung durch die -w - 11 - gegenüberliegende Wand der Flow-Tube aus und wird in Folge ungenutzt in Wärme umgewandelt.
Zur Abhilfe wird erfindungsgemäß vorgeschlagen, vorzugsweise die Außenfläche der Flow-Tube 42 mit einer die Anregungsstrahlung ins Innere der Flow-Tube zurückreflektierenden Beschichtung 42a zu versehen. Diese Beschichtung kann wahlweise eine Verspiegelung, beispielsweise mit Gold oder Aluminium, oder eine Beschichtung mit einem diffus reflektierenden Material, vorzugsweise auf Basis von Titandioxid und/oder Calciumcarbonat und/oder Bariumsulfat oder einem sonstigen, bei der Anregungswellenlänge hochreflektiven und gegen Photolyse unter den Einsatzbedingungen unempfindlichen Material sein. Zur Einkopplung der Pumpstrahlung sind in dieser Beschichtung transparente Bereiche 42b ausgespart, die geometrisch an Abstrahlcharakteristik und Anordnung der Pumpdioden 22 in der Laserlichtquelle angepasst sind.
Durch diese Anordnung ist es möglich, das in das Innere der Flow-Tube 42 eingestrahlte Licht dort zu konzentrieren, Strahlungsverluste zu minimieren und somit den Laserwirkungsgrad zu optimieren. Dies ermöglicht, den geringeren geometrischen Absorptions-Querschnitt bei Verwendung von Festkörper-Lasermedien mit kleinerem Durchmesser zumindest teilweise zu kompensieren und somit kompakte Laserlichtquellen mit hoher Pulsleistung und guter Strahlqualität zu bauen.
Fig. 6 und 7 zeigen eine Ausführungsvariante der vorliegenden Erfindung, die weitgehend der der Fig. 2 und 3 entspricht, wobei jedoch keine Flow-Tube vorgesehen ist. Dementsprechend umströmt das isolierende Kühlmittel im Kreislauf 4 direkt den Laser-Resonator 1 und die Laserdioden 22.
Zusammenfassend ermöglicht die vorgestellte Anordnung durch die erfindungsgemäße Kombination der Verwendung eines monolithischen Laserresonators 1 in Kombination mit passiv wellenlängenstabilisierten Laser-Pumpdioden 22 und optional der Verwendung einer Energiesammelnden Flow-Tube 42 den Bau von, im Vergleich zu vorbekannten Systemen, überaus kompakten, betriebssicheren und wartungsarmen gepulsten Laserlichtquellen mit hoher Leistung und überdurchschnittlicher Strahlqualität.

Claims (8)

  1. • ·· t · · ·· · · · • « « · ··· · ·♦ · · • · · · · · · ♦ · #·· ······· ·· · -*12 -........... PATENTANSPRÜCHE 1. Festkörperlaser mit einem monolithisch aufgebauten Resonator (1) bestehend aus einem Lasermedium, an dem ein passiver Q-Switch (12) und mindestens ein Resonatorspiegel direkt angeformt sind, sowie mit mehreren Laserdioden (22), die als Pumpmedium seitlich in den Resonator (1) einstrahlen, dadurch gekennzeichnet, dass der Resonator (1) an einem Ende in einer ersten Halteplatte (31) gehalten ist und an seinem anderen Ende in einer zweiten Halteplatte (32) gehalten ist und dass zwischen der ersten und der zweiten Halteplatte (31, 32) mindestens ein Trägerring (21) eingespannt ist, der mehrere Laserdioden (22) trägt, die passiv wellenlängenstabilisiert sind.
  2. 2. Festkörperlaser nach Anspruch 1, dadurch gekennzeichnet, dass die Laserdioden (22) durch ein externes Reflexionelement wellenlängenstabilisiert sind.
  3. 3. Festkörperlaser nach Anspruch 2, dadurch gekennzeichnet, dass das externe Reflexionelement als holographisches Gitter ausgebildet ist.
  4. 4. Festkörperlaser nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen der ersten und der zweiten Halteplatte (31, 32) mehrere Trägerringe (21) vorgesehen sind.
  5. 5. Festkörperlaser nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in jedem Trägerring (21) eine ungerade Anzahl von Laserdioden (22) in gleichmäßigen Abständen angeordnet ist.
  6. 6. Festkörperlaser nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Kühlkanäle vorgesehen sind, die sich durch die erste und die zweite Halteplatte (31, 32), sowie durch den mindestens einen Trägerring (21) hindurch erstrecken.
  7. 7. Festkörperlaser nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der ersten und in der zweiten Halteplatte (31, 32) ein Hüllrohr (42) eingespannt ist, das den Resonator (1) umgibt und dass zwischen dem Resonator (1) und dem Hüllrohr (42) ein Strömungsraum für ein flüssiges Kühlmedium vorgesehen ist.
  8. 8. Festkörperlaser nach Anspruch 7, dadurch gekennzeichnet, dass das Hüllrohr (42) reflektiv beschichtet ist, wobei die Verspiegelung im Bereich der Laserdioden (22) Fenster aufweist. 3 • · t ··· • · · · · • · · · · - 13 - 9. 10. Festkörperlaser nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Raum zwischen dem Resonator (1) und den Trägerringen (21) mit einem isolierenden Kühlmedium gefüllt ist. Festkörperlaser nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Laserdioden (22) auf unterschiedlichen Trägerringen (21) getrennt voneinander ansteuerbar sind. 2006 06 13
    Dipl.-Ing. Mag. Michael Babelul« A-1150 W!«ti, Gört«! 39/17 Tel.: (443 1) «92 IS $3*0 Pw (+43 1) 092 09 333
AT0100406A 2006-06-13 2006-06-13 Festkörperlaser AT503451B8 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT0100406A AT503451B8 (de) 2006-06-13 2006-06-13 Festkörperlaser
US12/308,250 US20100195679A1 (en) 2006-06-13 2007-06-13 Solid-state laser comprising a resonator with a monolithic structure
JP2009514591A JP2009540582A (ja) 2006-06-13 2007-06-13 モノリシック構造の共振器を備える固体レーザ
PCT/AT2007/000287 WO2007143769A2 (de) 2006-06-13 2007-06-13 Festkörperlaser mit einem monolithisch aufgebauten resonator
EP07718498A EP2041847A2 (de) 2006-06-13 2007-06-13 Festkörperlaser mit einem monolithisch aufgebauten resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0100406A AT503451B8 (de) 2006-06-13 2006-06-13 Festkörperlaser

Publications (3)

Publication Number Publication Date
AT503451A4 true AT503451A4 (de) 2007-10-15
AT503451B1 AT503451B1 (de) 2007-10-15
AT503451B8 AT503451B8 (de) 2008-05-15

Family

ID=38565679

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0100406A AT503451B8 (de) 2006-06-13 2006-06-13 Festkörperlaser

Country Status (5)

Country Link
US (1) US20100195679A1 (de)
EP (1) EP2041847A2 (de)
JP (1) JP2009540582A (de)
AT (1) AT503451B8 (de)
WO (1) WO2007143769A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587578B2 (ja) * 2008-09-26 2014-09-10 ギガフォトン株式会社 極端紫外光源装置およびパルスレーザ装置
EP2443707B1 (de) * 2009-06-15 2015-09-30 Pantec Biosolutions AG Monolithischer seitengepumpter festkörperlaser und seine anwendung
CN102484346B (zh) * 2009-06-15 2015-04-08 Pan技术生物解决方案股份公司 单片侧面泵浦的固态激光器及其应用
WO2010145855A1 (en) * 2009-06-15 2010-12-23 Pantec Biosolutions Ag Monolithic, side pumped solid-state laser and method for operating the same
US8594147B1 (en) * 2011-08-24 2013-11-26 The United States Of America As Represented By The Secretary Of The Army Monolithic diode pumped solid-state laser for high shock environments
AT511930A1 (de) * 2011-09-06 2013-03-15 Ge Jenbacher Gmbh & Co Og Laserzündkerze
WO2013090108A1 (en) * 2011-12-14 2013-06-20 Schlumberger Canada Limited Solid state lasers
US9651476B2 (en) 2014-01-28 2017-05-16 Schlumberger Technology Corporation Fluid analysis by optical spectroscopy with photoacoustic detection
JP2015145926A (ja) * 2014-01-31 2015-08-13 日本電産コパル株式会社 レーザ露光装置
KR101745460B1 (ko) * 2014-07-09 2017-06-09 (주)옵토닉스 레이저 모듈
US10088422B2 (en) 2015-12-28 2018-10-02 Schlumberger Technology Corporation Raman spectroscopy for determination of composition of natural gas
CN107702816B (zh) * 2017-10-27 2023-09-26 大连理工大学 原位在线实时无接触式测量面壁材料表面温度的方法
USD918972S1 (en) * 2018-08-01 2021-05-11 Panasonic Intellectual Property Management Co. Ltd Laser resonator
USD908751S1 (en) * 2018-08-01 2021-01-26 Panasonic Intellectual Property Management Co. Ltd Laser engine with multiple resonators
USD908148S1 (en) * 2018-08-01 2021-01-19 Panasonic Intellectual Property Management Co. Ltd Laser engine with multiple resonators

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641422B1 (fr) * 1989-01-04 1994-09-30 Comp Generale Electricite Laser a barreau avec pompage optique par source a plage d'emission etroite
US5691989A (en) * 1991-07-26 1997-11-25 Accuwave Corporation Wavelength stabilized laser sources using feedback from volume holograms
JPH06196779A (ja) * 1992-12-24 1994-07-15 Matsushita Electric Ind Co Ltd 光発生装置
JPH07152055A (ja) * 1993-05-21 1995-06-16 Matsushita Electric Ind Co Ltd 短波長光源および波長可変レーザ光源
JPH08213686A (ja) * 1994-11-14 1996-08-20 Mitsui Petrochem Ind Ltd 波長安定化光源
US5636239A (en) * 1995-05-15 1997-06-03 Hughes Electronics Solid state optically pumped laser head
JPH10275952A (ja) * 1997-03-28 1998-10-13 Mitsubishi Electric Corp 半導体レーザ励起固体レーザ増幅装置及び半導体レーザ励起固体レーザ装置
US5978407A (en) * 1997-03-31 1999-11-02 United States Enrichment Corporation Compact and highly efficient laser pump cavity
US6026109A (en) * 1998-01-22 2000-02-15 Cutting Edge Optronics, Inc. High-power, solid-state laser in a cylindrical package
JPH11284256A (ja) * 1998-03-27 1999-10-15 Toshiba Corp 固体レーザ装置
US6377593B1 (en) * 1999-06-21 2002-04-23 Northrop Grumman Corporation Side pumped Q-switched microlaser and associated fabrication method
US6330259B1 (en) * 1999-06-24 2001-12-11 Jonathan S. Dahm Monolithic radial diode-pumped laser with integral micro channel cooling
US6999491B2 (en) * 1999-10-15 2006-02-14 Jmar Research, Inc. High intensity and high power solid state laser amplifying system and method
AU2003299543A1 (en) * 2002-10-04 2004-05-04 Spectra Systems Corporation Monolithic, side-pumped, passively q-switched solid-state laser
DE50304768D1 (de) * 2003-09-23 2006-10-05 Avl List Gmbh Laser-Zündeinrichtung für eine Brennkraftmaschine
US7522651B2 (en) * 2004-03-10 2009-04-21 Pavilion Integration Corporation Solid-state lasers employing incoherent monochromatic pump
JP4530348B2 (ja) * 2004-09-06 2010-08-25 大学共同利用機関法人自然科学研究機構 受動qスイッチレーザ装置

Also Published As

Publication number Publication date
EP2041847A2 (de) 2009-04-01
WO2007143769A3 (de) 2008-05-08
WO2007143769A2 (de) 2007-12-21
AT503451B8 (de) 2008-05-15
AT503451B1 (de) 2007-10-15
US20100195679A1 (en) 2010-08-05
JP2009540582A (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
AT503451A4 (de) Festkörperlaser
DE3614401C2 (de) Laserdiodengepumpter Festkörper-Laser
DE69530497T2 (de) Passiv stabilisierter laser mit frequenzverdopplung innerhalb des resonators
DE102015214511A1 (de) Laserverarbeitungsvorrichtung
WO2006125685A1 (de) Zündeinrichtung für eine brennkraftmaschine
EP1519039A1 (de) Gütegeschaltener, gepumpter Festkörperlaser
DE4191708C1 (de) Festkörperlaser
EP1071178B1 (de) Modensynchronisierter Festkörperlaser
EP3694062B1 (de) Passiv gütegeschalteter festkörperlaser
EP1519038B1 (de) Laser-Zündeinrichtung für eine Brennkraftmaschine
DE2456913A1 (de) Farbstoff-laser
EP0879494B1 (de) Optisch gepumpter verstärker, insbesondere ein festkorper-verstärker
EP0741924B1 (de) Transversal gepumpter festkörperlaser
EP0770275B1 (de) Diodengepumpter hochleistungsfestkörperlaser
DE60316905T2 (de) Diodenlaser-gepumpter, kompakter Festkörperlaser mit einem gefalteten Resonator
WO1996037021A1 (de) Diodenlasergepumpter festkörperlaser
DE4008225C2 (de) Laserdiodengepumpter Festkörperlaser
DE69927686T2 (de) Skalierbarer, vertikal diodengepumpter festkörperlaser
DE69737119T2 (de) Laserdiodengepumpter Festkörper Verstärker und Laser
DE102004012014B4 (de) Scheibenlaser mit einer Pumpanordnung
DE4304178A1 (de) Aktives gefaltetes Resonatorsystem
DE10394177B4 (de) Laseroszillator
EP2976816B1 (de) Laseranordnung
DE19521943C2 (de) Festkörperlaservorrichtung
EP2523277B1 (de) Laser-Resonator zur Erzeugung frequenzkonvertierter Laserstrahlung

Legal Events

Date Code Title Description
PC Change of the owner

Owner name: CTR - CARINTHIAN TECH RESEARCH AG, AT

Effective date: 20150904

MM01 Lapse because of not paying annual fees

Effective date: 20170613