ZA200402643B - Production of water-free nitrocellulose and explosive substances that have a spheroidal shape - Google Patents

Production of water-free nitrocellulose and explosive substances that have a spheroidal shape Download PDF

Info

Publication number
ZA200402643B
ZA200402643B ZA2004/02643A ZA200402643A ZA200402643B ZA 200402643 B ZA200402643 B ZA 200402643B ZA 2004/02643 A ZA2004/02643 A ZA 2004/02643A ZA 200402643 A ZA200402643 A ZA 200402643A ZA 200402643 B ZA200402643 B ZA 200402643B
Authority
ZA
South Africa
Prior art keywords
explosive substance
nitrocellulose
varnish
explosive
water
Prior art date
Application number
ZA2004/02643A
Inventor
Huber Gerhard
Original Assignee
Bowas Ag Fur Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowas Ag Fur Ind filed Critical Bowas Ag Fur Ind
Publication of ZA200402643B publication Critical patent/ZA200402643B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • C08L1/18Cellulose nitrate, i.e. nitrocellulose
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

—1 =
Production of Water-free Nitrocellulose and Explosive Substances Having a Spheroidal
Shape , ——
Description
The invention relates to a method for producing shaped nitrocellulose as well as explosive substances and propellants according to the preamble of Claim 1, to a method for . producing a varnish made from a substantially water-free explosive substance, or a varnish made from an explosive substance having a defined water content, according to the
E preamble of Claim 8, to use of a varnish made from a water-free explosive substance according to the preamble of Claim 10, and to a varnish made from nitrocellulose according to the preamble of Claim 11.
Within the scope of this invention, the term "explosive substances" is understood to mean explosive and/or potentially explosive, in particular solid, liquid, and gelatinous, substances and substance mixtures that are used as explosive agents, propellants, detonating agents, or pyrotechnic devices, or for the manufacture of same.
Explosive substances are used for numerous applications, particularly in the munitions sector. For efficient and effective use, as a rule it is necessary for the explosive substances to be present in a specific geometry, for example in a spherical shape. This allows explosive substances, in the form of propellant charges, for example, to be loaded into shell casings.
To ensure homogeneous and uniform combustion of the explosive substances, it is necessary that the explosive substances have a defined structure and defined geometry, the latter being achievable, for example, when the explosive substances are present in uniform sizes, preferably as spherical or spheroidal particles. Nitrocellulose as well as the previously described explosive substances may also represent a raw material for varnish production. Spherical nitrocellulose as raw material for varnish production offers the advantages that in this form it is stabilized, even without moistening agents, is easy to handle, and allows for the incorporation of additives.
One application in the area of explosive substances is the production of spheroidal propellant charge powder. Heretofore, shaping was accomplished by dissolving water- moistened nitrocellulose in ethyl acetate and then distributing this organic phase in an aqueous phase by intensive stirring. In this procedure, basically particles with very irregular sizes are formed. In addition, after being formed the particles are very susceptible to i enlargement by coalescence, since the varnish for this type of particle formation must have only a very low viscosity, which in turn facilitates coalescence. After particle formation the solvent is evaporated with stirring, and the nitrocellulose remains in the aqueous phase in the form of rounded particles.
These particles may be separated from the aqueous phase by filtration, for example. In this procedure it is disadvantageous that the resulting spheroidal particles have a very broad - particle distribution. In some cases, the proportion of the size range usable for an application is only 1/3 of the total mass, and must be separated by costly screening x procedures.
Another method for producing spherical nitrocellulose particles uses an underwater granulator for formation of the particles. The organic phase is pressed through a perforated disk into the aqueous phase, and the strands exiting the orifices in the perforated disk are broken up into particles by a rotating blade on the exit side. It is necessary to screen the formed particles in this method as well. Further disadvantages of this method are that the organic phase for use in the underwater granulator must have such a high consistency that the cylindrical particles which primarily result in the normal stirring process are no longer round. They must therefore be conveyed through long pipes having small cross sections, thereby imparting roundness by the intensive contact with the pipe walls.
High throughputs in the device require high rotational speeds for the blade. The increasing speed of the rotating blade also increases the hydraulic shear forces, which very quickly result in diminished quality due to further uncontrolled size reduction of the particles. The rotational speed of the cutting blade, which is thereby greatly limited from above, significantly restricts the efficiency of the device.
The particles are hardened by stripping the solvent, as in the previously described method.
As a result of the manufacturing process, the particles produced by both methods contain undefined quantities of dispersed water which create an undefined porosity in the finished particle. However, this is a key quality feature for the product, since the porosity greatly influences the combustion of the product. Depending on the use, minimal to high porosities may be desirable, which however must have a precisely defined consistency. For this reason, in the past the water content has been adjusted by dewatering prior to hardening of the particles. This was generally achieved by making use of the osmotic effect created by the addition of sodium sulfate to the aqueous dispersion. The extent of dewatering was controlled by the salt concentration, the length of the reaction, and the temperature. This dewatering process is very difficult to control and produces unsatisfactory results.
An additional disadvantage is that salt residues necessarily remain, at least on the particles, which requires washing steps in the process. Remaining salt residues may inhibit the effectiveness of the explosive substance. i Furthermore, in particular the quantity of sodium sulfate required for water removal entails considerable adverse environmental impacts. o ’ Thus, with the current methods it has not been possible thus far to produce in a simple and economical manner particles made from explosive substances, in particular from nitrocellulose, having a spherical geometry with a uniform size, which have a defined porosity and are substantially pore-, water-, and salt-free.
The object of the invention, therefore, is to provide a method and a substance for producing shaped explosive substances by which the aforementioned disadvantages, in particular porosity, water and salt content, non-uniform particle size, and environmental impacts, are avoided.
This object is achieved by a method according to Claims 1 through 8, by use of a varnish made from an explosive substance according to Claim 10, and by a varnish made from nitrocellulose/ explosive substance according to Claim 11.
The method for producing shaped explosive substances, in particular propellant charge powder such as spheroidal propellant charge powder, for example, from an explosive substance stabilized in particular with water comprises the following steps according to the invention: - Dissolving the stabilized explosive substance in a solvent; - Removing the stabilizing substance, in particular water, from the mixture; - Shaping the explosive substance particles; and - Collecting the explosive substance particles.
A significant feature of the invention lies in the fact that removal of the stabilizing substance, in particular water, from the mixture allows the explosive substance particles to be shaped without the risk of including a stabilizing substance. As used here, "stabilizing substance" is understood to mean for example water, or also a salt or other organic or inorganic non- reactive or inert substances such as alcohol or softeners, for example.
According to one preferred embodiment of the invention, the stabilizing substance, in particular water, is removed by azeotropic distillation. Thus, in particular with the assistance of pervaporation/steam permeation, the water may be removed from the explosive substance efficiently, effectively, and safely.
According to a refinement of the invention, during and/or after the distillation the solvent is v returned to the explosive substance. In this manner it is possible to produce a varnish made from explosive substance having a predefined viscosity, the viscosity being adjustable by the type and/or quantity of solvent as well as by the use of auxiliary agents. Surface-active substances, wetting agents, or separating agents, for example, may be used as auxiliary agents.
If the stabilizing substance is a solid, salt, or other substance difficult to distill, the invention provides that this substance is extracted with suitable solvents. According to the invention a solid phase extraction or precipitation, for example, is also possible if this is compatible with the type of explosive substance, in particular the density and solubility thereof. Extraction by sublimation is also possible, provided that this can be performed safely.
According to a further embodiment of the invention, the shaping of nitrocellulose and/or explosive substance particles is carried out or initiated by jet cutting, in which a jet, preferably a full jet, of an explosive substance-solvent mixture or an explosive substance- solvent solution, in particular a varnish made from an explosive substance, is subdivided by use of a separating device into jet segments having a defined and/or adjustable length which fall into a fluid, preferably a fluid in motion, in which the explosive substance-solvent mixture, in particular varnish made from an explosive substance, is poorly soluble and/or essentially insoluble.
This method is extremely well suited for producing spheroidal particles of approximately equal particle size for processing explosive substance-solvent mixtures.
In the production of the spheroidal particles, the organic phase of the fluid to be processed and from which the particles are to be produced is pressed in the form of a full jet at high velocity from a nozzle. Directly below the nozzle is a rotating cutting tool, composed of short wires which are preferably held in a mounting and point outward, which breaks up the fluid jet into cylindrical segments. As these segments continue to fall, as a result of the surface tension of the fluid they form spherical particles which are collected in a solvent, in particular water.
The size of the particles produced is adjustable as a function of the nozzle diameter, the volumetric flow through the nozzle, the number of cutting wires, and the rotational speed of the cutting tool, and according to the invention lies in the range of 0.1 mm to 10 mm, - preferably in the range of 0.2 mm to 2 mm, and particularly preferably in the range of 0.5 mm to 1.5 mm.
One of the significant advantages of the invention is that the jet cutting ensures that it is possible to produce only particles which have a desired size and are adjustable using the aforementioned parameters, and that the explosive substance particles produced essentially contain only explosive substance and solvent, but none, or a precisely defined quantity, of a stabilizing substance. The advantages of the jet cutting method are described below.
The inclination of the cutting plane with respect to the jet axis enables substantially cylindrical particles, which are already approximately spherical, to be cut from the moving jet.
In addition, the cutting device operates in air, thereby permitting very high cutting frequencies and therefore high throughputs.
In contrast to the underwater granulator, the cutting tool does not make contact with the exit orifice.
In addition, the design for carrying out the jet cutting method is simple and economical.
By making use of the advantages of the jet cutting method and employing appropriately matched parameters, losses due to a non-homogeneous particle distribution may be reduced to less than 3%, in particular to less than 2%, of the explosive substance-solvent mixture used.
An explosive substance which is sufficiently viscous and is capable of being handled safely without solvent may be used directly in the jet cutting method.
A further significant advantage of the invention is that explosive substance particles having a defined porosity can be produced, the rate of porosity being adjustable by, for example, introduction of suitable substances, in particular water, into the varnish made from an explosive substance. To this end, substances are preferably used which can be diffused or dissolved out of the explosive substance particle, thereby leaving a cavity in the explosive substance particle. In addition, it is possible to introduce salts or similarly non-reactive substances which remain in solid form in the explosive substance particle.
As the result of such non-explosive residues and/or cavities or pores in the explosive . substance particles, the speed and temperature of combustion, and thus the speed of detonation of the explosive substance, may be advantageously influenced.
Similarly, it is also possible to produce multilayer explosive substance particles, whereby in the jet cutting process various varnishes made from an explosive substance may be introduced through one central nozzle and one or more annular nozzles. It is thus possible to produce, for example, an explosive substance having an inwardly increasing speed of combustion, whereby for this purpose an outer layer contains, for example, an appropriate quantity of a stabilizing substance or a slow-combusting explosive substance.
According to a refinement of the present invention, water-containing nitrocellulose is used as stabilizing explosive substance and ethyl acetate is used as solvent. This explosive substance-solvent system is extremely well suited for producing spherical, water- and salt- free nitrocellulose particles which in particular are optimally suited for producing spheroidal propellant charge powder.
The object of the invention is further achieved by a method for producing a varnish made from a substantially water-free explosive substance, or a varnish made from an explosive substance having a defined water content, in particular nitrocellulose varnish, from an explosive substance stabilized in particular with water, whereby the method comprises the following steps: - Dissolving the stabilizing explosive substance in a solvent; - Removing the stabilizing substance, in particular water, from the mixture by azeotropic distillation while establishing a defined water content; and - Establishing a predetermined viscosity for the varnish made from an explosive substance.
J
The significant advantage of this aspect of the invention is based on the fact that a varnish made from a substantially water-free explosive substance is suitable for producing water- free and also salt-free explosive substance particles, since according to the method, before being used for the varnish made from an explosive substance these particles have been removed from a matrix from which the particles were produced.
According to a refinement of the invention, for establishing a predefined viscosity the - solvent is returned to the explosive substance before and/or after the distillation. According to the invention, for adjusting the viscosity auxiliary agents, such as in particular surface- : active substances, wetting agents, separating agents, and agents for adjusting the viscosity, may be used.
By the use of wetting and/or separating agents it is possible, for example, to optimally match the varnish made from an explosive substance with the materials with which the varnish is combined in the production process, so that, for example, contamination resulting from adhesion of the explosive substance to the equipment used is minimized or completely eliminated. On account of the inherent energy content of an explosive substance, such measures contribute to handling and operational safety in the production of explosive substances.
The object is further achieved by use of a varnish made from a substantially water-free explosive substance, in particular a nitrocellulose varnish, for producing shaped, in particular spherical or spheroidal, explosive substances.
The object of the invention is further achieved by a nitrocellulose varnish composed of at least nitrocellulose and a solvent, the nitrocellulose varnish being substantially water-free.
According to the invention, the nitrocellulose varnish has a viscosity which allows, in particular by use of the jet cutting method, particles having a predefinable particle size in the range of 0.1 mm to 10 mm, preferably in the range of 0.2 mm to 2 mm, and particularly preferably in the range of 0.5 mm to 1.0 mm, to be shaped.
In this manner it is possible to produce a particularly preferred particle size.
As already mentioned above, the nitrocellulose varnish preferably contains auxiliary agents, in particular surface-active substances, wetting agents or separating agents, and agents for adjusting the viscosity.
According to a refinement of the invention, the nitrocellulose varnish is substantially salt- free.
Further embodiments of the invention result from the subclaims. The invention is explained in greater detail below with reference to the embodiments.
Example 1 - One kilogram nitrocellulose (cellulose nitrate with a N content of approximately 12.5%) i which also contained 700 grams nitrocellulose and approximately 300 grams water was dissolved in one liter ethyl acetate, the water fraction being partially dissolved and partially dispersed. The mixture was azeotropically distilled, the azeotrope removed by distillation being dewatered and the ethyl acetate being continuously returned to the distillation. After the water had been completely removed from the nitrocellulose-ethyl acetate solution, this solution was supplied to a jet cutting method, using separating wires with a thickness of 0.05 mm. The resulting particles were collected in water; the water, which may contain a separating agent, was kept in motion by a stirrer. After the complete charge of nitrocellulose had passed through the jet cutting process, the water-particle mixture was concentrated under simultaneous application of a vacuum until the particles were essentially solvent-free in the water. Due to the hydrophobicity of the particles, there is no risk of diffusion of water into the particles. After the distillative concentration the resulting particles were filtered from the particle-water mixture. The particle size obtained was 0.8 mm diameter. The yield relative to the nitrocellulose used was 98.5%.
Example 2
One kilogram nitrocellulose (cellulose nitrate with a N content of approximately 13.2%) which also contained 700 grams nitrocellulose and approximately 300 grams water was dissolved in one liter ethyl acetate, the water fraction being partially dissolved and partially ~ 25 dispersed. The mixture was azeotropically distilled, the azeotrope removed by distillation being dewatered and the ethyl acetate being continuously returned to the distillation. After the water had been completely removed from the nitrocellulose-ethyl acetate solution, 100 g metriol trinitrate dissolved in 200 g ethyl acetate was added to the mixture. The resulting varnish made from explosive substance was then supplied to the jet cutting process and further processed, as previously described.
Example 3
One kilogram nitrocellulose (cellulose nitrate with a N content of approximately 12.2%) which also contained 700 grams nitrocellulose and approximately 300 grams water was dissolved in one liter ethyl acetate, the water fraction being partially dissolved and partially dispersed. The mixture was azeotropically distilled, the azeotrope removed by distillation being dewatered and the ethyl acetate being continuously returned to the distillation. After - the water had been completely removed from the nitrocellulose-ethyl acetate solution, 20 g dibutyl phthalate dissolved in 200 g ethyl acetate was added to the mixture. The resulting g nitrocellulose varnish was then supplied to the jet cutting process and further processed, as previously described. it should be noted here that all the sections described above, singly or in any combination, are claimed as essential to the invention. Those skilled in the art are familiar with modifications thereto.

Claims (15)

1. Method for producing shaped nitrocellulose as well as explosive substances and propellants, in particular propellant charge substrate such as spheroidal propellant charge powder, for example, from an explosive substance stabilized in particular with water, characterized by : the following steps: . - Dissolving the stabilized explosive substance in a solvent; ) - Removing the stabilizing substance, in particular water, from the mixture; - Shaping the explosive substance particles; and - Collecting the explosive substance particles.
2. Method according to one of the preceding claims, characterized in that the stabilizing substance is removed by azeotropic distillation.
3. Method according to one of the preceding claims, in particular according to Claim 2, characterized in that for producing a varnish made from an explosive substance having a predefined viscosity, the solvent is returned to the explosive substance during and/or after the distillation.
4, Method according to one of the preceding claims, characterized in that the shaping of the explosive substance particles is carried out or initiated by jet cutting, in which a jet of an explosive substance-solvent mixture or an explosive substance-solvent solution, in particular a varnish made from an explosive substance, is subdivided by use of a separating device into jet segments having a defined and/or adjustable length which fall into a fluid, preferably a fluid in motion, in which the varnish made from an explosive substance is poorly soluble and/or essentially insoluble.
5. Method according to one of the preceding claims, characterized in that explosive substance particles having a defined porosity are produced, the degree of
—~11 = porosity being adjusted by stabilizing substances, in particular water, introduced and/or remaining in the varnish made from an explosive substance.
6. Method according to one of the preceding claims, characterized in that explosive substance particles having a defined particle size are produced in the range of 0.1 mm to 10 mm, preferably in the range of 0.2 mm to 2 mm, and - particularly preferably in the range of 0.5 mm to 1.0 mm. .
7. Method according to one of the preceding claims, characterized in that water-containing nitrocellulose is used as stabilized explosive substance and ethyl acetate is used as solvent.
8. Method for producing a varnish made from an explosive substance having a defined water content, in particular nitrocellulose varnish, from an explosive substance stabilized in particular with water, characterized by the following steps: - Dissolving the stabilized explosive substance in a solvent; - Removing the stabilizing substance, in particular water, from the mixture by azeotropic distillation while establishing a defined water content; and - Establishing a predetermined viscosity for the varnish made from an explosive substance.
9. Method according to Claim 8, characterized in that for producing a predefined viscosity the solvent is returned to the explosive substance during and/or after the distiliation.
10. Use of a varnish made from an explosive substance having a defined water content, in particular nitrocellulose varnish, for producing shaped, in particular spherical or spheroidal, explosive substances.
11. Nitrocellulose varnish composed of at least nitrocellulose and a solvent, characterized in that the nitrocellulose varnish has a defined water content.
12. Nitrocellulose varnish according to Claim 11, characterized in that the nitrocellulose varnish is substantially water-free.
13. Nitrocellulose varnish according to one of Claims 11 or 12, characterized in that the nitrocellulose varnish has a viscosity which allows, in particular by use of the jet - cutting method, particles having a predefinable particle size in the range of 0.1 mm to 10 mm, preferably in the range of 0.2 mm to 2 mm, and particularly preferably in - the range of 0.5 mm to 1.0 mm, to be formed.
14. Nitrocellulose varnish according to one of Claims 11, 12, or 13, characterized in that the nitrocellulose varnish contains auxiliary agents, in particular surface-active substances, wetting agents or separating agents, and agents for adjusting the viscosity.
15. Nitrocellulose varnish according to one of preceding Claims 11 through 14, characterized in that the nitrocellulose varnish is substantially salt-free.
ZA2004/02643A 2001-10-24 2004-04-05 Production of water-free nitrocellulose and explosive substances that have a spheroidal shape ZA200402643B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10152396A DE10152396A1 (en) 2001-10-24 2001-10-24 Manufacture of anhydrous nitrocellulose and eyplosive substances in spheroidal form
PCT/EP2002/011850 WO2003035581A2 (en) 2001-10-24 2002-10-23 Production of water-free nitrocellulose and explosive substances that have a spheroidal shape

Publications (1)

Publication Number Publication Date
ZA200402643B true ZA200402643B (en) 2005-01-26

Family

ID=7703523

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA2004/02643A ZA200402643B (en) 2001-10-24 2004-04-05 Production of water-free nitrocellulose and explosive substances that have a spheroidal shape

Country Status (8)

Country Link
US (1) US20050000610A1 (en)
EP (1) EP1438274A2 (en)
KR (1) KR20040060942A (en)
CN (1) CN1703385A (en)
AU (1) AU2002346869A1 (en)
DE (1) DE10152396A1 (en)
WO (1) WO2003035581A2 (en)
ZA (1) ZA200402643B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683882B2 (en) 2005-01-19 2010-07-21 Otto Fuchs KG Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
CN103553853B (en) * 2013-11-01 2016-04-20 南京理工大学 The original position super-refinement dispersing method of water-soluble oxidizers in composite material containing energy

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE701493C (en) * 1936-01-07 1941-01-18 Western Cartridge Company Smokeless powder and process for its manufacture
GB746705A (en) * 1952-01-24 1956-03-21 Olin Mathieson Improvements in or relating to the production of spherical grained propellent powders
GB792848A (en) * 1954-10-04 1958-04-02 Olin Mathieson Improvements in or relating to process and apparatus for the manufacture of propellent powder
US2982643A (en) * 1958-07-23 1961-05-02 Olin Mathieson Nitrocellulose
BE652163A (en) * 1963-08-27 1900-01-01
DE1203652B (en) * 1964-02-18 1965-10-21 Wolff & Co Ag Process for the production of gelatinized nitrocellulose
US3702353A (en) * 1970-09-24 1972-11-07 Us Navy Continuous process for manufacturing small particle nitrocellulose
US3723207A (en) * 1970-10-23 1973-03-27 Us Navy Process for preparing stable essentially water-free slurries of nitrocellulose and products thereof
US4031172A (en) * 1975-01-27 1977-06-21 The United States Of America As Represented By The Secretary Of The Army Process for preparing nitrocellulose for use in small arms
GB2067568B (en) * 1979-12-28 1984-05-31 Asahi Chemical Ind Nitrocellulose composition and process for production thereof
JPS5790001A (en) * 1980-11-22 1982-06-04 Daicel Chem Ind Ltd Production of anhydrous nitrocellulose dope
DE3139840A1 (en) * 1981-10-07 1983-04-21 Wolff Walsrode Ag, 3030 Walsrode TOUGH-LIQUID CELLULOSE-CONTAINING MIXTURE (PASTE) AND METHOD FOR THE PRODUCTION OF AQUEOUS COATING EMULSION FROM THIS
DE3639431A1 (en) * 1986-11-18 1988-05-26 Basf Lacke & Farben Aqueous coating composition based on nitrocellulose, process for its preparation and its use, in particular, for coating wood, foils (films) and paper
DE19906509C1 (en) * 1999-02-17 2000-11-23 Vorlop Klaus Dieter Method and device for producing solid particles from a liquid medium
ES2244368T3 (en) * 1999-02-23 2005-12-16 General Dynamics Ordnance And Tactical Systems, Inc. DRILLED DRIVER AND METHOD TO MANUFACTURE IT.
DE19936634A1 (en) * 1999-08-04 2001-02-15 Wolff Walsrode Ag Coating agent containing cellulose substance and its use in paints
US6136112A (en) * 1999-10-26 2000-10-24 Trw Inc. Smokeless gas generating composition for an inflatable vehicle occupant protection device

Also Published As

Publication number Publication date
WO2003035581A3 (en) 2003-12-24
AU2002346869A1 (en) 2003-05-06
US20050000610A1 (en) 2005-01-06
CN1703385A (en) 2005-11-30
DE10152396A1 (en) 2003-05-15
EP1438274A2 (en) 2004-07-21
KR20040060942A (en) 2004-07-06
WO2003035581A2 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
EP2794518B1 (en) Processing explosives
US3954526A (en) Method for making coated ultra-fine ammonium perchlorate particles and product produced thereby
US4986858A (en) Emulsification method
EP1031547B1 (en) Perforated propellant and method of manufacturing same
US5071635A (en) Method of preparing ceramic microspheres
JP2012011268A (en) Biodegradable hollow fine particle and method for producing the same
EP0010009B1 (en) Fragmentable loads of propellent powder coated with polyvinyl nitrate and process for producing them
DE69002098T2 (en) Method and device for coating powder.
US20050000610A1 (en) Production of water-free nitrocellulose and explosive substances that have a spheroidal shape
EP2812104B1 (en) Process and device for the preparation of nanoparticles by flash evaporation
US3671515A (en) Spherical production of small particle nitrocellulose
US2213255A (en) Explosive
CN108976176A (en) 3,3 '-diamino -4, the thinning method of 4 '-azoxy furazan explosive crystals
US3679782A (en) Manufacture of globular powder
BE1014620A3 (en) Method for producing ceramic structures honeycomb.
CN104549078A (en) Preparation method of open-celled high-energy molecular microspheres
US3329743A (en) Lacquer process for preparing small diameter nitrocellulose particles
US3702353A (en) Continuous process for manufacturing small particle nitrocellulose
US3093523A (en) Process for making extrudable propellant
US2346116A (en) Making granulated explosives
US503587A (en) Process of making smokeless explosives
JP3964214B2 (en) Method and apparatus for producing powdered explosive composition
US2121138A (en) Method for manufacturing smokeless powder
WO2001064331A1 (en) Method for producing micro and/or nanocapsules
CN107353175A (en) A kind of preparation method of CL 20/GAP Nanocomposite Energetic Materials