KR101988708B1 - 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법 - Google Patents

경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법 Download PDF

Info

Publication number
KR101988708B1
KR101988708B1 KR1020167030539A KR20167030539A KR101988708B1 KR 101988708 B1 KR101988708 B1 KR 101988708B1 KR 1020167030539 A KR1020167030539 A KR 1020167030539A KR 20167030539 A KR20167030539 A KR 20167030539A KR 101988708 B1 KR101988708 B1 KR 101988708B1
Authority
KR
South Korea
Prior art keywords
transducer
kidney
catheter
artery
ultrasonic
Prior art date
Application number
KR1020167030539A
Other languages
English (en)
Other versions
KR20160130329A (ko
Inventor
라인하르트 제이. 원킹
Original Assignee
레코 메디컬, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레코 메디컬, 인코포레이티드 filed Critical 레코 메디컬, 인코포레이티드
Publication of KR20160130329A publication Critical patent/KR20160130329A/ko
Application granted granted Critical
Publication of KR101988708B1 publication Critical patent/KR101988708B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • A61B2017/22021Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter electric leads passing through the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1047Balloon catheters with special features or adapted for special applications having centering means, e.g. balloons having an appropriate shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1068Balloon catheters with special features or adapted for special applications having means for varying the length or diameter of the deployed balloon, this variations could be caused by excess pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1086Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1093Balloon catheters with special features or adapted for special applications having particular tip characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/0026Stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0043Ultrasound therapy intra-cavitary

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Child & Adolescent Psychology (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

본 발명에 따르면, 고혈압과 그에 관련된 상태를 치료하기 위해 포유류 대상체의 신장 동맥을 따라 연장되는 신장 신경들을 비활성화하기 위한 장치와 방법들이 제공된다. 예를 들어 트랜스듀서를 지탱하는 카테터(18)의 원위 단부를 신장 동맥 내로 전진시킴으로써, 초음파 트랜스듀서(30)가 신장 동맥(10) 내에 삽입된다. 초음파 트랜스듀서는 신장 신경 전달을 비활성화하기에 충분하지만 조직들이 급속히 제거 또는 괴사되게 하기에는 불충분한 온도로 신장 동맥을 둘러싸고 있는 약 0.5 ㎤ 이상의 상대적으로 커다란 충격 용적(11)의 전체에 걸쳐 조직들을 가열시키기 위해 비집속 초음파를 방출한다. 개별 신장 신경 위에 초점을 맞추거나 혹은 개별 신장 신경 위에 배치하지 않고도 치료가 수행될 수 있다.

Description

경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법{METHOD AND APPARATUS FOR TREATMENT OF HYPERTENSION THROUGH PERCUTANEOUS ULTRASOUND RENAL DENERVATION}
본 특허출원은 2009년 10월 30일에 출원된 미국 가특허출원번호 61/256,429호와 2010년 1월 6일에 출원된 61/292,618호를 기초로 우선권을 주장하고 있으며, 이 특허출원들은 본 명세서에서 참조문헌으로 인용된다.
고혈압을 성공적으로 치료하는 것은 많은 이유에서 중요하다. 예를 들어, 고혈압을 성공적으로 치료하는 것은, 몇 개만 예를 들면, 신장질환(renal disease), 부정맥(arrhythmias), 및 심부전증(congestive heart failure)과 같이 고혈압에 의해 악화되거나 혹은 고혈압에 의해 발생된 상태를 제한하거나 또는 방지하는 데 상당한 의료적 이점을 가진다. 고혈압을 치료하기 위해 약물 치료가 사용될 수 있으나, 항상 성공적이지는 않는다. 어떤 사람들은 약물 테라피 치료에 대해 내성이 있거나(resistant) 혹은 약물 테라피 치료로부터 심각한 부작용을 경험하기도 한다.
고혈압은 신장 동맥을 둘러싸고 있는 신장 신경들의 전도(conduction)를 비활성화시킴으로써(inactivating) 치료될 수 있다. 교감 신장 신경 활동성(sympathetic renal nerve activity)은 고혈압이 시작되고 지속되는데 중요한 역할을 수행한다. 뇌(brain)가 낮은 혈액량(blood volume) 또는 혈압이 떨어지는 것에 대한 신호를 주는 증가된 신장 신경 활동성을 지각할 때, 심장, 간, 및 신장에 대한 교감신경 활동성을 증가시킴으로써 상쇄되며, 그에 따라 증가된 심박출량(cardiac output); 인슐린저항성(insulin resistance); 및 가장 중요하게도, 신장에 의해 레닌(renin) 생성이 증가된다. 레닌은 안지오텐신(angiotension) 생성을 자극하여 혈관이 수축되게 하고 이에 따라 혈압이 증가하여 알도스테론(aldosterone) 분비를 자극한다. 알도스테론은 신장으로 하여금 물과 소듐이 혈액 내에 재흡수(reabsorption)되는 것을 증가시키게 하여, 혈액량을 증가시켜 이에 따라 혈압이 추가로 증가되게 한다.
오랜 세월동안, 신장 신경들을 외과수술적으로 절제하여 혈압을 떨어뜨리고 수분 보유량(water retention)을 정상적인 수준으로 감소시키며 이에 따라 환자의 심장, 간, 및 신장도 건강한 기능으로 복귀되게 할 수 있는 방법들이 확립되어 왔다. 또한, 신장 신경들이 파괴(disruption)되도 어떠한 심각한 악영향을 가지지 않는다는 사실도 밝혀졌다. 하지만, 신장 신경들을 외과수술적으로 절제하는 것은 바람직하지 못한 부작용의 위험이 있는 대수술(major surgical procedure)을 필요로 한다. 대수술 없이도 동일한 결과가 나타나면 바람직할 것이다.
그 외의 다른 손상을 일으키지 않고도 이러한 과제를 수행하는데 관련된 어려움들을 설명하기 위하여, 이제, 신장 동맥과 신장 신경들의 해부학적 구조(anatomy)가 기술될 것이다. 도 1에서는 신장(6)에 연결된 신장 동맥(10)을 둘러싸고 있는 신장 신경(8)의 한 예시예가 도시되어 있다. 교감 신장 신경(8)들은 신장(6)으로부터 뇌로의 구심성 감각 신장 신경(afferent sensory renal nerve)들과 뇌로부터 신장(6)으로의 원심성 교감 신장 신경(efferent sympathetic renal nerve)들을 모두 포함한다. 또한, 도 2는 신장 동맥(10)의 한 횡단면을 도시한다. 신장 동맥 벽은 층: 즉 내피세포(endothelial cell)의 내측 단일층을 포함하는 내막(intima)(3); 동맥벽의 중앙에 위치된 중막(media)(5); 및 외부층인 외막(adventitia)(4)을 포함한다. 또한, 신장 동맥(10)에 인접하고 신장 동맥(10)의 표면 위에서 외막(4) 내에 배열된 신장 신경(8)들이 도시된다. 이 두 도면들로부터 볼 수 있는 것과 같이, 신장 신경(8)들은 신장 동맥(10)을 둘러싸고 있다. 서로 다른 환자 개개인들은 신장 동맥 주위의 상이한 위치들에서 신장 신경(8)들을 가진다. 따라서, 신장 신경들은 신장 동맥의 중앙축(A)으로부터 상이한 반경방향 거리(R)에 위치될 수 있으며, 신장 동맥의 외주(circumference)(C) 주위에서 상이한 위치들에 배치될 수 있다. 해부학적 경계표(anatomical landmark)를 참조하여 신장 신경들을 위치시키는 것은 실용적이지 않다. 게다가, 통상적인 신체내(in vivo) 영상 기술을 이용하여 환자 개개인의 신장 신경들을 위치시키는 것은 어렵거나 혹은 불가능하다.
신장 신경(8)들을 겨냥하고(target) 신장 신경(8)들을 위치시킬 수 없으면, 신장 동맥(10)에 손상을 끼치지 않거나 혹은 그 외의 다른 부작용을 일으키지 않고도 비-외과수술법을 이용하여 교감 신장 신경 활동성을 단절하는(disconnect) 것이 어렵게 된다. 예를 들어, 신장 신경들에 에너지(energy)를 제공하려는 시도로 인해 협착증(stenosis), 내막증식(intimal hyperplasia), 및 괴사(necrosis)와 같은 부작용들이 일어나게 할 수 있다. 그 외의 다른 부작용들은 혈전증(thrombosis), 혈소판응집(platelet aggregation), 피브린 응고(fibrin clot) 및 혈관수축(vasoconstriction)을 포함할 수 있다. 또한, 신장 신경(8)들을 겨냥하고 위치시킬 수 없으면, 수용가능한 테라피 치료를 구현하기에 충분하도록 교감 신장 신경 활동성이 중지될 수 있는 것이 어렵게 된다.
미국 특허번호 7,617,005호는 신장 동맥 내에 삽입되는 카테터에 연결된 무선주파수 이미터(Radio frequency emitter; RF emitter)를 사용하는 방법을 제안한다. 이 RF 이미터는 내막에 대해 위치되며 RF 에너지는 신장 신경들을 이미터에 바로 근접하게 배열되는 신장 신경들의 활동성을 감소시키는 온도까지 가열시키도록 방출된다(emitted). 신장 동맥을 둘러싸고 있는 모든 신장 신경들을 치료하기 위하여, RF 이미터 공급원(source)은 각각의 신장 동맥의 내부 주위에 여러 번 재배치되어야 한다(repositioned). 이 이미터는 몇몇 신장 신경들을 놓쳐서(miss) 불완전한 치료로 이어지게 될 수도 있다. 게다가, RF 에너지 공급원은 신장 신경들을 가열시킬 수 있도록 내막과 접촉하여야 하는데, 이에 따라 단일층 내피(endothelium) 및 내막에 대해 괴사시키거나 혹은 손상을 끼칠 수 있으며, 내막증식, 신장 동맥 협착증 및 신장 동맥 해체(dissection)를 일으킬 가능성도 있다.
또한, 상기 미국 특허번호 7,617,005호는 신장 신경들을 비활성화시키기 위해 고강도의 집속된 초음파(high-intensity focused ultrasound)를 사용하는 방법도 제안한다. 상기 기술된 고강도의 집속된 초음파 에너지 공급원은 신장 동맥의 축 주위에서 360° 패턴으로 초음파 에너지를 방출하며 내막(3)과 접촉할 필요가 없다. 하지만, 고강도의 집속된 초음파 공급원은 동맥을 둘러싸고 있는 얇은 초점링(focal ring) 내에 집중된 에너지(concentrated energy)를 제공한다. 상기 얇은 링을 신장 신경들과 나란하게 정렬하는(align) 것은 어렵거나 또는 불가능한데, 이는 현재 기술을 사용하여 신장 신경들을 겨냥하고(target) 시각화하는(visualize) 것이 어렵거나 또는 불가능하며 신장 신경들은 신장 동맥의 중앙축으로부터 서로 다른 반경방향 거리에 위치될 수 있기 때문이다. 후자인 신장 신경들이 신장 동맥의 중앙축으로부터 서로 다른 반경방향 거리에 위치되는 문제점은 형태 또는 두께에 있어서 큰 변동성을 지닌 신장 동맥을 가진 환자에게서는 악화된다. 더욱이, 얇은 초점링은 신장 동맥과 신장 신경들의 길이방향을 따라 각각의 신장 신경의 오직 작은 부분(segment)만을 둘러쌀 수 있다. 신경이 다시 성장하려 하기 때문에, 작은 치료 영역은 신경들이 상대적으로 짧은 시간 주기 동안 재연결될 수 있게 한다.
수십년 동안, 세포 재생(cell repair)을 향상시키고, 골세포(bone cell) 성장을 촉진시키며 특정 조직들에 약물을 전달하는 것을 향상시키고 신체 내의 조직을 가시화하기 위하여 초음파가 사용되어 왔다. 또한, 신체 내에서 조직과 종양을 제거하고 가열시키기 위해 고강도의 집속된 초음파가 사용되어 왔다. 조직 제거는 거의 고강도의 집속된 초음파에 의해서만 수행되어 왔는데, 이는 방출된 초음파 에너지가 특정 위치에 집중되어 초음파 에너지가 관통해야만 하는 삽입 구조물과 주변 조직에 영향을 끼치지 않고도 해당 조직을 정밀하게 괴사시킬 수 있게 하기 때문이다.
Diederich씨에게 허여된 미국 특허번호 6,117,101호는 심장으로 전기 신호들을 전도하는 것을 차단하기 위하여 폐정맥(pulmonary vein) 내에 흉터링(scar ring)을 생성하도록 조직을 제거하기 위해 고강도의 집속된 초음파 대신 고-조준 초음파 에너지(highly collimated ultrasound energy)를 사용하는 방법을 논의한다.
미국 특허공보번호 20100179424호(특허출원번호 12/684,067호)는 승모판막 폐쇄 부전증(mitral valve regurgitation)을 치료하기 위해 비집속 초음파(unfocused ultrasound)를 사용하며, 이 특허공보는 본 명세서에서 참조문헌으로 인용된다. '474 공보에서, 승모판고리(mitral annulus)와 결합된 콜라겐(collagen)을 수축하고 가열시키기 위해 비집속 초음파 에너지가 사용된다. 이 장치는 초음파 트랜스듀서를 정확한 위치 내에 배열하여 승모판고리를 겨냥하기 위하여 팽창형 풍선(inflatable balloon)을 사용한다. 상기 장치에서, 풍선의 일부분은 가열되어야 하는 조직과 접촉된다.
본 발명은 신장 신경들을 초점을 맞추거나(focusing) 혹은 겨냥하지 않고 신장 신경들의 실제 위치들을 결정하지 않고도 훌륭하게 수행될 수 있으며, 조직들의 온도를 측정하지 않고도 수행될 수 있고 신장 동맥의 협착, 내막증식, 또는 삽관술(intervention)을 필요로 할지도 모르는 그 외의 다른 상해들을 일으키지 않고도 치료를 수행할 수 있고, 비활성화된 부분들을 따라 전도를 다시 구현(re-establish)할 수 있는 신경 회복(nerve recovery) 가능성을 줄이기 위해 신장 신경들의 상대적으로 기다란 부분들을 비활성화시킬 수 있는 방법 및 장치를 제공한다.
본 발명의 한 형태는 인간 또는 인간이 아닌 포유류 대상체(mammalian subject) 내에서 신장 신경 전달(renal nerve conduction)을 비활성화하기 위한 장치를 제공한다. 본 발명에 따른 상기 형태에 따른 장치는 포유류 대상체의 신장 동맥 내에 삽입하도록 구성된 초음파 트랜스듀서를 포함하는 것이 바람직하다. 상기 초음파 트랜스듀서는 비집속 초음파 에너지를 전달하도록 배열되는 것이 바람직하다. 또한, 본 발명에 따른 상기 형태에 따른 장치는 트랜스듀서에 전기적으로 연결된 액츄에이터를 포함하는 것이 바람직하다. 상기 액츄에이터는 초음파 트랜스듀서가 비집속 초음파 에너지를 신장 동맥을 둘러싸고 있는 약 0.5 ㎤ 이상의 충격 용적(impact volume) 내로 전달하기 위해 조절하도록 구성되고, 상기 비집속 초음파 에너지는 상기 충격 용적의 전체에 걸쳐 신장 신경들의 전도를 비활성화시키기에 충분한 치료 수준(therapeutic level)에서 제공되는 것이 가장 바람직하다. 밑에서 추가로 논의될 것과 같이, 이러한 치료 수준은 조직 제거를 위해 필요한 수준 미만이다.
상기 장치는 근위 단부(proximal end)와 원위 단부(distal end)를 가진 카테터를 추가로 포함할 수 있으며, 상기 트랜스듀서는 원위 단부에 인접한 카테터에 장착되고, 상기 카테터와 트랜스듀서는 초음파 트랜스듀서가 신장 동맥 내에 위치되는 동안 혈류가 실질적으로 신장 동맥을 통과할 수 있도록 배열되고 구성된다. 상기 카테터는 상기 트랜스듀서가 신장 동맥의 벽과 접촉하지 못하는 상태로(out of contact) 유지되도록 배열되고 구성될 수 있다. 상기 카테터는 풍선, 와이어 바스켓(wire basket) 또는 원위단부에 인접하게 장착되는 것과 같은 팽창형 요소(expansible element)를 가질 수 있다. 예를 들어, 상기 트랜스듀서는 트랜스듀서의 축을 둘러싸고 있는 360° 원통형 패턴으로 초음파 에너지를 전달하도록 구성될 수 있으며, 상기 카테터는 트랜스듀서의 축이 신장 동맥의 축에 대해 일반적으로 평행한 상태로 유지되도록 배열되고 구성될 수 있다.
본 발명의 또 다른 한 형태는 포유류 대상체 내에서 신장 신경 전달을 비활성화하기 위한 방법들을 제공한다. 본 발명의 상기 형태에 따른 한 방법은 초음파 트랜스듀서를 포유류 대상체의 신장 동맥 내에 삽입하는 단계와 상기 트랜스듀서가 치료적으로 효율적이며 비집속 초음파 에너지를 신장 동맥을 둘러싸고 있는 약 0.5 ㎤ 이상의 충격 용적 내로 전달하도록 작동시키는 단계를 포함하는 것이 바람직하다. 초음파 에너지는 상기 치료적으로 효율적이며 비집속 초음파 에너지가 상기 충격 용적 내에서 모든 신장 신경들의 전도를 비활성화하도록 제공되는 것이 바람직하다. 예를 들어, 트랜스듀서를 작동시키는 단계는 충격 용적 내에 있는 신장 신경들을 포함하여 충격 용적 내에 있는 중실 구조의 조직(solid tissue)들을 42℃ 이상으로 가열하면서도 신장 동맥 벽의 온도를 65℃ 미만으로 유지시키도록 수행될 수 있다.
충격 용적이 상대적으로 크고 조직들이 충격 용적의 전체에 걸쳐 신장 신경 전달을 비활성화하기에 충분한 온도에 도달하는 것이 바람직하기 때문에, 본 발명의 상기 형태에 따른 바람직한 방법들은 신장 신경들을 초점을 맞추거나(focusing) 혹은 겨냥하지 않고 신장 신경들의 실제 위치들을 결정하지 않고도 훌륭하게 수행될 수 있다. 이 치료는 조직들의 온도를 측정하지 않고도 수행될 수 있다. 게다가, 상기 치료는 신장 동맥의 협착, 내막증식, 또는 삽관술(intervention)을 필요로 할지도 모르는 그 외의 다른 상해들을 일으키지 않고도 수행된다. 상기 바람직한 방법들과 장치는 비활성화된 부분들을 따라 전도를 다시 구현(re-establish)할 수 있는 신경 회복(nerve recovery) 가능성을 줄이기 위해 신장 신경들의 상대적으로 기다란 부분들을 비활성화시킬 수 있다.
본 발명의 추가적인 형태들은 위에서 논의된 장치와 방법에서 사용될 수 있는 프로브(probe) 및 위에서 논의된 방법들의 단계들을 수행하기 위한 수단과 일체형으로 구성된 장치를 제공한다.
본 발명은 신장 신경들을 초점을 맞추거나(focusing) 혹은 겨냥하지 않고 신장 신경들의 실제 위치들을 결정하지 않고도 훌륭하게 수행될 수 있으며, 조직들의 온도를 측정하지 않고도 수행될 수 있고 신장 동맥의 협착, 내막증식, 또는 삽관술(intervention)을 필요로 할지도 모르는 그 외의 다른 상해들을 일으키지 않고도 치료를 수행할 수 있고, 비활성화된 부분들을 따라 전도를 다시 구현(re-establish)할 수 있는 신경 회복(nerve recovery) 가능성을 줄이기 위해 신장 신경들의 상대적으로 기다란 부분들을 비활성화시킬 수 있는 방법 및 장치를 제공하는 발명의 효과를 갖는다.
도 1은 일반적인 신장 동맥 및 이와 관련된 구조를 보여주는 해부학적 도면이다.
도 2는 신장 신경들과 신장 동맥의 한 부분을 도식적으로 도시한 단면도이다.
도 3은 본 발명의 한 구체예에 따른 장치의 구성요소들을 도식적으로 도시한 도면이다.
도 4는 도 3에 도시된 장치의 한 부분의 단편을 도식적으로 도시한 투시도이다.
도 5는 신장 동맥과 연결된 도 3과 4의 장치의 한 부분을 도식적으로 도시한 도면이다.
도 6은 도 3과 4의 장치에 사용된 구성요소 부분들을 도식적으로 도시한 기능적인 블록 다이어그램이다.
도 7은 본 발명의 한 구체예에 따른 한 방법에 사용되는 단계들을 보여주는 플로 챠트이다.
도 8은 도 7의 방법에 따라 작동 동안에 도 3과 4의 장치의 부분들을 도식적으로 도시한 도면이다.
본 발명의 한 구체예에 따른 장치는 쉬쓰(12)를 포함한다(도 3). 이 쉬쓰(12)는 일반적으로 근위 단부(14), 원위 단부(16) 및 근위-원위축(15)을 가진 기다란 튜브 형태로 구성될 수 있다. 신체 내로 삽입하기 위하여 기다란 요소에 관해 본 명세서에서 사용되는 것과 같이, 용어 "원위(distal)"는 맨처음 신체 내로 삽입되는 단부 즉 요소가 신체 내로 전진하는 동안의 리딩 단부(leading end)를 가리키며, 용어 "근위(proximal)"는 상기 단부의 맞은편에 있는 단부를 가리킨다. 쉬쓰(12)는 조종가능한 쉬쓰(steerable sheath)일 수 있다. 따라서, 이 쉬쓰는 조종 컨트롤장치를 작동시켜 운영자에 의해 쉬쓰의 원위 단부(16)를 축(15)에 대해 횡단 방향으로 굽어지도록 배열된 조종 컨트롤장치(17)에 연결되고 쉬쓰의 근위 단부와 원위 단부 사이에서 연장되는 하나 또는 그 이상의 당김 와이어(도시되지 않음)와 같은 공지된 요소들을 포함할 수 있다.
또한, 본 발명의 장치는 근위 단부(20), 원위 단부(22) 및 도 3에 도시된 상태에서 쉬쓰의 근위-원위축(15)과 일치하는 근위-원위축을 가진 카테터(18)를 포함한다. 카테터의 근위 단부(20)는 토크를 전달할 수 있도록 상대적으로 강성을 지니는 것이 바람직하다. 따라서, 카테터(18)의 근위 단부(20)를 회전함으로써, 카테터(18)의 원위 단부(22)는 카테터(18)의 근위-원위축 주위로 회전될 수 있다.
카테터(18)의 원위 단부(22)는 카테터의 원위 단부가 쉬쓰(12)의 외부에 있을 때 원위 단부가 도 3의 22'에서 점선으로 표시된 것과 같은 후크 형상을 가지도록 사전형성된다(preformed). 이 상태에서, 원위 단부(22')가 회전 운동되어 굽어진 부분이 근위-원위축 주위로 스윙운동할 것이다. 따라서, 카테터(18)의 근위 단부를 회전시킴으로써, 카테터(18)의 원위 단부(22')는 임의의 반경 방향으로 위치될 수 있다.
카테터(18)는 원위 단부(22)에 장착된 풍선(24)을 가진다. 팽창된 상태에서(도 4), 풍선(24)은 풍선의 한 부분(82)의 직경이 신장 동맥보다 더 작은 부분적으로 비-원형 프로파일을 가지며, 풍선(24)의 또 다른 부분(80)은 비원형 형태를 가진다. 상기 비원형 부분은 신장 동맥의 내측 직경과 똑같거나 혹은 이 내측 직경보다 약간 더 작은 주 직경(DMAJ)을 가지며 상기 주 직경보다 더 작은 부 직경(DMIN)을 가진다.
초음파 트랜스듀서(30)(도 3 및 5)가 풍선(24) 내에 있는 카테터(18)의 원위 단부(22)에 인접하게 장착된다. 세라믹 압전 재료로 형성되는 것이 바람직한 트랜스듀서(30)는 튜브 형태로 구성되며 트랜스듀서(30)의 근위-원위축(33) 주위에서 원통형의 회전 표면 형태의 외부 방출 표면(31)을 가진다. 트랜스듀서(30)는 보통 약 2-10mm, 바람직하게는 6mm의 축(31)을 따라 축방향 길이를 가진다. 트랜스듀서(30)의 외측 직경은 약 1.5-3mm, 바람직하게는 2mm이다. 트랜스듀서의 물리적 구조와 카테터에 장착된 트랜스듀서의 장착상태는 예를 들어 미국 특허번호 7,540,846호 및 6,763,722호에 기술된 것과 같으며, 이 특허들은 본 명세서에서 참조 문헌으로서 인용된다. 또한, 트랜스듀서(30)는 트랜스듀서의 내측 표면과 외측 표면 상에 전도성 코팅(도시되지 않음)을 가진다. 따라서, 트랜스듀서는 금속성 지지 튜브(84)(도 5) 상에 물리적으로 장착될 수 있으며, 이 금속성 지지 튜브는 카테터에 장착된다. 상기 코팅은 지면 및 신호 와이어(32)에 전기적으로 연결된다. 상기 와이어(32)는 내강(34)을 통해 트랜스듀서(30)로부터 연장된다. 상기 내강(34)은 카테터(18)의 원위 단부와 근위 단부 사이에서 연장되며, 와이어(32)는 트랜스듀서(30)로부터 내강(34)을 통해 카테터(18)의 근위 단부(14)로 연장된다.
트랜스듀서(30)는 트랜스듀서에서 발생된 초음파 에너지가 주로 외측 방출 표면으로부터 방출되도록 배열된다. 따라서, 상기 트랜스듀서는 초음파 에너지를 반사시켜(reflect) 트랜스듀서의 내부를 향해 안내되도록 배열된 특징부(feature)들을 포함할 수 있으며 상기 반사된 에너지는 외측 표면에서 초음파 진동을 강화시킨다(reinforce). 예를 들어, 지지 튜브(84)와 트랜스듀서(30)는 트랜스듀서(30)의 내측 표면이 금속으로 형성된 지지 튜브의 외측 표면으로부터 틈(도시되지 않음)만큼 거리가 떨어져 있도록 형성될 수 있다. 트랜스듀서(30)의 효율적인 작동을 촉진하기 위해, 지지 튜브의 외측 표면과 트랜스듀서의 내측 표면 사이에서 상기 틈을 가로지르는 거리는 트랜스듀서에 의해 방출된 초음파 에너지의 파장의 1/2일 수 있다. 이 구체예에서, 트랜스듀서(30)에 의해 발생된 초음파 에너지는 트랜스듀서(30)로부터 전파되는 초음파 에너지를 강화하기 위해 물 틈(water gap)에서 반사되며, 이에 따라 초음파 에너지는 트랜스듀서(30)의 외측 표면으로부터 외부 방향으로 안내된다.
또한, 트랜스듀서(30)는 외측 표면(31) 상에 충돌하는 초음파를 와이어(32)에 가해지는 전기 신호로 변환하도록 배열된다. 달리 말하면, 트랜스듀서(30)는 초음파 이미터(ultrasonic emitter) 또는 초음파 리시버(ultrasonic receiver) 중 하나로서 작동할 수 있다.
트랜스듀서(30)는 예를 들어 약 1 MHz 내지 약 수십 MHz, 보통은 약 9 MHz의 주파수에서 작동하도록 설계된다. 트랜스듀서(30)의 실제 주파수는 통상 제작 공차(manufacturing tolerance)에 따라 다소 변경된다. 트랜스듀서의 최적 작동 주파수(actuation frequency)는 디지털 메모리, 바코드 또는 카테터에 고정된 것과 같이 기계-판독 요소 또는 육안-판독 요소(도시되지 않음)로 인코딩될 수 있다. 대안으로, 판독 요소(readable element)는 일련번호 또는 개별 카테터를 식별하는 그 외의 다른 정보를 인코딩할 수 있으며, 이에 따라 인터넷과 같은 통신 링크를 통해 접근할 수 있는 중앙 데이터베이스로부터 최적 작동 주파수가 검색될 수 있다(retrieved).
본 명세서에서 액츄에이터(actuator)로 지칭되는 초음파 시스템(20)이 플러그 커넥터(88)(도 3)를 통해 트랜스듀서(30)와 카테터(18)에 탈착 가능하게 연결된다(releasably connected). 도 6에서 볼 수 있듯이, 초음파 시스템(20)은 유저 인터페이스(40), 프로그래밍 가능한 마이크로프로세서(도시되지 않음)와 같은 프로그래밍 컨트롤 장치와 일체형으로 구성된 컨트롤 보드(42), 초음파 여기원(44), 및 순환 장치(48)를 포함할 수 있다. 유저 인터페이스(40)는 컨트롤 보드(42)와 상호작용 하며, 상기 컨트롤 보드(42)는 여기원(44)과 상호작용하여 트랜스듀서의 최적 작동 주파수에서 전기 신호들을 와이어(32)를 통해 트랜스듀서(30)로 전달하게 한다. 컨트롤 보드(42)와 초음파 여기원(44)은 트랜스듀서(30)에 의해 방출된 초음파 신호의 지속시간과 전력 수준(power level)을 컨트롤하기 위해 전기 신호들의 시간과 진폭(amplitude)을 조절하도록 배열된다. 또한 여기원(44)은 와이어(32) 상에 나타나고 트랜스듀서(30)에 의해 발생된 전기 신호들을 탐지하고 이러한 신호들을 컨트롤 보드(42)로 통신하도록 배열된다.
순환 장치(48)는 카테터(18) 내의 내강(도시되지 않음)들에 연결되며 카테터(18)는 풍선(24)에 연결된다. 상기 순환 장치는 카테터(18)를 통해 액체, 바람직하게는 수용액을 풍선(24) 내에 있는 트랜스듀서(30)로 순환시키도록 배열된다. 순환 장치(48)는 순환 냉각제(35)를 수용하기 위한 탱크, 펌프(37), 냉각 코일(도시되지 않음), 또는 액체를 조절 온도에서 바람직하게는 체온에서 혹은 체온보다 낮은 온도에서 풍선(24)의 내부 공간으로 공급하기 위한 것과 같은 요소들을 포함할 수 있다. 컨트롤 보드(42)는 풍선 내로 유입되고 풍선으로부터 나오는 유체 흐름을 조절하기 위하여 순환 장치(48)와 인터페이싱 된다(interface). 예를 들어, 컨트롤 보드(42)는 펌프(37)의 작동 속도를 조절하기 위해 펌프와 결합된 구동 모터에 링크연결된 모터 컨트롤 장치들을 포함할 수 있다. 이러한 모터 컨트롤 장치들은 예를 들어 펌프(37)가 페리스태틱 펌프(peristaltic pump)와 같은 용적형 펌프(positive displacement pump)인 경우에 사용될 수 있다. 대안으로 혹은 추가로, 컨트롤 회로는 유체 흐름에 대한 회로의 저항을 변경하기 위하여 유체 회로 내에 연결된 컨트롤 밸브와 같은 구조물들을 포함할 수 있다(도시되지 않음). 초음파 시스템(20)은 카테터(18)를 통해 흐르는 액체 흐름을 모니터링 하기 위하여 2개의 압력 센서(38)를 추가로 포함할 수 있다. 한 압력 센서는 차단(blockage)되는 지를 결정하기 위해 카테터(18)의 원위 단부로 흐르는 액체 흐름을 모니터링하고, 다른 압력 센서는 카테터(18) 내에서 누수(leak)가 있는 지를 모니터링한다. 풍선이 팽창 상태에 있을 때, 압력 센서(38)들은 풍선 내에서 원하는 압력 바람직하게는 약 3 psi (20 KPa)의 압력을 유지한다.
초음파 시스템(20)은 카테터(18) 상의 기계-판독 요소를 판독하고 정보를 이러한 요소로부터 컨트롤 보드(46)로 전달하기 위해 판독기(46)를 일체로 구성한다(incorporate). 위에서 논의된 것과 같이, 카테터 상의 기계-판독 요소는 특히 카테터(18) 내에서 트랜스듀서(30)의 작동 주파수와 같은 정보를 포함할 수 있으며 컨트롤 보드(42)는 트랜스듀서를 여기시키기 위해 적절한 주파수를 설정하도록 이러한 정보를 사용할 수 있다. 대안으로, 컨트롤 보드는 트랜스듀서를 낮은 전력 수준에서 활성화함으로써(energizing) 트랜스듀서 작동 주파수를 측정하기 위해 여기원(44)을 작동시키도록 배열될 수 있으며 예를 들어 8.5Mhz-9.5Mhz의 미리 결정된 주파수 범위에 걸쳐 여기된 주파수를 스캐닝하면서 이러한 여기상태에 대한 트랜스듀서의 반응을 모니터링 하도록 배열될 수 있다.
초음파 시스템(20)은 2009년 10월 29일에 출원되고 발명의 명칭이 "METHOD AND APPARATUS FOR PERCUTANEOUS TREATMENT OF MITRAL VALVE REGURGITATION (PMVR)"인 미국 가특허출원번호 61/256,002호에 개시되어 있는 시스템과 비슷할 수 있으며, 상기 미국 특허출원은 본 명세서에서 참조문헌으로서 인용된다.
본 발명의 한 구체예에 따른 한 방법이 도 7에서 플로챠트 형태로 도시되어 있다. 환자와 같이 인간 혹은 인간이 아닌 포유류 대상체를 준비하고(단계 50), 대퇴동맥 상의 한 위치와 같은 동맥 접근 부위를 준비하여(단계 52), 카테터(18)를 초음파 시스템(20)에 연결한 후에(단계 54), 상기 접근 부위를 통해 대동맥 내로 쉬쓰(12)의 원위 단부를 삽입함으로써 초음파 트랜스듀서(30)가 신장 동맥 내로 삽입된다(단계 56). 쉬쓰의 원위 단부가 대동맥 내에 위치되는 동안, 카테터(18)는 카테터의 원위 단부가 도 8에 도식적으로 도시된 것과 같이 쉬쓰로부터 돌출할 때까지 쉬쓰 내에서 전진된다(advanced). 카테터(18)의 원위 단부(22)가 후크(hook)와 같이 사전형성되기 때문에, 카테터(18)의 원위 단부(22)는 말단부(tip)가 신장 동맥(10)의 가지(branch)들을 향해 대동맥 내부로 회전되고 앞으로 약간 밀리고 뒤로 당겨질 때 신장 동맥(10) 내로 미끄러질 수 있다. 이러한 작동은 통상적인 신장 동맥/대동맥 분기(bifurcation) 각도에 의해 용이하게 된다(facilitated). 원위 단부(22)의 후크 형태에 따라, 카테터(18)의 원위 단부(22)는 대동맥 내에서 뒤로 당겨질 때 신장 동맥(10)에서 곁가지(side branch)를 캐치하려(catch) 할 수 있다. 카테터 상의 풍선(24)은 카테터의 원위 단부가 신장 동맥 내의 원하는 위치에 배열될 때까지 수축 상태에서 유지된다. 카테터(18)와 트랜스듀서(30)를 삽입하는 동안(단계 56), 신장(6) 또는 신장 동맥(10)의 임의의 가지들 앞에도 위치될 수 있지만 의사는 트랜스듀서(30)가 신장 동맥(10) 내에 위치될 수 있도록 배열상태를 검증할 수 있다. 이러한 검증단계는 형광투시법(fluoroscopy)과 같은 엑스레이 기술을 사용하여 수행될 수 있다.
카테터의 원위 단부가 신장 동맥 내의 한 위치에 배치되고 나면, 도 4와 5에 도시된 것과 같이 펌프(37)가 작동하여 풍선(24)이 팽창 상태가 된다. 이 상태에서, 풍선의 비-원형 부분(80)은 동맥벽과 결합되고(engage), 트랜스듀서(30)가 신장 동맥 내에서 중앙에 위치되며(center), 트랜스듀서의 축(33)과 신장 동맥의 축(A)과 거의 동축으로 배열된다(도 5). 하지만, 풍선은 신장 동맥을 통해 흐르는 혈액을 차단하지 않는다. 이 상태에서, 순환 장치(480는 트랜스듀서(30)를 냉각시키기 위하여 풍선(24) 내로 유입되고 풍선(24)으로부터 흘러나오는 냉각된 수용액의 흐름을 유지한다. 상기 냉각된 풍선은 신장 동맥의 내측 표면을 냉각하려는 경향이 있다. 더구나, 신장 동맥을 통해 흐르는 혈액의 지속적인 흐름은 신장 동맥의 내측 표면을 냉각시키는 데 도움을 준다. 풍선 내에서 흐르는 액체는 풍선을 시각화(visualization)하고 풍선이 적절하게 배열되었는 지를 검증하는 데 보조하기 위해 방사선 조영제(radiographic contrast agent)를 포함할 수 있다.
그 다음 단계(58)에서, 초음파 시스템(20)은 신장 동맥(10)의 크기를 측정하기 위해 트랜스듀서(30)를 사용한다. 컨트롤 보드(42)와 초음파 여기원(44)이 트랜 스듀서(30)를 작동시켜 저전력의 초음파 펄스로 신장 동맥(10)을 "핑(ping)" 시킨다. 이 펄스에서 초음파는 반사파(echo)와 같이 동맥벽에 의해 트랜스듀서(30) 상에 반사된다. 트랜스듀서(30)는 이 반사파들을 와이어(32) 상에서 반사파 신호(echo signal)들로 변환시킨다. 그 뒤, 초음파 시스템(20)은 이 반사파 신호들을 분석하여 신장 동맥(10)의 크기를 결정한다. 예를 들어, 초음파 시스템(20)은 반사파 신호들의 리턴(return)과 "핑"을 생성하기 위한 트랜스듀서의 작동 사이의 시간 지연(time delay)을 결정할 수 있다. 단계(60)에서, 초음파 시스템(20)은 추후 단계들에서 치료 용도의 초음파 에너지를 제공하는 동안 음향력(acoustic power)이 트랜스듀서(30)에 의해 전달될 수 있도록 설정하기 위해 상기 측정된 동맥 크기를 사용한다. 예를 들어, 컨트롤 보드(42)는 특정 전력 수준으로 특정 반사파 지연(및 동맥 직경)에 관한 참조표를 사용할 수 있다. 일반적으로, 동맥 직경이 커지면 커질수록 더 큰 전력이 사용되어야 한다. 신장 동맥(10)의 형태가 변경되거나 혹은 트랜스듀서(30)가 중앙에 위치되는 것이 변경되면, 반사파 신호들에서 일정 범위의 시간 지연이 일어나게 될 수 있다. 초음파 시스템(20)은 신장 동맥(10)의 평균 크기를 결정하기 위해 범위 평균을 낼 수 있으며 이 평균 크기에 따른 전력 수준으로 조절할 수 있다.
그 뒤, 의사는 유저 인터페이스(40)를 통해 치료를 개시한다(단계 60). 치료 동안(단계 64), 초음파 시스템 또는 액츄에이터(20), 및 특히 컨트롤 보드(42)와 초음파 여기원(44)은 트랜스듀서(30)를 작동시켜 치료적으로 효율적인 초음파를 충격 용적(impact volume)(11)으로 전달한다(도 5). 트랜스듀서(30)에 의해 전달된 초음파 에너지는 일반적으로 반경 방향으로 외부를 향하도록 전파되고 트랜스듀서(30)로부터 멀어지도록 전파되어 신장 동맥의 축(A)과 트랜스듀서(30)의 근위-원위축(33) 주위에서 360°의 호(arc) 또는 완전한 원을 형성한다(encompassing).
초음파 트랜스듀서(30)의 선택된 작동 주파수, 포커싱되지 않은 특징(unfocused characteristic), 배열상태(placement), 크기 및 형태로 인해, 전체 신장 동맥(10)과 신장 신경들이 트랜스듀서(30)의 근방 영역(near field)에 배열될 수 있게 된다. 상기 영역 내에서, 트랜스듀서(30)에 의해 발생된, 외부 방향으로 발산되며 포커싱되지 않은 전체-방향(360°)의 초음파의 원통형 빔(beam)은 조준된(collimated) 상태로 유지하고 트랜스듀서(30)의 축방향 길이와 거의 똑 같은 축방향 길이를 가지려 한다. 원통형 트랜스듀서에 대해, 근방 영역의 반경방향 너비(radial extent)는 L2/λ으로 정의되는데, 여기서 L은 트랜스듀서(30)의 축방향 길이이며 λ는 초음파의 파장이다. 트랜스듀서(30) 표면으로부터 L2/λ보다 큰 거리에서, 빔은 축방향으로 실질적인 정도(extent)까지 발산되기 시작한다. 하지만, L2/λ보다 적은 거리에 대해서는, 빔은 축방향으로 어떠한 실질적인 정도까지 발산되지 않는다. 따라서, 근방 영역 내에서, L2/λ보다 적은 거리에서, 초음파 에너지의 강도는 포커싱되지 않은 빔이 반경 방향으로 발산될 때 트랜스듀서(30) 표면으로부터 거리에 비례하여 선형적으로 감소된다. 본 명세서에서 사용되는 것과 같이, 용어 "포커싱되지 않은(unfocused)"은 트랜스듀서(30)로부터 멀어지는 빔의 전파 방향에서 강도가 증가하지 않는 빔을 가리킨다.
충격 용적(11)은 일반적으로 신장 동맥과 동축 구성되고 원통형으로 형성된다. 충격 용적은 트랜스듀서 표면으로부터 충돌 반경(39)으로 연장되며, 여기서 초음파 에너지의 강도는 너무 작아서 신장 신경(8)이 비활성화(inactivation)되게 하는 온도 범위로 조직을 가열할 수 없다. 상기 충돌 반경(39)은 트랜스듀서(30)로부터 전달된 초음파 에너지의 투여량(dosage)에 의해 결정된다. 여기서, 충격 용적(11)의 부피(V)는 다음의 식에 의해 결정된다.
V = π r2 2h - π r1 2h
여기서,
r1 = 트랜스듀서(30)의 반경
r2 = 충격 용적(11)의 반경
h = 트랜스듀서(30)의 길이이다.
위에서 기술된 것과 같이, 트랜스듀서(30)의 길이는 2mm 내지 10mm 사이에서 변경될 수 있는데, 신장 신경의 넓은 비활성화 영역(inactivation zone)을 제공하기 위해 6mm가 바람직하다. 트랜스듀서(30)의 직경은 1.5mm 내지 3.0mm 사이에서 가변될 수 있으며 2.0mm가 바람직하다. 투여량은 치료 효과를 위해 선택될 뿐만 아니라 신장 동맥(10) 및 이와 인접한 신장 신경들을 둘러싸기 위하여 충격 용적(11)의 반경(39)이 바람직하게는 5mm 내지 7mm 사이가 될 수 있도록 선택되며, 신장 동맥(10)을 초과하여 구조물로 손상된 초음파 에너지를 전달하지 않고도 신장 동맥(10) 및 이와 인접한 신장 신경들은 모두 3-4mm의 평균 반경 내에 배열된다. 이에 따라, 충격 용적(11)이 0.5㎤ 이상이 될 것이며, 비활성화되는 신장 신경의 길이는 트랜스듀서(32)의 길이에 가깝게 상응한다.
전력 수준은 충격 용적의 전체에 걸쳐 중실 구조의 조직(solid tissue)들이 수 초 또는 그 이상 동안 약 42℃ 또는 그 이상의 온도로 가열되도록 선택되는 것이 바람직하지만 신장 동맥의 내막(intima)을 포함하는 중실 구조의 조직들이 모두 65℃보다 훨씬 낮은 온도에 유지되는 것이 바람직하다. 따라서, 충격 용적의 전체에 걸쳐, 중실 구조의 조직(모든 신장 신경들을 포함)들은 신경 전달을 비활성화하기에 충분하지만 조직들이 급격하게 괴사하게(necrosis) 하는 온도 미만의 온도가 된다.
연구조사에 따르면, 신경 손상은 훨씬 낮은 온도에서 발생하며 조직 괴사보다 훨씬 급격하게 발생한다고 밝혀졌다. 본 명세서에서 참조문헌으로서 인용되는, Bunch, Jared. T. 씨 등의 "Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at the Pulmonary Vein Orifice", Journal of Cardiovascular Electrophysiology, Volume 16, Issue 12, pg . 1318-1325 (Dec. 8, 2005)을 참조하라. 조직의 괴사는 통상 65℃ 또는 그 이상의 온도에서 약 10초 또는 이보다 더 긴 시간 동안 발생하고 신장 신경(8)의 비활성화는 통상 신장 신경(8)들이 42℃ 또는 그 이상의 온도에서 수 초 또는 그 이상의 시간 동안에 있을 때 발생하기 때문에, 초음파 에너지의 투여량은 충격 용적(11) 내의 온도를 수 초 또는 그 이상의 시간 동안 상기 온도들 사이에 유지하도록 선택된다. 초음파 에너지의 투여량은 충격 용적 내의 콜라겐(collagen)이 실질적으로 수축하게 하는데 필요한 것보다 더 적은 것이 바람직하다. 따라서, 트랜스듀서가 작동하면 일 치료 투여량을 제공하여 협착(stenosis), 내막증식(intimal hyperplasia), 내막괴사(intimal necrosis), 또는 삽관(intervention)이 필요할 수도 있는 그 외의 다른 상해와 같이 신장 동맥(10)에 손상을 끼치지 않고도 신장 신경(8)들을 비활성화시킨다. 신장 동맥(10)의 내측벽을 가로지르는 혈액의 지속적인 흐름은 신장 동맥의 내막층(3)이 냉각되게 할 수 있다(도 2). 이에 따라 치료 투여량에서 전달된 초음파 에너지가 분산되게 할 수 있으며 기본적으로는 신장 동맥(10)의 외부층들에서 가열되게 변환될 수 있게 하지만 내막층(3)에서는 가열되지 않는다. 또한, 트랜스듀서(30)를 수용하는 풍선(24)을 통해 냉각된 액체가 순환되면, 트랜스듀서(30)로부터 내막층(3)으로 전달되고 트랜스듀서를 지나 흐르는 혈액으로 전달되는 열이 감소되는 데 도움이 될 수 있다. 따라서, 상기 전달된 치료적이며 비집속 초음파 에너지는 내막을 손상시키지 않으며 혈전이 형성되는 것을 야기시키지 않아서 더 안전하게 치료한다.
초음파 에너지의 치료 투여량을 발생시키기 위하여, 트랜스듀서(30)의 음향력 산출량(acoustic power output)은 통상 약 10와트 내지 약 100와트, 보다 일반적으로는 약 20와트 내지 약 30와트이다. 전력 제공 지속시간은 통상적으로 약 2초 내지 약 1분 또는 그 이상, 보다 일반적으로는 약 10초 내지 약 20초이다. 원하는 온도 수준을 구현하기 위해 특정 시스템으로 사용된 최적 투여량은 수학적 모델링 또는 동물 실험에 의해 결정될 수 있다.
비집속 초음파 에너지의 충격 용적(11)은 외막(adventitia) 및 이와 가까이 둘러싸고 있는 조직들을 포함하여 전체 신장 동맥(10)을 포함하며, 따라서 신장 동맥을 둘러싸고 있는 모든 신장 신경들을 포함한다. 따라서, 실험체 내에서 신장 동맥(10)을 둘러싸고 있는 모든 신장 신경(8)들의 전도를 비활성화하기 위하여 트랜스듀서(30)의 신장 동맥(10) 내에 배치하는 것은 임의적일 수 있다(indiscriminate). 본 명세서에서 사용되는 것과 같이 "임의적(indiscriminate)"및 "임의적으로(indiscriminately)"는 임의의 특정 신장 신경들을 겨냥하거나, 위치시키거나 혹은 초점을 두지 않는 것을 의미한다.
선택적으로, 의사는 신장 동맥을 따라 트랜스듀서(30)와 카테터(18)를 재배치시킬 수 있으며(단계 66) 치료를 재개시하여(단계 68) 치료적으로 효율적이며 비집속 초음파 에너지를 재전송할 수 있다(단계 70). 이에 따라, 신장 동맥의 길이를 따라 추가적인 위치에서 신장 신경들을 비활성화시켜 보다 더 안전하고 보다 안정적으로 치료된다. 상기 재배치 단계와 재전송 단계는 선택적으로 여러 번 수행될 수 있다. 그 뒤, 의사는 트랜스듀서(30)와 함께 카테터(18)를 다른 신장 동맥(10)으로 이동시켜 상기 신장 동맥(10)을 위해 다시 전체 치료를 수행한다(단계 72). 치료를 끝낸 후에, 카테터(18)는 실험체의 신체로부터 빼내진다(단계 74).
위에서 논의된 특징들을 다양하게 변형하고 조합한 구체예들이 사용될 수 있다. 예를 들어, 초음파 시스템(20)은 치료용 초음파 에너지를 제공하는 동안 펄스 기능(pulsed funcrtion)에서 초음파 에너지를 전달하기 위해 트랜스듀서(30)를 조절할 수 있다. 상기 펄스 기능은 초음파 트랜스듀서(30)가 예컨대 50%의 의무 사이클(duty cycle)에서 초음파 에너지를 방출하게 한다. 초음파 에너지의 펄스 변조(pulse modulation)는 치료 시간을 증가시키면서도 조직 온도를 제한하는데 도움이 된다.
또 다른 변형예에서, 신장 동맥의 크기를 측정하는 단계와 투여량을 조절하는 단계(단계 58 및 단계 72)는 생략될 수 있다. 이 경우, 트랜스듀서는 단지 평균적인 실험체의 신장 동맥들을 위해 충분한 미리설정된 전력 수준에서 작동된다. 또 다른 변형예에서, 신장 동맥의 직경은 트랜스듀서(30)를 작동시키는 것 이외의 기술들, 가령, 예를 들어, 신장 동맥 내에 삽입된 조영제를 사용하는 방사선 영상법 또는 자기 공명 영상법 또는 개별 초음파 측정 카테터를 사용하여 측정될 수 있다. 이 경우, 개별 측정으로부터 나온 데이터는 투여량을 설정하도록 사용될 수 있다.
위에서 논의된 특정 구체예에서, 트랜스듀서(30)는 팽창형 풍선(24) 비-원형 요소(80)에 의해 신장 동맥 내에서 중앙에 위치된다(entered). 그 외의 다른 중앙 배열법(centering arrangement)도 사용될 수 있다. 예를 들어, 트랜스듀서를 포함하는 팽창형 풍선이 신장 동맥(10)의 직경보다 약간 더 작은 원형 횡단면을 가진 풍선일 수 있다. 이러한 풍선으로 인해 혈액은 신장 동맥(10)을 통해 지속적으로 흐를 수 있지만 트랜스듀서(30)가 신장 동맥(10) 내에서 대략적으로 중앙에 위치된 상태로 유지되게 할 수 있다. 상기 구체예에서, 풍선(24)은 풍선(24) 주위에서의 혈액 흐름이 앞뒤로 약간씩 움직이게 하기 때문에 신장 동맥(10)에 꼭 맞게 끼워지게 되는(fitted) 대신 활동적이다(dynamic). 이러한 활동적인 성질은 혈액이 신장 동맥(10)의 모든 부분들에 지속적으로 도달하게 할 수 있으며 냉각시켜 내막(3)에 끼치는 손상을 최소화할 수 있게 한다. 그 외의 다른 구체예들에서, 카테터의 원위 단부는 와이어 바스켓(wire basket) 또는 와이어 메시 구조물(wire mesh structure)과 같이 풍선 이외의 팽창형 구조물들을 포함할 수 있으며, 선택적으로, 이러한 구조물들은 가령 축방향으로 상기 구조물을 압축하는 것과 같이 반경 방향으로 팽창된 상태가 될 수 있다. 상기 와이어 바스켓은 초음파에 대해 반사되지 않을 수 있거나, 혹은 트랜스듀서(30)로부터 축방향으로 오프셋된 한 위치에서 카테터 상에 장착될 수 있다.
또 다른 한 변형예에서, 풍선(24)은 다공성 막(porous membrane)으로 형성될 수 있거나 혹은 홀(hole)들을 포함할 수 있으며, 풍선(24) 내에서 순환되는 냉각된 액체가 풍선(24)으로부터 빠져나오거나 또는 배출되어 신장 동맥(10) 내의 혈류로 유입될 수 있다. 풍선(24)으로부터 빠져나오거나 또는 배출되어 혈류로 유입되는 냉각된 액체는 흐르는 혈액과 접촉하는 신장 동맥(10)의 내부 라이닝(inner lining)을 추가로 냉각시키는데 보조할 수 있다.
통상적으로, 카테터(18)는 일회용의 단일 사용 장치이다. 카테터(18) 또는 초음파 시스템(20)은 한번 사용한 후에 카테터(18)를 다시 사용하는 것을 방지하는 안전 장치를 포함할 수 있다. 이러한 안전 장치들은 종래 기술에 공지되어 있다.
또 다른 변형예에서, 카테터(18) 자체는 의사가 카테터의 원위 단부(22)를 직접 조종할 수 있게 하는 조종 메커니즘(steering mechanism)을 포함할 수 있다. 쉬쓰는 제거될 수도 있다.
또 다른 변형예는 초음파 트랜스듀서(30)를 포함하는 카테터(18)의 원위 단부에 에너지 방출 유닛(energy emitter unit)이 있는 구체예일 수 있는데, 신정맥(renal vein) 내에 위치될 수 있으며, 초음파 트랜스듀서(30)는 신장 동맥(10)을 향해 신정맥에서 트랜스듀서(30)로부터 선택적으로 안내되는 것이 바람직한 초음파 에너지를 제공하기 위하여 오직 제한된 범위의 반경 방향들에 걸쳐 트랜스듀서(30)로부터 초음파 에너지를 선택적으로 안내하기 위한 반사 또는 차단 구조물들을 포함할 수 있다. 정맥 접근술(venous approach)이 사용될 때, 초음파 에너지는 통상 측면 발사(side firing) 트랜스듀서(30) 배열장치로 알려져 있는 트랜스듀서(30)의 외측 표면으로부터 멀어지도록 전파되는 빔 또는 한 부분(segment) 내로 안내된다. 예를 들어, 초음파 트랜스듀서(30)는 2009년 10월 29일에 출원되고 발명의 명칭이 "METHOD AND APPARATUS FOR PERCUTANEOUS TREATMENT OF MITRAL VALVE REGURGITATION (PMVR)"인 미국 가특허출원번호 61/256,002호에 기술된 것과 유사하게, 상기 안내된 초음파 에너지(5)를 방출하도록 작동될 수 있으며 그러한 구성을 가질 수 있는데, 상기 미국 가특허출원은 본 명세서에서 참조문헌으로 인용된다. 이 변형예에서, 카테터(18)가 신체 내로 삽입되고 그 후에 신장(6)에 가깝게 위치되는 경로(route)는 위에서 논의된 심방 접근술(atrial approach)과 다르다(varied). 카테터(18)를 빼내고 난 뒤, 봉합 문제가 줄어들 수도 있는 이점을 이용하기 위해 정맥 접근술이 시술될 수도 있다.
본 발명이 본 명세서에서는 특정 구체예들을 참조하여 기술되었지만, 상기 구체예들은 단지 본 발명의 원리와 적용분야를 예시한 것이라는 점을 이해해야 한다. 따라서, 예시된 구체예들에 대한 다양한 개선에들이 가능하며 첨부된 청구항들에 의해 정의된 것과 같이 본 발명의 범위와 사상을 벗어나지 않고 그 외의 다른 장치들도 고안될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 포유류 대상체 내에서 신장 신경 전달(renal nerve conduction)을 비활성화하기 위한 장치로서,
    원위 단부에 장착된 팽창형 풍선을 포함하는 카테터;
    상기 카테터의 원위 단부에 있는 팽창형 풍선 내에 둘러싸여 있으며, 포유류 대상체의 신장 동맥 내로 삽입되고 트랜스듀서의 축을 둘러싸고 있는 360° 원통형 패턴으로 포커싱되지 않은 초음파 에너지를 전달하는, 초음파 트랜스듀서; 및
    상기 초음파 트랜스듀서에 전기적으로 접속되어, 상기 신장 동맥을 포함하는 적어도 0.5㎤의 충격 용적 내에, 상기 신장 동맥의 내막(intima)을 손상시키는 일 없이, 상기 충격 용적 전체의 신장 신경 전달을 불활성화시키기 위한 치료 수준의 포커싱되지 않은 초음파 에너지를 전달하도록, 상기 초음파 트랜스듀서를 제어하는, 액츄에이터;
    를 포함하는, 신장 신경 전달을 비활성화하기 위한 장치.

  2. 제1항에 있어서, 상기 카테터는, 상기 트랜스듀서의 축이 신장 동맥의 축에 대해 평행하도록 상기 트랜스듀서가 신장 동맥의 벽과 접촉하지 못하는 상태로(out of contact) 유지되도록 배열되고 구성된, 신장 신경 전달을 비활성화하기 위한 장치.
  3. 제1항에 있어서, 상기 카테터는, 상기 초음파 트랜스듀서에 근접한, 중앙에 위치시키는 요소를 포함하며, 상기 중앙에 위치시키는 요소는 상기 초음파 트랜스듀서가 상기 신장 동맥 내에서 중앙에 위치된 상태로 유지하도록 배열되는, 신장 신경 전달을 비활성화하기 위한 장치.
  4. 제1항에 있어서, 상기 카테터 및 상기 초음파 트랜스듀서는, 상기 초음파 트랜스듀서가 상기 신장 동맥 내에 배치되었을 때, 상기 신장 동맥 내를 충분한 양의 혈액이 흐르도록 구성 및 배치되는 신장 신경 전달을 비활성화하기 위한 장치.
  5. 제1항에 있어서, 상기 초음파 트랜스듀서는, 길이가 2 mm 내지 10mm 인, 신장 신경 전달을 비활성화하기 위한 장치.
  6. 제1항에 있어서, 상기 초음파 트랜스듀서는, 상기 초음파 트랜스듀서의 길이에 상응하는 길이로 신장 신경 전달을 불활성화하는, 신장 신경 전달을 비활성화하기 위한 장치.
  7. 제1항에 있어서, 상기 초음파 트랜스듀서는, 8.5Mhz-9.5Mhz의 주파수에서 치료 수준의 포커싱되지 않은 초음파 에너지를 전달하도록 구성된, 신장 신경 전달을 비활성화하기 위한 장치.
  8. 제1항에 있어서, 상기 초음파 트랜스듀서는, 10와트 내지 30와트의 음향 출력 수준에서 포커싱되지 않은 초음파 에너지를 2초 내지 1분 동안 전달하도록 구성된, 신장 신경 전달을 비활성화하기 위한 장치.
  9. 제1항에 있어서, 상기 초음파 트랜스듀서는, 가열하면서 신장 동맥 벽의 온도를 65℃ 미만으로 유지하면서, 충격 용적의 전체의 온도가 42℃ 이상의 온도에 도달하도록 구성된, 신장 신경 전달을 비활성화하기 위한 장치.
  10. 제1항에 있어서, 상기 액츄에이터는, 상기 카테터를 통해 액체를 팽창형 풍선에 전달하여 상기 팽창형 풍선을 팽창시키도록 구성된 순환 장치를 포함하는, 신장 신경 전달을 비활성화하기 위한 장치.
  11. 제10항에 있어서, 상기 순환 장치는 상기 액체를 수용하는 탱크, 상기 카테터를 통해 상기 탱크로부터 상기 팽창형 풍선으로 상기 액체를 펌핑하기 위한 펌프를 포함하는, 신장 신경 전달을 비활성화하기 위한 장치.
  12. 제1항에 있어서, 상기 액츄에이터는, 프로그래밍 가능한 마이크로프로세서와 초음파 여기원를 포함하고,
    상기 프로그래밍 가능한 마이크로프로세서는 상기 초음파 여기원이 상기 초음파 트랜스듀서를 전기적으로 여기시켜 상기 초음파 트랜스듀서가 치료 수준의 포커싱되지 않은 초음파 에너지를 전달하도록 구성된, 신장 신경 전달을 비활성화하기 위한 장치.
  13. 제1항에 있어서, 상기 액츄에이터는, 유저 인터페이스를 포함하는, 신장 신경 전달을 비활성화하기 위한 장치.
  14. 제1항에 있어서, 상기 충격 용적은 신장 동맥과 동축 구성되고 원통형으로 형성된, 신장 신경 전달을 비활성화하기 위한 장치.
  15. 제1항에 있어서, 상기 충격 용적은 신장 동맥을 둘러싸고 있는 모든 신장 신경들을 포함하는, 신장 신경 전달을 비활성화하기 위한 장치.

KR1020167030539A 2009-10-30 2010-10-29 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법 KR101988708B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25642909P 2009-10-30 2009-10-30
US61/256,429 2009-10-30
US29261810P 2010-01-06 2010-01-06
US61/292,618 2010-01-06
PCT/US2010/054637 WO2011053757A1 (en) 2009-10-30 2010-10-29 Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020127013496A Division KR101673574B1 (ko) 2009-10-30 2010-10-29 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20160130329A KR20160130329A (ko) 2016-11-10
KR101988708B1 true KR101988708B1 (ko) 2019-06-12

Family

ID=43302706

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127013496A KR101673574B1 (ko) 2009-10-30 2010-10-29 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법
KR1020167030539A KR101988708B1 (ko) 2009-10-30 2010-10-29 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020127013496A KR101673574B1 (ko) 2009-10-30 2010-10-29 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법

Country Status (10)

Country Link
US (5) US9981108B2 (ko)
EP (3) EP2995350B1 (ko)
JP (3) JP5768056B2 (ko)
KR (2) KR101673574B1 (ko)
CN (1) CN102596320B (ko)
AU (2) AU2010313379B2 (ko)
CA (1) CA2779386C (ko)
HK (1) HK1220153A1 (ko)
IL (1) IL219252A0 (ko)
WO (1) WO2011053757A1 (ko)

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
AU2004285412A1 (en) 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
JP5219518B2 (ja) 2004-12-09 2013-06-26 ザ ファウンドリー, エルエルシー 大動脈弁修復
US20070233185A1 (en) 2005-10-20 2007-10-04 Thomas Anderson Systems and methods for sealing a vascular opening
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US10499937B2 (en) 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
EP2455035B1 (en) 2006-10-18 2015-11-25 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
AU2007310991B2 (en) 2006-10-18 2013-06-20 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
ES2546773T3 (es) 2006-10-18 2015-09-28 Vessix Vascular, Inc. Energía de RF sintonizada y caracterización eléctrica de tejido para el tratamiento selectivo de tejidos diana
US7794701B2 (en) 2007-04-16 2010-09-14 E.I. Du Pont De Nemours And Company Δ-9 elongases and their use in making polyunsaturated fatty acids
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
KR101719824B1 (ko) 2008-05-09 2017-04-04 호라이라 인코포레이티드 기관지나무 치료용 시스템, 어셈블리 및 방법
WO2010056745A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
EP2376011B1 (en) 2009-01-09 2019-07-03 ReCor Medical, Inc. Apparatus for treatment of mitral valve insufficiency
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
CN104856757B (zh) 2009-10-27 2017-06-23 赫莱拉公司 具有可冷却的能量发射组件的递送装置
JP5768056B2 (ja) * 2009-10-30 2015-08-26 リコール メディカル インコーポレイテッドReCor Medical, Inc. 経皮的超音波腎神経除去による高血圧症を治療するための方法及び装置
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
AU2011238925B2 (en) 2010-04-09 2016-06-16 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) * 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9566456B2 (en) * 2010-10-18 2017-02-14 CardioSonic Ltd. Ultrasound transceiver and cooling thereof
US20120095371A1 (en) 2010-10-18 2012-04-19 CardioSonic Ltd. Ultrasound transducer and cooling thereof
WO2012052924A1 (en) * 2010-10-18 2012-04-26 CardioSonic Ltd. Separation device for ultrasound element
US9028417B2 (en) 2010-10-18 2015-05-12 CardioSonic Ltd. Ultrasound emission element
US20120215106A1 (en) * 2010-10-18 2012-08-23 CardioSonic Ltd. Tissue treatment
EP2661304A1 (en) * 2010-10-18 2013-11-13 Cardiosonic Ltd. Therapeutics reservoir
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US20120259269A1 (en) 2011-04-08 2012-10-11 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
JP2014525781A (ja) 2011-07-12 2014-10-02 ベルブ メディカル, インコーポレイテッド 腎盂を通した腎神経の脱神経
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
CN103813829B (zh) 2011-07-22 2016-05-18 波士顿科学西美德公司 具有可定位于螺旋引导件中的神经调制元件的神经调制系统
JP6222778B2 (ja) * 2011-07-22 2017-11-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. アブレーション装置
US20130053732A1 (en) 2011-08-24 2013-02-28 Richard R. Heuser Devices and methods for treating hypertension with energy
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
EP2765940B1 (en) 2011-10-11 2015-08-26 Boston Scientific Scimed, Inc. Off-wall electrode device for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013058962A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Deflectable medical devices
EP3366250A1 (en) 2011-11-08 2018-08-29 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
AU2012347470B2 (en) 2011-12-09 2017-02-02 Medtronic Ireland Manufacturing Unlimited Company Therapeutic neuromodulation of the hepatic system
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
JP5898336B2 (ja) 2011-12-23 2016-04-06 べシックス・バスキュラー・インコーポレイテッド 拡張可能なバルーン及び熱感知デバイスを備えた電極パッドを含むデバイス
WO2013101452A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
AU2013215164A1 (en) * 2012-01-30 2014-08-14 Vytronus, Inc. Tissue necrosis methods and apparatus
WO2013157011A2 (en) 2012-04-18 2013-10-24 CardioSonic Ltd. Tissue treatment
CN107693114A (zh) 2012-04-24 2018-02-16 西比姆公司 用于颈动脉体摘除的血管内导管和方法
WO2013165935A1 (en) * 2012-05-03 2013-11-07 Sound Interventions, Inc. Apparatus and method for uniform renal denervation
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
US9402677B2 (en) 2012-06-01 2016-08-02 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
EP2854681A4 (en) 2012-06-01 2016-02-17 Cibiem Inc PERCUTANEOUS METHODS AND DEVICES FOR CAROTIDE BODY ABLATION
EP2866669A4 (en) 2012-06-30 2016-04-20 Cibiem Inc ABLATION OF CAROTID BODY VIA DIRECTED ENERGY
WO2014022777A1 (en) * 2012-08-03 2014-02-06 Sound Interventions, Inc. Method and apparatus for treatment of hypertension through an ultrasound imaging/therapy catheter
CN104540465A (zh) 2012-08-24 2015-04-22 波士顿科学西美德公司 带有含单独微孔隙区域的球囊的血管内导管
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9333035B2 (en) 2012-09-19 2016-05-10 Denervx LLC Cooled microwave denervation
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US10076384B2 (en) 2013-03-08 2018-09-18 Symple Surgical, Inc. Balloon catheter apparatus with microwave emitter
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2968984B1 (en) 2013-03-14 2016-08-17 ReCor Medical, Inc. Ultrasound-based neuromodulation system
WO2014159273A1 (en) 2013-03-14 2014-10-02 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
CN105228546B (zh) 2013-03-15 2017-11-14 波士顿科学国际有限公司 利用阻抗补偿的用于治疗高血压的医疗器械和方法
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
JP6220044B2 (ja) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーションのための医療用デバイス
US10933259B2 (en) 2013-05-23 2021-03-02 CardioSonic Ltd. Devices and methods for renal denervation and assessment thereof
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
WO2014205399A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
JP6204579B2 (ja) 2013-07-01 2017-09-27 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーション用医療器具
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
EP3024405A1 (en) 2013-07-22 2016-06-01 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP4049605A1 (en) 2013-08-22 2022-08-31 Boston Scientific Scimed Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
WO2015035047A1 (en) 2013-09-04 2015-03-12 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
US11446524B2 (en) 2013-09-12 2022-09-20 Nuvaira Inc. Systems, devices, and methods for treating a pulmonary disease with ultrasound energy
CN105530885B (zh) 2013-09-13 2020-09-22 波士顿科学国际有限公司 具有气相沉积覆盖层的消融球囊
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057488B1 (en) 2013-10-14 2018-05-16 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
CN105658163B (zh) 2013-10-25 2020-08-18 波士顿科学国际有限公司 去神经柔性电路中的嵌入式热电偶
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
US20160287912A1 (en) * 2013-11-04 2016-10-06 Guided Interventions, Inc. Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound
EP3091922B1 (en) 2014-01-06 2018-10-17 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US20150209107A1 (en) 2014-01-24 2015-07-30 Denervx LLC Cooled microwave denervation catheter configuration
CN106572881B (zh) 2014-02-04 2019-07-26 波士顿科学国际有限公司 热传感器在双极电极上的替代放置
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3116408B1 (en) 2014-03-12 2018-12-19 Cibiem, Inc. Ultrasound ablation catheter
CN104107082B (zh) * 2014-07-28 2017-10-20 无锡市贝尔康电子研究所 一种水囊扩张精准可控的超导可视仿生仪
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
CN104383646B (zh) * 2014-12-12 2020-04-24 黄晶 一种超声介入治疗系统
CN105796173B (zh) * 2014-12-31 2018-08-28 上海形状记忆合金材料有限公司 多声束超声消融导管系统
US10376308B2 (en) 2015-02-05 2019-08-13 Axon Therapies, Inc. Devices and methods for treatment of heart failure by splanchnic nerve ablation
FR3050117B1 (fr) 2016-04-15 2021-01-15 Carthera Sonde d'ablation thermique ultrasonore
CN106063975A (zh) * 2016-05-26 2016-11-02 冯庆宇 一种腔内超声治疗装置及其控制方法
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
CA3031766A1 (en) 2016-07-29 2018-02-01 Howard Levin Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation
CN110621345A (zh) 2017-03-20 2019-12-27 索尼维有限公司 肺动脉高压治疗
US10561461B2 (en) 2017-12-17 2020-02-18 Axon Therapies, Inc. Methods and devices for endovascular ablation of a splanchnic nerve
KR102154695B1 (ko) * 2017-12-28 2020-09-10 주식회사 코어테크 경직장 고강도 집속 초음파 전립선 치료 시술 시 집속초음파 발생장치의 고정과 상대적 위치를 정밀 제어하기 위한 장치
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
EP3743147B1 (en) 2018-01-26 2024-04-10 Axon Therapies, Inc. Device for endovascular ablation of a splanchnic nerve
US11298519B2 (en) * 2018-05-08 2022-04-12 Abiomed, Inc. Use of cardiac assist device to improve kidney function
CA3105282A1 (en) 2018-08-22 2020-02-27 Ran Sela Catheter ultrasound transducer container
CN113825464A (zh) 2019-06-20 2021-12-21 阿克松疗法公司 用于内脏神经的血管内消融的方法和装置
WO2021100142A1 (ja) 2019-11-20 2021-05-27 株式会社Alivas 医療デバイス、医療器具、および処置方法
WO2021146724A1 (en) 2020-01-17 2021-07-22 Axon Therapies, Inc. Methods and devices for endovascular ablation of a splanchnic nerve
KR20220162745A (ko) 2020-03-31 2022-12-08 에어웨이브 메디컬 인코포레이티드 적분된 a 모드 신호를 사용한 기관지 신경 제거
US20220265302A1 (en) 2021-02-19 2022-08-25 Otsuka Medical Devices Co., Ltd. Selectively insulated ultrasound transducers
EP4108197A1 (en) 2021-06-24 2022-12-28 Gradient Denervation Technologies Systems for treating tissue
US20230026504A1 (en) 2021-07-19 2023-01-26 Otsuka Medical Devices Co., Ltd. Methods and systems for determining body lumen size
US20230026169A1 (en) 2021-07-19 2023-01-26 Otsuka Medical Devices Co., Ltd. Catheter having compliant balloon
US11672595B1 (en) 2022-06-15 2023-06-13 Corveus Medical, Inc. Systems and methods for interrupting nerve activity to treat a medical condition
CN115252060A (zh) * 2022-07-01 2022-11-01 深圳心寰科技有限公司 用于治疗慢性阻塞性肺炎的支气管介入超声治疗设备及介入方法
WO2024057163A1 (en) 2022-09-12 2024-03-21 Otsuka Medical Devices Co., Ltd. Radial access catheter
US20240157093A1 (en) 2022-11-15 2024-05-16 Otsuka Medical Devices Co., Ltd. Tissue treatment catheter having supportive isolation tube
WO2024106546A1 (en) 2022-11-18 2024-05-23 Otsuka Medical Devices Co., Ltd. Method of denervating pulmonary artery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221939A1 (en) * 2002-04-08 2009-09-03 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation

Family Cites Families (318)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938502A (en) 1972-02-22 1976-02-17 Nicolaas Bom Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves
US4276874A (en) 1978-11-15 1981-07-07 Datascope Corp. Elongatable balloon catheter
US4802490A (en) 1984-11-01 1989-02-07 Johnston G Gilbert Catheter for performing volumetric flow rate determination in intravascular conduits
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
GB8816648D0 (en) 1988-07-13 1988-08-17 Rowland A C Light delivery system
US5344435A (en) 1988-07-28 1994-09-06 Bsd Medical Corporation Urethral inserted applicator prostate hyperthermia
JPH0826437B2 (ja) 1990-08-22 1996-03-13 日本鋼管株式会社 シャドウマスク用Fe―Ni合金薄板およびその製造方法
US5108369A (en) 1990-03-15 1992-04-28 Diagnostic Devices Group, Limited Dual-diameter multifunction catheter
US5324255A (en) 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
WO1992020291A1 (en) 1991-05-24 1992-11-26 Applied Medical Resources, Inc. Articulating tissue cutter assembly
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
GB2258364A (en) 1991-07-30 1993-02-03 Intravascular Res Ltd Ultrasonic tranducer
JPH0568684A (ja) 1991-09-13 1993-03-23 Olympus Optical Co Ltd 超音波治療装置
US5327885A (en) 1991-10-08 1994-07-12 Griffith James M Combination catheter for invasive probe delivery and balloon dilation
US5295992A (en) 1992-03-16 1994-03-22 Othy, Inc. Patella cutting system
CH683718A5 (de) 1992-05-15 1994-04-29 Kk Holding Ag Kombinierter Kraft-, Dehnungs- und Schallemissionsaufnehmer.
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5295995A (en) * 1992-08-27 1994-03-22 Kleiman Jay H Perfusion dilatation catheter
US5620479A (en) 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5423220A (en) 1993-01-29 1995-06-13 Parallel Design Ultrasonic transducer array and manufacturing method thereof
DE69417465T2 (de) 1993-02-05 1999-07-22 Joe W And Dorothy Dorsett Brow Ultraschallballonkatheter für Angioplastik
US5308356A (en) * 1993-02-25 1994-05-03 Blackshear Jr Perry L Passive perfusion angioplasty catheter
US5630837A (en) 1993-07-01 1997-05-20 Boston Scientific Corporation Acoustic ablation
US5354200A (en) 1993-09-27 1994-10-11 Michael Klein Temperature gauge for dental drills and method employing same
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
JPH07178173A (ja) 1993-12-22 1995-07-18 Kiyoshi Matsuo 人工呼吸具
DE69432510T2 (de) 1993-12-24 2003-12-24 Olympus Optical Co Vorrichtung zur Ultraschalldiagnose und -behandlung, wobei der Brennpunkt der therapeutischen Ultraschallwelle in einer vorbestimmten Lage innerhalb des Ultraschall-Beobachtungsbereiches verriegelt ist
WO1995019143A1 (en) 1994-01-14 1995-07-20 Paul G. Yock And Robert J. Siegel, A Joint Venture Ultrasonic ablation of stenoses and occlusions with imaging guidance
CA2194061C (en) 1994-06-27 2006-04-11 David K. Swanson Systems and methods for sensing temperature within the body
ATE230955T1 (de) 1994-06-27 2003-02-15 Boston Scient Ltd Gewebeablationssystem
JPH0826437A (ja) 1994-07-11 1996-01-30 Fuji Photo Film Co Ltd ワーク移送方法及び移送装置
NL9401184A (nl) 1994-07-19 1996-03-01 Cordis Europ Zuigcatheter.
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
DE4438799A1 (de) 1994-10-18 1996-04-25 Atotech Deutschland Gmbh Verfahren zum Beschichten elektrisch nichtleitender Oberflächen mit Metallstrukturen
US6063072A (en) 1994-12-08 2000-05-16 Summit Technology, Inc. Methods and systems for correction of hyperopia and/or astigmatism using ablative radiation
US5938645A (en) 1995-05-24 1999-08-17 Boston Scientific Corporation Northwest Technology Center Inc. Percutaneous aspiration catheter system
ATE275880T1 (de) 1995-10-13 2004-10-15 Transvascular Inc Vorrichtung zur umgehung von arteriellen verengungen und/oder zur ausführung anderer transvaskularer eingriffe
US5803083A (en) 1995-11-09 1998-09-08 Cordis Corporation Guiding catheter with ultrasound imaging capability
US5895356A (en) 1995-11-15 1999-04-20 American Medical Systems, Inc. Apparatus and method for transurethral focussed ultrasound therapy
US6419673B1 (en) 1996-05-06 2002-07-16 Stuart Edwards Ablation of rectal and other internal body structures
US5824026A (en) 1996-06-12 1998-10-20 The Spectranetics Corporation Catheter for delivery of electric energy and a process for manufacturing same
US6237605B1 (en) 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
DE69735406T2 (de) 1996-10-25 2006-08-31 Canon K.K. Glasschaltungssubstrat und Verfahren zu dessen Herstellung
JPH10127678A (ja) 1996-10-31 1998-05-19 Olympus Optical Co Ltd 超音波診断治療装置
US5775338A (en) * 1997-01-10 1998-07-07 Scimed Life Systems, Inc. Heated perfusion balloon for reduction of restenosis
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
WO1998052465A1 (en) 1997-05-23 1998-11-26 Transurgical, Inc. Mri-guided therapeutic unit and methods
US6251109B1 (en) 1997-06-27 2001-06-26 Daig Corporation Process and device for the treatment of atrial arrhythmia
EP1009303B1 (en) 1997-07-08 2009-06-10 The Regents of the University of California Circumferential ablation device assembly
US6652515B1 (en) 1997-07-08 2003-11-25 Atrionix, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6547788B1 (en) * 1997-07-08 2003-04-15 Atrionx, Inc. Medical device with sensor cooperating with expandable member
JP2001514921A (ja) 1997-08-13 2001-09-18 サークス, インコーポレイテッド 組織収縮のための非侵襲性デバイス、方法、およびシステム
JP3634136B2 (ja) 1997-11-26 2005-03-30 三菱電機株式会社 超音波収束装置および超音波液体噴出装置
AU2317899A (en) 1998-01-14 1999-08-02 Conway-Stuart Medical, Inc. Gerd treatment apparatus and method
US6517534B1 (en) * 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
WO1999044519A2 (en) 1998-03-02 1999-09-10 Atrionix, Inc. Tissue ablation system and method for forming long linear lesion
US6299583B1 (en) * 1998-03-17 2001-10-09 Cardiox Corporation Monitoring total circulating blood volume and cardiac output
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6064902A (en) 1998-04-16 2000-05-16 C.R. Bard, Inc. Pulmonary vein ablation catheter
US6522930B1 (en) 1998-05-06 2003-02-18 Atrionix, Inc. Irrigated ablation device assembly
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US6162178A (en) 1998-07-31 2000-12-19 Scimed Life Systems, Inc. Ultrasonic transducer off-aperture connection
JP2000054153A (ja) 1998-08-07 2000-02-22 Murata Mfg Co Ltd 電子部品の電極形成方法
US6355030B1 (en) 1998-09-25 2002-03-12 Cardiothoracic Systems, Inc. Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
JP3316748B2 (ja) 1998-10-20 2002-08-19 株式会社村田製作所 無電解めっき用ホルダおよび無電解めっき方法
US6149596A (en) * 1998-11-05 2000-11-21 Bancroft; Michael R. Ultrasonic catheter apparatus and method
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6277077B1 (en) 1998-11-16 2001-08-21 Cardiac Pathways Corporation Catheter including ultrasound transducer with emissions attenuation
US6102863A (en) * 1998-11-20 2000-08-15 Atl Ultrasound Ultrasonic diagnostic imaging system with thin cable ultrasonic probes
US6607502B1 (en) 1998-11-25 2003-08-19 Atrionix, Inc. Apparatus and method incorporating an ultrasound transducer onto a delivery member
PL197397B1 (pl) 1999-01-15 2008-03-31 Bic Corp Taśma korekcyjna do maskowania substancji drukowanej lub zawierającej tusz
US6097985A (en) * 1999-02-09 2000-08-01 Kai Technologies, Inc. Microwave systems for medical hyperthermia, thermotherapy and diagnosis
JP4565594B2 (ja) * 1999-03-02 2010-10-20 アトリオニクス・インコーポレーテツド 肺口切除器用位置付けシステム
WO2000051683A1 (en) 1999-03-02 2000-09-08 Atrionix, Inc. Atrial ablator having balloon and sensor
US6492762B1 (en) 1999-03-22 2002-12-10 Transurgical, Inc. Ultrasonic transducer, transducer array, and fabrication method
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6190377B1 (en) * 1999-05-05 2001-02-20 James A. Kuzdrall Method and apparatus for predictive beam energy control in laser surgery
ATE353001T1 (de) 1999-05-11 2007-02-15 Atrionix Inc Ballonverankerungsdraht
DE60031261T2 (de) 1999-05-11 2007-04-05 Atrionix Inc., Palo Alto System zum positionieren eines katheters
DE60022506T2 (de) 1999-05-12 2006-05-04 Jeneric/Pentron Inc., Wallingford Endodontisches stiftsystem
US20010007940A1 (en) 1999-06-21 2001-07-12 Hosheng Tu Medical device having ultrasound imaging and therapeutic means
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
JP2001011126A (ja) 1999-06-28 2001-01-16 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形物
EP1207788A4 (en) 1999-07-19 2009-12-09 St Jude Medical Atrial Fibrill FABRIC ABLATION TECHNIQUES AND CORRESPONDING DEVICE
JP2003507105A (ja) 1999-08-16 2003-02-25 イコス コーポレイション カテーテルと共に使用するための超音波組立体
JP3848572B2 (ja) 1999-09-10 2006-11-22 プロリズム,インコーポレイテッド 解剖学的組織を閉塞するための装置
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
CA2384866C (en) 1999-09-28 2012-07-10 Stuart D. Edwards Treatment of tissue by application of energy and drugs
JP2001111126A (ja) 1999-10-13 2001-04-20 Sumitomo Metal Electronics Devices Inc 圧電素子
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
US6645199B1 (en) 1999-11-22 2003-11-11 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements contact with body tissue and expandable push devices for use with same
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US20020165771A1 (en) 2001-05-07 2002-11-07 Walker Jay S. Method and apparatus for establishing prices for a plurality of products
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US6913581B2 (en) 2000-03-20 2005-07-05 Paul D. Corl High output therapeutic ultrasound transducer
WO2001070112A1 (en) * 2000-03-20 2001-09-27 Pharmasonics, Inc. High output therapeutic ultrasound transducer
AU2001245971A1 (en) 2000-03-24 2001-10-08 Transurgical, Inc. Apparatus and method for intrabody thermal treatment
US6547946B2 (en) 2000-04-10 2003-04-15 The Regents Of The University Of California Processing a printed wiring board by single bath electrodeposition
DE60138880D1 (de) 2000-05-03 2009-07-16 Bard Inc C R Vorrichtung zur mehrdimensionalen darstellung und ablation bei elektrophysiologischen prozeduren
JP4873816B2 (ja) * 2000-05-16 2012-02-08 アトリオニックス・インコーポレイテッド ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル
JP4754148B2 (ja) 2000-05-16 2011-08-24 アトリオニックス・インコーポレイテッド 超音波トランスデューサを配送部材に組み込む装置および方法
JP3579326B2 (ja) * 2000-05-25 2004-10-20 オリンパス株式会社 超音波診断装置および超音波診断装置の制御方法
ATE314876T1 (de) 2000-06-20 2006-02-15 Celsion Corp System zur wärmebehandlung der prostata
JP2004503324A (ja) 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド 膨張性環状レンズによるエネルギー付与装置
CN1241658C (zh) * 2000-07-13 2006-02-15 普罗里森姆股份有限公司 一种在存活对象的体内施加能量的装置
US8251986B2 (en) 2000-08-17 2012-08-28 Angiodynamics, Inc. Method of destroying tissue cells by eletroporation
JP2002078809A (ja) 2000-09-07 2002-03-19 Shutaro Satake 肺静脈電気的隔離用バルーンカテーテル
US6623452B2 (en) * 2000-12-19 2003-09-23 Scimed Life Systems, Inc. Drug delivery catheter having a highly compliant balloon with infusion holes
US7422586B2 (en) 2001-02-28 2008-09-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
WO2003099382A1 (en) 2002-05-23 2003-12-04 Gendel Limited Ablation device
US6666858B2 (en) 2001-04-12 2003-12-23 Scimed Life Systems, Inc. Cryo balloon for atrial ablation
AU2002258990A1 (en) 2001-04-23 2002-11-05 Transurgical, Inc. Improvements in ablation therapy
US20040253450A1 (en) 2001-05-24 2004-12-16 Shipley Company, L.L.C. Formaldehyde-free electroless copper plating process and solution for use in the process
US20030092988A1 (en) 2001-05-29 2003-05-15 Makin Inder Raj S. Staging medical treatment using ultrasound
US20020193781A1 (en) * 2001-06-14 2002-12-19 Loeb Marvin P. Devices for interstitial delivery of thermal energy into tissue and methods of use thereof
US6763722B2 (en) 2001-07-13 2004-07-20 Transurgical, Inc. Ultrasonic transducers
US20060116736A1 (en) 2001-07-23 2006-06-01 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of obesity
US6953469B2 (en) 2001-08-30 2005-10-11 Ethicon, Inc, Device and method for treating intraluminal tissue
US20030060813A1 (en) * 2001-09-22 2003-03-27 Loeb Marvin P. Devices and methods for safely shrinking tissues surrounding a duct, hollow organ or body cavity
US6475146B1 (en) * 2001-09-24 2002-11-05 Siemens Medical Solutions Usa, Inc. Method and system for using personal digital assistants with diagnostic medical ultrasound systems
US7285116B2 (en) 2004-05-15 2007-10-23 Irvine Biomedical Inc. Non-contact tissue ablation device and methods thereof
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US20030161805A1 (en) 2001-11-16 2003-08-28 Kobo Products, Inc. Organosilicon treated cosmetic powders, their production and use
US7347852B2 (en) 2001-11-20 2008-03-25 Angiodynamics, Inc. Catheter retention
JP3678195B2 (ja) 2001-12-18 2005-08-03 株式会社村田製作所 電子部品の製造方法、及び電子部品
EP1465701A4 (en) 2002-01-15 2008-08-13 Univ California SYSTEM AND METHOD FOR DIRECTIONAL ULTRASONIC THERAPY OF SKELETAL JOINTS
WO2003061756A2 (en) 2002-01-23 2003-07-31 The Regents Of The University Of California Implantable thermal treatment method and apparatus
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
US7160434B2 (en) 2002-03-22 2007-01-09 Robert E. Moroney, Llc Therapeutic electrolysis device
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US20070135875A1 (en) * 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7503904B2 (en) 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
US6793635B2 (en) 2002-06-28 2004-09-21 Ethicon, Inc. Devices having deployable ultrasound transducers and method of use of same
US20130197555A1 (en) 2002-07-01 2013-08-01 Recor Medical, Inc. Intraluminal devices and methods for denervation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US20060100514A1 (en) 2002-07-08 2006-05-11 Prorhythm, Inc. Cardiac ablation using microbubbles
US6866662B2 (en) 2002-07-23 2005-03-15 Biosense Webster, Inc. Ablation catheter having stabilizing array
US6712767B2 (en) 2002-08-29 2004-03-30 Volcano Therapeutics, Inc. Ultrasonic imaging devices and methods of fabrication
US7189229B2 (en) 2002-09-16 2007-03-13 Prorhythm, Inc. Balloon alignment and collapsing system
US6907884B2 (en) * 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7837676B2 (en) 2003-02-20 2010-11-23 Recor Medical, Inc. Cardiac ablation devices
US20040163655A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and catheter system applicable to acute renal failure
WO2004091255A1 (ja) 2003-04-01 2004-10-21 Olympus Corporation 超音波振動子及びその製造方法
US20040230116A1 (en) 2003-05-12 2004-11-18 Pharmasonics, Inc. Method and apparatus for detection of ultrasound transducer failure in catheter systems
JP2004363304A (ja) 2003-06-04 2004-12-24 Toshiba Corp 半導体装置の検査方法及び検査装置
US7678104B2 (en) 2003-07-17 2010-03-16 Biosense Webster, Inc. Ultrasound ablation catheter and method for its use
US7670335B2 (en) 2003-07-21 2010-03-02 Biosense Webster, Inc. Ablation device with spiral array ultrasound transducer
US6911935B2 (en) * 2003-08-15 2005-06-28 Siemens Milltronics Process Instruments Inc. Field interchangeable level measurement system
AU2004285412A1 (en) 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
EP1692081A2 (en) 2003-11-29 2006-08-23 Cross Match Technologies, Inc. Piezoelectric device and method of manufacturing same
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US7854733B2 (en) * 2004-03-24 2010-12-21 Biosense Webster, Inc. Phased-array for tissue treatment
WO2006005093A1 (de) 2004-07-12 2006-01-19 Mlu - Monitoring Für Leben Und Umwelt Ges. M.B.H. Messeinrichtung und verfahren zum messen mindestens eines unweltparameters
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
ATE511805T1 (de) 2004-09-13 2011-06-15 Biosense Webster Inc Ablationsvorrichtung mit phasengesteuertem array- ultraschallwandler
WO2006033232A1 (ja) 2004-09-21 2006-03-30 Olympus Corporation 超音波振動子、超音波振動子アレイ、及び超音波内視鏡装置
US8521295B2 (en) * 2004-09-23 2013-08-27 Michael D. Laufer Location and deactivation of muscles
WO2006033331A1 (ja) 2004-09-24 2006-03-30 Olympus Corporation 超音波振動子、超音波振動子アレイ、及び超音波内視鏡装置
WO2006044662A2 (en) 2004-10-14 2006-04-27 Prorhythm, Inc. Ablation devices and methods with ultrasonic imaging
JP4559936B2 (ja) 2004-10-21 2010-10-13 アルプス電気株式会社 無電解めっき方法およびこの方法を用いた回路形成方法
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
JP2006161116A (ja) 2004-12-08 2006-06-22 Konica Minolta Holdings Inc 無電解めっきによる電極形成方法及びインクジェットヘッドの製造方法
US8162858B2 (en) 2004-12-13 2012-04-24 Us Hifu, Llc Ultrasonic medical treatment device with variable focal zone
US20060155269A1 (en) 2005-01-12 2006-07-13 Prorhythm, Inc. Epicardial ablation using focused ultrasound
CN100450563C (zh) * 2005-01-31 2009-01-14 重庆海扶(Hifu)技术有限公司 向体内管腔输入介质、管腔导入以及超声波阻挡装置
EP1821368A4 (en) 2005-03-01 2010-12-29 Panasonic Corp CONNECTOR BETWEEN SUBSTRATES AND CIRCUIT BOARD DEVICE USING SAME BETWEEN SUBSTRATES
US20060241523A1 (en) 2005-04-12 2006-10-26 Prorhythm, Inc. Ultrasound generating method, apparatus and probe
US20060270976A1 (en) 2005-05-31 2006-11-30 Prorhythm, Inc. Steerable catheter
US20090118125A1 (en) * 2005-06-15 2009-05-07 Nissan Chemical Industries, Ltd. Water Dispersible Agricultural Chemical Granules and Method of Producing the Same
EP2662044B1 (en) 2005-07-21 2018-10-31 Covidien LP Systems for treating a hollow anatomical structure
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070124458A1 (en) 2005-11-30 2007-05-31 Cisco Technology, Inc. Method and system for event notification on network nodes
US20070203547A1 (en) * 2005-12-15 2007-08-30 Costello Benedict J Medical device identification
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US20070175359A1 (en) 2006-02-01 2007-08-02 Kilnam Hwang Electroless gold plating solution and method
US8790281B2 (en) * 2006-04-20 2014-07-29 The Regents Of The University Of California Method of thermal treatment of myolysis and destruction of benign uterine tumors
US20100198065A1 (en) 2009-01-30 2010-08-05 VyntronUS, Inc. System and method for ultrasonically sensing and ablating tissue
EP2540246B8 (en) 2006-05-12 2020-10-07 Vytronus, Inc. Device for ablating body tissue
WO2007135875A1 (en) 2006-05-19 2007-11-29 Daikin Industries, Ltd. Silicone-containing thermoplastic fluororesin composition, article molded therefrom, and process for preparing silicone-containing thermoplastic fluororesin composition
US10499937B2 (en) 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US20070299435A1 (en) * 2006-06-23 2007-12-27 Crowe John E Apparatus and method for ablating tissue
DE602007011813D1 (de) 2006-06-28 2011-02-17 Ardian Inc Systeme für wärmeinduzierte renale Neuromodulation
US7652411B2 (en) 2006-09-18 2010-01-26 Medicis Technologies Corporation Transducer with shield
ES2546773T3 (es) 2006-10-18 2015-09-28 Vessix Vascular, Inc. Energía de RF sintonizada y caracterización eléctrica de tejido para el tratamiento selectivo de tejidos diana
US8192363B2 (en) 2006-10-27 2012-06-05 Ekos Corporation Catheter with multiple ultrasound radiating members
JP4513802B2 (ja) 2006-12-20 2010-07-28 セイコーエプソン株式会社 印刷装置
JP2008214669A (ja) 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd 電子部品のめっき装置およびめっき方法
US7581296B2 (en) 2007-04-11 2009-09-01 Ge Inspection Technologies, Lp Acoustic stack for ultrasonic transducers and method for manufacturing same
WO2008128070A2 (en) 2007-04-11 2008-10-23 The Cleveland Clinic Foundation Method and apparatus for renal neuromodulation
US10183183B2 (en) 2007-04-13 2019-01-22 Acoustic Medsystems, Inc. Acoustic applicators for controlled thermal modification of tissue
WO2008151001A2 (en) * 2007-05-30 2008-12-11 The Cleveland Clinic Foundation Method for treating a renal disease or disorder
JP5461988B2 (ja) 2007-07-02 2014-04-02 株式会社Jcu 金属積層ポリイミド基盤及びその製造方法
EP2166951A2 (en) 2007-07-11 2010-03-31 Koninklijke Philips Electronics N.V. Ultrasonic assembly with adjustable fluid lens
DE102007046951B3 (de) 2007-10-01 2009-02-26 B. Braun Melsungen Ag Vorrichtung zum Einführen eines Medikaments in einen Infusionsbehälter
US8439907B2 (en) 2007-11-07 2013-05-14 Mirabilis Medica Inc. Hemostatic tissue tunnel generator for inserting treatment apparatus into tissue of a patient
US8115367B2 (en) 2007-11-26 2012-02-14 Sii Nanotechnology Inc. Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US10492854B2 (en) 2007-12-05 2019-12-03 Biosense Webster, Inc. Catheter-based acoustic radiation force impulse system
WO2009077939A1 (en) 2007-12-14 2009-06-25 Koninklijke Philips Electronics N.V. Adjustable lens system for real-time applications
US8562600B2 (en) 2007-12-27 2013-10-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Integration of control software with a medical device and system
US20090248011A1 (en) 2008-02-28 2009-10-01 Hlavka Edwin J Chronic venous insufficiency treatment
US20090228003A1 (en) 2008-03-04 2009-09-10 Prorhythm, Inc. Tissue ablation device using radiofrequency and high intensity focused ultrasound
KR101719824B1 (ko) * 2008-05-09 2017-04-04 호라이라 인코포레이티드 기관지나무 치료용 시스템, 어셈블리 및 방법
US8133222B2 (en) 2008-05-28 2012-03-13 Medwaves, Inc. Tissue ablation apparatus and method using ultrasonic imaging
US8197413B2 (en) 2008-06-06 2012-06-12 Boston Scientific Scimed, Inc. Transducers, devices and systems containing the transducers, and methods of manufacture
US9155588B2 (en) 2008-06-13 2015-10-13 Vytronus, Inc. System and method for positioning an elongate member with respect to an anatomical structure
US20100152582A1 (en) 2008-06-13 2010-06-17 Vytronus, Inc. Handheld system and method for delivering energy to tissue
US20090312693A1 (en) 2008-06-13 2009-12-17 Vytronus, Inc. System and method for delivering energy to tissue
WO2009152354A1 (en) 2008-06-14 2009-12-17 Vytronus, Inc. System and method for delivering energy to tissue
US10363057B2 (en) 2008-07-18 2019-07-30 Vytronus, Inc. System and method for delivering energy to tissue
US20100049099A1 (en) 2008-07-18 2010-02-25 Vytronus, Inc. Method and system for positioning an energy source
AU2009292987A1 (en) 2008-09-22 2010-03-25 Vessix Vascular, Inc Inducing desirable temperature effects on body tissue using alternate energy sources
US8414508B2 (en) 2008-10-30 2013-04-09 Vytronus, Inc. System and method for delivery of energy to tissue while compensating for collateral tissue
US9033885B2 (en) 2008-10-30 2015-05-19 Vytronus, Inc. System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
US9192789B2 (en) 2008-10-30 2015-11-24 Vytronus, Inc. System and method for anatomical mapping of tissue and planning ablation paths therein
US8475379B2 (en) 2008-11-17 2013-07-02 Vytronus, Inc. Systems and methods for ablating body tissue
US8923970B2 (en) 2008-12-09 2014-12-30 Nephera Ltd. Stimulation of the urinary system
CN102307618B (zh) 2008-12-09 2014-03-12 内费拉有限公司 泌尿系统的刺激
US8882672B2 (en) 2008-12-29 2014-11-11 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8870772B2 (en) 2008-12-29 2014-10-28 Perseus-Biomed Inc. Method and system for tissue recognition
US8864669B2 (en) 2008-12-29 2014-10-21 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8712550B2 (en) 2008-12-30 2014-04-29 Biosense Webster, Inc. Catheter with multiple electrode assemblies for use at or near tubular regions of the heart
US20100168739A1 (en) 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
EP2376011B1 (en) 2009-01-09 2019-07-03 ReCor Medical, Inc. Apparatus for treatment of mitral valve insufficiency
JP2010184913A (ja) 2009-02-13 2010-08-26 Freunt Ind Co Ltd 微生物または生物由来物質含有微細粒子およびその製造方法
KR101764439B1 (ko) 2009-04-22 2017-08-02 머케이터 메드시스템즈, 인크. 국소 혈관 운반으로 고혈압을 치료하는 구아네티딘의 용도
US8287472B2 (en) 2009-04-30 2012-10-16 Boston Scientific Scimed, Inc. Ultrasound heater-agitator for thermal tissue treatment
KR101619380B1 (ko) 2009-05-14 2016-05-11 삼성디스플레이 주식회사 식각액 조성물 및 이를 이용한 어레이 기판의 제조방법
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
EP2344039B1 (en) 2009-10-12 2015-11-25 Kona Medical, Inc. Energetic modulation of nerves
US20110257563A1 (en) 2009-10-26 2011-10-20 Vytronus, Inc. Methods and systems for ablating tissue
US20120209118A1 (en) * 2009-10-30 2012-08-16 Sound Interventions Method and apparatus for non-invasive treatment of hypertension through ultrasound renal denervation
JP5768056B2 (ja) 2009-10-30 2015-08-26 リコール メディカル インコーポレイテッドReCor Medical, Inc. 経皮的超音波腎神経除去による高血圧症を治療するための方法及び装置
US20110112400A1 (en) 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US20110263921A1 (en) 2009-12-31 2011-10-27 Anthony Vrba Patterned Denervation Therapy for Innervated Renal Vasculature
WO2011088399A1 (en) 2010-01-18 2011-07-21 Stanford University Method and apparatus for radioablation of regular targets such as sympathetic nerves
EP2525715A4 (en) 2010-01-19 2014-06-04 Medtronic Ardian Luxembourg S R L METHODS AND APPARATUS FOR RENAL NEUROMODULATION BY STEREOTACTIC RADIOTHERAPY
CN102892454B (zh) 2010-01-26 2016-01-20 迈克尔·A·埃文斯 用于去神经支配的方法、装置以及药剂
US9743980B2 (en) 2010-02-24 2017-08-29 Safepass Vascular Ltd Method and system for assisting a wire guide to cross occluded ducts
US20110257562A1 (en) 2010-04-01 2011-10-20 Alan Schaer Method and apparatus employing ultrasound energy to remodulate vascular nerves
AU2011238925B2 (en) 2010-04-09 2016-06-16 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
JP5649322B2 (ja) 2010-04-12 2015-01-07 三菱電機株式会社 半導体装置および半導体装置の製造方法
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
CN103096826B (zh) 2010-04-26 2016-07-20 美敦力阿迪安卢森堡有限公司 用于肾神经调节的导管设备、系统和方法
US20120065554A1 (en) 2010-09-09 2012-03-15 Michael Pikus Dual Balloon Ablation Catheter with Vessel Deformation Arrangement for Renal Nerve Ablation
US20120095371A1 (en) 2010-10-18 2012-04-19 CardioSonic Ltd. Ultrasound transducer and cooling thereof
WO2012052924A1 (en) 2010-10-18 2012-04-26 CardioSonic Ltd. Separation device for ultrasound element
EP2661304A1 (en) 2010-10-18 2013-11-13 Cardiosonic Ltd. Therapeutics reservoir
US9566456B2 (en) 2010-10-18 2017-02-14 CardioSonic Ltd. Ultrasound transceiver and cooling thereof
US20120215106A1 (en) 2010-10-18 2012-08-23 CardioSonic Ltd. Tissue treatment
CN103313671B (zh) 2010-10-25 2017-06-06 美敦力Af卢森堡有限责任公司 用于神经调节治疗的估算及反馈的装置、系统及方法
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
WO2012068471A1 (en) 2010-11-19 2012-05-24 Boston Scientific Scimed, Inc. Renal nerve detection and ablation apparatus and method
US10016233B2 (en) 2010-12-06 2018-07-10 Biosense Webster (Israel) Ltd. Treatment of atrial fibrillation using high-frequency pacing and ablation of renal nerves
US9308041B2 (en) 2010-12-22 2016-04-12 Biosense Webster (Israel) Ltd. Lasso catheter with rotating ultrasound transducer
JP2014512882A (ja) 2011-02-18 2014-05-29 リコール メディカル インコーポレイテッド 超音波を用いる腎臓神経除去装置
EP2521593B1 (en) 2011-03-15 2015-12-09 Kona Medical, Inc. Energetic modulation of nerves
EP2696791A4 (en) 2011-04-13 2014-10-29 Vytronus Inc INTEGRATED ABLATION AND ASSIGNMENT SYSTEM
EP2717795A4 (en) 2011-06-06 2015-01-28 St Jude Medical NIERENDENVIERUNG SYSTEM AND METHOD
US20140200489A1 (en) 2011-09-01 2014-07-17 Perseus-Biomed Inc Method and system for tissue modulation
US20130090650A1 (en) 2011-10-11 2013-04-11 Boston Scientific Scimed, Inc. Renal nerve ablation cooling device and technique
JP5898336B2 (ja) 2011-12-23 2016-04-06 べシックス・バスキュラー・インコーポレイテッド 拡張可能なバルーン及び熱感知デバイスを備えた電極パッドを含むデバイス
AU2013215164A1 (en) 2012-01-30 2014-08-14 Vytronus, Inc. Tissue necrosis methods and apparatus
AU2013230776B2 (en) * 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Immune system neuromodulation and associated systems and methods
WO2013150777A1 (ja) * 2012-04-05 2013-10-10 テルモ株式会社 血管挿入型治療デバイス
US9439722B2 (en) 2012-05-09 2016-09-13 Biosense Webster (Israel) Ltd. Ablation targeting nerves in or near the inferior vena cava and/or abdominal aorta for treatment of hypertension
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
WO2014012053A1 (en) 2012-07-13 2014-01-16 Boston Scientific Scimed, Inc. Off -wall electrode devices for nerve modulation
US20140025069A1 (en) 2012-07-17 2014-01-23 Boston Scientific Scimed, Inc. Renal nerve modulation catheter design
WO2014036160A2 (en) 2012-08-28 2014-03-06 Boston Scientific Scimed, Inc. Renal nerve modulation and ablation catheter electrode design
CN104768487A (zh) 2012-09-13 2015-07-08 波士顿科学西美德公司 肾脏神经调节球囊及其制造和使用方法
EP2938401A2 (en) 2012-12-31 2015-11-04 Perseus-Biomed Inc. Phased array energy aiming and tracking for ablation treatment
US20140249524A1 (en) 2013-03-01 2014-09-04 Boston Scientific Scimed, Inc. System and method for performing renal nerve modulation
USD712353S1 (en) 2013-03-04 2014-09-02 Medtronic Ardian Luxembourg S.A.R.L. Generator system
USD697036S1 (en) 2013-03-04 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Remote control
USD712352S1 (en) 2013-03-04 2014-09-02 Medtronic Ardian Luxembourg S.A.R.L. Generator
USD712833S1 (en) 2013-03-04 2014-09-09 Medtronic Ardian Luxembourg S.A.R.L. Generator system
USD708810S1 (en) 2013-03-04 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Generator cart
EP2968931B1 (en) 2013-03-12 2022-03-16 Boston Scientific Scimed, Inc. Medical systems and methods for modulating nerves
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
EP2968984B1 (en) 2013-03-14 2016-08-17 ReCor Medical, Inc. Ultrasound-based neuromodulation system
WO2014159273A1 (en) 2013-03-14 2014-10-02 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
JP6220044B2 (ja) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーションのための医療用デバイス
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9770606B2 (en) * 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP2907464A1 (en) 2014-02-12 2015-08-19 Perseus-Biomed Inc. Methods and systems for treating nerve structures
US9795780B2 (en) * 2014-12-18 2017-10-24 Abbott Cardiovascular Systems Inc. System for denervation
AU2016262085B2 (en) * 2015-05-12 2020-10-22 National University Of Ireland Galway Devices for therapeutic nasal neuromodulation and associated methods and systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221939A1 (en) * 2002-04-08 2009-09-03 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation

Also Published As

Publication number Publication date
KR20160130329A (ko) 2016-11-10
US20120232436A1 (en) 2012-09-13
US9981108B2 (en) 2018-05-29
KR20120101658A (ko) 2012-09-14
US20150290427A1 (en) 2015-10-15
US20180361117A1 (en) 2018-12-20
HK1220153A1 (zh) 2017-04-28
JP2013509266A (ja) 2013-03-14
JP2015107333A (ja) 2015-06-11
CN102596320B (zh) 2016-09-07
AU2016200432A1 (en) 2016-02-18
JP6412790B2 (ja) 2018-10-24
US20140031727A1 (en) 2014-01-30
EP2995350A1 (en) 2016-03-16
EP2493569B1 (en) 2015-09-30
EP2995350B1 (en) 2016-08-03
EP3132828A1 (en) 2017-02-22
US9943666B2 (en) 2018-04-17
CN102596320A (zh) 2012-07-18
JP6571719B2 (ja) 2019-09-04
US11185662B2 (en) 2021-11-30
AU2016200432B2 (en) 2017-11-09
IL219252A0 (en) 2012-06-28
AU2010313379B2 (en) 2015-11-05
JP5768056B2 (ja) 2015-08-26
US20220126062A1 (en) 2022-04-28
AU2010313379A1 (en) 2012-06-07
US10039901B2 (en) 2018-08-07
WO2011053757A1 (en) 2011-05-05
EP2493569A1 (en) 2012-09-05
CA2779386C (en) 2018-09-11
JP2017196461A (ja) 2017-11-02
EP3132828B1 (en) 2017-10-11
KR101673574B1 (ko) 2016-11-07
CA2779386A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
KR101988708B1 (ko) 경피적 초음파 신장 신경차단술을 통해 고혈압을 치료하기 위한 장치 및 방법
US20200170702A1 (en) Ablation device with optimized input power profile and method of using the same
US20160287912A1 (en) Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound
US20140058294A1 (en) Tissue treatment and monitoring by application of energy
EP2635348A2 (en) High intensity focused ultrasound apparatuses, systems, and methods for renal neuromodulation
US20220008753A1 (en) Method and apparatus for pulmonary interventions
WO2024081159A1 (en) Method and apparatus for treatment of pulmonary conditions

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant