WO2013150777A1 - 血管挿入型治療デバイス - Google Patents

血管挿入型治療デバイス Download PDF

Info

Publication number
WO2013150777A1
WO2013150777A1 PCT/JP2013/002277 JP2013002277W WO2013150777A1 WO 2013150777 A1 WO2013150777 A1 WO 2013150777A1 JP 2013002277 W JP2013002277 W JP 2013002277W WO 2013150777 A1 WO2013150777 A1 WO 2013150777A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
blood vessel
treatment device
insertion type
type treatment
Prior art date
Application number
PCT/JP2013/002277
Other languages
English (en)
French (fr)
Inventor
吏悟 小林
小林 淳一
杉本 良太
平原 一郎
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013150777A1 publication Critical patent/WO2013150777A1/ja
Priority to US14/506,871 priority Critical patent/US20150025518A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1047Balloon catheters with special features or adapted for special applications having centering means, e.g. balloons having an appropriate shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1084Balloon catheters with special features or adapted for special applications having features for increasing the shape stability, the reproducibility or for limiting expansion, e.g. containments, wrapped around fibres, yarns or strands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1097Balloon catheters with special features or adapted for special applications with perfusion means for enabling blood circulation only while the balloon is in an inflated state, e.g. temporary by-pass within balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M25/04Holding devices, e.g. on the body in the body, e.g. expansible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers

Definitions

  • the present invention relates to a blood vessel insertion type treatment device, and particularly to a blood vessel insertion type treatment device that can be inserted into a blood vessel and cauterize a living tissue around the blood vessel from inside the blood vessel.
  • a blood vessel insertion type treatment device capable of suppressing damage to blood vessels at the time of cauterization of a living tissue around a blood vessel such as a renal artery sympathetic nerve around the renal artery is provided. With the goal.
  • a blood vessel insertion type treatment device includes: A first torque transmission body having a longitudinal shape having a proximal end and an insertion end at both ends, and transmitting torque that rotates about the longitudinal direction of the longitudinal shape supplied at the proximal end; A first ultrasonic generator provided on the first torque transmission body and emitting ultrasonic waves; The first ultrasonic generator is configured to cauterize a living tissue separated from the first ultrasonic generator by a predetermined distance.
  • the living tissue is cauterized using the ultrasonic waves generated by the first ultrasonic generator, damage to a blood vessel or the like interposed between the first ultrasonic generator and the ablation target tissue. Can be suppressed. Further, by rotating the first torque transmission body about the longitudinal direction as an axis, the direction of the first ultrasonic generator provided in the first torque transmission body can be changed. Therefore, it is possible to cauterize a living tissue around a blood vessel without being limited to a specific point while using an ultrasonic generator.
  • the blood vessel insertion type treatment device configured as described above, it is possible to suppress damage to blood vessels when removing living tissue around the blood vessels.
  • FIG. 2 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 1. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 1st Embodiment. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 2nd Embodiment. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 3rd Embodiment.
  • FIG. 1 It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 4th Embodiment. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 5th Embodiment. It is a block diagram which shows roughly the internal structure of a transmission body drive part. It is a timing chart for demonstrating the principle which an ultrasonic wave converges with the 1st ultrasonic generator in 5th Embodiment. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 6th Embodiment. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 7th Embodiment. FIG.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. It is a figure which shows the 1st modification of a mesh balloon.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 13. It is a figure which shows the 2nd modification of a mesh balloon.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15. It is sectional drawing of the blood vessel insertion type treatment device in the blood vessel along the direction perpendicular
  • FIG. 6 is a cross-sectional view along the longitudinal direction in the vicinity of the insertion end of the blood vessel insertion type treatment device for explaining a second modification of the first ultrasonic transducer and the imaging ultrasonic transducer in the first embodiment. is there. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device for demonstrating the 3rd modification of the 1st ultrasonic transducer
  • FIG. 1 is a diagram for explaining a technique for removing a renal artery sympathetic nerve using the blood vessel insertion type treatment device according to the first embodiment of the present invention.
  • the operator inserts the guiding catheter 200 from the patient's thigh into the femoral artery FA in advance and allows the distal end of the guiding catheter 200 to reach the renal artery RA.
  • a guide wire (not shown) is used for reaching the guiding artery 200 to the renal artery RA.
  • the guiding catheter 200 is tubular, and a device for diagnosis and treatment can be inserted.
  • the blood vessel insertion type treatment device 100 is generally string-shaped, has an insertion end and a proximal end, and can be inserted into the lumen of the guiding catheter 200 from the insertion end.
  • the surgeon inserts the blood vessel insertion type treatment device 100 into the guiding catheter 200 and causes the insertion end to protrude from the guiding catheter 200 (see FIG. 2).
  • the mesh balloon 101 provided in the vicinity of the insertion end of the blood vessel insertion type treatment device 100 is inflated to fix the blood vessel insertion type treatment device 100 in the renal artery RA.
  • the blood vessel insertion type treatment device 100 has an imaging function and an ablation function.
  • the blood vessel insertion type treatment device 100 can emit ultrasonic waves for imaging (see IUS in FIG. 2).
  • the surgeon executes an imaging function of the inserted blood vessel insertion type treatment device 100 to acquire an image around the renal artery from the renal artery RA.
  • the surgeon discriminates the sympathetic nerve SN to be cauterized based on the acquired image and irradiates the discriminated sympathetic nerve SN with ultrasonic waves for cauterization (see CUS in FIG. 2). Adjust the position of the device 100. After the position adjustment, the surgeon performs the cauterization function of the blood vessel insertion type treatment device 100 to cauterize the desired sympathetic nerve.
  • the blood vessel insertion type treatment device 100 includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 104, an image acquisition unit 105, a mesh balloon 101 (see FIG. 2), and the like.
  • the sheath 102 is formed into a tubular shape by a member having acoustic properties and flexibility.
  • the end of the sheath 102 on the insertion end side is open. Further, at the start of use, the inside of the sheath 102 is filled with a medium having acoustic transmission properties from the proximal end side.
  • the first torque transmitting body 103 is formed by a flexible member so as to extend from the proximal end of the sheath 102 to the insertion end. With the insertion end of the first torque transmission body 103 reaching the insertion end of the sheath 102, the base end of the first torque transmission body 103 protrudes from the base end of the sheath 102.
  • the outer diameter of the first torque transmission body 103 is determined to be smaller than the inner diameter of the sheath 102, and the first torque transmission body 103 is rotatable in the sheath 102 about the longitudinal direction. Therefore, when a torque that rotates about the longitudinal direction is supplied to the base end of the first torque transmission body 103, the supplied torque is transmitted to the insertion end of the first torque transmission body 103, and the first torque transmission The entire body 103 rotates within the sheath 102. Further, the first torque transmission body 103 is displaceable along the longitudinal direction within the sheath 102.
  • the first ultrasonic generator 104 is provided in the vicinity of the insertion end of the first torque transmission body 103.
  • the first ultrasonic generator 104 includes a single first ultrasonic transducer 106 and an acoustic lens 107.
  • the first ultrasonic transducer 106 can emit ultrasonic waves in a direction perpendicular to the longitudinal direction of the first torque transmitting body 103 or in a direction inclined by a predetermined angle from the perpendicular direction to the insertion end side.
  • the first ultrasonic transducer 106 emits an ablation ultrasonic wave CUS having a frequency suitable for ablation.
  • the distance for transmitting ultrasonic waves and the amount of heat generated at the position where the ultrasonic waves converge are determined by the frequency. Therefore, the frequency of the ultrasound CUS for cauterization is determined in advance based on the approximate interval from the inside of the renal artery RA to the renal artery sympathetic nerve SN and the amount of heat generated for cauterization of the sympathetic nerve SN.
  • a signal line extending from the first ultrasonic transducer 106 to the proximal end is connected to the ablation controller.
  • the ablation control unit supplies a drive signal to the first ultrasonic transducer 106 so as to generate the ablation ultrasonic wave CUS at the above-described frequency.
  • the acoustic lens 107 is provided on the surface of the first ultrasonic transducer 106.
  • the acoustic lens 107 converges the ultrasonic wave at a focal point that is separated from the acoustic lens 107 by a predetermined distance, and maximizes heat generation energy in the vicinity of the focal point.
  • the focal length of the acoustic lens 107 is determined and formed based on an approximate distance from the renal artery to the renal artery sympathetic nerve.
  • the image acquisition unit 105 is provided closer to the insertion end than the first ultrasonic generator 104 of the first torque transmission body 103.
  • the image acquisition unit 105 has a single imaging ultrasonic transducer 108.
  • the imaging ultrasonic transducer 108 can emit ultrasonic waves in a direction perpendicular to the longitudinal direction of the first torque transmitting body 103 or in a direction inclined by a predetermined angle from the perpendicular direction to the base end side. Placed in. From the imaging ultrasonic transducer 108, it is possible to generate imaging ultrasonic IUS suitable for image acquisition. The imaging ultrasonic transducer 108 generates a pixel signal corresponding to the reflected wave of the imaging ultrasonic IUS.
  • the resolution due to the reflected wave of the ultrasonic wave varies depending on the frequency.
  • the frequency of the imaging ultrasound IUS is determined in advance based on the resolution necessary for confirmation and diagnosis of the position of a specific sympathetic nerve.
  • a signal line extending from the imaging ultrasonic transducer 108 to the base end is connected to the imaging control unit.
  • the imaging control unit supplies a drive signal to the imaging ultrasonic transducer 108 so as to generate the imaging ultrasonic IUS at the above-described frequency.
  • the imaging control unit receives a pixel signal generated by the imaging ultrasonic transducer 108.
  • the imaging control unit creates an image based on pixel signals corresponding to a number of locations irradiated with imaging ultrasonic waves.
  • the irradiation position of the imaging ultrasonic wave can be determined by detecting the rotational position of the first torque transmitting body 103 and the displacement position along the longitudinal direction using an encoder or a position sensor. Used.
  • the mesh balloon 101 is provided on the sheath 102. By bending the wire constituting the mesh balloon 101 outward from the blood vessel insertion type treatment device 100 and pressing the wire against the inner wall of the blood vessel, the blood vessel insertion type treatment device 100 can be fixed in the blood vessel.
  • the blood vessel insertion type treatment device 100 of the first embodiment configured as described above, it is possible to maximize the heat generation energy at the convergence position of the ablation ultrasonic waves. Therefore, while it is possible to cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel, it is possible to suppress damage to the blood vessel interposed between the living tissue.
  • the first ultrasonic generator 104 may be able to cauterize living tissue even when the acoustic lens 107 is not used.
  • the blood vessel insertion type treatment device 100 of the first embodiment it is possible to change the irradiation position of the ultrasonic CUS for cauterization using the first torque transmission body 103.
  • the ultrasonic wave In ablation of a living tissue using an ultrasonic transducer, the ultrasonic wave is converged to the focal point, so that the region that can be cauterized is only near the focal point.
  • it is possible to rotate the entire blood vessel insertion type treatment device 100 it is necessary to release the fixation by the mesh balloon 101, which requires a complicated procedure.
  • the first torque transmission body 103 can be rotated manually or automatically.
  • the blood vessel insertion type treatment device 100 of the first embodiment since the image acquisition unit 105 is provided in the vicinity of the first ultrasonic generator 104, the confirmation of the living tissue to be ablated and the ablation status can be confirmed. Confirmation is easy.
  • the vicinity of the insertion end of the blood vessel insertion type treatment device 100 can be temporarily fixed in the blood vessel using the mesh balloon 101.
  • fixing the blood vessel insertion type treatment device 100 it is possible to reduce the blurring of the reproduced image and to reduce the blurring that occurs at the irradiation position of the ultrasonic wave CUS for cauterization.
  • the mesh balloon 101 since the mesh balloon 101 is used, blood flow can be secured, and overheating of the inner wall of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 100 in the blood vessel can be prevented. is there.
  • the second embodiment is different from the first embodiment in that the first ultrasonic generator is shared as an image acquisition unit.
  • the second embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1000 of the second embodiment includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 1040, and a mesh balloon 101 (see FIG. 2). Etc. are configured.
  • the second embodiment unlike the first embodiment, no image acquisition unit is provided.
  • the configurations and functions of the sheath 102, the first torque transmission body 103, and the mesh balloon 101 are the same as those in the first embodiment.
  • the configuration of the first ultrasonic generator 1040 is the same as that of the first embodiment.
  • the first ultrasonic generator 1040 generates an ablation ultrasonic wave CUS as in the first embodiment.
  • the first ultrasonic generator 1040 can generate the imaging ultrasonic IUS.
  • the first ultrasonic generator 1040 can generate a pixel signal corresponding to the reflected wave of the imaging ultrasonic wave IUS.
  • the first ultrasonic generator 1040 to function as described above.
  • a configuration for generating ultrasonic waves having a frequency applicable to both cauterization and imaging, a configuration for continuously switching between the cauterization frequency and the imaging frequency, and the like can be applied.
  • the living tissue can be cauterized, while the damage of the blood vessel interposed between the living tissue can be suppressed.
  • the blood vessel insertion type treatment device 1000 can also cauterize biological tissue distributed at various positions near the insertion end of the sheath 102.
  • the blood vessel insertion type treatment device 1000 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the cauterizing ultrasonic wave.
  • the blood vessel insertion type treatment device 1000 can prevent overheating of the blood vessel inner wall while fixing the blood vessel insertion type treatment device 1000 in the blood vessel.
  • the first ultrasonic generator 1040 can be used for imaging, confirmation of a living tissue to be ablated, confirmation of ablation status, etc. Easy. Moreover, according to the blood vessel insertion type treatment device 1000 of the second embodiment, the first ultrasonic generator 1040 is shared for the execution of the cauterization function and the imaging function, so that it is not necessary to provide a separate image acquisition unit. Therefore, it is possible to simplify manufacturing and reduce manufacturing costs.
  • the third embodiment is different from the first embodiment in that the first ultrasonic generator and the image acquisition unit can be rotated separately.
  • the third embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1001 of the third embodiment includes a sheath 102, a first torque transmission body 1031, a second torque transmission body 1091, a first ultrasonic generator 104, an image.
  • the acquisition unit 105 and the mesh balloon 101 are included.
  • the configurations and functions of the sheath 102, the first ultrasonic generator 104, and the mesh balloon 101 are the same as those in the first embodiment.
  • the configuration other than the arrangement of the image acquisition unit 105 is the same as that of the first embodiment.
  • the first torque transmission body 1031 is formed in a tubular shape so as to extend from the proximal end of the sheath 102 to the insertion end by a flexible member. Other configurations and functions of the first torque transmission body 1031 are the same as those of the first embodiment. Therefore, the first torque transmitting body 1031 is rotatable around the longitudinal direction in the sheath 102 and is displaceable along the longitudinal direction. Further, the torque supplied at the proximal end of the first torque transmission body 1031 is transmitted to the insertion end, and the entire first torque transmission body 1031 can rotate within the sheath.
  • the second torque transmission body 1091 is formed by a flexible member so as to extend from the base end of the first torque transmission body 1031 to the insertion end. With the insertion end of the second torque transmission body 1031 protruding to the insertion end of the first torque transmission body 1031, the base end of the second torque transmission body 1091 is from the base end of the first torque transmission body 1031. Protruding.
  • the outer diameter of the second torque transmission body 1091 is determined to be smaller than the inner diameter of the first torque transmission body 1031, and the second torque transmission body 1091 is centered on the longitudinal direction in the first torque transmission body 1031. It can rotate freely. Therefore, when a torque for rotating the longitudinal direction about the axis is supplied at the base end of the second torque transmission body 1091, the supplied torque is transmitted to the insertion end of the second torque transmission body 1091, and the second torque transmission The entire body 1091 rotates within the first torque transmitting body 1031.
  • the second torque transmission body 1091 can be displaced along the longitudinal direction in the first torque transmission body 1031.
  • the image acquisition unit 105 is provided in the vicinity of the insertion end of the second torque transmission body 1091.
  • the blood vessel insertion type treatment device 1001 of the third embodiment configured as described above, it is possible to cauterize the living tissue, while suppressing damage to the blood vessels interposed between the living tissue. .
  • the blood vessel insertion type treatment device 1001 can also cauterize living tissue distributed at various positions near the insertion end of the sheath 102.
  • the blood vessel insertion type treatment device 1001 makes it easy to check the living tissue to be ablated and the ablation status.
  • the blood vessel insertion type treatment device 1001 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the cauterizing ultrasonic wave.
  • the blood vessel insertion type treatment device 1001 can prevent overheating of the inner wall of the blood vessel while fixing the blood vessel insertion type treatment device in the blood vessel.
  • the first ultrasonic generator 104 and the image acquisition unit 105 can be rotated and / or displaced separately. Therefore, it is possible to rotate the first ultrasonic generator 104 and the image acquisition unit 105 at a speed suitable for cauterization and imaging.
  • a blood vessel insertion type treatment device according to a fourth embodiment of the present invention will be described.
  • the configuration of the first ultrasonic generator is different from that of the first embodiment.
  • the fourth embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1002 of the fourth embodiment includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 1042, an image acquisition unit 105, and a mesh balloon 101.
  • the first ultrasonic generator 1042 is not provided with an acoustic lens, and a plurality of first ultrasonic transducers 1062 are arranged along the longitudinal direction.
  • the ablation controller drives the first ultrasonic transducer 1062 separately so that the timing or phase at which the ultrasonic waves are emitted is delayed from both ends of the first ultrasonic generator 1042 toward the center.
  • the blood vessel insertion type treatment device 1002 of the fourth embodiment configured as described above, it is possible to cauterize a living tissue, while suppressing damage to a blood vessel interposed between the living tissue. .
  • the blood vessel insertion type treatment device 1002 makes it easy to confirm the living tissue to be ablated and the ablation status.
  • the blood vessel insertion type treatment device 1002 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the ultrasonic waves for cauterization.
  • the blood vessel insertion type treatment device 1002 can prevent overheating of the blood vessel inner wall while fixing the blood vessel insertion type treatment device in the blood vessel.
  • the blood vessel insertion type treatment device 1002 of the fourth embodiment it is possible to change the focal length by adjusting the delay time such as the time for generating the ultrasonic wave from the first ultrasonic transducer 1042. It is. Therefore, according to the blood vessel insertion type treatment device 1042, it is possible to cauterize living tissue existing in a wide range with respect to the distance from the blood vessel.
  • a blood vessel insertion type treatment device according to a fifth embodiment of the present invention will be described.
  • the configuration of the first ultrasonic generator is different from that of the first embodiment.
  • the fifth embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1003 of the fifth embodiment includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 1043, an image acquisition unit 105, and a mesh balloon 101.
  • a sheath 102 the first torque transmission body 103, the image acquisition unit 105, and the mesh balloon 101.
  • the configurations and functions of the sheath 102, the first torque transmission body 103, the image acquisition unit 105, and the mesh balloon 101 are the same as those in the first embodiment.
  • the first ultrasonic generator 1043 is not provided with an acoustic lens.
  • the first ultrasonic generator 1043 has a cylindrical main body 1103, and the main body 1103 is fixed to the first torque transmission body 103 in a state where the first torque transmission body 103 is inserted into the main body 1103.
  • first ultrasonic transducers 1063 are fixed to the first ultrasonic generator 1043 so as to be arranged in the circumferential direction of the cylinder.
  • the first ultrasonic transducer 1063 has a V-shaped bent shape, and a line segment that bisects the bent portion (see reference numeral BP) is parallel to the circumferential direction, that is, in the longitudinal direction of the blood vessel insertion type treatment device 1003. It arrange
  • the shape of the first ultrasonic transducer 1063 is not limited to the V-shaped bent shape, and may be a curved shape such as a U shape for converging the ultrasonic wave to the focal point.
  • the first torque transmission body 103 is connected to a transmission body driving unit 1113 (rotation mechanism) on the proximal end side.
  • the transmission body drive unit 1113 includes a rotation motor 1123, a linear guide 1133, a displacement motor 1143, and the like.
  • Rotating motor 1123 supplies torque for rotating first torque transmitting body 103 about the longitudinal direction.
  • the linear guide 1133 fixes the rotation motor 1123 at one end. Further, the linear guide 1133 can be displaced along the longitudinal direction of the first torque transmission body 103.
  • the displacement motor 1143 displaces the linear guide 1133 along the longitudinal direction.
  • Rotation motor 1123 and displacement motor 1143 are driven based on the control of treatment device controller 1153.
  • the treatment device controller 1153 controls the rotation motor 1123 so as to rotate the first ultrasonic generator 1043 in the opening direction of the bending portion BP of the first ultrasonic transducer 1063 (see reference numeral D1 in FIG. 7). .
  • the first ultrasonic generator 1043 is rotated so that the upper surface of the drawing is directed from the bottom to the top as time passes (see reference numeral D1). At timing t1, both end portions EP of the first ultrasonic transducer 1063 reach the upper end of the main body 1103 when viewed from the paper surface side of FIG. 9, and the first ultrasonic transducer 1063 is driven to emit the ultrasonic wave CUS1. (See FIG. 9A).
  • the first ultrasonic generator 1043 rotates to cause the portion IP between the both ends of the first ultrasonic transducer 1063 and the central bent portion to reach the upper end of the main body 1103, and the first ultrasonic transducer. 1063 is driven to emit the ultrasonic wave CUS2 again (see the ninth (b)). Further, at timing t2, the ultrasonic wave CUS1 emitted at timing t1 is diffused.
  • the bending portion BP of the first ultrasonic transducer 1063 reaches the upper end of the main body 1103 due to the rotation of the first ultrasonic generator 1043, and the first ultrasonic transducer 1063 is again ultrasonic CUS3. Is driven (see 9th (c)).
  • ultrasonic waves CUS1 and CUS2 emitted at timings t1 and t2 are diffused.
  • the ultrasonic waves CUS1, CUS2, and CUS3 emitted at timings t1, t2, and t3 interfere with each other (see the intersection of wavefronts in FIG. 9), and the amplitude increases.
  • the ultrasonic waves CUS1, CUS2, and CUS3 emitted at timings t1, t2, and t3 all overlap at the focal point FP (see FIG. 9D).
  • the blood vessel insertion type treatment device 1003 of the fifth embodiment configured as described above, it is possible to cauterize the living tissue, while suppressing damage to the blood vessels interposed between the living tissue. . In addition, it is possible to cauterize living tissue distributed at various positions near the insertion end of the sheath 102 by the blood vessel insertion type treatment device 1003. In addition, the blood vessel insertion type treatment device 1003 makes it easy to confirm the living tissue to be ablated and the ablation status. In addition, the blood vessel insertion type treatment device 1003 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the ultrasonic waves for cauterization. In addition, the blood vessel insertion type treatment device 1003 can also prevent overheating of the blood vessel inner wall while fixing the blood vessel insertion type treatment device in the blood vessel.
  • the blood vessel insertion type treatment device 1003 of the fifth embodiment by adjusting the period of generating ultrasonic waves from the first ultrasonic transducer 1063 and the rotation speed of the first torque transmitting body 103, It is possible to change the focal length. Therefore, according to the blood vessel insertion type treatment device 1003, it is possible to cauterize living tissue existing in a wide range with respect to the distance from the blood vessel.
  • a blood vessel insertion type treatment device according to a sixth embodiment of the present invention will be described.
  • the configuration of the first ultrasonic generator is different from that of the first embodiment.
  • the sixth embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1004 of the sixth embodiment includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 1044, a second ultrasonic generator 1164,
  • the image acquisition unit 1054 includes the mesh balloon 101 and the like.
  • the configurations and functions of the sheath 102, the first torque transmission body 103, and the mesh balloon 101 are the same as those in the first embodiment.
  • the first ultrasonic generator 1044 is not provided with an acoustic lens.
  • the first ultrasonic generator 1044 has a cylindrical main body 1104 and is fixed to the first torque transmission body 103 in a state where the first torque transmission body 103 is inserted into the main body 1104.
  • a plurality of first ultrasonic transducers 1064 are fixed to the first ultrasonic generator 1044 so as to be arranged in the circumferential direction of the cylinder.
  • the first ultrasonic transducer 1064 has a shape having a longitudinal direction, and is disposed so as to be inclined with respect to the rotation axis of the first torque transmission body 103.
  • the second ultrasonic generator 1164 is fixed to the first torque transmitter 103 at a position where the image acquisition unit 1054 is sandwiched between the first ultrasonic generator 1044 along the longitudinal direction of the first torque transmitter 103. Is done. Similar to the first ultrasonic generator 1044, the second ultrasonic generator 1164 has a cylindrical main body 1174, and a plurality of second ultrasonic transducers 1184 are fixed so as to be aligned in the circumferential direction of the cylinder. The second ultrasonic transducer 1184 is also arranged so as to be inclined with respect to the rotation axis of the first torque transmission body 103.
  • the second ultrasonic transducer 1184 is inclined at the same angle opposite to that of the first ultrasonic transducer 1064 with respect to the rotation axis, and both ends in the circumferential direction thereof are the first ultrasonic transducer 1064. Are arranged so as to overlap both ends in the circumferential direction (see line segment LS). Therefore, the first ultrasonic transducer 1064 and the second ultrasonic transducer 1184 are line symmetric with respect to a line along the circumferential direction of rotation by the first torque transmission body 103.
  • first torque transmission body 103 in the present embodiment is also connected to the transmission body drive unit 1113 as in the fifth embodiment, and together with the first torque transmission body 103, the first ultrasonic generator 1044 and The second ultrasonic generator 1164 is controlled to rotate about the longitudinal direction.
  • the intersection of the extension lines along the longitudinal direction of the first ultrasonic transducer 1064 and the second ultrasonic transducer 1184 (see symbol SP1) to the intersection of the perpendicular line in the longitudinal direction (see symbol SP2).
  • the treatment device controller 1153 controls the rotation motor 1123 so as to rotate in the direction toward the.
  • the blood vessel insertion type treatment device 1004 can also cauterize living tissue distributed at various positions near the insertion end of the sheath 102.
  • the blood vessel insertion type treatment device 1004 makes it easy to confirm the living tissue to be ablated and the ablation status.
  • the blood vessel insertion type treatment device 1004 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the ultrasonic waves for cauterization.
  • the blood vessel insertion type treatment device 1004 can prevent overheating of the blood vessel inner wall while fixing the blood vessel insertion type treatment device in the blood vessel.
  • the blood vessel insertion type treatment device 1004 of the sixth embodiment the period in which ultrasonic waves are generated from the first ultrasonic transducer 1064 and the second ultrasonic transducer 1184 and the first torque transmitting body 103.
  • the focal length can be changed by adjusting the rotation speed of the lens. Therefore, according to the blood vessel insertion type treatment device 1004, it is possible to cauterize living tissue existing in a wide range with respect to the distance from the blood vessel.
  • the ultrasonic transducer is usually a piezoelectric element, and it is difficult to form it in a bent shape as in the fifth embodiment.
  • manufacturing is easier as compared with the ultrasonic transducer in the fifth embodiment.
  • the image acquisition unit 1054 is provided at a position sandwiched between the first ultrasonic generator 1044 and the second ultrasonic generator 1164. Even if the imaging ultrasonic wave IUS is emitted perpendicularly to the longitudinal direction of the first torque transmitting body 103, the focal point of the cauterizing ultrasonic wave CUS can be irradiated. Therefore, it is possible to acquire an image near the focal point without excessively tilting the imaging ultrasonic transducer 108 with respect to the first torque transmitting body 103. While the blood vessel insertion type treatment device 1004 is required to have a small diameter, it is difficult to place the imaging ultrasonic transducer 108 at an inclination. Therefore, according to the configuration of the present embodiment, the manufacture becomes easy.
  • a blood vessel insertion type treatment device according to a seventh embodiment of the present invention will be described.
  • the configuration of the first ultrasonic generator is different from that of the first embodiment.
  • the seventh embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1005 includes a sheath 102, a first torque transmission body 103, a first ultrasonic generator 1045, an image acquisition unit 105, and a mesh balloon 101. (Refer to FIG. 2).
  • the configurations and functions of the sheath 102, the first torque transmission body 103, the image acquisition unit 105, and the mesh balloon 101 are the same as those in the first embodiment.
  • the first ultrasonic generator 1045 has a single first ultrasonic transducer 1065. Unlike the first embodiment, the first ultrasonic generator 1045 is not provided with an acoustic lens. As shown in FIG. 12, the first ultrasonic transducer 1065 has a concave surface in a plane perpendicular to the longitudinal direction of the first torque transmitting body 103. Since the first ultrasonic transducer 1065 has a concave surface in the plane perpendicular to the longitudinal direction, the ultrasonic wave generated by the first ultrasonic transducer 1065 converges to a focal point separated from the first ultrasonic transducer 1065 in the plane perpendicular to the longitudinal direction by a predetermined distance. To do.
  • the blood vessel insertion type treatment device 1005 can also cauterize living tissue distributed at various positions near the insertion end of the sheath 102.
  • the blood vessel insertion type treatment device 1005 can also reduce the blurring of the reproduced image and the blurring generated at the irradiation position of the ultrasonic waves for cauterization.
  • the blood vessel insertion type treatment device 1005 can prevent overheating of the blood vessel inner wall while fixing the blood vessel insertion type treatment device 1005 in the blood vessel.
  • the blood vessel insertion type treatment device 1005 of the seventh embodiment since an acoustic lens is unnecessary, it is possible to simplify the manufacturing and reduce the manufacturing cost.
  • the mesh balloon 101 is provided in the blood vessel insertion type treatment devices 100, 1000, 1001, 1002, 1003, and 1004 of the first to sixth embodiments, but the blood vessel insertion type treatment devices 100, 1000 are used by using other balloons. , 1001, 1002, 1003, 1004 may be configured to be temporarily fixable in the blood vessel.
  • a balloon that prevents overheating of the inner wall of the blood vessel is preferable.
  • the same overheating prevention effect as that of the mesh balloon 101 can be obtained by a configuration having a plurality of balloons 119 that can be expanded in different directions around the sheath 102.
  • the mesh balloon 101 and the mesh balloon 101 may be configured to have a balloon 120 that is inflatable around the sheath 102 and has a hole OH that penetrates in the longitudinal direction. It is possible to obtain the same overheating prevention effect.
  • the same overheating prevention effect as that of the mesh balloon 101 can be obtained by the configuration having the balloon 121 formed so that the cross section along the plane perpendicular to the longitudinal direction has a star shape. Is possible. Further, for example, as shown in FIG. 16, the same overheating prevention effect as that of the mesh balloon 101 can be obtained by a configuration in which the balloon 123 is partially inflated using a plurality of wires 122.
  • a perfusion balloon or a cryoballoon that can cool the inner wall of the blood vessel using a refrigerant.
  • cauterization using ultrasonic waves it is possible to maximize the heat generation energy at the focal point, but the blood vessel walls including the inner wall of the blood vessel that propagates the ultrasonic waves before convergence can also generate heat due to the ultrasonic waves. Therefore, it is possible to further reduce the possibility of damage that can occur on the inner wall of the blood vessel by using a cooled balloon.
  • the first ultrasonic transducers 106 and 1065 and the imaging ultrasonic transducer 108 have the same length in the longitudinal direction.
  • the length along the longitudinal direction of the children 106 and 1065 may be sufficiently longer than the length along the longitudinal direction of the imaging ultrasonic transducer 108 (see FIG. 19).
  • the first ultrasonic transducers 106 and 1065 are plate-shaped and emit ultrasonic waves in a single direction, but may have a cylindrical side surface shape. Even with such a configuration, the size of the first ultrasonic transducer can be increased.
  • the length of the first ultrasonic transducer 1062 arranged in the longitudinal direction and the length of the imaging ultrasonic transducer are approximately the same, but the first ultrasonic transducer is the same.
  • the configuration in which the lengths 1062 are arranged may be sufficiently longer than the length along the longitudinal direction of the imaging ultrasonic transducer 108 (see FIG. 20). By sufficiently lengthening the length in which the first ultrasonic transducers 1062 are arranged, the size of the first ultrasonic generator is increased, and it is possible to generate heat so that the living tissue can be cauterized.
  • the first ultrasonic transducer 1062 is plate-shaped and emits ultrasonic waves in a single direction, but it may have a cylindrical side shape. Even with such a configuration, the size of the first ultrasonic generator can be increased.
  • the first ultrasonic generators 104, 1042, and 1045 and the image acquisition unit 105 are arranged along the longitudinal direction of the first torque transmission body 103.
  • the first ultrasonic generator 104 and the image acquisition unit 105 may be provided at positions symmetrical to a plane passing through the center line along the longitudinal direction of the first torque transmission body 103 (FIG. 21). reference).
  • the first ultrasonic generator 104 and the imaging ultrasonic generator 105 are provided separately, but as shown in FIG. 22, the first ultrasonic transducer 106 and The imaging ultrasonic transducer 108 may be stacked.
  • such a laminated structure can be formed by using a ceramic piezoelectric element for the first ultrasonic transducer 106 and a piezoelectric film sheet for the imaging ultrasonic transducer 108.
  • the imaging ultrasonic transducer 108 is provided closer to the sheath 102 than the first ultrasonic transducer 106, but the reverse may be possible.
  • a cautery ultrasonic wave is generated in the first ultrasonic transducer 1062, and an imaging ultrasonic wave is generated in the imaging ultrasonic transducer 108.
  • the ultrasonic transducer 1062 may generate imaging ultrasound and the imaging ultrasonic transducer 108 may generate cauterization ultrasound.
  • the first ultrasonic transducer 1065 is a single ultrasonic transducer.
  • a plurality of ultrasonic transducers are arranged along the longitudinal direction.
  • the structure which arranges may be sufficient. According to such a configuration, it is possible to focus the ablation ultrasonic wave on the focal point in a plane along the longitudinal direction and a plane perpendicular to the longitudinal direction.
  • the first ultrasonic transducer 1064 has a concave surface in a plane perpendicular to the longitudinal direction of the first torque transmitting body 103, but as shown in FIG.
  • the ultrasonic transducer 1064 may have a concave surface along the longitudinal direction of the first torque transmitting body 103.
  • the image acquisition unit 105 is configured to acquire an image using ultrasonic waves.
  • an image based on optical information such as TD-OCT and HUD-OCT is used.
  • the structure which acquires may be sufficient.
  • the first ultrasonic generators 1043 and 1044 and the second ultrasonic generator 1164 are configured to include a plurality of ultrasonic transducers. Even in the configuration in which one ultrasonic transducer is provided (see FIG. 24), it is possible to obtain the same effect as in the present embodiment.
  • the first ultrasonic generator 1043 is provided with a first ultrasonic transducer 1063 having a bent portion BP.
  • the first ultrasonic generator 1063 includes a first ultrasonic transducer 1063 having a smooth curvature without the bent portion BP. It may be provided.
  • the curvature of the first ultrasonic transducer 1063 is given by the product of the delay time ⁇ (x) and the peripheral velocity of the first ultrasonic transducer 1063.
  • a function f (x) is represented. Note that the diameter of the first ultrasonic generator 1043 is d (see FIG. 25A), and the rotational speed (rps) of the first ultrasonic generator 1043 is R.
  • the drive frequency f of the first ultrasonic transducer 1063 is represented by 1 / T, and the wavelength ⁇ at the drive frequency f of the first ultrasonic transducer 1063 is represented by CT. Note that T is the period, and C is the ultrasonic velocity (sound velocity).
  • the first torque transmission body 1031 is formed in a tubular shape, and the second torque transmission body 1091 is inserted into the lumen thereof. It does not have to be formed in a tubular shape.
  • Vascular insertion type treatment device 101 Mesh balloon 102 Sheath 103, 1031 First torque transmission body 104, 1040, 1042, 1043, 1044, 1045 First ultrasonic generator 105, 1054 Image acquisition unit 106, 1062, 1063, 1064, 1065 First ultrasonic transducer 107 Acoustic lens 108 Imaging ultrasonic transducer 1091 Second torque transmitter 1103, 1104 Main body 1113 Transmitter driver 1123 times Motor 1133 Linear guide 1143 Displacement motor 1153 Treatment device controller 1164 Second ultrasonic generator 1174 Main body 1184 Second ultrasonic transducer 119 Balloon 120 Balloon 121 Balloon 12 Wire 123 Balloon 200 guiding catheter BP bent portion CUS ablating ultrasound FA femoral artery IUS imaging ultrasound LS line RA renal arteries SN sympathetic

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 血管挿入型治療デバイス(100)は第1のトルク伝達体(103)および第1の超音波発生器(104)を有する。第1のトルク伝達体(103)は両端に基端および挿入端を有する長手形状である。第1のトルク伝達対(103)は基端において供給される長手形状の長手方向を軸に回動させるトルクを伝達する。第1の超音波発生器(104)を第1のトルク伝達体に設ける。第1の超音波発生器(104)は第1の超音波発生器(104)から所定の距離だけ離間した生体組織を焼灼する超音波を発する。

Description

血管挿入型治療デバイス
 本発明は、血管挿入型治療デバイスに関する発明であって、特に、血管内に挿入し、血管内部から血管周辺の生体組織を焼灼可能な血管挿入型治療デバイスに関する。
 近年、腎動脈交感神経活動の異常が、鬱血性心不全、腎不全、高血圧症、およびこれら以外の心腎疾患を引起すことが、解明されている。また、腎動脈交感神経の除去等により、これらの疾患を治療することも知られている。腎動脈交感神経の焼灼のために、腎動脈内部に電極を挿入し、電極から腎動脈交換神経にパルス出力電界を印加する腎臓神経調節装置が提案されている(特許文献1参照)。
 しかし、特許文献1に記載の腎臓神経調節装置による、パルス出力電界を用いた腎動脈交感神経の焼灼では、血管内膜の電流密度が最も大きくなる。そのため、血管内膜において発生する熱が最も大きくなる。このため、血管内膜を含めた血管壁全体が焼灼される可能性があり、内膜肥厚および血栓等の副作用が発生し得る。
特表2008-515544号公報
 従って、上記のような問題点に鑑みてなされた本発明では、腎動脈周囲の腎動脈交感神経等の血管周囲の生体組織の焼灼に際して、血管の損傷を抑制可能な血管挿入型治療デバイスの提供を目的とする。
 上述した諸課題を解決すべく、本発明による血管挿入型治療デバイスは、
 両端に基端および挿入端を有する長手形状であり、基端において供給される長手形状の長手方向を軸に回動させるトルクを伝達する第1のトルク伝達体と、
 第1のトルク伝達体に設けられ、超音波を発する第1の超音波発生器とを備え、
 第1の超音波発生器は、第1の超音波発生器から所定の距離だけ離間した生体組織を焼灼する
 ことを特徴とするものである。
 このような構成によれば、第1の超音発生器が発する超音波を用いて生体組織を焼灼するので、第1の超音波発生器と焼灼対象組織との間に介在する血管等の損傷を抑制することが可能である。また、第1のトルク伝達体の長手方向を軸にして回転させることにより、第1のトルク伝達体に設けられる第1の超音波発生器の向きを変えることが可能である。それゆえ、超音波発生器を用いながらも、特定の一点に限定されることなく、血管周囲の生体組織の焼灼が可能である。
 上記のように構成された本発明に係る血管挿入型治療デバイスによれば、血管周囲の生体組織の除去に際し、血管の損傷を抑制することが可能である。
本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。 図1における、ガイディングカテーテルが挿入された腎動脈近辺の拡大図である。 第1の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第2の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第3の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第4の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第5の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 伝達体駆動部の内部構成を概略的に示すブロック図である。 第5の実施形態における第1の超音波発生器によって超音波が収束する原理を説明するためのタイミングチャートである。 第6の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第7の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 図11におけるXII-XII線に沿った断面図である。 メッシュバルーンの第1の変形例を示す図である。 図13におけるXIV-XIV線に沿った断面図である。 メッシュバルーンの第2の変形例を示す図である。 図15におけるXVI-XVI線に沿った断面図である。 メッシュバルーンの第3の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。 メッシュバルーンの第4の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。 第1の実施形態における第1の超音波振動子の第1の変形例を説明するための、血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第4の実施形態における第1の超音波振動子の第1の変形例を説明するための、血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第1の実施形態における第1の超音波発生器および撮像用超音波発生器の配置に関する変形例を説明するための、血管挿入型治療デバイスの挿入端近傍の長手方向に垂直な平面に沿った断面図である。 第1の実施形態における第1の超音波振動子および撮像用超音波振動子の第2の変形例を説明するための、血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第1の実施形態における第1の超音波振動子の第3の変形例を説明するための、血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。 第5、第6の実施形態における第1の超音波発生器および第2の超音波発生器の変形例を示す図である。 第5の実施形態における第1の超音波発生器の他の変形例を示す図である。
 以下、本発明を適用した血管挿入型治療デバイスの実施形態について、図面を参照して説明する。図1は、本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。
 腎動脈交感神経除去の手技のために、術者は予めガイディングカテーテル200を患者の大腿部から大腿動脈FAに挿入し、ガイディングカテーテル200の先端を腎動脈RAに到達させる。ガイディングカテーテル200の腎動脈RAへの到達には、ガイドワイヤ(図示せず)が用いられる。
 ガイディングカテーテル200は管状であり、診察および治療用のデバイスを挿入可能である。血管挿入型治療デバイス100は全体的に紐状であり、挿入端と基端とを有し、挿入端からガイディングカテーテル200の内腔に挿入可能である。術者は、血管挿入型治療デバイス100をガイディングカテーテル200内に挿入し、その挿入端をガイディングカテーテル200から突出させる(図2参照)。突出させた状態で、血管挿入型治療デバイス100の挿入端近傍に設けられるメッシュバルーン101を膨張させることにより、血管挿入型治療デバイス100を腎動脈RA内に固定する。
 後述するように、血管挿入型治療デバイス100は、撮像機能および焼灼機能を有する。撮像機能を実行するために、血管挿入型治療デバイス100は、撮像用の超音波を発することが可能である(図2符合IUS参照)。術者は、挿入した血管挿入型治療デバイス100の撮像機能を実行させることにより、腎動脈RA内部からの腎動脈周囲の画像を取得させる。
 術者は、取得した画像に基づいて、焼灼すべき交感神経SNを判別し、判別した交感神経SNに焼灼用の超音波が照射される(図2符合CUS参照)ように、血管挿入型治療デバイス100の位置を調節する。位置調節後、術者は血管挿入型治療デバイス100の焼灼機能を実行させて、所望の交感神経を焼灼する。
 次に、血管挿入型治療デバイス100の構成について、図3を用いて説明する。血管挿入型治療デバイス100は、シース102、第1のトルク伝達体103、第1の超音波発生器104、画像取得ユニット105、およびメッシュバルーン101(図2参照)等を含んで構成される。
 シース102は、音響性および可撓性を有する部材によって、管状に形成される。シース102の挿入端側の端部は開放されている。また、使用開始時、シース102内部は基端側から音響伝達性を有する媒質により満たされる。
 第1のトルク伝達体103は、可撓性を有する部材によってシース102の基端から挿入端まで延在するように形成される。第1のトルク伝達体103の挿入端をシース102の挿入端まで到達させた状態で、第1のトルク伝達体103の基端はシース102の基端から突出する。
 第1のトルク伝達体103の外径はシース102の内径より細くなるように定められ、第1のトルク伝達体103はシース102内で長手方向を軸に回動自在である。したがって、第1のトルク伝達体103の基端において、長手方向を軸に回転させるトルクを供給すると、供給されたトルクは第1のトルク伝達体103の挿入端まで伝達され、第1のトルク伝達体103全体がシース102内で回転する。また、第1のトルク伝達体103は、シース102内で長手方向に沿って変位自在である。
 第1の超音波発生器104は、第1のトルク伝達体103の挿入端近傍に設けられる。第1の超音波発生器104は、単一の第1の超音波振動子106および音響レンズ107を有する。
 第1の超音波振動子106は、第1のトルク伝達体103の長手方向に垂直な方向あるいは垂直な方向から挿入端側に所定の角度だけ傾斜した方向に、超音波を発することが可能なように配置される。第1の超音波振動子106は、焼灼に適した周波数である焼灼用超音波CUSを発する。
 周波数により、超音波を伝達させる距離および超音波の収束位置における発熱量等が定まる。それゆえ、腎動脈RA内部から腎動脈交感神経SNまでのおおよその間隔および交感神経SNの焼灼に必要な発熱量等に基づいて、焼灼用超音波CUSの周波数が予め定められる。
 第1の超音波振動子106から基端まで延びる信号線が焼灼制御部に接続される。焼灼制御部は、前述の周波数で焼灼用超音波CUSを発生するように駆動信号を第1の超音波振動子106に供給する。
 音響レンズ107は、第1の超音波振動子106の表面に設けられる。音響レンズ107は音響レンズ107から所定の距離だけ離れた焦点に超音波を収束させ、焦点近傍における発熱エネルギーを最大化させる。腎動脈内部から腎動脈交感神経までのおおよその距離に基づいて音響レンズ107の焦点距離は定められ、形成される。
 画像取得ユニット105は、第1のトルク伝達体103の第1の超音波発生器104よりも挿入端側に設けられる。画像取得ユニット105は、単一の撮像用超音波振動子108を有する。
 撮像用超音波振動子108は、第1のトルク伝達体103の長手方向に垂直な方向あるいは垂直な方向から基端側に所定の角度だけ傾斜した方向に、超音波を発することが可能なように配置される。撮像用超音波振動子108からは、画像の取得に適した撮像用超音波IUSを発生させることが可能である。また、撮像用超音波振動子108は、撮像用超音波IUSの反射波に応じた画素信号を生成する。
 周波数により、超音波の反射波による解像度が変動する。特定の交感神経の位置の確認および診断等に必要な解像度に基づいて、撮像用超音波IUSの周波数が予め定められる。
 撮像用超音波振動子108から基端まで延びる信号線が撮像制御部に接続される。撮像制御部は、前述の周波数で撮像用超音波IUSを発生するように駆動信号を撮像用超音波振動子108に供給する。
 また、撮像制御部は撮像用超音波振動子108が生成する画素信号を受信する。撮像制御部は撮像用超音波が照射される多数の箇所に対応する画素信号に基づいて、画像を作成する。なお、撮像用超音波の照射位置は、エンコーダや位置センサを用いて第1のトルク伝達体103の回転位置および長手方向に沿った変位位置を検出することにより判別可能であり、画像の作成に用いられる。
 メッシュバルーン101は、シース102に設けられる。メッシュバルーン101を構成するワイヤを血管挿入型治療デバイス100から外部に湾曲させてワイヤを血管内壁に押圧することにより、血管挿入型治療デバイス100を血管内に固定可能である。
 以上のような構成の第1の実施形態の血管挿入型治療デバイス100によれば、焼灼用超音波の収束位置において発熱エネルギーを最大化させることが可能である。したがって、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。なお、第1の超音波発生器104は音響レンズ107を用いない場合でも生体組織を焼灼可能な場合はある。
 また、第1の実施形態の血管挿入型治療デバイス100によれば、第1のトルク伝達体103を用いて焼灼用超音波CUSの照射位置を変えることが可能である。超音波振動子を用いた生体組織の焼灼においては、超音波を焦点に収束させるため、焼灼可能な領域は焦点付近のみである。血管挿入型治療デバイス100全体を回転させることも可能であるが、メッシュバルーン101による固定を解除する必要があり煩雑な手技を要する。
 そこで、本実施形態においては、第1のトルク伝達体103を用いて照射位置を変えることにより、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。なお、第1のトルク伝達体103は手動または自動で回転させることが可能である。
 また、第1の実施形態の血管挿入型治療デバイス100によれば、第1の超音波発生器104の近傍に画像取得ユニット105が設けられるため、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。
 また、第1の実施形態の血管挿入型治療デバイス100によれば、メッシュバルーン101を用いて血管挿入型治療デバイス100の挿入端近傍を血管内に一時的に固定することが可能である。血管挿入型治療デバイス100を固定することにより、再生される画像のブレを低減化させることが可能であり、また焼灼用超音波CUSの照射位置に生じるブレを低減化させることが可能である。また、メッシュバルーン101を用いるので、血流を確保可能であり、血管挿入型治療デバイス100を血管内で固定しながらも焼灼用超音波CUSを照射する血管内壁部の過熱を防止ことが可能である。
 次に、本発明の第2の実施形態に係る血管挿入型治療デバイスについて説明する。第2の実施形態では第1の超音波発生器を画像取得ユニットとして共用する点において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図4に示すように、第2の実施形態の血管挿入型治療デバイス1000は、シース102、第1のトルク伝達体103、第1の超音波発生器1040、およびメッシュバルーン101(図2参照)等を含んで構成される。第2の実施形態では、第1の実施形態と異なり、画像取得ユニットが設けられない。第2の実施形態において、シース102、第1のトルク伝達体103、およびメッシュバルーン101の構成および機能は第1の実施形態と同じである。
 第1の超音波発生器1040の構成は、第1の実施形態と同じである。第1の超音波発生器1040は、第1の実施形態と同じく、焼灼用超音波CUSを発生させる。また、第2の実施形態と異なり、第1の超音波発生器1040は撮像用超音波IUSを発生させることが可能である。また、第1の超音波発生器1040は、撮像用超音波IUSの反射波に応じた画素信号を生成可能である。
 なお、第1の超音波発生器1040を上述のように機能させるためには、様々な方法が考えられる。例えば、焼灼および撮像のいずれにも適用可能な周波数の超音波を発生させる構成、焼灼用の周波数および撮像用の周波数を連続的に切替える構成等を適用可能である。
 以上のような構成の第2の実施形態の血管挿入型治療デバイス1000によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1000によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1000によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1000によっても、血管内へ血管挿入型治療デバイス1000を固定しながら血管内壁部の過熱を防止可能である。
 また、第2の実施形態の血管挿入型治療デバイス1000によれば、第1の超音波発生器1040を撮像に用いることが可能なので、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。また、第2の実施形態の血管挿入型治療デバイス1000によれば、第1の超音波発生器1040を焼灼機能と撮像機能の実行に共用するので、画像取得ユニットを別に設ける必要が無くなる。それゆえ、製造の簡易化および製造コストの低減化を図ることが可能である。
 次に、本発明の第3の実施形態に係る血管挿入型治療デバイスについて説明する。第3の実施形態では第1の超音波発生器と画像取得ユニットを別々に回動させることが可能な点において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第3の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図5に示すように、第3の実施形態の血管挿入型治療デバイス1001は、シース102、第1のトルク伝達体1031、第2のトルク伝達体1091、第1の超音波発生器104、画像取得ユニット105、およびメッシュバルーン101(図2参照)等を含んで構成される。シース102、第1の超音波発生器104、およびメッシュバルーン101の構成および機能は、第1の実施形態と同じである。また、画像取得ユニット105の配置以外の構成は、第1の実施形態と同じである。
 第1のトルク伝達体1031は、可撓性を有する部材によってシース102の基端から挿入端まで延在するように、管状に形成される。第1のトルク伝達体1031の他の構成および機能は第1の実施形態と同じである。したがって、第1のトルク伝達体1031はシース102内で長手方向を軸に回動自在であって、長手方向に沿って変位自在である。また、第1のトルク伝達体1031の基端において供給されたトルクを挿入端まで伝達し、第1のトルク伝達体1031全体がシース内で回転可能である。
 第2のトルク伝達体1091は、可撓性を有する部材によって第1のトルク伝達体1031の基端から挿入端まで延在するように形成される。第2のトルク伝達体1031の挿入端を第1のトルク伝達体1031の挿入端まで突出させた状態で、第2のトルク伝達体1091の基端は第1のトルク伝達体1031の基端から突出する。
 第2のトルク伝達体1091の外径は第1のトルク伝達体1031の内径より細くなるように定められ、第2のトルク伝達体1091は第1のトルク伝達体1031内で長手方向を軸に回動自在である。したがって、第2のトルク伝達体1091の基端において、長手方向を軸に回転させるトルクを供給すると、供給されたトルクは第2のトルク伝達体1091の挿入端まで伝達され、第2のトルク伝達体1091全体が第1のトルク伝達体1031内で回転する。また、第2のトルク伝達体1091は、第1のトルク伝達体1031内で長手方向に沿って変位自在である。
 画像取得ユニット105は、第2のトルク伝達体1091の挿入端近傍に設けられる。
 以上のような構成の第3の実施形態の血管挿入型治療デバイス1001によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1001によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1001によっても、焼灼対象の生体組織の確認および焼灼状況の確認等が容易である。また、血管挿入型治療デバイス1001によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1001によっても、血管内へ血管挿入型治療デバイスを固定しながら血管内壁部の過熱を防止可能である。
 さらに、第3の実施形態の血管挿入型治療デバイス1001によれば、第1の超音波発生器104と画像取得ユニット105とを別々に回動および/または変位させることが可能である。したがって、焼灼および撮像に適した速度で、第1の超音波発生器104および画像取得ユニット105を回転させることが可能である。
 次に、本発明の第4の実施形態に係る血管挿入型治療デバイスについて説明する。第4の実施形態では第1の超音波発生器の構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第4の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図6に示すように、第4の実施形態の血管挿入型治療デバイス1002は、シース102、第1のトルク伝達体103、第1の超音波発生器1042、画像取得ユニット105、およびメッシュバルーン101(図2参照)等を含んで構成される。シース102、第1のトルク伝達体103、画像取得ユニット105、メッシュバルーン101の構成および機能は第1の実施形態と同じである。
 第1の実施形態と異なり、第1の超音波発生器1042には、音響レンズが設けられず、複数の第1の超音波振動子1062が長手方向に沿って並ぶように配置される。焼灼制御部は超音波を発する時期または位相が第1の超音波発生器1042の両端から中央に向かって遅延するように、第1の超音波振動子1062を別々に駆動する。このような第1の超音波振動子1062の駆動により、音響レンズを用いることなく、超音波を焦点に収束させることが可能である。
 以上のような構成の第4の実施形態の血管挿入型治療デバイス1002によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1002によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1002によっても、焼灼対象の生体組織の確認および焼灼状況の確認等が容易である。また、血管挿入型治療デバイス1002によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1002によっても、血管内へ血管挿入型治療デバイスを固定しながら血管内壁部の過熱を防止可能である。
 また、第4の実施形態の血管挿入型治療デバイス1002によれば、第1の超音波振動子1042から超音波を発生させる時期等の遅延時間を調節することにより、焦点距離を変える事が可能である。したがって、血管挿入型治療デバイス1042によれば、血管からの距離に関して広い範囲に存在する生体組織を焼灼可能である。
 次に、本発明の第5の実施形態に係る血管挿入型治療デバイスについて説明する。第5の実施形態では第1の超音波発生器の構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第5の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図7に示すように、第5の実施形態の血管挿入型治療デバイス1003は、シース102、第1のトルク伝達体103、第1の超音波発生器1043、画像取得ユニット105、およびメッシュバルーン101(図2参照)等を含んで構成される。シース102、第1のトルク伝達体103、画像取得ユニット105、およびメッシュバルーン101の構成および機能は第1の実施形態と同じである。
 第1の実施形態と異なり、第1の超音波発生器1043には音響レンズが設けられない。また、第1の超音波発生器1043は円筒形の本体1103を有し、本体1103に第1のトルク伝達体103が挿入された状態で、本体1103は第1のトルク伝達体103に固定される。
 また、第1の超音波発生器1043には、複数の第1の超音波振動子1063が円筒の周方向に並ぶように固定される。第1の超音波振動子1063は、V字型の屈曲形状であり、屈曲部位(符号BP参照)を2等分する線分が周方向に平行、すなわち血管挿入型治療デバイス1003の長手方向に垂直になるように、本体1103上に配置される。したがって、第1の超音波振動子1053の屈曲形状の両椀部は本体1103の軸方向に傾斜するように配置される。なお、第1の超音波振動子1063の形状はV字型の屈曲形状に限定されず、超音波を焦点に収束させるためのU字型のような曲線形状であってもよい。
 また、図8に示すように、第1のトルク伝達体103は基端側において伝達体駆動部1113(回動機構)に接続される。伝達体駆動部1113は、回動用モータ1123、リニアガイド1133、および変位用モータ1143等を含んで構成される。
 回動用モータ1123は、第1のトルク伝達体103を長手方向を軸に回動させるトルクを供給する。リニアガイド1133は、一端において回動用モータ1123を固定する。また、リニアガイド1133は第1のトルク伝達体103の長手方向に沿って変位可能である。変位用モータ1143はリニアガイド1133を長手方向に沿って変位させる。
 回動用モータ1123および変位用モータ1143は、治療デバイスコントローラ1153の制御に基づいて駆動する。治療デバイスコントローラ1153は、第1の超音波振動子1063の屈曲部位BPの開放方向(図7符合D1参照)に第1の超音波発生器1043を回転させるように、回動用モータ1123を制御する。
 上述のように、回動用モータ1123を駆動することにより、以下に説明するように、音響レンズを用いることなく、超音波を焦点に収束することが可能である。本実施形態による超音波収束について、図9を用いて説明する。図9では、説明の簡易化のために、単一の第1の超音波振動子1063を用いて説明する。
 第1の超音波発生器1043は、時間の経過に応じて、図面上側の面が下から上に向かうように回転している(符号D1参照)。タイミングt1において、図9の紙面側から見て第1の超音波振動子1063の両端部EPが本体1103の上端に達し、第1の超音波振動子1063が超音波CUS1を発するように駆動される(図9(a)参照)。
 タイミングt2において、第1の超音波発生器1043の回転により第1の超音波振動子1063の両端と中心の屈曲部位の間の部位IPが本体1103の上端に達し、第1の超音波振動子1063が再び超音波CUS2を発するように駆動される(第9(b)参照)。また、タイミングt2においては、タイミングt1において発した超音波CUS1が拡散している。
 さらに、タイミングt3において、第1の超音波発生器1043の回転により第1の超音波振動子1063の屈曲部位BPが本体1103の上端に達し、第1の超音波振動子1063が再び超音波CUS3を発するように駆動される(第9(c)参照)。また、タイミングt3においては、タイミングt1およびt2において発した超音波CUS1、CUS2が拡散している。
 タイミングt1、t2、t3において発した超音波CUS1、CUS2、CUS3は互いに干渉し(図9における波面の交点参照)、振幅が大きくなる。タイミングt4においては、タイミングt1、t2、t3において発した超音波CUS1、CUS2、CUS3が焦点FPにおいてすべて重なり合う(図9(d)参照)。このように、本実施形態の構成の第1の超音波発生器1063から超音波CUSを発生させながら回転させることにより、音響レンズを用いることなく、超音波を焦点に収束させることが可能である。
 以上のような構成の第5の実施形態の血管挿入型治療デバイス1003によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1003によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1003によっても、焼灼対象の生体組織の確認および焼灼状況の確認等が容易である。また、血管挿入型治療デバイス1003によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1003によっても、血管内へ血管挿入型治療デバイスを固定しながら血管内壁部の過熱を防止可能である。
 また、第5の実施形態の血管挿入型治療デバイス1003によれば、第1の超音波振動子1063から超音波を発生させる周期と第1のトルク伝達体103の回転速度を調節することにより、焦点距離を変える事が可能である。したがって、血管挿入型治療デバイス1003によれば、血管からの距離に関して広い範囲に存在する生体組織を焼灼可能である。
 次に、本発明の第6の実施形態に係る血管挿入型治療デバイスについて説明する。第6の実施形態では第1の超音波発生器の構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第6の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図10に示すように、第6の実施形態の血管挿入型治療デバイス1004は、シース102、第1のトルク伝達体103、第1の超音波発生器1044、第2の超音波発生器1164、画像取得ユニット1054、およびメッシュバルーン101等を含んで構成される。シース102、第1のトルク伝達体103、およびメッシュバルーン101の構成および機能は第1の実施形態と同じである。
 第1の実施形態と異なり、第1の超音波発生器1044には音響レンズが設けられない。また、第1の超音波発生器1044は円筒形の本体1104を有し、本体1104に第1のトルク伝達体103が挿入された状態で、第1のトルク伝達体103に固定される。また、第1の超音波発生器1044には、複数の第1の超音波振動子1064が円筒の周方向に並ぶように固定される。第1の超音波振動子1064は長手方向を有する形状であり、第1のトルク伝達体103の回転軸に対して傾斜するように配置される。
 第2の超音波発生器1164は、第1のトルク伝達体103の長手方向に沿って画像取得ユニット1054を第1の超音波発生器1044と挟む位置において、第1のトルク伝達体103に固定される。第2の超音波発生器1164は、第1の超音波発生器1044と同じく円筒形の本体1174を有し、複数の第2の超音波振動子1184が円筒の周方向に並ぶように固定される。第2の超音波振動子1184も、第1のトルク伝達体103の回転軸に対して傾斜するように配置される。
 なお、第2の超音波振動子1184は、回転軸に対して第1の超音波振動子1064と逆向きの同じ角度で傾斜し、その円周方向の両端が第1の超音波振動子1064の円周方向の両端と重なるように、配置される(線分LS参照)。したがって、第1の超音波振動子1064および第2の超音波振動子1184は、第1のトルク伝達体103による回転の周方向に沿った線に関して線対称である。
 また、本実施形態における第1のトルク伝達体103も、第5の実施形態と同様に伝達体駆動部1113に接続され、第1のトルク伝達体103とともに、第1の超音波発生器1044および第2の超音波発生器1164は長手方向を軸に回転するように制御される。本実施形態においては、第1の超音波振動子1064および第2の超音波振動子1184の長手方向に沿った延長線の交点(符号SP1参照)から長手方向の垂線の交点(符号SP2参照)に向かう方向に回転するように、治療デバイスコントローラ1153は回動用モータ1123を制御する。
 上述のように、回動用モータ1123を駆動することにより、第5の実施形態における説明と同じ原理により、音響レンズを用いることなく、超音波CUSを焦点に収束することが可能である。
 以上のような構成の第6の実施形態の血管挿入型治療デバイス1004によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1004によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1004によっても、焼灼対象の生体組織の確認および焼灼状況の確認等が容易である。また、血管挿入型治療デバイス1004によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1004によっても、血管内へ血管挿入型治療デバイスを固定しながら血管内壁部の過熱を防止可能である。
 また、第6の実施形態の血管挿入型治療デバイス1004によれば、第1の超音波振動子1064および第2の超音波振動子1184から超音波を発生させる周期と第1のトルク伝達体103の回転速度を調節することにより、焦点距離を変える事が可能である。したがって、血管挿入型治療デバイス1004によれば、血管からの距離に関して広い範囲に存在する生体組織を焼灼可能である。
 また、第6の実施形態の血管挿入型治療デバイス1004によれば、第1の超音波振動子1064および第2の超音波振動子1184に用いる超音波振動子の製造が容易である。超音波振動子は通常、圧電素子であって、第5の実施形態のように屈曲形状に形成することは難しい。しかし、本実施形態では、直線状の圧電素子を用いるので、第5の実施形態における超音波振動子に比較して、製造が容易である。
 また、第6の実施形態の血管挿入型治療デバイス1004によれば、画像取得ユニット1054が第1の超音波発生器1044および第2の超音波発生器1164の間に挟まれる位置に設けられるので、撮像用超音波IUSを第1のトルク伝達体103の長手方向に垂直に発しても、焼灼用超音波CUSの焦点に照射可能である。それゆえ、撮像用超音波振動子108を第1のトルク伝達体103に対して過度に傾斜させることなく、焦点近辺の画像を取得することが可能である。血管挿入型治療デバイス1004は細径であることが求められる一方で、撮像用超音波振動子108を傾斜させて配置することは難しい。それゆえ、本実施形態の構成によれば、製造が容易となる。
 次に、本発明の第7の実施形態に係る血管挿入型治療デバイスについて説明する。第7の実施形態では第1の超音波発生器の構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第7の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
 図11に示すように、第7の実施形態の血管挿入型治療デバイス1005は、シース102、第1のトルク伝達体103、第1の超音波発生器1045、画像取得ユニット105、およびメッシュバルーン101(図2参照)等を含んで構成される。第7の実施形態において、シース102、第1のトルク伝達体103、画像取得ユニット105、およびメッシュバルーン101の構成および機能は第1の実施形態と同じである。
 図11に示すように、第1の超音波発生器1045は、単一の第1の超音波振動子1065を有する。第1の実施形態と異なり、第1の超音波発生器1045には、音響レンズが設けられない。図12に示すように、第1の超音波振動子1065は第1のトルク伝達体103の長手方向に垂直な平面において凹面を有する。長手方向に垂直な平面において凹面を有するので、第1の超音波振動子1065が発する超音波は長手方向に垂直な平面における第1の超音波振動子1065から所定の距離だけ離れた焦点に収束する。
 以上のような構成の第7の実施形態の血管挿入型治療デバイス1005によっても、生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、血管挿入型治療デバイス1005によっても、シース102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。また、血管挿入型治療デバイス1005によっても、再生画像のブレおよび焼灼用超音波の照射位置に生じるブレを低減化可能である。また、血管挿入型治療デバイス1005によっても、血管内へ血管挿入型治療デバイス1005を固定しながら血管内壁部の過熱を防止可能である。
 また、第7の実施形態の血管挿入型治療デバイス1005によれば、音響レンズが不要なので、製造の簡易化および製造コストの低減化を図ることが可能である。
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
 例えば、第1から6の実施形態の血管挿入型治療デバイス100、1000、1001、1002、1003、1004において、メッシュバルーン101を設けたが、他のバルーンを用いて血管挿入型治療デバイス100、1000、1001、1002、1003、1004を血管内に一時的に固定可能な構成であってもよい。
 特に、血管内壁部の過熱を防止するバルーンであることが好ましい。例えば、図13、14に示すように、シース102を中心に異なる方向に膨張可能な複数のバルーン119を有する構成によってもメッシュバルーン101と同様の過熱防止効果を得ることが可能である。また、例えば、図15、16に示すように、シース102を中心に全周囲に膨張可能であって、長手方向に貫通する孔部OHが形成されたバルーン120を有する構成によってもメッシュバルーン101と同様の過熱防止効果を得ることが可能である。
 また、例えば、図17に示すように、長手方向に垂直な平面にそった断面が星型となるように形成したバルーン121を有する構成によってもメッシュバルーン101と同様の過熱防止効果を得ることが可能である。また、例えば、図16に示すように、複数のワイヤ122を用いてバルーン123を部分的に膨張させる構成によってもメッシュバルーン101と同様の過熱防止効果を得ることが可能である。
 あるいは、血管内壁を冷媒により冷却可能な灌流バルーン、クライオバルーンを用いることが好ましい。超音波を用いた焼灼では、焦点において発熱エネルギーを最大化させることが可能であるが、収束前の超音波を伝播する血管内壁を含む血管壁も超音波により発熱し得る。それゆえ、冷却型バルーンを用いることにより血管内壁に生じ得る損傷の可能性をさらに低減化させることが可能である。
 また、第1~3、7の実施形態において、第1の超音波振動子106、1065および撮像用超音波振動子108は長手方向に同程度の長さであるが、第1の超音波振動子106、1065の長手方向に沿った長さを、撮像用超音波振動子108の長手方向に沿った長さより十分に長くする構成であってもよい(図19参照)。第1の超音波振動子106、1065を十分に長くすることによって第1の超音波振動子のサイズが大型化され、音響レンズを用いなくても生体組織を焼灼させ得る程に発熱させることが可能である。
 また、第1~3、7の実施形態において、第1の超音波振動子106、1065は板状で単一の方向に超音波を発する構成であるが、円筒側面形状であってもよい。このような構成によっても、第1の超音波振動子のサイズを大型化可能である。
 また、第4の実施形態において、第1の超音波振動子1062を長手方向に沿って並べた長さと撮像用超音波振動子の長さは同程度であるが、第1の超音波振動子1062を並べた長さを、撮像用超音波振動子108の長手方向に沿った長さより十分に長くする構成であってもよい(図20参照)。第1の超音波振動子1062を並べた長さを十分に長くすることによって第1の超音波発生器のサイズが大型化され、生体組織を焼灼させ得る程に発熱させることが可能である。
 また、第4の実施形態において、第1の超音波振動子1062は板状で単一の方向に超音波を発する構成であるが、円筒側面形状であってもよい。このような構成によっても、第1の超音波発生器のサイズを大型化可能である。
 また、第1、4、7の実施形態において、第1の超音波発生器104、1042、1045および画像取得ユニット105は第1のトルク伝達体103の長手方向に沿って並べられる構成であるが、第1のトルク伝達体103の長手方向に沿った中心線を通る平面に対して対称な位置に第1の超音波発生器104および画像取得ユニット105を設ける構成であってもよい(図21参照)。
 また、第1実施形態において、第1の超音波発生器104および撮像用超音波発生器105は別々に設けられる構成であるが、図22に示すように、第1の超音波振動子106および撮像用超音波振動子108を積層した構成であってもよい。例えば、第1の超音波振動子106にセラミック圧電素子を用い、撮像用超音波振動子108には圧電フィルムシートを用いることにより、このような積層構造を形成することが可能である。図22では、撮像用超音波振動子108が第1の超音波振動子106よりシース102側に設けられるが、逆であってもよい。
 また、第4の実施形態において、第1の超音波振動子1062に焼灼用超音波を発生させ、撮像用超音波振動子108に撮像用超音波を発生させる構成であるが、第1の超音波振動子1062に撮像用超音波を発生させ、撮像用超音波振動子108に焼灼用超音波を発生させる構成であってもよい。
 また、第7の実施形態において、第1の超音波振動子1065は単一の超音波振動子であるが、第4の実施形態のように、複数の超音波振動子を長手方向に沿って並べる構成であってもよい。このような構成によれば、焼灼用超音波を長手方向に沿った平面および長手方向に垂直な平面において焦点に集束させることが可能である。
 また、第7の実施形態では、第1の超音波振動子1064は第1のトルク伝達体103の長手方向に垂直な平面において凹面を有する構成であるが、図23に示すように、第1の超音波振動子1064は第1のトルク伝達体103の長手方向に沿って凹面を有する構成であってもよい。
 また、第1、3~6の実施形態において、画像取得ユニット105は超音波を用いて画像を取得する構成であるが、TD-OCTおよびHUD-OCT等のように光学情報に基づいて画像を取得する構成であってもよい。
 また、第5、6の実施形態において、第1の超音波発生器1043、1044および第2の超音波発生器1164には、複数の超音波振動子が設けられる構成であるが、それぞれにおいて単一の超音波振動子が設けられる構成(図24参照)であっても、本実施形態と同様の効果を得ることが可能である。
 また、第5の実施形態(図7及び図9)において、第1の超音波発生器1043には、屈曲部位BPを有する第1の超音波振動子1063が設けられる構成であるが、これに限定されるものではなく、例えば、図25(a)に示すように、第1の超音波発生器1043に、屈曲部位BPを有さない滑らかな曲率を有する第1の超音波振動子1063が設けられていてもよい。
 ここで、図25(b)に示すように、点C(x=0,y=y)に向かって、第1の超音波振動子1063が1063Aの位置にあるときの第1の超音波振動子1063の中心A(x=0,y=0)から発した超音波と、第1の超音波振動子1063が1063Bの位置にあるときの第1の超音波振動子1063の位置B(x=x,y=0)から発した超音波との経路差△lは、下記式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、補正すべき経路差による遅延時間τ(x)は、下記式(2)で表される。なお、Cは超音波の速度(音速)である。
Figure JPOXMLDOC01-appb-M000002
 さらに、下記式(3)に示すように、上記遅延時間τ(x)と、第1の超音波振動子1063の周速度との積で、第1の超音波振動子1063の曲率を付与する関数f(x)が表される。なお、第1の超音波発生器1043の直径がdであり(図25(a)参照)、第1の超音波発生器1043の回転速度(rps)がRである。
Figure JPOXMLDOC01-appb-M000003
 第1の超音波振動子1063の駆動周波数fは、1/Tで表され、第1の超音波振動子1063の駆動周波数fでの波長λは、CTで表される。なお、Tは、周期であり、Cは、超音波の速度(音速)である。
 また、第3の実施形態において、第1のトルク伝達体1031は管状に形成され、第2のトルク伝達体1091がその内腔に挿入される構成であるが、第1のトルク伝達体1031は管状に形成されなくてもよい。
 100、1000、1001、1002、1003、1004、1005 血管挿入型治療デバイス
 101 メッシュバルーン
 102 シース
 103、1031 第1のトルク伝達体
 104、1040、1042、1043、1044、1045 第1の超音波発生器
 105、1054 画像取得ユニット
 106、1062、1063、1064、1065 第1の超音波振動子
 107 音響レンズ
 108 撮像用超音波振動子
 1091 第2のトルク伝達体
 1103、1104 本体
 1113 伝達体駆動部
 1123 回動用モータ
 1133 リニアガイド
 1143 変位用モータ
 1153 治療デバイスコントローラ
 1164 第2の超音波発生器
 1174 本体
 1184 第2の超音波振動子
 119 バルーン
 120 バルーン
 121 バルーン
 122 ワイヤ
 123 バルーン
 200 ガイディングカテーテル
 BP 屈曲部位
 CUS 焼灼用超音波
 FA 大腿動脈
 IUS 撮像用超音波
 LS 線分
 RA 腎動脈
 SN 交感神経

Claims (17)

  1.  両端に基端および挿入端を有する長手形状であり、該基端において供給される前記長手形状の長手方向を軸に回動させるトルクを伝達する第1のトルク伝達体と、
     前記第1のトルク伝達体に設けられ、超音波を発する第1の超音波発生器とを備え、
     前記第1の超音波発生器は、前記第1の超音波発生器から所定の距離だけ離間した生体組織を焼灼する
     ことを特徴とする血管挿入型治療デバイス。
  2.  前記第1の超音波発生器は、第1のトルク伝達体とともに前記長手方向に沿って移動可能であることを特徴とする請求項1に記載の血管挿入型治療デバイス。
  3.  前記第1の超音波発生器の近傍に設けられ、前記第1の超音波発生器の周辺の画像を取得する画像取得ユニットを備えることを特徴とする請求項1に記載の血管挿入型治療デバイス。
  4.  前記画像取得ユニットが設けられ、両端に基端および挿入端を有する長手形状であり、該基端において供給される前記長手形状の長手方向を軸に回動させるトルクを伝達する第2のトルク伝達体を備えることを特徴とする請求項3に記載の血管挿入型治療デバイス。
  5.  前記第1のトルク伝達体および前記第2のトルク伝達体の一方は管状であり、他方は管の内腔に挿入されることを特徴とする請求項4に記載の血管挿入型治療デバイス。
  6.  前記画像取得ユニットは前記第1のトルク伝達体に設けられることを特徴とする請求項3に記載の血管挿入型治療デバイス。
  7.  前記第1の超音波発生器は発した超音波の反射波を検出可能であり、検出した前記反射波を画像信号として出力可能であることを特徴とする請求項1に記載の血管挿入型治療デバイス。
  8.  前記第1の超音波発生器は、前記長手方向に沿って並べられる複数の第1の超音波振動子を有することを特徴とする請求項1に記載の血管挿入型治療デバイス。
  9.  前記第1のトルク伝達体にトルクを供給し、前記第1のトルク伝達体を、前記第1の超音波発生器から発する超音波の周期に応じた回転速度で回転させる回動機構を備えることを特徴とする請求項1に記載の血管挿入型デバイス。
  10.  前記第1の超音波発生器には、長手方向を有する形状の第1の超音波振動子が前記第1のトルク伝達体による回動軸に傾斜するように設けられることを特徴とする請求項9に記載の血管挿入型治療デバイス。
  11.  前記第1の超音波発生器には、屈曲形状を有する第1の超音波振動子の屈曲部位の両側の腕部が前記第1のトルク伝達体による回転軸に傾斜するように設けられ、
     前記回動機構は、前記屈曲部位の開放方向に前記第1の超音波発生器が回転するように、前記第1のトルク伝達体にトルクを供給する
     ことを特徴とする請求項9に記載の血管挿入型治療デバイス。
  12.  前記第1の超音波発生器は前記第1のトルク伝達体の一部の側面を覆う円筒側面形状を有し、複数の前記第1の超音波振動子が前記第1のトルク伝達体による回転の周方向に沿って前記円筒側面状に並べられることを特徴とする請求項10に記載の血管挿入型治療デバイス。
  13.  前記第1のトルク伝達体の長手方向に沿って前記第1の超音波発生器と並ぶように配置され、所定の距離だけ離間した生体組織を焼灼する超音波を発する第2の超音波発生器を備え、
     前記第1の超音波発生器には、長手方向を有する形状の第1の超音波振動子が前記第1のトルク伝達体による回動軸に傾斜するように設けられ、
     前記第2の超音波発生器には、長手方向を有する形状の第2の超音波振動子が、前記第1のトルク伝達体による回転軸に対して、前記第1の超音波振動子とは逆方向に傾斜するように設けられ、
     前記回動機構は、前記第1の超音波振動子および前記第2の超音波振動子の長手方向の延長線の交点から該長手方向の垂線の交点に向かう方向に、前記第1の超音波発生器および前記第2の超音波発生器が回転するように前記第1のトルク伝達体にトルクを供給する
     ことを特徴とする請求項9に記載の血管挿入型治療デバイス。
  14.  前記第1の超音波発生器および前記第2の超音波発生器は前記第1のトルク伝達体の一部の側面を覆う円筒側面形状を有し、
     複数の前記第1の超音波振動子および複数の前記第2の超音波振動子が、前記第1のトルク伝達体による回転の周方向に沿ってそれぞれ前記第1の超音波発生器および前記第2の超音波発生器の前記円筒側面状に並べられる
     ことを特徴とする請求項13に記載の血管挿入型治療デバイス。
  15.  前記第1の超音波発生器および前記第2の超音波発生器の間に設けられ、前記第1の超音波発生器および前記第2の超音波発生器の周辺の画像を取得する画像取得ユニットを備えることを特徴とする請求項13に記載の血管挿入型治療デバイス。
  16.  前記第1のトルク伝達体および前記第1の超音波発生器を覆う管状のシースと、
     前記シースの前記第1のトルク伝達体の挿入端側の端部近傍に設けられ、前記シースの周囲に膨張可能なバルーンとを備える
     ことを特徴とする請求項1に記載の血管挿入型治療デバイス。
  17.  前記バルーンは、前記バルーンの膨張時に前記バルーンに接触する部位の過熱を防ぐ冷却バルーンであることを特徴とする請求項16に記載の血管挿入型治療デバイス。
PCT/JP2013/002277 2012-04-05 2013-04-02 血管挿入型治療デバイス WO2013150777A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/506,871 US20150025518A1 (en) 2012-04-05 2014-10-06 Blood vessel insertion-type treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086852 2012-04-05
JP2012086852 2012-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/506,871 Continuation US20150025518A1 (en) 2012-04-05 2014-10-06 Blood vessel insertion-type treatment device

Publications (1)

Publication Number Publication Date
WO2013150777A1 true WO2013150777A1 (ja) 2013-10-10

Family

ID=49300280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002277 WO2013150777A1 (ja) 2012-04-05 2013-04-02 血管挿入型治療デバイス

Country Status (2)

Country Link
US (1) US20150025518A1 (ja)
WO (1) WO2013150777A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057411A1 (en) * 2013-10-18 2015-04-23 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for the selective positioning of an intravascular ultrasound neuromodulation device
WO2015128751A1 (en) * 2014-02-26 2015-09-03 Koninklijke Philips N.V. System for performing intraluminal histotripsy and method of operation thereof.
WO2015156945A1 (en) 2014-04-11 2015-10-15 Jeremy Stigall Imaging and treatment device
WO2018078852A1 (ja) * 2016-10-31 2018-05-03 オリンパス株式会社 超音波焼灼装置および超音波焼灼システム
WO2018146789A1 (ja) * 2017-02-10 2018-08-16 オリンパス株式会社 超音波内視鏡装置、超音波素子および超音波素子の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
JP5768056B2 (ja) * 2009-10-30 2015-08-26 リコール メディカル インコーポレイテッドReCor Medical, Inc. 経皮的超音波腎神経除去による高血圧症を治療するための方法及び装置
CN106061402B (zh) 2014-02-26 2019-10-25 皇家飞利浦有限公司 用于执行管腔外冠状动脉旁路手术的系统及其操作方法
WO2015128817A1 (en) 2014-02-26 2015-09-03 Koninklijke Philips N.V. System for performing transluminal coronary bypass and method of operation thereof
JP2015187852A (ja) 2014-03-13 2015-10-29 株式会社半導体エネルギー研究所 タッチパネル
JP6596224B2 (ja) 2014-05-02 2019-10-23 株式会社半導体エネルギー研究所 発光装置及び入出力装置
US11819360B2 (en) * 2017-08-15 2023-11-21 Koninklijke Philips N.V. Intraluminal rotational ultrasound for diagnostic imaging and therapy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231894A (ja) * 1994-02-22 1995-09-05 Olympus Optical Co Ltd 超音波診断治療システム
JPH08508432A (ja) * 1993-04-15 1996-09-10 シーメンス アクチエンゲゼルシヤフト 心臓疾患および心付近の血管を治療するための治療装置
JPH10216144A (ja) * 1997-02-06 1998-08-18 Olympus Optical Co Ltd 超音波診断治療装置
JP2003190180A (ja) * 2001-12-27 2003-07-08 Miwatec:Kk 複合振動超音波ハンドピ−ス
JP2007152094A (ja) * 2005-11-23 2007-06-21 General Electric Co <Ge> 独立に作動されるアブレーション素子を持つアブレーション・アレイ
WO2010100573A1 (en) * 2009-03-02 2010-09-10 Koninklijke Philips Electronics, N.V. Transurethral ultrasound probe for treatment of prostate
JP2011519666A (ja) * 2008-05-06 2011-07-14 フォーカス サージェリー,インコーポレーテッド 音響障害物を検出する方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471988A (en) * 1993-12-24 1995-12-05 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
US5876345A (en) * 1997-02-27 1999-03-02 Acuson Corporation Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction
US6626855B1 (en) * 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
GB2388589B (en) * 2002-05-17 2006-09-13 Hewlett Packard Co Printing and laminating apparatus
US8317711B2 (en) * 2007-06-16 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Oscillating phased-array ultrasound imaging catheter system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508432A (ja) * 1993-04-15 1996-09-10 シーメンス アクチエンゲゼルシヤフト 心臓疾患および心付近の血管を治療するための治療装置
JPH07231894A (ja) * 1994-02-22 1995-09-05 Olympus Optical Co Ltd 超音波診断治療システム
JPH10216144A (ja) * 1997-02-06 1998-08-18 Olympus Optical Co Ltd 超音波診断治療装置
JP2003190180A (ja) * 2001-12-27 2003-07-08 Miwatec:Kk 複合振動超音波ハンドピ−ス
JP2007152094A (ja) * 2005-11-23 2007-06-21 General Electric Co <Ge> 独立に作動されるアブレーション素子を持つアブレーション・アレイ
JP2011519666A (ja) * 2008-05-06 2011-07-14 フォーカス サージェリー,インコーポレーテッド 音響障害物を検出する方法及び装置
WO2010100573A1 (en) * 2009-03-02 2010-09-10 Koninklijke Philips Electronics, N.V. Transurethral ultrasound probe for treatment of prostate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057411A1 (en) * 2013-10-18 2015-04-23 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for the selective positioning of an intravascular ultrasound neuromodulation device
CN105636644A (zh) * 2013-10-18 2016-06-01 美敦力阿迪安卢森堡有限公司 用于血管内超声神经调节装置的选择性定位的装置、系统和方法
WO2015128751A1 (en) * 2014-02-26 2015-09-03 Koninklijke Philips N.V. System for performing intraluminal histotripsy and method of operation thereof.
CN106102594A (zh) * 2014-02-26 2016-11-09 皇家飞利浦有限公司 用于执行管腔内组织摧毁的系统及其操作方法
WO2015156945A1 (en) 2014-04-11 2015-10-15 Jeremy Stigall Imaging and treatment device
CN106163417A (zh) * 2014-04-11 2016-11-23 皇家飞利浦有限公司 成像和治疗装置
JP2017512585A (ja) * 2014-04-11 2017-05-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. イメージング及び処理デバイス
EP3142564A4 (en) * 2014-04-11 2017-07-19 Koninklijke Philips N.V. Imaging and treatment device
JP2020032241A (ja) * 2014-04-11 2020-03-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. イメージング及び処理デバイス
WO2018078852A1 (ja) * 2016-10-31 2018-05-03 オリンパス株式会社 超音波焼灼装置および超音波焼灼システム
WO2018146789A1 (ja) * 2017-02-10 2018-08-16 オリンパス株式会社 超音波内視鏡装置、超音波素子および超音波素子の製造方法

Also Published As

Publication number Publication date
US20150025518A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013150777A1 (ja) 血管挿入型治療デバイス
US6315732B1 (en) Imaging catheter and methods of use for ultrasound-guided ablation
JP3578217B2 (ja) 心臓疾患および心付近の血管を治療するための治療装置
JP4095729B2 (ja) 治療用超音波装置
AU2002312085B2 (en) Tissue-retaining system for ultrasound medical treatment
US7950397B2 (en) Method for ablating body tissue
JP2007289715A (ja) 超音波診断治療システム
CN115105018A (zh) 具有可旋转芯的成像探针
WO2014134277A1 (en) Ultrasound imaging sheath and associated method for guided percutaneous trans-catheter therapy
JPH08510654A (ja) 前方検視用イメージングカテーテル
WO2013140738A1 (ja) 血管挿入型治療デバイス
WO2013157207A1 (ja) 血管挿入型治療デバイス
US10549127B2 (en) Self-cooling ultrasound ablation catheter
WO2013150776A1 (ja) 血管挿入型治療デバイス
WO2013157208A1 (ja) 血管挿入型治療デバイス
JP7132850B2 (ja) 光音響及び超音波画像化技法を利用した回転血管内デバイス、システム及び方法
JP2005124920A (ja) 超音波診断治療装置
JP6665315B2 (ja) 同期光音響及び超音波引戻し技法を使用した組織及び血管経路マッピング
WO2021229999A1 (ja) カテーテル及びカテーテルシステム
JP2024062287A (ja) アブレーションシステム
JP3641427B2 (ja) 内視鏡下外科手術用超音波探触子
AU2002312083B2 (en) Treatment of lung lesions using ultrasound
JP5262056B2 (ja) 超音波診断用プローブ
AU2002312083A1 (en) Treatment of lung lesions using ultrasound
AU2002314817A1 (en) Method for aiming ultrasound for medical treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP