WO2024176664A1 - インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品 - Google Patents

インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品 Download PDF

Info

Publication number
WO2024176664A1
WO2024176664A1 PCT/JP2024/001069 JP2024001069W WO2024176664A1 WO 2024176664 A1 WO2024176664 A1 WO 2024176664A1 JP 2024001069 W JP2024001069 W JP 2024001069W WO 2024176664 A1 WO2024176664 A1 WO 2024176664A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
meth
mass
clear ink
printing
Prior art date
Application number
PCT/JP2024/001069
Other languages
English (en)
French (fr)
Inventor
弘人 井宮
達彦 秋山
桂一 中元
直樹 片倉
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2024176664A1 publication Critical patent/WO2024176664A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/40Ink-sets specially adapted for multi-colour inkjet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/54Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/003Transfer printing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/30Ink jet printing

Definitions

  • the present invention relates to a clear ink for inkjet textile printing, an ink set containing the ink, and an image-printed article.
  • inkjet textile printing a method of obtaining a printed item by inkjet printing
  • inkjet textile printing inks used in inkjet textile printing require performance specific to the inkjet method, such as dispersion stability, ejection stability, and fixation to the medium, as well as storage stability.
  • image-printed products having images printed on fabrics with color inks are required to have fastness properties such as abrasion fastness and washing fastness of the image, as well as performance such as not impairing the texture of the fabric.
  • inkjet textile printing clear inks which are used mainly as a base layer for the color ink layer formed by printing inkjet textile printing color inks on part or all of the fabric.
  • Patent Document 1 describes a clear ink that contains resin particles and water, with the aim of providing a clear ink that can form a coating film with excellent abrasion resistance, in which the resin particles have a volume average particle size of 50 nm or less, and the dried film of the clear ink has a glass transition point (Tg) of 50°C or higher and lower than 0°C.
  • Tg glass transition point
  • Patent Document 2 describes a clear ink composition for inkjet textile printing that contains resin particles, a lubricant, and water, with the aim of providing a clear ink composition for inkjet textile printing that can improve the friction fastness without impairing the texture of the fabric, in which the resin in the resin particles contains a urethane resin having a crosslinkable group, and the dried coating film of the clear ink composition has a Young's modulus of 5 to 70 MPa.
  • the present invention aims to provide a clear ink for inkjet textile printing that can be used, for example, as a base for a color ink layer in a textile printing method using an inkjet method, to provide an image-printed article with excellent performance such as fastness to friction and washing, and texture, and that has excellent storage stability as an ink and excellent ejection stability during printing; an ink set that includes the clear ink and a color ink for inkjet textile printing; and an image-printed article with excellent performance such as fastness to friction and washing, and texture.
  • the inventors have focused on the above problems and conducted extensive research. As a result, they have discovered that by setting the particle size of the resin emulsion particles in a specific range and blending a specific amount of a specific compound in a clear ink for inkjet textile printing containing resin emulsion particles and an aqueous medium, it is possible to provide an image printed article having excellent performance such as fastness, such as fastness to friction and washing, and texture, even when the heating temperature during inkjet textile printing is low, for example, by using the ink as a base for a color ink layer, and that it is possible to provide a clear ink for inkjet textile printing that has excellent storage stability as an ink and excellent ejection stability during printing, an ink set containing the clear ink and a color ink for inkjet textile printing, and an image printed article having excellent performance such as fastness, such as fastness to friction and washing, and texture, and thus completed the present invention.
  • the clear ink for inkjet textile printing of the present invention is a clear ink for inkjet textile printing that contains resin emulsion particles, an oxazoline group-containing compound, and an aqueous medium, in which the average particle size of the resin emulsion particles is 150 nm or more, and the content of the oxazoline group-containing compound is 0.5 to 70 mass% relative to 100 mass% of the resin emulsion particles.
  • the inkjet textile printing ink set of the present invention also includes the above-mentioned clear ink for inkjet textile printing and a color ink for inkjet textile printing that includes a pigment, resin emulsion particles, and an aqueous medium.
  • the image-printed article of the present invention has an image including a fabric, a clear ink layer formed by printing the clear ink in the ink set for inkjet textile printing on all or a part of the fabric, and a color ink layer formed by printing the color ink in the ink set for inkjet textile printing on all or a part of the fabric.
  • the clear ink layer and the color ink layer are preferably formed in this order on the fabric.
  • the clear ink for inkjet textile printing of the present invention when used, for example, as a base for a color ink layer, can provide an image-printed article that is excellent in performance, such as fastness to rubbing, fastness to washing, and other fastness properties, and in texture, and can also provide a clear ink for inkjet textile printing that is excellent in storage stability as an ink and in ejection stability during printing.
  • the ink set for inkjet textile printing of the present invention it is possible to provide an image-printed article that is excellent in performance, such as fastness to rubbing, fastness to washing, etc., and texture, and it is also possible to provide an ink set for inkjet textile printing that is excellent in storage stability as an ink and in ejection stability during printing. Furthermore, according to the image-printed article of the present invention, it is possible to provide an image-printed article excellent in performance such as fastness to rubbing, fastness to washing, etc., and texture.
  • (meth)acrylate means “acrylate” or “methacrylate”
  • (meth)acrylic means “acrylic” or “methacrylic”.
  • (Meth)acrylate is also sometimes called (meth)acrylic acid ester.
  • heating temperature during inkjet printing means the heating temperature in the drying process performed during or after printing of ink with an inkjet device (inkjet printer) in a printing method using an inkjet device.
  • ink is printed with an inkjet device while heating the fabric, that is, if the drying process is performed during the ink printing and not after the ink printing, it means the heating temperature in the drying process when printing the ink, and if ink is printed with an inkjet device while heating the fabric and heating is performed after the ink printing, it means the higher of the heating temperature during ink printing and the heating temperature after the ink printing.
  • printing refers to applying an inkjet textile printing ink to a fabric using an inkjet printer to form an ink layer.
  • the presence or absence of a drying process is not important.
  • the ink contains a pigment, an image-printed article having any image such as letters, pictures, and diagrams can be obtained.
  • the clear ink for inkjet textile printing of the present invention (hereinafter, may be simply referred to as clear ink) is a clear ink containing resin emulsion particles, an oxazoline group-containing compound, and an aqueous medium, wherein the average particle size of the resin emulsion particles is 150 nm or more, and the content of the oxazoline group-containing compound is 0.5 to 70% by mass relative to 100% by mass of the resin emulsion particles.
  • Clear ink refers to ink that does not substantially contain coloring materials such as pigments, and the coating film after drying is colorless and transparent.
  • substantially free of coloring materials it is meant that the content of coloring materials in the clear ink is preferably 0.5% by mass or less, and coloring materials may be contained as long as they are present at the level of impurities.
  • colorless and transparent refers to ink in which the parallel ray transmittance of visible light in the coating film after drying is preferably 30% or more, and more preferably 50% or more.
  • the parallel visible light transmittance of a coating film having a thickness of 10 ⁇ m obtained by applying the clear ink of the present invention is preferably 30% or more, more preferably 50% or more, and even more preferably 80% or more.
  • the parallel light transmittance can be measured by the following method.
  • the clear ink is applied to a colorless, transparent glass plate and then dried by heating at 150° C. for 10 minutes to obtain a glass plate on which a coating film having a thickness of 10 ⁇ m is formed.
  • the glass plate used is a float glass plate (thickness: 2 mm) conforming to JIS R3202.
  • the glass plate on which the coating film obtained as described above is formed is used as a measurement sample, and the spectral transmittance in the visible region is measured using a spectrophotometer (without using an integrating sphere).
  • the simple average of the transmittance (parallel transmittance) for each wavelength (at 1 nm intervals) in the wavelength range of 400 nm to 780 nm is calculated, and the obtained value is regarded as the average visible light transmittance of the coating film.
  • the spectrophotometer is not particularly limited, and any commercially available spectrophotometer can be used, but the ultraviolet-visible-near infrared spectrophotometer UV-3600 manufactured by Shimadzu Corporation is preferred.
  • the clear ink of the present invention is substantially free of coloring materials such as pigments, and therefore suppresses stiffness caused by coloring materials.
  • coloring materials such as pigments
  • the ink as a base for a colored ink layer formed by printing a separate colored ink, it is possible to provide an image-printed article that combines fastness to rubbing, fastness to washing, etc. with a good texture.
  • the coating film after drying is colorless and transparent, allowing the color of the fabric to be utilized.
  • the resin emulsion particles contained in the clear ink of the present invention are not particularly limited, but are preferably resin particles derived from an aqueous emulsion.
  • the shape of the resin emulsion particles is not particularly limited, but is usually spherical.
  • the shape can be measured by a transmission electron microscope or a scanning electron microscope.
  • the average particle size of the resin emulsion particles can be determined by the cumulant method using a particle size distribution measuring instrument (manufactured by Otsuka Electronics Co., Ltd., product number: FPAR-1000) based on dynamic light scattering.
  • the average particle diameter of the resin emulsion particles is 150 nm or more. By making the average particle diameter 150 nm or more, it becomes easier to blend the resin emulsion particles at a high concentration while maintaining the viscosity of the clear ink within an appropriate range. It is also effective in ensuring the storage stability and ejection stability of the ink.
  • the average particle diameter is preferably 170 nm or more, more preferably 180 nm or more, and even more preferably 190 nm or more. On the other hand, there is no particular upper limit, but it is preferably 350 nm or less, more preferably 330 nm or less, and even more preferably 310 nm or less.
  • the glass transition temperature of the resin emulsion particles is not particularly limited, but from the viewpoint that the texture of the printed material obtained using the clear ink of the present invention is likely to be excellent, it is preferably 0°C or lower. It is more preferably -10°C or lower, and even more preferably -15°C or lower. On the other hand, the lower limit is not particularly limited, but it is preferably -50°C or higher, and more preferably -40°C or higher.
  • the glass transition temperature may be a value obtained by any of differential scanning calorimetry (DSC), differential thermal analysis (DTA), and thermomechanical analysis (TMA), but it is preferable to use a value obtained by differential scanning calorimetry (DSC), and unless otherwise specified, the glass transition temperature in this specification refers to a value obtained by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • TMA thermomechanical analysis
  • the glass transition temperature in this specification refers to a value obtained by differential scanning calorimetry (DSC).
  • the glass transition temperature can be calculated using the Fox formula based on the composition of the resin components in the resin emulsion particles described below, such as vinyl resins, (meth)acrylic resins, and acrylic-styrene polymers, this can be used instead.
  • An example of a differential scanning calorimetry measuring device is a model number DSC220C manufactured by Seiko Instruments Inc.
  • DSC differential scanning calorimetry
  • the method of drawing a differential scanning calorimetry (DSC) curve there are no particular limitations on the method of drawing a differential scanning calorimetry (DSC) curve, the method of obtaining a first derivative curve from a differential scanning calorimetry (DSC) curve, the method of performing smoothing processing, the method of determining the target peak temperature, etc.
  • DSC differential scanning calorimetry
  • analysis software capable of performing mathematical processing can be used.
  • An example of the analysis software is analysis software (manufactured by Seiko Instruments Inc., model number EXSTAR6000).
  • the measurement conditions it is preferable to perform the measurement at a heating rate of 15°C/min and a cooling rate of 15°C/min, and the value obtained under these conditions can be used.
  • the glass transition start temperature, intermediate temperature, inflection point temperature, and end temperature are observed in the above measurement, and the intermediate temperature is taken as the glass transition temperature (Tg) of the resin emulsion particles.
  • Tg is the glass transition temperature
  • Wm is the content (mass%) of monomer m in the monomer component constituting the resin component
  • Tgm is the glass transition temperature (absolute temperature: K) of a homopolymer of monomer m.
  • the glass transition temperature can be calculated by substituting the content of each monomer relative to the total amount of monomers used to form the resin that constitutes the resin emulsion particles and the glass transition temperature of the homopolymer of each monomer into the above formula.
  • the glass transition temperatures of homopolymers are 95°C for homopolymers of acrylic acid, 130°C for homopolymers of methacrylic acid, 105°C for homopolymers of methyl methacrylate, 100°C for homopolymers of styrene, 83°C for homopolymers of cyclohexyl methacrylate, 20°C for homopolymers of n-butyl methacrylate, -70°C for homopolymers of 2-ethylhexyl acrylate, -56°C for homopolymers of n-butyl acrylate, 55°C for homopolymers of hydroxyethyl methacrylate, 165°C for homopolymers of acrylamide, and 130
  • the resin emulsion particles preferably have an acidic functional group.
  • a carboxy group (-COOH) is preferred.
  • the content of the acidic functional group is preferably 0.06 to 3 mass% relative to 100 mass% of the resin emulsion particles.
  • the content of the acidic functional group is preferably 0.1 to 5 mass% when expressed as the content of structural units derived from monomers having an acidic functional group relative to 100 mass% of the resin emulsion particles.
  • the preferred content of the carboxy group is the same as that of the acidic functional group.
  • the resin emulsion particles having an acidic functional group can further improve robustness.
  • the content of carboxy groups and the content of acidic functional groups in the resin emulsion particles within the above ranges, when a clear ink is formed, the uniformity of the formed clear ink layer can be improved, and even if the heating temperature during inkjet printing is low, the washing fastness of an image including a clear ink layer and a color ink layer can be improved.
  • the content of acidic functional groups such as carboxy groups in the resin emulsion particles can be adjusted, for example, by adjusting the composition of the monomers used in the polymerization of the resin emulsion particles.
  • the acid value of the resin emulsion particles is preferably 0.5 to 50 mgKOH/g. More preferably, it is 0.8 to 40 mgKOH/g.
  • the preferred range for the acid value derived from the carboxyl group in the resin emulsion particles is the same as that for the acid value described above.
  • the weight average molecular weight of the resin component constituting the resin emulsion particles is preferably 50,000 or more, more preferably 300,000 or more, even more preferably 550,000 or more, and even more preferably 600,000 or more, from the viewpoint of further improving water resistance and adhesion. It is particularly preferably more than 700,000, and most preferably 720,000 or more.
  • the upper limit of the weight average molecular weight of the resin component is preferably 5,000,000 or less, from the viewpoint of further improving film-forming properties and water resistance.
  • the weight average molecular weight means a weight average molecular weight (polystyrene equivalent) measured by gel permeation chromatography (manufactured by Tosoh Corporation, product number: HLC-8120GPC, column: TSKgel G-5000HXL and TSKgel GMHXL-L in series).
  • the structure of the resin emulsion particles is not particularly limited, and may be a form in which the composition of the entire particle is uniform, or a core-shell structure consisting of a core and a shell with different compositions and/or physical properties.
  • the core-shell structure is not limited to two layers, and may be three or more layers. Among these, a form with a core-shell structure of two or more layers is preferred, which can further improve the balance between elongation and hardness of the coating film.
  • the resin emulsion particles are preferably dispersed and stabilized in the clear ink by a surfactant.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, and conventionally known surfactants can be used. These surfactants may be used alone or in combination of two or more.
  • nonionic surfactants or anionic surfactants are preferred.
  • Surfactants containing a polymerizable group in the molecule are also preferred.
  • polymerizable groups include groups having an ethylenically unsaturated double bond.
  • nonionic surfactants containing a polymerizable group or anionic surfactants containing a polymerizable group are particularly preferred.
  • Surfactants containing a polymerizable group are also called reactive emulsifiers. Polymeric emulsifiers can also be used as surfactants.
  • Anionic surfactants include, for example, alkyl sulfate salts such as ammonium dodecyl sulfate and sodium dodecyl sulfate; alkyl sulfonate salts such as ammonium dodecyl sulfonate, sodium dodecyl sulfonate and sodium alkyl diphenyl ether disulfonate; alkyl aryl sulfonate salts such as ammonium dodecyl benzene sulfonate and sodium dodecyl naphthalene sulfonate; polyoxyethylene alkyl sulfonate salts; polyoxyethylene alkyl sulfate salts; polyoxyethylene alkyl aryl sulfate salts; dialkyl sulfosuccinate salts; aryl sulfonic acid-formaldehyde condensation.
  • alkyl sulfate salts such as ammoni
  • fatty acid salts such as ammonium laurate and sodium stearylate; sulfates or salts thereof having an allyl group such as bis(polyoxyethylene polycyclic phenyl ether) methacrylate sulfonate salts, propenyl-alkyl sulfosuccinate salts, polyoxyethylene (meth)acrylate sulfonate salts, polyoxyethylene (meth)acrylate phosphonate salts, and sulfonate salts of allyloxymethyl alkyloxy polyoxyethylene; sulfate salts of allyloxymethyl alkoxyethyl polyoxyethylene, and ammonium polyoxyalkylene alkenyl ether sulfate salts, but are not limited to these examples.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, condensation products of polyethylene glycol and polypropylene glycol, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid monoglycerides, condensation products of ethylene oxide and aliphatic amines, polyoxyalkylene alkenyl ethers, etc., but are not limited to these examples.
  • cationic surfactants include, but are not limited to, alkyl ammonium salts such as dodecyl ammonium chloride.
  • amphoteric surfactants include, but are not limited to, betaine ester emulsifiers.
  • polymeric emulsifiers examples include poly(meth)acrylates such as sodium polyacrylate; polyvinyl alcohol; polyvinylpyrrolidone; polyhydroxyalkyl(meth)acrylates such as polyhydroxyethyl acrylate; and copolymers in which one or more of the monomers constituting these polymers are copolymerized components, but are not limited to these examples.
  • Reactive emulsifiers include, for example, propenyl-alkyl sulfosuccinate salts, (meth)acrylic acid polyoxyethylene sulfonate salts, (meth)acrylic acid polyoxyethylene phosphonate salts (e.g., Sanyo Chemical Industries, Ltd., product name: Eleminol RS-30, etc.), polyoxyethylene alkylpropenyl phenyl ether sulfonate salts (e.g., Daiichi Kogyo Seiyaku Co., Ltd., product name: Aqualon HS-10, etc.), allyloxymethyl alkyloxy polyoxyethylene sulfonate salts (e.g., Daiichi Kogyo Seiyaku Co., Ltd., product name: Aqualon KH-10, etc.), polyoxyethylene styrenated propenyl phenyl ether sulfate ammonium ester (e.g., Daiichi Ko
  • the resin constituting the resin emulsion particles is not particularly limited, and examples thereof include vinyl resins, (meth)acrylic resins, olefin resins, urethane resins, fluorine resins, silicone resins, epoxy resins, phenoxy resins, phenol resins, xylene resins, and the like.
  • polymers obtained by polymerizing ethylenically unsaturated double bond-containing monomers are preferred.
  • polymers containing structural units derived from ethylenically unsaturated double bond-containing monomers are preferred.
  • the resin is a polymer obtained by polymerizing ethylenically unsaturated double bond-containing monomers, the content of acidic functional groups such as carboxyl groups and hydrophobic monomers can be designed as desired.
  • Ethylenically unsaturated double bond-containing monomers include vinyl monomers such as vinyl acetate, vinyl chloride, acrylonitrile, acrylamide, and vinyl benzoate; (meth)acrylic monomers such as (meth)acrylic acid esters and (meth)acrylic acid; styrene monomers such as styrene, ⁇ -methylstyrene, and chloromethylstyrene; olefin monomers such as ethylene and propylene; and more.
  • Examples of such monomers include maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, maleic anhydride, maleic acid monomethyl ester, maleic acid monobutyl ester, itaconic acid monomethyl ester, and itaconic acid monobutyl ester.
  • the resin constituting the resin emulsion particles is preferably a (co)polymer obtained by (co)polymerizing one or more of these monomers.
  • vinyl acetate polymers vinyl chloride polymers, ethylene-vinyl acetate copolymers, polystyrene, styrene-acrylonitrile copolymers, styrene-butadiene copolymers, acrylonitrile-butadiene-styrene copolymers, acrylonitrile-ethylene-styrene copolymers, acrylonitrile-chlorinated ethylene-styrene copolymers, polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate-(meth)acrylic acid ester copolymers, (meth)acrylic acid ester (co)polymers, (meth)acrylic acid ester-(meth)acrylic acid copolymers, (meth)
  • copolymers obtained by copolymerizing a monomer composition containing at least one or more (meth)acrylic monomers and one or more styrene monomers as ethylenically unsaturated double bond-containing monomers are preferred.
  • Such copolymers are also called acrylic-styrene polymers.
  • acrylic-styrene polymers examples include (meth)acrylic acid ester-styrene copolymers, (meth)acrylic acid ester-(meth)acrylic acid-styrene copolymers, and acrylonitrile-(meth)acrylic acid ester-styrene copolymers.
  • the monomers for forming the acrylic-styrene polymer may contain other monomers in addition to the (meth)acrylic monomer and the styrene monomer.
  • the total content of the (meth)acrylic monomer and the styrene monomer relative to 100% by mass of the total monomers for forming the acrylic-styrene polymer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the acrylic-styrene-based polymer may contain constituent units derived from (meth)acrylic monomers and constituent units derived from styrene-based monomers, and may contain other constituent units besides these constituent units.
  • the total content of the constituent units derived from (meth)acrylic monomers and the constituent units derived from styrene-based monomers relative to the total of 100% by mass of the constituent units constituting the acrylic-styrene-based polymer is preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • one or more types can be selected from conventionally known (meth)acrylic acid esters and (meth)acrylic acids.
  • Examples of (meth)acrylic acid esters include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, sec-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, tridecyl (meth)acrylate, cyclohexyl (meth)acrylate, n-lauryl (meth)acrylate, dodecyl (meth)acrylate, stearyl (meth)acrylate, and isobornyl (meth)acrylate; trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth
  • fluoroalkyl (meth)acrylates such as octafluoropentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate, phenylethyl (meth)acrylate, methylbenzyl (meth)acrylate, naphthylmethyl (meth)acrylate; hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; epoxy group-containing (meth)acrylates such as glycidyl (meth)acrylate and ⁇ -methylglycidyl (meth)acrylate; methoxyethyl (meth)acrylate , methoxybutyl (meth)acrylate, ethoxybutyl (meth)acrylate, trimethyl
  • oxo group-containing (meth)acrylates such as (di)ethylene glycol (methoxy) (meth)acrylates, such as ethylene glycol (meth)acrylate, ethylene glycol methoxy (meth)acrylate, diethylene glycol (meth)acrylate, and diethylene glycol methoxy (meth)acrylate; piperidine group-containing (meth)acrylates, such as 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine and 4-(meth)acryloyloxy-1,2,2,6,6-pentamethylpiperidine, and the like. One or more of these can be selected and used.
  • a polyfunctional (meth)acrylate can also be used as the (meth)acrylic acid ester.
  • the polyfunctional (meth)acrylate include carbon diesters such as ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, ethylene oxide-modified 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, propylene oxide-modified neopentyl glycol di(meth)acrylate, and tripropylene glycol di(meth)acrylate.
  • Di(meth)acrylates of polyhydric alcohols having 1 to 10 carbon atoms alkyl di(meth)acrylates having an added mole number of alkylene oxide groups having 2 to 4 carbon atoms of 2 to 50, such as polyethylene glycol di(meth)acrylate having an added mole number of ethylene oxide of 2 to 50, polypropylene glycol di(meth)acrylate having an added mole number of propylene oxide of 2 to 50, and tripropylene glycol di(meth)acrylate; ethoxylated glycerin tri(meth)acrylate, propylene oxide-modified glycerol tri(meth)acrylate, ethylene oxide-modified trimethylol tri(meth)acrylates of polyhydric alcohols having 1 to 10 carbon atoms, such as pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol monohydroxytri(meth)acrylate, and tri
  • styrene-based monomer examples include styrene, ⁇ -methylstyrene, p-methylstyrene, tert-methylstyrene, chlorostyrene, vinyltoluene, and 2-styrylethyltrimethoxysilane.
  • the styrene-based monomer may have a functional group, such as an alkyl group such as a methyl group or a tert-butyl group, a nitro group, a nitrile group, an alkoxyl group, an acyl group, a sulfone group, a hydroxyl group, or a halogen atom, present on the benzene ring.
  • styrene is preferred from the viewpoint of increasing water resistance.
  • a polyfunctional styrene-based monomer may be used, and a preferred example of the polyfunctional styrene-based monomer is divinylbenzene.
  • the content of the styrene monomer in the monomers for forming the acrylic-styrene polymer is preferably 1 to 55 mass%, more preferably 5 to 50 mass%, and even more preferably 10 to 45 mass%, relative to 100 mass% of the total amount of the (meth)acrylic monomer and the styrene monomer.
  • the acrylic-styrene polymer is preferably a polymer obtained by copolymerizing the (meth)acrylic monomer and the styrene monomer, preferably in a monomer composition having a composition ratio within the above range.
  • the acrylic-styrene polymer is preferably a polymer having a carboxy group, and the content of the carboxy group is preferably 0.06 to 3 mass% relative to 100 mass% of the resin emulsion particle.
  • the content of the carboxy group is preferably 0.1 to 5 mass% expressed as the content of constituent units derived from monomers having a carboxy group relative to 100 mass% of the resin emulsion particle.
  • the carboxy group is preferably a carboxy group derived from (meth)acrylic acid. Therefore, it is preferable that the constituent units derived from the (meth)acrylic monomer constituting the acrylic-styrene polymer contain one or more kinds of constituent units derived from (meth)acrylic acid, and more preferably, contain one or more kinds of constituent units derived from the (meth)acrylate ester and one or more kinds of constituent units derived from (meth)acrylic acid.
  • the content of the (meth)acrylic acid-derived constituent units constituting the acrylic-styrene-based polymer is preferably 0.1 to 5 mass%, more preferably 0.2 to 4 mass%, and even more preferably 1 to 3 mass%, relative to 100 mass% of the total amount of the (meth)acrylic monomer-derived constituent units and the styrene monomer-derived constituent units.
  • the (meth)acrylic monomer for forming the acrylic-styrene polymer preferably contains one or more types of (meth)acrylic acid, and more preferably contains one or more types of the (meth)acrylate esters and one or more types of (meth)acrylic acid.
  • the content of (meth)acrylic acid in the monomers for forming the acrylic-styrene polymer is preferably 0.1 to 5 mass%, more preferably 0.2 to 4 mass%, and even more preferably 1 to 3 mass%, relative to 100 mass% of the total amount of the (meth)acrylic monomer and the styrene monomer.
  • the (meth)acrylic monomer for forming the acrylic-styrene polymer preferably contains a (meth)acrylic acid ester in addition to (meth)acrylic acid.
  • a (meth)acrylic acid ester in addition to (meth)acrylic acid.
  • the (meth)acrylic acid esters it is preferable to contain one or more types of alkyl (meth)acrylates, and it is also preferable to contain one or more types of hydroxyalkyl (meth)acrylates. Furthermore, it is more preferable to contain one or more types of alkyl (meth)acrylates and one or more types of hydroxyalkyl (meth)acrylates.
  • alkyl (meth)acrylates it is preferable to include an alkyl (meth)acrylate having an alkyl group with 1 to 18 carbon atoms, and it is even more preferable to include an alkyl (meth)acrylate having an alkyl group with 4 to 12 carbon atoms. In addition, it is also preferable to use two or more alkyl (meth)acrylates having different carbon numbers in combination.
  • an alkyl (meth)acrylate having 1 to 5 carbon atoms in combination with an alkyl (meth)acrylate having 6 to 18 carbon atoms in combination an alkyl (meth)acrylate having 1 carbon atom in combination with an alkyl (meth)acrylate having 8 to 18 carbon atoms in combination
  • an alkyl (meth)acrylate having 2 to 6 carbon atoms in combination with an alkyl (meth)acrylate having 8 to 12 carbon atoms in combination etc.
  • hydroxyalkyl (meth)acrylate a hydroxyalkyl (meth)acrylate having 1 to 18 carbon atoms in the hydroxyalkyl chain is more preferable, and a hydroxyalkyl (meth)acrylate having 2 to 4 carbon atoms is even more preferable.
  • the monomers for forming the acrylic-styrene polymer may contain other monomers in addition to (meth)acrylic monomers and styrene monomers.
  • examples of the other monomers include acrylonitrile, vinyl acetate, and acrylamide.
  • examples of the other monomers include addition-polymerizable oxazolines.
  • addition-polymerizable oxazolines examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • the acrylic-styrene polymer is preferably a copolymer of the above-mentioned preferred monomers in a preferred ratio, and is preferably a polymer containing constituent units derived from the preferred monomers in a ratio corresponding to the preferred monomer blend ratio.
  • the resin emulsion particles contained in the clear ink of the present invention preferably contain the above-mentioned acrylic-styrene polymer as the main resin component (e.g., 85 to 100% by mass). Such particles are also called acrylic-styrene polymer emulsion particles.
  • the acrylic-styrene polymer emulsion particles can be produced by a conventionally known emulsion polymerization method.
  • the preferred types, combinations, and blending ratios of monomers used in emulsion polymerization are similar to the preferred forms described for the monomers for forming the acrylic-styrene polymer described above. That is, the acrylic-styrene polymer emulsion particles can be produced by emulsion polymerizing monomers including (meth)acrylic monomers, styrene monomers, and, if necessary, other ethylenically unsaturated double bond-containing monomers in an aqueous medium in the presence of an emulsifier.
  • the emulsifier used can be a conventionally known emulsifier.
  • the emulsifier used can be the above-mentioned surfactant, and the preferred forms are the same as those for the above-mentioned surfactant.
  • the residual monomer is preferably less than 100 ppm by mass relative to the emulsion.
  • the residual monomer can be measured by gas chromatography or the like. It is preferable to extend the maturation by adding additional polymerization initiator so that the residual monomer is less than 100 ppm after maturation of the polymerization reaction.
  • the clear ink of the present invention contains an oxazoline group-containing compound.
  • the oxazoline group-containing compound preferably means a compound having two or more oxazoline groups in the molecule.
  • Examples of the oxazoline group-containing compound include 2,2'-bis(2-oxazoline), 2,2'-methylene-bis(2-oxazoline), 2,2'-ethylene-bis(2-oxazoline), 2,2'-trimethylene-bis(2-oxazoline), 2,2'-tetramethylene-bis(2-oxazoline), 2,2'-hexamethylene-bis(2-oxazoline), 2,2'-octamethylene-bis(2-oxazoline), 2,2'-ethylene-bis
  • Examples of the oxazoline group-containing polymer include, but are not limited to, 2,2'-p-phenylene-bis(2-oxazoline), 2,2'-m-phenylene-bis(2-oxazoline), 2,2'-m-phenylene-bis(4,4'-dimethyl-2-oxazoline), bis(2-oxazolinylcyclohexane)sulfide, bis(2-oxazolinylnorbornane)s
  • oxazoline group-containing compounds include water-soluble types and emulsion types, but among them, water-soluble oxazoline group-containing compounds are preferred from the viewpoint of superior crosslinking performance, and oxazoline group-containing polymers are also preferred. In this case, even a small amount can effectively improve the robustness.
  • the oxazoline group-containing polymer can be produced by a conventionally known production method. For example, a method of polymerizing one or more kinds of addition polymerizable oxazolines, or a monomer component containing an addition polymerizable oxazoline and a monomer copolymerizable with the addition polymerizable oxazoline, can be used.
  • the copolymerizable monomer is preferably a monomer that does not have a functional group that reacts with the oxazoline group and is copolymerizable with the addition polymerizable oxazoline.
  • the above ethylenically unsaturated double bond-containing monomer can be a monomer that does not have a functional group that reacts with the oxazoline group.
  • vinyl monomers such as vinyl acetate, vinyl chloride, acrylonitrile, acrylamide, and vinyl benzoate; (meth)acrylic monomers such as (meth)acrylic acid esters; styrene monomers such as styrene, ⁇ -methylstyrene, and chloromethylstyrene; and olefin monomers such as ethylene and propylene.
  • Examples of the above-mentioned addition-polymerizable oxazoline include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • water-soluble oxazoline group-containing polymers are preferred, and can be produced by the same method as the above-mentioned method for producing oxazoline group-containing polymers.
  • water-soluble oxazoline group-containing polymers include polymers that have an acrylic polymer, an acrylic-styrene polymer, or the like as the main chain and contain oxazoline groups in the side chains.
  • oxazoline group-containing polymers can also be used as oxazoline group-containing polymers.
  • water-soluble polymers such as Epocross WS-500 and Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd.
  • emulsion-type polymers such as Epocross K-2010, Epocross K-2020, and Epocross K-2030 are available.
  • water-soluble polymers such as Epocross WS-500 and Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd. are preferred.
  • the content of the oxazoline group-containing compound contained in the clear ink of the present invention is 0.5 to 70% by mass, preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, and even more preferably 0.5 to 10% by mass, relative to 100% by mass of the resin emulsion particles.
  • the above range is preferable mainly from the viewpoint of friction fastness.
  • the above oxazoline group-containing compound is presumed to act as a crosslinker even at low temperatures through interaction with components contained in the clear ink of the present invention, such as resin emulsion particles, or through a chemical reaction, forming a strong clear ink layer.
  • the clear ink of the present invention contains an aqueous medium.
  • the aqueous medium means a solvent containing water.
  • the content of water in the aqueous medium is preferably 10 to 100% by mass. It is more preferably 25% by mass or more, even more preferably 50% by mass or more, and particularly preferably 70% by mass or more.
  • the remainder is preferably an organic solvent.
  • the aqueous medium may contain an organic solvent.
  • the organic solvent include glycols such as propylene glycol, 1,3-propanediol, glycerin, dipropylene glycol, tripropylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; ethers of monoethylene glycol such as monoethylene glycol monomethyl ether, monoethylene glycol monoethyl ether, monoethylene glycol monopropyl ether, monoethylene glycol monoisopropyl ether, monoethylene glycol monobutyl ether, and monoethylene glycol monoisobutyl ether; ethers of monopropylene glycol such as monopropylene glycol monomethyl ether, monopropylene glycol monoethyl ether, monopropylene glycol monopropyl ether, monopropylene glycol monoisopropyl ether, monopropylene glycol monobutyl ether, and monopropylene glycol monoisobutyl ether; mono
  • These organic solvents may be used alone or in combination of two or more kinds.
  • the content of the resin emulsion particles in the clear ink of the present invention is preferably 10 to 20% by mass per 100% by mass of the clear ink.
  • the above range is preferable from the viewpoint of further improving the friction fastness of an image including a clear ink layer and a color ink layer formed by processing at a low temperature during inkjet textile printing, and the ejection stability of the clear ink during printing. More preferably, it is 10.5% by mass or more and 18% by mass or less.
  • the content of the aqueous medium in the clear ink of the present invention is preferably 60 to 92% by mass, and more preferably 70 to 90% by mass, relative to 100% by mass of the clear ink of the present invention.
  • the clear ink of the present invention may contain other components besides the above-mentioned essential components (resin emulsion particles, oxazoline group-containing compound, and aqueous medium) within the scope that does not impair the object of the present invention.
  • additives such as surfactants, dispersants, leveling agents, UV absorbers, UV stabilizers, thickeners, wetting agents, plasticizers, stabilizers, defoamers, dyes, antioxidants, crosslinking accelerators, pH adjusters, and preservatives may be contained in appropriate amounts.
  • the leveling agent for example, it is preferable to use an acetylene-based (including acetylene glycol-based), silicone-based, or fluorine-based surfactant, and it is more preferable to use an acetylene-based leveling agent or a silicone-based leveling agent. Furthermore, it is preferable to use an acetylene-based leveling agent in combination with a silicone-based leveling agent.
  • an acetylene-based leveling agent in combination with a silicone-based leveling agent, the leveling properties of the clear ink are further improved, the robustness is further improved, and the ejection stability is also improved.
  • the silicone-based leveling agent a polyether-modified silicone compound is preferable.
  • acetylene-based leveling agents examples include Surfynol 104E, Surfynol 104H, Surfynol 104A, Surfynol 104BC, Surfynol 104DPM, Surfynol 104PA, Surfynol 104PG-50, Surfynol 420, and Surfynol 440 manufactured by Air Products Co., Ltd., and Olfin D-10A, Olfin D-10PG, Olfin E1004, Olfin E1010, Olfin E1020, Olfin PD-001, Olfin PD-002W, Olfin PD-004, Olfin PD-005, Olfin EXP. 4001, Olfin EXP. 4200, Olfin EXP. 4123, and Olfin EXP. 4300 manufactured by Nissin Chemical Industry Co., Ltd. These may be used alone or in combination of two or more.
  • silicone leveling agents examples include KF-351A, 352A, 353, 354L, 355A, 615A, 945, 640, 642, 643, 644, 6020, 6204, 6011, 6012, 6015, and 6017 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-345, 347, 348, and 349 (manufactured by BYK Corporation), WET 240, 270, and 280 (manufactured by Evonik Corporation), and SAG014 and 503A (manufactured by Nissin Chemical Industry Co., Ltd.). These may be used alone or in combination of two or more kinds.
  • the amount used is preferably 0.01 to 2% by mass, more preferably 0.05 to 1.5% by mass, and even more preferably 0.1 to 1% by mass, relative to 100% by mass of the clear ink of the present invention.
  • the content of each relative to 100% by mass of clear ink is preferably 0.05 to 1.5% by mass, and more preferably 0.1 to 1% by mass.
  • the content is not particularly limited, but is preferably 2% by mass or less, and more preferably 1% by mass or less, relative to 100% by mass of the clear ink of the present invention.
  • the content is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more.
  • the method for producing the clear ink of the present invention is not particularly limited.
  • the clear ink can be produced by mixing the resin emulsion particles, the oxazoline group-containing compound, and the aqueous medium, but a preferred production example will be described below.
  • an emulsion containing resin emulsion particles is prepared.
  • the emulsion containing resin emulsion particles can be produced by a conventional emulsion polymerization method as described above.
  • the content of resin emulsion particles in the emulsion is not particularly limited, but is preferably 30 to 65% by mass relative to 100% by mass of the emulsion.
  • An emulsion obtained by emulsion polymerization usually contains an emulsifier such as a surfactant used in the emulsification, but the emulsion may be used as it is as the emulsion for preparing the clear ink of the present invention.
  • the emulsion, the oxazoline group-containing compound, and, if necessary, an aqueous medium are mixed.
  • the oxazoline group-containing compound may be used as is, or a solution diluted with an aqueous medium or the like may be used.
  • the aqueous medium or the water or organic solvent that constitutes the aqueous medium may be mixed alone or in mixtures, and components such as additives other than those mentioned above may also be mixed.
  • the timing for mixing these (aqueous medium, additives, etc.) may be selected appropriately. Centrifugation, filtration, etc. may also be performed as necessary.
  • the above-mentioned manufacturing method produces the clear ink of the present invention, which contains resin emulsion particles, an oxazoline group-containing compound, an aqueous medium, and, if necessary, other components such as additives.
  • the clear ink of the present invention can be suitably used for printing on fabrics using an inkjet printer.
  • the preferred aspects of the inkjet printing clear ink in the method for producing the inkjet printing clear ink are each independently the same as the preferred aspects described in the section on the clear ink of the present invention above.
  • the inkjet textile printing ink set of the present invention (hereinafter may be simply referred to as an ink set) contains the above-mentioned clear ink of the present invention and color inks for inkjet textile printing that contain a pigment, resin emulsion particles, and an aqueous medium.
  • the inkjet printing color ink (hereinafter sometimes simply referred to as color ink) contains a pigment, resin emulsion particles, and an aqueous medium.
  • the color ink also includes a white ink.
  • the average particle size of the resin emulsion particles contained in the color ink is not particularly limited, but is preferably 150 nm or more, more preferably 170 nm or more, even more preferably 180 nm or more, and even more preferably 190 nm or more.
  • the upper limit is not particularly limited, but is preferably 350 nm or less, more preferably 330 nm or less, and even more preferably 310 nm or less.
  • Other aspects of the resin emulsion particles are the same as those described above in the section on the clear ink of the present invention, and preferred aspects are also the same as those described above in the section on the clear ink of the present invention.
  • the resin emulsion particles contained in the color ink preferably contain the acrylic-styrene polymer as the main resin component (for example, 85 to 100% by mass). Such particles are also called acrylic-styrene polymer emulsion particles.
  • the resin emulsion particles in the clear ink and the resin emulsion particles in the color inks each preferably contain an acrylic-styrene polymer as the main resin component (for example, 85 to 100% by mass).
  • aqueous medium is the same as that described above in the section on the clear ink of the present invention, and preferred embodiments thereof are also the same as those described above in the section on the clear ink of the present invention.
  • the color ink contains a pigment.
  • the pigment include organic pigments and inorganic pigments, which may be used alone or in combination of two or more kinds. If necessary, these pigments may also be used in combination with an extender pigment.
  • organic pigments examples include azo pigments such as benzidine and Hansa Yellow, diazo pigments, azomethine pigments, methine pigments, anthraquinone pigments, phthalocyanine pigments such as phthalocyanine blue, perinone pigments, perylene pigments, diketopyrrolopyrrole pigments, thioindigo pigments, iminoisoindoline pigments, isoindolinone pigments such as iminoisoindolinone, dioxazine pigments, quinacridone pigments such as quinacridone red and quinacridone violet, flavanthrone pigments, indanthrone pigments, anthrapyrimidine pigments, carbazole pigments, monoarylide yellow, diarylide yellow, benzimidazolone yellow, tolyl orange, naphthol orange, and quinophthalone pigments.
  • azo pigments such as benzidine and Hansa Yellow
  • diazo pigments such as benzidine and Hans
  • the hue is not particularly limited, and any chromatic pigment such as yellow, magenta, cyan, blue, red, orange, or green can be used. Specific examples include C.I. Pigment Yellow, C.I. Pigment Red, C.I. Pigment Orange, C.I. Pigment Violet, C.I. Pigment Blue, and C.I. Pigment Green.
  • a pigment that does not contain metal as the organic pigment so as not to promote the thermal decomposition of polypropylene.
  • Pigment Blue 16 or the like can be selected.
  • inorganic pigments include colloidal silica, titanium dioxide, antimony trioxide, zinc oxide such as zinc oxide, lithopone, white lead, red iron oxide, black iron oxide, chromium oxide green, carbon black, yellow lead, molybdenum red, ferric ferrocyanide (Prussian blue), ultramarine, lead chromate, etc.
  • inorganic pigments include flat-shaped pigments such as mica, clay, aluminum powder, talc, and aluminum silicate, and extender pigments such as calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, and magnesium carbonate.
  • carbon black include furnace black, thermal lamp black, acetylene black, and channel black.
  • preferred white pigments are titanium dioxide, antimony trioxide, zinc oxide such as zinc oxide, lithopone, white lead, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, magnesium carbonate, clay, talc, and aluminum silicate.
  • titanium dioxide is preferred from the viewpoint of high refractive index and excellent hiding power.
  • titanium dioxide having a rutile crystal structure is preferred.
  • Preferred color pigments include the above organic pigments, red iron oxide, black iron oxide, chromium oxide green, carbon black, yellow lead, molybdenum red, ferric ferrocyanide (Prussian blue), ultramarine, lead chromate, etc.
  • the average particle size of the pigment is preferably from 10 to 1,000 nm, more preferably from 20 to 500 nm, from the viewpoints of dispersion stability, color development, and hiding power.
  • the average particle size is preferably 100 to 500 nm, the lower limit is more preferably 150 nm or more, and even more preferably 200 nm or more, and the upper limit is more preferably 450 nm or less, and even more preferably 400 nm or less.
  • the average particle size is preferably 20 to 200 nm, particularly from the viewpoint of further improving color development, and the lower limit is more preferably 40 nm or more, and even more preferably 50 nm or more, and the upper limit is more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the average particle diameter of the pigment is the average particle diameter in the color ink.
  • the average particle diameter of the pigment can be measured by a laser diffraction scattering type particle size distribution meter or dynamic light scattering method.
  • the value obtained by the cumulant method when measuring using a particle size distribution measuring device using dynamic light scattering method can be used.
  • the 50% particle diameter in the volume-based particle size distribution measured by a laser diffraction scattering type particle size distribution meter can be used as the average particle diameter.
  • the pigment is stabilized in the color ink by a dispersant.
  • the dispersant include poly(meth)acrylic acid (salts) such as poly(meth)acrylic acid and poly(meth)acrylate salts; copolymers of (meth)acrylic acid (salts) with one or more ethylenically unsaturated double bond-containing monomers such as (meth)acrylic acid esters, (meth)acrylonitrile, (meth)acrylamide, styrene, maleic acid, maleic anhydride, maleic acid esters, and vinyl acetate; polyvinyl alcohol; and polyvinylpyrrolidone.
  • the color ink preferably further contains an oxazoline group-containing compound.
  • an oxazoline group-containing compound In this case, the robustness of an image in an image-printed article having an image including a clear ink layer formed by printing the clear ink of the present invention on all or part of a fabric, and a color ink layer formed by printing the color ink on all or part of the fabric, as described below, is improved.
  • Specific examples of oxazoline group-containing compounds are the same as those described above in the section on the clear ink of the present invention.
  • the content of the oxazoline group-containing compound contained in the color ink is preferably 0.5 to 10% by mass relative to 100% by mass of the resin emulsion particles.
  • the above range is preferable mainly from the viewpoint of further improving the resistance to friction.
  • the above content is more preferably 5% by mass or less.
  • the oxazoline group-containing compound is presumed to act as a crosslinker even at low temperatures through interaction with components contained in the color ink, such as resin emulsion particles, pigments, or pigment dispersants, or through chemical reactions, resulting in an image that includes a stronger clear ink layer and color ink layer.
  • the content of the resin emulsion particles in the color ink is preferably 10 to 20% by mass per 100% by mass of the color ink.
  • the above range is preferable from the viewpoint of further improving the friction fastness of an image including a clear ink layer and a color ink layer formed by processing at a low temperature during inkjet textile printing, and the ejection stability of the color ink during printing.
  • the content is more preferably 10.5% by mass or more and 18% by mass or less.
  • the content of the pigment in the color ink is not particularly limited, but is preferably 1 to 20% by mass per 100% by mass of the color ink.
  • the content of the aqueous medium in the color ink is preferably 55 to 89% by mass, and more preferably 70 to 85% by mass, relative to 100% by mass of the color ink.
  • the content of the pigment in the color ink relative to the total content of the pigment, the resin emulsion particles, and the oxazoline group-containing compound added as necessary, being 100% by mass, is, from the viewpoint of further improving the hiding property or coloring property of the color ink layer formed by printing the color ink on a part or all of the fabric, preferably from 10 to 80% by mass, and more preferably from 15 to 75% by mass.
  • the color ink may contain other components, if necessary, in addition to the components described above.
  • the other components are the same as those described in the section on the clear ink of the present invention, and preferred embodiments thereof are also the same as those described in the section on the clear ink of the present invention.
  • Suitable aspects of the clear ink in the method for producing the clear ink included in the ink set of the present invention are each independently the same as those described above in the section on the clear ink of the present invention, and preferred aspects are also the same as those described above in the section on the clear ink of the present invention.
  • the method for producing the color ink is not particularly limited.
  • the color ink can be produced by mixing a pigment, a resin emulsion particle, an oxazoline group-containing compound added as required, and an aqueous medium.
  • a preferred example of the production method is shown below.
  • an emulsion containing resin emulsion particles and a pigment dispersion are prepared.
  • the pigment dispersion is preferably one in which the pigment is dispersed in an aqueous medium.
  • the pigment dispersion can be produced, for example, by mixing a pigment and a dispersant in an aqueous medium such as water and dispersing the mixture with a bead mill or the like.
  • the pigment content in the pigment dispersion is not particularly limited, but is preferably 15 to 65% by mass relative to 100% by mass of the pigment dispersion.
  • an emulsion containing resin emulsion particles can be produced by a conventionally known emulsion polymerization method as described above.
  • the resin emulsion particle content in the emulsion is not particularly limited, but is preferably 30 to 65% by mass relative to 100% by mass of the emulsion.
  • the emulsion obtained by the emulsion polymerization method usually contains an emulsifier such as a surfactant used in the emulsification, but the emulsion may be used as it is as the emulsion for preparing the color ink.
  • the pigment dispersion, the emulsion, and, if necessary, the oxazoline group-containing compound and the aqueous medium are mixed.
  • the oxazoline group-containing compound is mixed, the compound may be used as is, or a solution diluted with an aqueous medium or the like may be used.
  • the method and order of mixing the above components are not particularly limited.
  • the emulsion and the pigment dispersion may be mixed, and then the oxazoline group-containing compound may be mixed, or the pigment dispersion and the oxazoline group-containing compound may be mixed, and then the emulsion may be mixed, or the emulsion and the oxazoline group-containing compound may be mixed, and then the pigment dispersion may be mixed, or the pigment dispersion, the emulsion, and the oxazoline group-containing compound may be mixed almost simultaneously.
  • the aqueous medium or the water or organic solvent that constitutes the aqueous medium may be mixed alone or in combination, and components such as additives other than those mentioned above may also be mixed.
  • the timing of mixing these (aqueous medium, additives, etc.) may be selected appropriately. Centrifugation, filtration, etc. may also be performed as necessary.
  • the above-mentioned manufacturing method produces the above-mentioned color inks, which contain pigments, resin emulsion particles, an oxazoline group-containing compound and an aqueous medium which are added as necessary, and further contain other components such as additives as necessary.
  • the ink set of the present invention can be suitably used for printing on fabrics using an inkjet printer.
  • an image-printed article having fabric and any image such as characters, pictures, and diagrams can be obtained.
  • the ink set of the present invention with the above-mentioned configuration, can provide an image-printed article having excellent performance such as fastness such as friction fastness and washing fastness, and texture, even if the heating temperature during inkjet printing is low.
  • the ink set of the present invention in inkjet printing on fabrics, etc., it is possible to save energy in the drying process, and it is also possible to form (print) clear ink layers and color ink layers that are excellent in friction fastness even on fabrics containing materials with low heat resistance such as polypropylene fibers and polyester fibers.
  • the image-printed article of the present invention has an image including a fabric, a clear ink layer formed by printing the clear ink in the ink set of the present invention on a part or all of the fabric, and a color ink layer formed by printing the color ink in the ink set of the present invention on a part or all of the fabric.
  • the clear ink layer is formed by printing the clear ink and then drying it with or without heating.
  • the color ink layer is formed by printing the color ink and then drying it with or without heating.
  • the clear ink layer and the color ink layer are preferably formed in this order on the fabric. In this case, the robustness of the image-printed article can be further improved.
  • the clear ink layer and the color ink layer may be clearly separated at the interface between the clear ink layer and the color ink layer, or may be in a state where they are not clearly separated and are partially mixed.
  • the clear ink layer preferably contains a resin (R), and the resin (R) preferably contains a reaction product (C) between an acrylic-styrene polymer (A) having a carboxy group and an oxazoline group-containing compound (B).
  • the color ink layer preferably contains a pigment and a resin (R'), and the resin (R') preferably contains a reaction product (C') between an acrylic-styrene polymer (A') having a carboxy group and an oxazoline group-containing compound (B').
  • reaction products (C) and (C') are produced even when the material is dried at room temperature, without being heated above room temperature. The higher the temperature, the more the reaction proceeds. The rate at which the reaction products (C) and (C') are produced is faster when the material is heated above room temperature, but it is believed that the product is produced in small amounts over time even when the material is dried at room temperature.
  • the acrylic-styrene-based polymer (A) (A') preferably contains a structural unit derived from a (meth)acrylic monomer and a structural unit derived from a styrene-based monomer. It may also contain structural units other than these structural units.
  • the total content of the structural units derived from the (meth)acrylic monomer and the structural units derived from the styrene-based monomer relative to the total of 100% by mass of the structural units constituting the polymer (A) (A') is each independently preferably 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the content of the structural units derived from the styrene monomer in the acrylic-styrene polymers (A) and (A') is not particularly limited, but is preferably 1 to 55 mass%, more preferably 5 to 50 mass%, and even more preferably 10 to 45 mass%, based on 100 mass% of the total amount of the structural units derived from the (meth)acrylic monomer and the structural units derived from the styrene monomer.
  • the content of the carboxy group in the acrylic-styrene-based polymer (A) (A') is preferably 0.06 to 3 mass% each independently based on 100 mass% of the acrylic-styrene-based polymer (A) (A').
  • the carboxy group is preferably a carboxy group derived from (meth)acrylic acid. Therefore, it is more preferable that the acrylic-styrene-based polymer (A) (A') contains a structural unit derived from (meth)acrylic acid.
  • the content of the structural unit derived from (meth)acrylic acid in the acrylic-styrene-based polymer (A) (A') is preferably 0.1 to 5 mass%, more preferably 0.2 to 4 mass%, and even more preferably 1 to 3 mass%, each independently based on 100 mass% of the total amount of the structural units derived from the (meth)acrylic monomer and the structural units derived from the styrene-based monomer.
  • the acrylic-styrene polymer (A) (A') preferably further contains a structural unit derived from a (meth)acrylic acid ester.
  • it preferably contains a structural unit derived from an alkyl (meth)acrylate and a structural unit derived from a hydroxyalkyl (meth)acrylate.
  • the polymer further contains a structural unit derived from an alkyl (meth)acrylate and a structural unit derived from a hydroxyalkyl (meth)acrylate.
  • the alkyl group contained in the structural unit preferably contains an alkyl group having 1 to 18 carbon atoms, and more preferably contains an alkyl group having 4 to 12 carbon atoms. In addition, it is also a preferred embodiment that the alkyl group contains two or more alkyl groups having different carbon numbers.
  • the hydroxyalkyl group may contain an alkyl group having 1 to 5 carbon atoms and an alkyl group having 6 to 18 carbon atoms, an alkyl group having 1 carbon atom and an alkyl group having 8 to 18 carbon atoms, an alkyl group having 1 carbon atom, an alkyl group having 4 to 6 carbon atoms and an alkyl group having 8 to 18 carbon atoms, or an alkyl group having 2 to 6 carbon atoms and an alkyl group having 8 to 12 carbon atoms.
  • the hydroxyalkyl group preferably contains 1 to 18 carbon atoms, and more preferably contains 2 to 4 carbon atoms.
  • the constituent units in the acrylic-styrene polymers (A) and (A') may each independently contain other constituent units than the constituent units derived from (meth)acrylic monomers and the constituent units derived from styrene monomers.
  • other constituent units include constituent units derived from monomers such as acrylonitrile, vinyl acetate, and acrylamide.
  • the above oxazoline group-containing compounds (B) and (B') are each independently similar to the above oxazoline group-containing compounds, including preferred forms, and the above explanation can be applied mutatis mutandis. Therefore, the explanation is omitted.
  • the reaction product (C) is produced by the reaction of the carboxy group of the acrylic-styrene polymer (A) with the oxazoline group of the oxazoline group-containing compound (B).
  • the reaction product (C') is produced by the reaction of the carboxy group of the acrylic-styrene polymer (A') with the oxazoline group of the oxazoline group-containing compound (B').
  • an amide ester bond is formed by the reaction.
  • the content of the amide ester bond is not particularly limited, but is independently 0.05 to 5% by mass relative to 100% by mass of each of the resins (R) and (R'). More preferably, it is 0.1 to 3% by mass.
  • the content of the reaction product (C) (C') in each of the resins (R) and (R') is not particularly limited, but is preferably independently 0.1 to 50% by mass relative to 100% by mass of each of the resins (R) and (R'). More preferably, it is 0.2 to 40% by mass, and even more preferably, it is 0.3 to 30% by mass.
  • the resins (R) and (R') preferably further contain the acrylic-styrene polymer (A) and (A') in addition to the reaction products (C) and (C').
  • the fabric tends to have a better texture.
  • the content of the acrylic-styrene polymer (A) and (A') in each of the resins (R) and (R') is preferably 50 to 99.9% by mass relative to 100% by mass of each of the resins (R) and (R').
  • the lower limit is more preferably 60% by mass or more, and even more preferably 70% by mass or more, and the upper limit is more preferably 99.8% by mass or less, even more preferably 99.7% by mass or less, and even more preferably 99% by mass or less.
  • Each of the resins (R) and (R') may further contain an oxazoline group-containing compound (B) and (B').
  • the content of the polymer (B) and (B') in each of the resins (R) and (R') is preferably 0 to 5 mass% relative to 100 mass% of each of the resins (R) and (R'). It is more preferably 0 to 2 mass%, and even more preferably 0 to 1 mass%.
  • the pigments contained in the color ink layer are similar to those constituting the color ink, including the preferred form, and the above description can be applied mutatis mutandis. Therefore, the description is omitted.
  • the film thickness of the clear ink layer and the color ink layer is not particularly limited, but is preferably 0.1 to 1000 ⁇ m, more preferably 0.3 to 500 ⁇ m, and even more preferably 0.5 to 100 ⁇ m, independently.
  • the film thickness can be measured by observation using, for example, a laser microscope.
  • the fabric included in the image-printed article of the present invention preferably includes all textile products such as cloth and textiles made of natural and/or synthetic fibers. Examples include woven fabrics, nonwoven fabrics, knitted fabrics, etc.
  • the fibers constituting the fabric are not particularly limited, and examples include natural fibers, chemical fibers, and mixtures thereof.
  • Preferred examples of natural fibers include silk, cotton, and wool.
  • Preferred examples of chemical fibers include synthetic fibers, regenerated fibers, and semi-synthetic fibers.
  • Preferred examples of synthetic fibers include polyester fibers, nylon fibers, acrylic fibers, polyurethane fibers, polyethylene fibers, polypropylene fibers, and vinylon fibers.
  • Preferred examples of regenerated fibers include rayon.
  • Preferred examples of semi-synthetic fibers include acetate and triacetate.
  • Various manufacturing methods can be used to manufacture the image-printed article of the present invention, but among them, manufacturing methods in which clear ink and color ink are directly applied to fabric, manufacturing methods using transfer paper substrates, etc. are preferred.
  • the manufacturing method for directly applying clear ink and color ink to a fabric includes an image forming process for forming a clear ink layer and a color ink layer, which includes a process for printing the clear ink of the present invention onto all or part of the fabric and drying it as necessary to form a clear ink layer, and a process for printing the color ink onto all or part of the fabric and drying it as necessary to form a color ink layer.
  • the order in which the clear ink and color ink are printed on the fabric is not particularly limited.
  • the clear ink may be printed first and then the color ink, or the color ink may be printed first and then the clear ink, or the clear ink and color ink may be printed simultaneously.
  • the step of forming the clear ink layer is carried out first, and then the step of forming the color ink layer is carried out, to produce an image-printed article in which the clear ink layer and the color ink layer are formed in this order on the fabric. Drying may be carried out at room temperature or by heating.
  • the transfer printing method includes a transfer paper manufacturing process having a step of printing the above-mentioned clear ink of the present invention on all or part of the transfer paper substrate using an inkjet printer and drying as necessary to form a clear ink layer, and a step of printing the above-mentioned color inks on all or part of the transfer paper substrate and drying as necessary to form a color ink layer.
  • the above-mentioned transfer paper substrate includes, for example, paper and film (polymer film such as PET).
  • the transfer paper substrate may have a release layer on at least one surface thereof.
  • a polymer film having a release layer formed (laminated) on one surface thereof may be used as the transfer paper substrate.
  • the transfer paper substrate has a release layer, which makes it easy to peel off the ink layers such as the clear ink layer and the color ink layer from the transfer paper substrate, and therefore makes it easier to transfer from the transfer paper substrate to the fabric.
  • the transfer paper substrate has a release layer on the opposite side to the surface on which the ink layers such as the clear ink layer and the color ink layer are formed, which makes it possible to suppress blocking between the transfer paper substrates, blocking between laminates in which the ink layers such as the clear ink layer and the color ink layer are laminated on the transfer paper substrate, and blocking between laminates in which the adhesive layer described later is further laminated on the laminate.
  • the release layer is preferably a layer obtained by coating at least one surface of a transfer paper substrate such as a polymer film with a release agent.
  • a release agent include polyethylene wax-based release agents, silicone-based release agents, and fluorine-based release agents.
  • the thickness of the release layer is not particularly limited, but is preferably 10 nm to 2 ⁇ m, and more preferably 30 nm to 2 ⁇ m.
  • the transfer paper substrate may have an ink-receiving layer.
  • a polymer film having an ink-receiving layer formed (laminated) on one surface thereof may be used as the transfer paper substrate.
  • it is preferable that printing of inks such as clear ink and color ink is performed on the side on which the ink receiving layer is formed (laminated) (an ink layer such as a clear ink layer or a color ink layer is formed on the side on which the ink receiving layer is formed (laminated)).
  • the transfer paper base material has the ink receiving layer, a part or the whole of the color ink layer or the colored ink layer may be absorbed into the ink receiving layer.
  • the ink receiving layer can be formed by coating a transfer paper substrate such as a polymer film with a solution containing a resin for forming the ink receiving layer.
  • the resin include (meth)acrylic resins such as (meth)acrylic acid ester resins and (meth)acrylic acid ester-styrene copolymer resins; olefin resins such as polyethylene resins and polypropylene resins; silicone resins; polyvinyl alcohol resins; and cellulose resins such as sodium carboxymethyl cellulose.
  • the solution containing the resin for forming the ink receiving layer may further contain inorganic particles such as calcium carbonate and silica.
  • the thickness of the ink receiving layer is not particularly limited, but is preferably 30 nm to 20 ⁇ m, and more preferably 100 nm to 10 ⁇ m.
  • the transfer paper substrate may have the release layer and the ink receiving layer in this order.
  • a polymer film having a release layer and an ink receiving layer formed (laminated) in this order on one surface may be used as the transfer paper substrate.
  • Printing of inks such as clear ink and color ink is preferably performed on the side where the release layer and the ink receiving layer are formed (laminated) in this order (the ink layers such as the clear ink layer and the color ink layer are formed on the side where the release layer and the ink receiving layer are formed (laminated) in this order).
  • the transfer paper manufacturing process can further include a step of forming an adhesive layer on a part or all of the top surface of the transfer paper base material (for example, on the color ink layer or the clear ink layer).
  • the adhesive layer is not particularly limited as long as it contains a resin that melts when heated.
  • the adhesive layer can be formed by a conventional method, such as a method in which a liquid composition (adhesive layer forming composition) containing a dispersed resin emulsion that melts when heated is applied to the top surface of the transfer paper base material and the adhesive layer is formed by evaporating the solvent.
  • the drying may be performed at room temperature or by heating.
  • the method includes a transfer step in which the transfer paper base material produced by the transfer paper production step is superimposed on a fabric and heated and/or pressed to transfer the clear ink layer and color ink layer formed on the transfer paper base material to the fabric, and a peeling step in which the transfer paper base material is peeled off from the fabric after the image including the clear ink layer and color ink layer has been transferred by the transfer step.
  • the order in which the clear ink and color ink are printed on the transfer paper substrate is not particularly limited.
  • the clear ink may be printed first and then the color ink, or the color ink may be printed first and then the clear ink, or the clear ink and color ink may be printed simultaneously.
  • the step of forming the color ink layer is first carried out, followed by the step of forming the clear ink layer, so that the color ink layer and the clear ink layer are formed in this order on the transfer paper base material, and preferably an adhesive layer is also formed to produce the transfer paper. Thereafter, it is preferable to carry out the transfer step and the peeling step using the resulting transfer paper to produce an image-printed article in which the clear ink layer and the color ink layer are formed in this order on the fabric.
  • the inkjet printer used in the image forming process in the manufacturing method in which the clear ink and the color ink are directly applied to the fabric, and in the transfer paper manufacturing process in the manufacturing method using a transfer paper substrate is not particularly limited, and any conventionally known inkjet printer can be used.
  • the inkjet printer may be of any type, such as a piezoelectric type, a thermal type, or a charge change control type (continuous ejection type), and a piezoelectric type inkjet printer is particularly preferred.
  • the projection conditions of the clear ink and the color ink are not particularly limited.
  • the viscosity of the clear ink and the color ink is preferably in the range of 2 to 20 mPa/s, each independently.
  • the surface tension of the clear ink and the color ink is preferably in the range of 25 to 45 mN/m, each independently.
  • the clear ink and color ink ejected from the nozzle openings of the inkjet printer head adhere to the fabric surface and transfer paper substrate, respectively, forming a clear ink layer and a color ink layer, resulting in an image-printed article having an image containing these.
  • the method for producing an image-printed article of the present invention preferably includes a step of heating (drying) the fabric on which the clear ink layer and color ink layer are formed in the image forming step at a temperature above room temperature (also referred to as a heating (drying) treatment step).
  • the transfer printing method preferably includes a step of heating (drying) the fabric on which the image is transferred from the transfer paper substrate in the transfer step at a temperature above room temperature (also referred to as a heating (drying) treatment step).
  • Heat treatment at a temperature above room temperature can further promote the removal of volatile components such as aqueous media derived from the clear ink and color ink contained in the clear ink layer and color ink layer, and can further promote image fixation.
  • the adhesion of the image can be further improved by the film formation (fusion) of each resin emulsion particle contained in the clear ink and color ink.
  • the reaction for producing the reaction products (C) and (C') is more likely to proceed.
  • the heat treatment step may be performed simultaneously with the image formation step or the transfer step, or after the image formation step or the transfer step.
  • a method of performing the heat treatment step simultaneously with the image formation step or the transfer step is to perform the image formation step or the transfer step while heating the fabric.
  • Preferred heat treatment methods when performing the heat treatment step after the image formation step or the transfer step include, for example, a heating method using a heating and drying oven, a heating method using a heat press, a heating method using an infrared lamp, and a method using steam such as normal pressure steam or high pressure steam. Of these heating methods, it is preferable to perform the heat treatment step after the image formation step or the transfer step, since there is a risk of disturbing the air flow if they are performed simultaneously.
  • the heating temperature in the above heat treatment step is preferably 90 to 180°C.
  • the upper limit is more preferably 150°C or less, even more preferably 130°C or less, and particularly preferably 120°C or less, and the lower limit is more preferably 95°C or more, and even more preferably 100°C or more.
  • the recommended heating temperature and time vary depending on the fiber that constitutes the fabric. For example, 160°C for cotton, 125°C for polypropylene, and 110°C for polyester, all for 5 minutes or less, preferably 3 minutes or less, and more preferably 2 minutes or less.
  • the printed material (image-printed article having a fabric and an image) obtained after the above heat treatment step may be washed with water and dried.
  • the method for producing an image-printed article of the present invention using the inkjet textile printing ink set of the present invention and the above-mentioned transfer textile printing method make it possible to produce a textile print (an image-printed article having a fabric and an image) that has excellent friction fastness of the image including the formed clear ink layer and color ink layer in an energy-saving and environmentally friendly manner, preferably even at a low heating temperature.
  • the heating temperature is preferably 90° C. or higher, as described above.
  • the heating temperature in the heat treatment step is not limited to the above range, and may be, for example, a temperature near room temperature, for example, 15 to 25° C. Even at such a temperature, the friction fastness of the image including the formed clear ink layer and color ink layer can be further improved by heating for a long period of time.
  • the heating temperature is preferably 30° C. or higher, more preferably 50° C. or higher, and even more preferably 90° C. or higher.
  • normal temperature is, for example, 15 to 25°C
  • room temperature is the actual temperature in a room, which is usually considered to be about 15 to 25°C.
  • the present disclosure also provides an inkjet textile printing method using a clear ink that contains resin emulsion particles, an oxazoline group-containing compound, and an aqueous medium, in which the resin emulsion particles have an average particle size of 150 nm or more, and the content of the oxazoline group-containing compound is 0.5 to 70% by mass relative to 100% by mass of the resin emulsion particles.
  • the inkjet textile printing method for example, by using the clear ink as a base for a color ink layer, it is possible to provide an image-printed article that has excellent performance, such as fastness to friction and washing, and texture.
  • the above-mentioned inkjet printing method is particularly suitable for printing methods in which the material is directly applied to the fabric, and for printing methods that use transfer paper as a substrate.
  • the preferred aspects of the clear ink used in the inkjet textile printing method are each independently the same as the preferred aspects described above for the clear ink for inkjet textile printing of the present invention (e.g., the average particle size of the resin emulsion particles, the content of the oxazoline group-containing compound, etc.).
  • the inkjet printing method is not particularly limited other than the use of the clear ink.
  • Examples of the inkjet printing method include a printing method in which the ink is applied directly to a fabric and a printing method using a transfer paper substrate, and preferred aspects of these (e.g., type of inkjet printer, heating method and temperature in the heat treatment step, printing method in the printing method in which the ink is applied directly to a fabric, form of the transfer paper substrate in the printing method using a transfer paper substrate, and specific method in the transfer paper manufacturing step, etc.) are each independently similar to the preferred aspects described in the section on the manufacturing method of the image-printed article of the present invention above (e.g., type of inkjet printer, heating method and temperature in the heat treatment step, printing method in the printing method in which the ink is applied directly to a fabric, form of the transfer paper substrate in the printing method using a transfer paper substrate, and specific method in the transfer paper manufacturing step, etc.).
  • the present disclosure also provides a use of a clear ink in inkjet textile printing, the clear ink comprising resin emulsion particles, an oxazoline group-containing compound, and an aqueous medium, the resin emulsion particles having an average particle size of 150 nm or more, and the content of the oxazoline group-containing compound being 0.5 to 70% by mass relative to 100% by mass of the resin emulsion particles.
  • the clear ink in inkjet textile printing for example by using the clear ink as a base for a color ink layer, it is possible to provide an image-printed article having excellent performance such as fastness, such as fastness to rubbing and washing, and texture.
  • the above clear ink is particularly suitable for use in inkjet printing, where the ink is applied directly to fabric, or where the ink is printed using a transfer paper substrate.
  • the preferred aspects of the clear ink are each independently the same as the preferred aspects described for the clear ink for inkjet textile printing of the present invention above (e.g., the average particle size of the resin emulsion particles, the content of the oxazoline group-containing compound, etc.), and the preferred aspects of the textile printing method (e.g., the type of inkjet printer, the heating method and temperature in the heat treatment step, the printing method in the textile printing method in which the ink is directly applied to the fabric, the form of the transfer paper substrate in the textile printing method using a transfer paper substrate, and the specific method in the transfer paper manufacturing step, etc.) are each independently the same as the preferred aspects described in the section on the manufacturing method of the image-printed article of the present invention above (e.g., the type of inkjet printer, the heating method and temperature
  • ⁇ Average particle size of resin emulsion particles The average particle size of the resin emulsion particles was determined by the cumulant method when the resin emulsion was measured using a particle size distribution measuring instrument (manufactured by Otsuka Electronics Co., Ltd., product number: FPAR-1000) using a dynamic light scattering method.
  • ⁇ Average particle size of pigment The average particle size of the pigment was determined by the cumulant method when the pigment dispersion was measured using a particle size distribution measuring instrument (manufactured by Otsuka Electronics Co., Ltd., product number: FPAR-1000) by dynamic light scattering.
  • ⁇ Discharge stability> The ejection stability of each clear ink produced in each Example and Comparative Example was evaluated as follows. Each clear ink produced in each Example and Comparative Example was introduced into a Mastermind textile printer MMP-TX13, and nozzle check printing (a total of 180 nozzles were ejected in sequence to print ruled lines) was performed on a PET film, and scattering (curvature) and missing dots were visually evaluated. The head was then capped and left to stand for one week, after which a nozzle check printing was performed again, and scattering (curvature) and missing dots were visually evaluated. ⁇ : No scattering (curvature) or missing dots at all either initially or after one week.
  • Scattering (curvature) and dead pixels are at most 1 to 2 initially and after one week.
  • Scattering (curvature) and missing dots the most common being 3 to 4 initially and after one week.
  • Scattering (curvature) and missing dots were 5 or more initially and after one week.
  • a pre-emulsion for dropping consisting of 437 parts of deionized water, 80 parts of a 25% aqueous solution of an emulsifier [made by ADEKA Corporation, trade name: Adeka Reasorb SR-10], 25 parts of acrylic acid, 565 parts of 2-ethylhexyl acrylate, 50 parts of cyclohexyl methacrylate, 10 parts of hydroxyethyl methacrylate and 350 parts of styrene was prepared in the dropping funnel, of which 44 parts, which corresponds to 3% of the total amount of all monomer components, was added to the flask, and the temperature was raised to 80° C.
  • an emulsifier made by ADEKA Corporation, trade name: Adeka Reasorb SR-10
  • the styrene monomer content in the emulsion resin particles was 35%, the Tg was -21°C, and the particle size of the emulsion was 200 nm.
  • the weight-average molecular weight of the emulsion resin particles was 750,000.
  • Emulsion Production Example 2 An emulsion was obtained in the same manner as in Emulsion Production Example 1, except that 7 parts of the pre-emulsion for dropping, which corresponds to 0.5% of the total amount of all monomer components, was added to the flask.
  • the styrene monomer content in the emulsion resin particles was 35%
  • Tg was -21°C
  • the particle size of the emulsion was 310 nm.
  • the weight average molecular weight of the emulsion resin particles was 1,000,000.
  • Emulsion Production Example 3 An emulsion was obtained in the same manner as in Emulsion Production Example 1, except that 87 parts of the pre-emulsion for dropping, which corresponds to 6% of the total amount of all monomer components, was added to the flask.
  • the styrene monomer content in the emulsion resin particles was 35%
  • Tg was -21°C
  • the average particle size of the emulsion was 140 nm.
  • the weight average molecular weight of the emulsion resin particles was 750,000.
  • Pigment Blue 15:3 LIONOL BLUE FG-7330 (manufactured by Toyo Ink Co., Ltd.), 0.1 parts of surfactant Olfin D-10PG (manufactured by Nissin Chemical Industry Co., Ltd.), and zirconia beads with a particle size of 0.5 mm were filled at a volume ratio of 50%, dispersed using a bead mill, and filtered with a pore size filter of 1 ⁇ m (manufactured by Advantec Co., Ltd., MCP-1-C10S) to obtain a blue pigment dispersion with a pigment content of 15%.
  • the average particle size was 90 nm.
  • Example 1-1 Clear ink (1) was produced by mixing 30 parts of the emulsion obtained in Emulsion Production Example 1 (15 parts as emulsion particles), 1.2 parts (0.3 parts as solids) of Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd., solids content 25%), 2 parts of diethylene glycol monobutyl ether, 15 parts of triethylene glycol, 0.3 parts of a silicone surfactant KF-6011 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a leveling agent, 0.3 parts of an acetylene surfactant Olfine D-10PG (manufactured by Nissin Chemical Industry Co., Ltd.) as a leveling agent, and 51 parts of deionized water and filtering the mixture with a 1 ⁇ m pore size filter (manufactured by Advantec, MCP-1-C10S).
  • Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd., solids
  • Cyan ink (1) was produced by mixing 30 parts of the emulsion of Emulsion Production Example 1 (15 parts as emulsion particles), 23 parts of the pigment dispersion of Pigment Dispersion Production Example 1 (3.5 parts as pigment), 2 parts of diethylene glycol monobutyl ether, 15 parts of triethylene glycol, 0.3 parts of a silicone-based surfactant KF-6011 (manufactured by Shin-Etsu Chemical Co., Ltd.), 0.3 parts of an acetylene-based surfactant Olfine D-10PG (manufactured by Nissin Chemical Industry Co., Ltd.), and 29.5 parts of deionized water and filtering the mixture through a 1 ⁇ m pore size filter (manufactured by Advantec Co., Ltd., MCP-1-C10S).
  • Cyan inks (2) to (3) and white inks (1) to (3) were produced in the same manner as in Cyan Ink Production Example 1, except that the type and amount of each raw material in Cyan Ink Production Example 1 was changed as shown in Table 2 and the amount of deionized water was adjusted so that the total amount was 100 parts.
  • urethane resin emulsion A Takelac W6110 (manufactured by Mitsui Chemicals, Inc., solids content 30%) was used as the emulsion.
  • Example 2-1 ⁇ Production of Image-Printed Articles> [Example 2-1]
  • the above obtained clear ink (1) and cyan ink (1) were introduced into a textile printer MMP-TX13 manufactured by Mastermind.
  • a cotton fabric (100% cotton white T-shirt manufactured by Hanes) was printed with the clear ink (1) by performing a solid printing of 120 mm x 120 mm at 1440 dpi x 1440 dpi, a printing speed setting of 8, and a size of 120 mm x 120 mm.
  • an image was printed on the area where the clear ink layer was formed by subsequently performing a solid printing of 110 mm x 110 mm by using the cyan ink (1) at 1440 dpi x 1440 dpi, a printing speed setting of 8, and a size of 120 mm x 120 mm.
  • the fabric on which the clear ink (1) and the cyan ink (1) were printed was subjected to a heat treatment for 90 seconds in a hot air dryer at 110 ° C., and an image-printed article (1) having an image in which a clear ink layer and a color ink layer were formed in this order on the fabric was obtained.
  • Examples 2-2 to 2-13 and Comparative Examples 2-1 to 2-5 instead of the clear ink (1) and cyan ink (1) in Example 2-1, the clear inks obtained in Examples 1-2 to 1-7 and Comparative Examples 1-1 to 1-4 and the color inks produced in the Color Ink Production Examples were used as shown in Tables 3 and 4.
  • Printing was performed by the inkjet method in the same manner as in Example 2-1, and a clear ink layer and a color ink layer were formed in this order on the fabric, to obtain image-printed articles (2) to (13) of the Examples and image-printed articles (c1) to (c5) of the Comparative Examples.
  • the types of fabrics used in each Example and Comparative Example are as shown in Tables 3 and 4.
  • the polyester fabric used was a 100% polyester white T-shirt fabric manufactured by Gunze Ltd. Tables 3 and 4 show the evaluation results for the clear inks obtained in the examples and comparative examples, and the evaluation results for the image-printed articles.
  • the image printed products using the ink sets of Examples 2-1 to 2-13 all had excellent storage stability and ejection stability of the clear ink, rated ⁇ to ⁇ , and also had good performance in terms of fastness, such as abrasion fastness and washing fastness, and texture, rated ⁇ to ⁇ .
  • the clear ink for inkjet textile printing of the present invention has excellent storage stability as an ink and excellent ejection stability during printing, and when used in textile printing using the inkjet method, it can provide printed images with excellent performance such as fastness to friction and washing, and texture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むインクジェット捺染用クリアインクであって、上記樹脂エマルション粒子の平均粒子径が150nm以上であり、上記オキサゾリン基含有化合物の含有量が上記樹脂エマルション粒子100質量%に対し0.5~70質量%であるインクジェット捺染用クリアインク等を提供する。

Description

インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品
 本発明は、インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品に関する。
 近年、着色剤として顔料を含むカラーインクを用いたインクジェット法による捺染法(インクジェット印刷し捺染物を得る方法)が注目されている。インクジェット法による捺染法に用いるインクジェット捺染用インクに対しては、分散安定性、吐出安定性および媒体への定着性等のインクジェット法に特有の性能や、保存安定性が要求される。また、カラーインクが布帛に印刷され、画像を有する画像印刷物品には、該画像の摩擦堅牢性、洗濯堅牢性等の堅牢性や、該布帛の風合いを損なわないといった性能が要求されている。このような背景のもと、主に、インクジェット捺染用カラーインクが、該布帛の一部または全部に印刷されて形成されたカラーインク層の下地層等として使用する、インクジェット捺染用クリアインクの提案がされている。
 特許文献1には、優れた耐擦過性を有する塗膜を形成できるクリアインクの提供を目的として、樹脂粒子と水とを含むクリアインクであって、前記樹脂粒子の体積平均粒径が50nm以下であり、前記クリアインクの乾燥膜が50℃以上及び0℃未満にガラス転移点(Tg)を有するクリアインクが記載されている。
 特許文献2には、布帛の風合いを損なうことなく、摩擦堅牢性を向上可能なインクジェット捺染用クリアインク組成物を提供することを目的として、樹脂粒子と滑剤と水とを含有するインクジェット捺染用クリアインク組成物であって、前記樹脂粒子における樹脂が、架橋性基を有するウレタン樹脂を含み、前記クリアインク組成物の乾燥塗膜が、5~70MPaのヤング率を有するインクジェット捺染用クリアインク組成物が記載されている。
特開2021-95552号公報 特許第7073809号公報
 本発明は、インクジェット法による捺染法において、例えばカラーインク層の下地等として用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できるとともに、インクとしての保存安定性に優れ、印刷時の吐出安定性に優れる、インクジェット捺染用クリアインク、該クリアインクとインクジェット捺染用カラーインクとを含むインクセット、及び摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供することを目的とする。
 本発明者らは、上記課題に着目し、鋭意検討した結果、樹脂エマルション粒子および水性媒体を含むインクジェット捺染用クリアインクにおいて、樹脂エマルション粒子の粒子径を特定の範囲とするとともに、特定の化合物を特定量配合することにより、例えばインクジェット捺染時の加熱温度が低温であっても、例えばカラーインク層の下地等として用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できるとともに、インクとしての保存安定性に優れ、印刷時の吐出安定性に優れる、インクジェット捺染用クリアインク、該クリアインクとインクジェット捺染用カラーインクとを含むインクセット、及び摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できることを見出し、本発明を完成した。
 すなわち、本発明のインクジェット捺染用クリアインクは、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むインクジェット捺染用クリアインクであって、上記樹脂エマルション粒子の平均粒子径が150nm以上であり、上記オキサゾリン基含有化合物の含有量が上記樹脂エマルション粒子100質量%に対し0.5~70質量%である。
 また、本発明のインクジェット捺染用インクセットは、上記インクジェット捺染用クリアインクと、顔料、樹脂エマルション粒子、および水性媒体を含むインクジェット捺染用カラーインクとを含む。
 さらに、本発明の画像印刷物品は、布帛と、上記インクジェット捺染用インクセットにおけるクリアインクが該布帛の一部または全部に印刷されて形成されたクリアインク層と、上記インクジェット捺染用インクセットにおけるカラーインクが該布帛の一部または全部に印刷されて形成されたカラーインク層とを含む画像を有する。上記クリアインク層と上記カラーインク層とは、上記布帛上に、この順に形成されていることが好ましい。
 本発明のインクジェット捺染用クリアインクによれば、例えばカラーインク層の下地等として用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できるとともに、インクとしての保存安定性に優れ、印刷時の吐出安定性に優れるインクジェット捺染用クリアインクを提供できる。
 また、本発明のインクジェット捺染用インクセットによれば、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できるとともに、インクとしての保存安定性に優れ、印刷時の吐出安定性に優れるインクジェット捺染用インクセットを提供できる。
 また、本発明の画像印刷物品によれば、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。
 以下、本発明を詳細に説明する。なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を意味し、「(メタ)アクリル」は、「アクリル」または「メタクリル」を意味する。また(メタ)アクリレートを(メタ)アクリル酸エステルということもある。
 また、本明細書において「インクジェット捺染時の加熱温度」とは、インクジェット装置(インクジェットプリンター)を用いた捺染法において、インクジェット装置でインクを印刷している途中又は印刷後に行う乾燥処理における加熱温度を意味する。ただし、布帛を加熱しながらインクジェット装置でインクを印刷し、すなわち、インクを印刷している途中に乾燥処理を行い、インクの印刷後には乾燥処理を行わない場合は、インクを印刷する際の乾燥処理における加熱温度を意味し、布帛を加熱しながらインクジェット装置でインクを印刷しインクの印刷後にも加熱を行う場合はインクの印刷時の加熱温度とインクの印刷後の加熱温度のうち高い方の温度を意味するものとする。
 また、本明細書において、印刷とは、インクジェット捺染用インクを、インクジェットプリンターを用いて、布帛に付着させ、インク層を形成することをいう。この場合、乾燥処理の有無は問わない。上記インクに顔料が含まれる場合、文字、絵柄および図等の任意の画像を有する画像印刷物品が得られる。
1.インクジェット捺染用クリアインク
 本発明のインクジェット捺染用クリアインク(以下、単にクリアインクという場合がある)は、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むクリアインクであって、上記樹脂エマルション粒子の平均粒子径が150nm以上であり、上記オキサゾリン基含有化合物の含有量が上記樹脂エマルション粒子100質量%に対し0.5~70質量%である。
 クリアインクとは、顔料等の色材を実質的に含まないインクであり、乾燥後の塗膜が無色透明のインクを意味する。色材を実質的に含まないとは、クリアインク中の色材の含有率が好ましくは0.5質量%以下であり、不純物程度の含有であれば、含有してもよい。本明細書において無色透明とは、乾燥後の塗膜における可視光の平行線透過率が、好ましくは30%以上、より好ましくは50%以上のものを指す。
 本発明のクリアインクの塗布により得られる膜厚10μmの塗膜の可視光の平行線透過率は、30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。
 上記平行線透過率の測定方法としては、以下の方法が挙げられる。
  無色透明なガラス板にクリアインクを塗布、150℃で10分、加熱乾燥することにより、厚さ10μmの塗膜が形成されたガラス板を得る。
  ガラス板としてはJIS R3202の規格のフロート板ガラス(厚さ2mm)を用いる。
  上記のようにして得られた塗膜が形成されたガラス板を測定試料とし、分光光度計(積分球を使用しない)を用いて可視領域の分光透過率を測定する。
  得られた分光透過率曲線より、波長400nm~780nmにおける各波長(1nmごとの波長)の透過率(平行線透過率)の単純平均を求め、得られた値を塗膜の可視光の平均透過率とする。
 分光光度計としては、特に制限されず、市販の分光光度計を用いることができるが、島津製作所製 紫外・可視・近赤外分光光度計UV-3600が好ましい。
 本発明のクリアインクは、顔料等の色材を実質的に含まないため、色材に起因するごわつきが抑制され、別途カラーインクが印刷されて形成されるカラーインク層の下地等として用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性と、良好な風合いとを両立した画像印刷物品を提供できる。また、乾燥後の塗膜が無色透明であるため、布帛の色を活かすことができる。
<樹脂エマルション粒子>
 本発明のクリアインクに含まれる樹脂エマルション粒子は、特に限定されないが、水性エマルション由来の樹脂粒子が好ましい。
 上記樹脂エマルション粒子の形状は特に限定されないが、通常は球状である。形状は透過型電子顕微鏡または走査型電子顕微鏡により測定することができる。
 また、樹脂エマルション粒子の平均粒子径としては、動的光散乱法による粒度分布測定器(大塚電子株式会社製、品番:FPAR-1000)を用いて測定したときのキュムラント法で得られた値を採用できる。
 上記樹脂エマルション粒子の平均粒子径は、150nm以上である。平均粒子径を150nm以上とすることにより、クリアインクの粘度を適正な範囲に保ちながら、樹脂エマルション粒子を高濃度に配合し易くなる。また、インクの保存安定性や吐出安定性の確保にも有効である。上記平均粒子径は、好ましくは170nm以上、より好ましくは180nm以上、さらに好ましくは190nm以上である。一方、上限は特に限定されないが、好ましくは350nm以下であり、より好ましくは330nm以下であり、さらに好ましくは310nm以下である。
 上記樹脂エマルション粒子は、そのガラス転移温度は特に限定されないが、本発明のクリアインクを用いて得られる捺染物が風合いにより優れるものとなり易い観点から、0℃以下であることが好ましい。より好ましくは-10℃以下であり、さらに好ましくは-15℃以下である。一方、下限は特に限定されないが、-50℃以上が好ましく、-40℃以上がより好ましい。
 上記ガラス転移温度としては、示差走査熱量分析(DSC)、示差熱量分析(DTA)、熱機械分析(TMA)のいずれかの測定により得られる値を採用することができるが、示差走査熱量分析(DSC)により得られる値を採用することが好ましく、特に断りのない限り、本明細書におけるガラス転移温度は示差走査熱量分析(DSC)により得られる値を意味する。ただし、ビニル系樹脂、(メタ)アクリル系樹脂、アクリル―スチレン系重合体などのように、後述する樹脂エマルション粒子における樹脂成分の組成に基づき、フォックス(Fox)の式によりガラス転移温度を計算により求めることができる場合、これを代わりに採用することができる。
 示差走査熱量の測定装置としては、例えば、セイコーインスツル(株)製、品番:DSC220Cなどが挙げられる。また、示差走査熱量を測定する際、示差走査熱量(DSC)曲線を描画する方法、示差走査熱量(DSC)曲線から一次微分曲線を得る方法、スムージング処理を行なう方法、目的のピーク温度を求める方法などには特に限定がない。例えば、上記測定装置を用いた場合には、当該測定装置を用いることによって得られたデータから作図すればよい。その際、数学的処理を行なうことができる解析ソフトウェアを用いることができる。当該解析ソフトウェアとしては、例えば、解析ソフトウェア(セイコーインスツル(株)製、品番:EXSTAR6000)などが挙げられる。測定条件としては、昇温速度を15℃/分、降温速度を15℃/分で行うことが好ましく、該条件で得られた値を採用することができる。また、上記測定においてガラス転移の開始温度と中間温度と屈曲点温度と終了温度が観測されるが、中間温度をその樹脂エマルション粒子のガラス転移温度(Tg)とする。
 なお、フォックス(Fox)の式は以下のとおりである。
   1/Tg=Σ(Wm/Tgm)/100
式中、Tgはガラス転移温度、Wmは樹脂成分を構成する単量体成分における単量体mの含有率(質量%)、Tgmは単量体mの単独重合体のガラス転移温度(絶対温度:K)を示す。
 上記式に、樹脂エマルション粒子を構成する樹脂を形成するために用いた単量体総量に対する各単量体の含有率、各単量体の単独重合体のガラス転移温度を代入することにより、ガラス転移温度を求めることができる。単独重合体のガラス転移温度は、例えば、アクリル酸の単独重合体では95℃、メタクリル酸の単独重合体では130℃、メチルメタクリレートの単独重合体では105℃、スチレンの単独重合体では100℃、シクロヘキシルメタクリレートの単独重合体では83℃、n-ブチルメタクリレートの単独重合体では20℃、2-エチルヘキシルアクリレートの単独重合体では-70℃、n-ブチルアクリレートの単独重合体では-56℃、ヒドロキシエチルメタクリレートの単独重合体では55℃、アクリルアミドの単独重合体では165℃、4-メタクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジンの単独重合体では130℃である。
 上記樹脂エマルション粒子は、酸性官能基を有することが好ましい。酸性官能基の中でもカルボキシ基(-COOH)が好ましい。酸性官能基の含有量は、樹脂エマルション粒子100質量%に対し、0.06~3質量%であることが好ましい。また、酸性官能基の含有量は、樹脂エマルション粒子100質量%に対する、酸性官能基を有する単量体由来の構成単位の含有量で表した場合、0.1~5質量%であることが好ましい。カルボキシ基の好ましい含有量についても上記酸性官能基の場合と同様である。樹脂エマルション粒子が、酸性官能基を有することにより、堅牢性をより向上できる。
 樹脂エマルション粒子におけるカルボキシ基の含有量、酸性官能基の含有量を各々上記範囲とすることにより、クリアインクとした場合、形成されたクリアインク層の均一性をより優れたものとすることができ、また、例えばインクジェット捺染時の加熱温度が低温であっても、クリアインク層及びカラーインク層を含む画像の洗濯堅牢性をより優れたものとすることができる。樹脂エマルション粒子におけるカルボキシ基等の酸性官能基の含有量は、たとえば樹脂エマルション粒子の重合に使用される単量体の組成を調整することにより調節することができる。
 上記樹脂エマルション粒子の酸価は、0.5~50mgKOH/gであることが好ましい。より好ましくは、0.8~40mgKOH/gである。上記樹脂エマルション粒子におけるカルボキシル基由来の酸価についても、好ましい範囲は上記酸価の場合と同様である。樹脂エマルション粒子の酸価、カルボキシ基由来の酸価を各々上記範囲とすることにより、本発明のクリアインクを用いて形成されたクリアインク層の均一性をより優れたものとすることができ、また、例えばインクジェット捺染時の加熱温度が低温(例えば、110℃以下)であっても、クリアインク層及びカラーインク層を含む画像の洗濯堅牢性をより優れたものとすることができる。
 上記樹脂エマルション粒子を構成する樹脂成分の重量平均分子量は、耐水性および密着性をより向上させる観点から、好ましくは5万以上、より好ましくは30万以上、さらに好ましくは55万以上、よりさらに好ましくは60万以上である。特に好ましくは70万超であり、最も好ましくは72万以上である。樹脂成分の重量平均分子量の上限値は、成膜性および耐水性をより向上させる観点から、好ましくは500万以下である。
 上記重量平均分子量は、ゲルパーミエイションクロマトグラフィー〔東ソー(株)製、品番:HLC-8120GPC、カラム:TSKgel G-5000HXLとTSKgel GMHXL-Lとを直列に使用〕を用いて測定された重量平均分子量(ポリスチレン換算)を意味する。
 上記樹脂エマルション粒子の構造は特に限定されず、粒子全体の組成が均一である形態であってもよいし、組成および/または物性が異なるコアとシェルとからなるコアシェル構造であってもよい。コアシェル構造は2層に限られず、3層以上であってもよい。これらの中でも、塗膜の伸びと硬さのバランスがより向上できる2層以上のコアシェル構造となる形態が好ましい。
<界面活性剤>
 上記樹脂エマルション粒子は、クリアインク中に、界面活性剤で分散安定化されていることが好ましい。界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等があげられ、従来公知の界面活性剤を用いることができる。これらの界面活性剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 上記界面活性剤の中でも、ノニオン性界面活性剤またはアニオン性界面活性剤が好ましい。その分子中に重合性基を含む界面活性剤もまた好ましい。重合性基としてはたとえばエチレン性不飽和二重結合を有する基があげられる。上記界面活性剤の中でも、重合性基を含むノニオン性界面活性剤または重合性基を含むアニオン性界面活性剤が特に好ましい。なお、重合性基を含む界面活性剤を反応性乳化剤とも称する。また界面活性剤として高分子乳化剤も用いることができる。
 アニオン性界面活性剤としては、例えば、アンモニウムドデシルサルフェート、ナトリウムドデシルサルフェートなどのアルキルサルフェート塩;アンモニウムドデシルスルホネート、ナトリウムドデシルスルホネート、ナトリウムアルキルジフェニルエーテルジスルホネートなどのアルキルスルホネート塩;アンモニウムドデシルベンゼンスルホネート、ナトリウムドデシルナフタレンスルホネートなどのアルキルアリールスルホネート塩;ポリオキシエチレンアルキルスルホネート塩;ポリオキシエチレンアルキルサルフェート塩;ポリオキシエチレンアルキルアリールサルフェート塩;ジアルキルスルホコハク酸塩;アリールスルホン酸-ホルマリン縮合物;アンモニウムラウリレート、ナトリウムステアリレートなどの脂肪酸塩;ビス(ポリオキシエチレン多環フェニルエーテル)メタクリレートスルホネート塩、プロペニル-アルキルスルホコハク酸エステル塩、(メタ)アクリル酸ポリオキシエチレンスルホネート塩、(メタ)アクリル酸ポリオキシエチレンホスフォネート塩、アリルオキシメチルアルキルオキシポリオキシエチレンのスルホネート塩などのアリル基を有する硫酸エステルまたはその塩;アリルオキシメチルアルコキシエチルポリオキシエチレンの硫酸エステル塩、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム塩などが挙げられるが、かかる例示のみに限定されるものではない。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリエチレングリコールとポリプロピレングリコールとの縮合物、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸モノグリセライド、エチレンオキサイドと脂肪族アミンとの縮合生成物、ポリオキシアルキレンアルケニルエーテルなどが挙げられるが、かかる例示のみに限定されるものではない。
 カチオン性界面活性剤としては、例えば、ドデシルアンモニウムクロライドなどのアルキルアンモニウム塩などが挙げられるが、かかる例示のみに限定されるものではない。両性界面活性剤としては、例えば、ベタインエステル型乳化剤などが挙げられるが、かかる例示のみに限定されるものではない。
 高分子乳化剤としては、例えば、ポリアクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール;ポリビニルピロリドン;ポリヒドロキシエチルアクリレートなどのポリヒドロキシアルキル(メタ)アクリレート;これらの重合体を構成する単量体のうちの1種類以上を共重合成分とする共重合体などが挙げられるが、かかる例示のみに限定されるものではない。
 反応性乳化剤としては、例えば、プロペニル-アルキルスルホコハク酸エステル塩、(メタ)アクリル酸ポリオキシエチレンスルホネート塩、(メタ)アクリル酸ポリオキシエチレンホスフォネート塩(例えば、三洋化成工業(株)製、商品名:エレミノールRS-30など)、ポリオキシエチレンアルキルプロペニルフェニルエーテルスルホネート塩(例えば、第一工業製薬(株)製、商品名:アクアロンHS-10など)、アリルオキシメチルアルキルオキシポリオキシエチレンのスルホネート塩(例えば、第一工業製薬(株)製、商品名:アクアロンKH-10など)、ポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステルアンモニウム(例えば、第一工業製薬(株)製、商品名:アクアロンAR-10など)、ポリオキシエチレンスチレン化プロペニルフェニルエーテル(例えば、第一工業製薬(株)製、商品名:アクアロンAN-10など)、アリルオキシメチルノニルフェノキシエチルヒドロキシポリオキシエチレンのスルホネート塩(例えば、(株)ADEKA製、商品名:アデカリアソープSE-10など)、アリルオキシメチルアルコキシエチルヒドロキシポリオキシエチレン硫酸エステル塩(例えば、(株)ADEKA製、商品名:アデカリアソープSR-10、SR-30など)、ビス(ポリオキシエチレン多環フェニルエーテル)メタクリレート化スルホネート塩(例えば、日本乳化剤(株)製、商品名:アントックスMS-60など)、アリルオキシメチルアルコキシエチルヒドロキシポリオキシエチレン(例えば、(株)ADEKA製、商品名:アデカリアソープER-20など)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば、第一工業製薬(株)製、商品名:アクアロンRN-20など)、アリルオキシメチルノニルフェノキシエチルヒドロキシポリオキシエチレン(例えば、(株)ADEKA製、商品名:アデカリアソープNE-10など)などが挙げられるが、かかる例示のみに限定されるものではない。
 上記樹脂エマルション粒子を構成する樹脂としては、特に制限されず、たとえば、ビニル系樹脂、(メタ)アクリル系樹脂、オレフィン系樹脂、ウレタン系樹脂、フッ素系樹脂、シリコーン系樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、キシレン樹脂等があげられる。中でも、エチレン性不飽和二重結合含有単量体を重合してなる重合体(ポリマー)が好ましい。言い換えれば、エチレン性不飽和二重結合含有単量体由来の構成単位を含む重合体(ポリマー)が好ましい。樹脂がエチレン性不飽和二重結合含有単量体を重合してなる重合体(ポリマー)である場合、カルボキシ基等の酸性官能基の含有量や疎水性モノマーを任意に設計することができる。
 エチレン性不飽和二重結合含有単量体としては、酢酸ビニル、塩化ビニル、アクリロニトリル、アクリルアミド、安息香酸ビニル等のビニル系単量体;(メタ)アクリル酸エステル、(メタ)アクリル酸などの(メタ)アクリル系単量体;スチレン、α―メチルスチレン、クロロメチルスチレン等のスチレン系単量体;エチレン、プロピレン等のオレフィン系単量体;等の他、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、無水マレイン酸、マレイン酸モノメチルエステル、マレイン酸モノブチルエステル、イタコン酸モノメチルエステル、イタコン酸モノブチルエステル等があげられる。
 上記樹脂エマルション粒子を構成する樹脂としては、これらの単量体の1種または2種以上を用いて(共)重合してなる(共)重合体が好ましい。
 たとえば、酢酸ビニル重合体、塩化ビニル重合体、エチレン・酢酸ビニル共重合体、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・エチレン・スチレン共重合体、アクリロニトリル・塩素化エチレン・スチレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル・(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル(共)重合体、(メタ)アクリル酸エステル・(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル・スチレン共重合体、(メタ)アクリル酸エステル・(メタ)アクリル酸・スチレン共重合体、エチレン・酢酸ビニル・(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル・ウレタン共重合体、アクリロニトリル・(メタ)アクリル酸エステル・スチレン共重合体等があげられる。
 中でも、高い耐水性により、より摩擦堅牢性に優れるだけでなく風合いにもより優れる捺染物が得られ易い観点から、エチレン性不飽和二重結合含有単量体として、少なくとも(メタ)アクリル系単量体の1種または2種以上とスチレン系単量体の1種または2種以上とを含む単量体組成物を共重合してなる共重合体が好ましい。なお、このような共重合体を、アクリル-スチレン系重合体ともいうこととする。上記アクリル-スチレン系重合体としては、たとえば、(メタ)アクリル酸エステル・スチレン共重合体、(メタ)アクリル酸エステル・(メタ)アクリル酸・スチレン共重合体、アクリロニトリル・(メタ)アクリル酸エステル・スチレン共重合体等があげられる。
 上記アクリル-スチレン系重合体を形成するための単量体としては、(メタ)アクリル系単量体、スチレン系単量体以外の他の単量体を含んでいてもよい。上記アクリル―スチレン系重合体を形成するための単量体の合計100質量%に対する、(メタ)アクリル系単量体とスチレン系単量体との合計含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。
 言い換えれば、上記アクリル-スチレン系重合体は、(メタ)アクリル系単量体由来の構成単位およびスチレン系単量体由来の構成単位を含んでいればよく、これらの構成単位以外の他の構成単位を含んでいてもよい。上記アクリル-スチレン系重合体を構成する構成単位の合計100質量%に対する、(メタ)アクリル系単量体由来の構成単位とスチレン系単量体由来の構成単位との合計含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。
 上記(メタ)アクリル系単量体としては、従来公知の(メタ)アクリル酸エステル、(メタ)アクリル酸より1種または2種以上を選択して用いることができる。
 (メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどのアルキル(メタ)アクリレート;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレートなどのフルオロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート、メチルベンジル(メタ)アクリレート、ナフチルメチル(メタ)アクリレートなどのアラルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレート;メトキシエチル(メタ)アクリレート、メトキシブチル(メタ)アクリレート、エトキシブチル(メタ)アクリレート、トリメチロールプロパントリプロポキシ(メタ)アクリレートなどのアルコキシアルキル基含有(メタ)アクリレート;γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルヒドロキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルヒドロキシシランなどのシリル基含有(メタ)アクリレート;(メタ)アクリルオキシアルキルプロペナール、アセトニル(メタ)アクリレート、ジアセトン(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートアセチルアセテート、ブタンジオール-1,4-アクリレートアセチルアセテート、2-(アセトアセトキシ)エチル(メタ)アクリレートなどのカルボニル基含有(メタ)アクリレート;(メタ)アクリロイルアジリジン、(メタ)アクリル酸2-アジリジニルエチルなどのアジリジニル基含有(メタ)アクリレート;エチレングリコール(メタ)アクリレート、エチレングリコールメトキシ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、ジエチレングリコールメトキシ(メタ)アクリレートなどの(ジ)エチレングリコール(メトキシ)(メタ)アクリレートなどのオキソ基含有(メタ)アクリレート;4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジンなどのピペリジン基含有(メタ)アクリレート等があげられ、1種または2種以上を選択して用いることができる。
 さらに、(メタ)アクリル酸エステルとしては、多官能(メタ)アクリレートを用いることもできる。多官能(メタ)アクリレートとしては、たとえば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素数1~10の多価アルコールのジ(メタ)アクリレート;エチレンオキシドの付加モル数が2~50のポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシドの付加モル数が2~50のポリプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素数2~4のアルキレンオキシド基の付加モル数が2~50であるアルキルジ(メタ)アクリレート;エトキシ化グリセリントリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどの炭素数1~10の多価アルコールのトリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートなどの炭素数1~10の多価アルコールのテトラ(メタ)アクリレート;ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトール(モノヒドロキシ)ペンタ(メタ)アクリレートなどの炭素数1~10の多価アルコールのペンタ(メタ)アクリレート;ペンタエリスリトールヘキサ(メタ)アクリレートなどの炭素数1~10の多価アルコールのヘキサ(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート、2-(2’-ビニルオキシエトキシエチル)(メタ)アクリレート、エポキシ(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレート;ウレタン(メタ)アクリレートなどの多官能(メタ)アクリレートなどが挙げられる。
 (メタ)アクリル酸としては、アクリル酸、メタクリル酸が好ましい。
 上記スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、tert-メチルスチレン、クロロスチレン、ビニルトルエン、2-スチリルエチルトリメトキシシランなどが挙げられる。スチレン系単量体は、ベンゼン環にメチル基、tert-ブチル基などのアルキル基、ニトロ基、ニトリル基、アルコキシル基、アシル基、スルホン基、ヒドロキシル基、ハロゲン原子などの官能基が存在していてもよい。スチレン系単量体のなかでは、耐水性を高める観点から、スチレンが好ましい。
 上記スチレン系単量体としては、多官能スチレン系単量体を用いることもできる。多官能スチレン系単量体としてはジビニルベンゼンが好ましく挙げられる。
 上記アクリル-スチレン系重合体を形成するための単量体におけるスチレン系単量体の含有量は、(メタ)アクリル系単量体およびスチレン系単量体の合計量100質量%に対し、1~55質量%が好ましく、5~50質量%がより好ましく、10~45質量%がさらに好ましい。スチレン系単量体の含有量を上記範囲とすることにより、風合いにより優れる、あるいは洗濯堅牢性により優れる捺染物が得られ易くなる。
 上記アクリル-スチレン系重合体は、上記(メタ)アクリル系単量体と上記スチレン系単量体を、好ましくは上記範囲となる組成比の単量体組成物を共重合してなる重合体であることが好ましい。
 上記アクリル-スチレン系重合体は、カルボキシ基を有する重合体であることが好ましく、カルボキシ基の含有量は、樹脂エマルション粒子100質量%に対し、0.06~3質量%であることが好ましい。またカルボキシ基の含有量は、樹脂エマルション粒子100質量%に対する、カルボキシ基を有する単量体由来の構成単位の含有量で表して0.1~5質量%であることが好ましい。
 また上記カルボキシ基が(メタ)アクリル酸由来のカルボキシ基であることが好ましい。よって、上記アクリル-スチレン系重合体を構成する(メタ)アクリル系単量体由来の構成単位が、(メタ)アクリル酸由来の構成単位の1種または2種以上を含むものであることが好ましく、さらに、上記(メタ)アクリレートエステル由来の構成単位の1種または2種以上と、(メタ)アクリル酸由来の構成単位の1種または2種以上とを含むものであることがより好ましい。
 上記アクリル-スチレン系重合体を構成する(メタ)アクリル酸由来の構成単位の含有量は、(メタ)アクリル系単量体由来の構成単位およびスチレン系単量体由来の構成単位の合計量100質量%に対し、0.1~5質量%が好ましく、0.2~4質量%がより好ましく、1~3質量%がさらに好ましい。
 上記アクリル-スチレン系重合体を形成するための(メタ)アクリル系単量体が、(メタ)アクリル酸の1種または2種以上を含むものであることが好ましく、さらに、上記(メタ)アクリレートエステルの1種または2種以上と、(メタ)アクリル酸の1種または2種以上とを含むものであることがより好ましい。
 上記アクリル-スチレン系重合体を形成するための単量体における(メタ)アクリル酸の含有量は、(メタ)アクリル系単量体およびスチレン系単量体の合計量100質量%に対し、0.1~5質量%が好ましく、0.2~4質量%がより好ましく、1~3質量%がさらに好ましい。
 上記アクリル-スチレン系重合体を形成するための(メタ)アクリル系単量体としては、(メタ)アクリル酸以外に、(メタ)アクリル酸エステルを含むことが好ましい。(メタ)アクリル酸エステルの中でも、アルキル(メタ)アクリレートの1種または2種以上を含むことが好ましく、またヒドロキシアルキル(メタ)アクリレートの1種または2種以上を含むことが好ましい。さらに、アルキル(メタ)アクリレートの1種または2種以上と、ヒドロキシアルキル(メタ)アクリレートの1種または2種以上とを含むことがより好ましい。
 上記アルキル(メタ)アクリレートの中でも、アルキル基の炭素数が1~18のアルキル(メタ)アクリレートを含むことが好ましく、アルキル基の炭素数が4~12のアルキル(メタ)アクリレートを含むことがさらに好ましい。また、上記アルキル(メタ)アクリレートとして、炭素数が異なる2種以上を併用することも好ましい形態である。たとえば、炭素数が1~5のアルキル(メタ)アクリレートと炭素数が6~18のアルキル(メタ)アクリレートとを併用する形態、炭素数が1のアルキル(メタ)アクリレートと炭素数が8~18のアルキル(メタ)アクリレートとを併用する形態、炭素数が1のアルキル(メタ)アクリレートと炭素数が4~6のアルキル(メタ)アクリレートと炭素数が8~18のアルキル(メタ)アクリレートとを併用する形態、炭素数が2~6のアルキル(メタ)アクリレートと炭素数が8~12のアルキル(メタ)アクリレートとを併用する形態などがあげられる。また、上記ヒドロキシアルキル(メタ)アクリレートとしては、ヒドロキシアルキル鎖における炭素数が1~18のヒドロキシアルキル(メタ)アクリレートがより好ましく、該炭素数が2~4のヒドロキシアルキル(メタ)アクリレートがさらに好ましい。
 なお、上記アクリル-スチレン系重合体を形成するための単量体としては、(メタ)アクリル系単量体、スチレン系単量体以外の他の単量体を含んでいてもよい。他の単量体としては、たとえば、アクリロニトリル、酢酸ビニル、アクリルアミドがあげられる。また、上記他の単量体としては、付加重合性オキサゾリンがあげられる。付加重合性オキサゾリンとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリンなどが挙げられる。
 上記アクリル-スチレン系重合体は、上記の好ましい単量体を好ましい割合で共重合してなるものであることが好ましく、好ましい単量体由来の構成単位を、好ましい単量体配合比に対応する割合で含む重合体であることが好ましい。
 本発明のクリアインクに含まれる樹脂エマルション粒子は、上記アクリル-スチレン系重合体を樹脂の主成分として(例えば85~100質量%)含むものであることが好ましい。該粒子をアクリル-スチレン系重合体エマルション粒子ともいう。
 なお、本発明のクリアインクに含まれる樹脂エマルション粒子について粒子の形状、平均粒径、ガラス転移温度、酸性官能基の含有量、カルボキシ基含有量、酸価、重量平均分子量、粒子の構造、界面活性剤等に関する好ましい態様を説明したが、これらはいずれも、上記アクリル―スチレン系重合体エマルション粒子にそのまま適用できる。
 上記アクリル-スチレン系重合体エマルション粒子は、従来公知の乳化重合法により製造することができる。乳化重合する際の好ましい単量体の種類、組み合わせ、配合比等は、上述のアクリル-スチレン系重合体を形成するための単量体について説明した好ましい形態に準じる。すなわち、上記アクリル-スチレン系重合体エマルション粒子は、(メタ)アクリル系単量体、スチレン系単量体、および必要に応じて他のエチレン性不飽和二重結合含有単量体を含む単量体を、乳化剤の存在下で水性媒体中で乳化重合することによって製造することができる。用いる乳化剤も従来公知の乳化剤を用いることができる。用いる乳化剤としては上記界面活性剤を用いることができ、好ましい態様は、上記界面活性剤における好ましい態様と同様である。
 また、上記乳化重合法により得られるエマルションにおいて、残存モノマーはエマルションに対し質量割合で100ppm未満であることが好ましい。残存モノマーはガスクロマトグラフィー等で測定することができる。重合反応の熟成後において残存モノマーが100ppm未満となるように、重合開始剤を追加で添加して熟成を延長することが好ましい。
<オキサゾリン基含有化合物>
 本発明のクリアインクは、オキサゾリン基含有化合物を含む。本明細書においてオキサゾリン基含有化合物は、好ましくはオキサゾリン基を分子中に2個以上有する化合物を意味する。上記オキサゾリン基含有化合物としては、例えば、2,2’-ビス(2-オキサゾリン)、2,2’-メチレン-ビス(2-オキサゾリン)、2,2’-エチレン-ビス(2-オキサゾリン)、2,2’-トリメチレン-ビス(2-オキサゾリン)、2,2’-テトラメチレン-ビス(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス(2-オキサゾリン)、2,2’-オクタメチレン-ビス(2-オキサゾリン)、2,2’-エチレン-ビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス(2-オキサゾリン)、2,2’-m-フェニレン-ビス(2-オキサゾリン)、2,2’-m-フェニレン-ビス(4,4’-ジメチル-2-オキサゾリン)、ビス(2-オキサゾリニルシクロヘキサン)スルフィド、ビス(2-オキサゾリニルノルボルナン)スルフィド、オキサゾリン基含有ポリマーなどが挙げられるが、かかる例示のみに限定されるものではない。これらのオキサゾリン基含有化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 上記オキサゾリン基含有化合物としては、水溶性タイプ、エマルションタイプ等があるが、中でも、より架橋性能に優れる観点から、水溶性のオキサゾリン基含有化合物が好ましく、また、オキサゾリン基含有ポリマーが好ましい。この場合に、少量でもより有効に堅牢性をより良好なものとできる。
 上記オキサゾリン基含有ポリマーは、従来公知の製造方法で製造することができる。たとえば、付加重合性オキサゾリンの1種または2種以上、または付加重合性オキサゾリンと付加重合性オキサゾリンと共重合可能な単量体を含む単量体成分を重合させる方法があげられる。共重合可能な単量体としては、オキサゾリン基と反応する官能基をもたず、付加重合性オキサゾリンと共重合可能な単量体が好ましい。たとえば、上記エチレン性不飽和二重結合含有単量体においてオキサゾリン基と反応する官能基をもたない単量体を挙げることができる。たとえば、酢酸ビニル、塩化ビニル、アクリロニトリル、アクリルアミド、安息香酸ビニル等のビニル系単量体;(メタ)アクリル酸エステルなどの(メタ)アクリル系単量体;スチレン、α―メチルスチレン、クロロメチルスチレン等のスチレン系単量体;エチレン、プロピレン等のオレフィン系単量体等があげられる。
 上記付加重合性オキサゾリンとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリンなどが挙げられる。
 オキサゾリン基含有ポリマーの中でも水溶性のオキサゾリン基含有ポリマーが好ましく、上記オキサゾリン基含有ポリマーの製造方法と同様の方法により製造することができる。上記水溶性のオキサゾリン基含有ポリマーとしては、たとえば、アクリル系重合体、アクリル-スチレン系重合体等を主鎖とし、側鎖にオキサゾリン基を含有するポリマーがあげられる。
 オキサゾリン基含有ポリマーとしては市販品を用いることもできる。例えば、(株)日本触媒製、商品名:エポクロスWS-500、エポクロスWS-700等の水溶性タイプのポリマー、エポクロスK-2010、エポクロスK-2020、エポクロスK-2030等のエマルションタイプのポリマーがあげられる。これらのなかでは、水溶性ポリマーである、(株)日本触媒製、商品名:エポクロスWS-500、エポクロスWS-700が好ましい。
 本発明のクリアインクに含まれるオキサゾリン基含有化合物の含有量は、上記樹脂エマルション粒子100質量%に対し、0.5~70質量%であり、0.5~50質量%が好ましく、0.5~30質量%がより好ましく、0.5~10質量%がさらに好ましい。主に摩擦堅牢性の観点から上記範囲が好ましい。
 上記オキサゾリン基含有化合物は、本発明のクリアインクに含まれる成分、たとえば、樹脂エマルション粒子等との相互作用により、あるいは化学反応により、低温においても架橋剤的な作用を発揮し強靭なクリアインク層を形成するものと推定される。
<水性媒体>
 本発明のクリアインクは水性媒体を含む。本発明において水性媒体は水を含む溶媒を意味する。水性媒体における水の含有量は10~100質量%であることが好ましい。より好ましくは25質量%以上であり、さらに好ましくは50質量%以上であり、特に好ましくは70質量%以上である。残部は有機溶剤であることが好ましい。
 上記水性媒体は有機溶剤を含むことができる。有機溶剤としては、例えば、プロピレングリコール、1,3プロパンジオール、グリセリン、ジプロピレングリコール、トリプロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のグリコール;モノエチレングリコールモノメチルエーテル、モノエチレングリコールモノエチルエーテル、モノエチレングリコールモノプロピルエーテル、モノエチレングリコールモノイソプロピルエーテル、モノエチレングリコールモノブチルエーテル、モノエチレングリコールモノイソブチルエーテル等のモノエチレングリコールのエーテル;モノプロピレングリコールモノメチルエーテル、モノプロピレングリコールモノエチルエーテル、モノプロピレングリコールモノプロピルエーテル、モノプロピレングリコールモノイソプロピルエーテル、モノプロピレングリコールモノブチルエーテル、モノプロピレングリコールモノイソブチルエーテル等のモノプロピレングリコールのエーテル;ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノメチルエーテル、ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノエチルエーテル、ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノプロピルエーテル、ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノイソプロピルエーテル、ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノブチルエーテル、ポリエチレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノイソブチルエーテル等のポリエチレングリコールのエーテル;ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノメチルエーテル、ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノエチルエーテル、ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノプロピルエーテル、ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノイソプロピルエーテル、ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノブチルエーテル、ポリプロピレングリコール(EO付加モル数=2~10、好ましくは2~4)のモノイソブチルエーテル等のポリプロピレングリコールのエーテル、2-ピロリドン、N-メチル-2-ピロリドン等の複素環類が挙げられる。
 これらの中でも、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリエチレングリコールモノブチルエーテル、ポリエチレングリコール(EO付加モル数=2~4)のモノブチルエーテル、2-ピロリドンが好ましく、さらに好ましくは、プロピレングリコール、トリエチレングリコール、ポリエチレングリコール(EO付加モル数=2~4)のモノブチルエーテル、2-ピロリドンである。これらの有機溶剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
<組成比>
 本発明のクリアインクにおける樹脂エマルション粒子の含有量は、クリアインク100質量%あたり、10~20質量%であることが好ましい。インクジェット捺染時に低温で処理されて形成されたクリアインク層及びカラーインク層を含む画像の摩擦堅牢性や、印刷時のクリアインクの吐出安定性をより向上する観点から上記範囲が好ましい。より好ましくは、10.5質量%以上、18質量%以下である。
 本発明のクリアインクにおける水性媒体の含有量は、本発明のクリアインク100質量%に対し、60~92質量%であることが好ましく、より好ましくは70~90質量%である。
<その他の成分>
 本発明のクリアインクには、本発明の目的が阻害されない範囲内で、上述した必須成分(樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体)以外の他の成分が含まれていてもよい。例えば、界面活性剤、分散剤、レベリング剤、紫外線吸収剤、紫外線安定剤、増粘剤、湿潤剤、可塑剤、安定剤、消泡剤、染料、酸化防止剤、架橋促進剤、PH調整剤、防腐剤などの添加剤が適量で含まれていてもよい。
 上記レベリング剤としては、たとえば、アセチレン系(アセチレングリコール系を含む)、シリコーン系、フッ素系の界面活性剤等を用いることが好ましく、アセチレン系レベリング剤、シリコーン系レベリング剤を用いることがより好ましい。さらに、アセチレン系レベリング剤とシリコーン系レベリング剤とを併用することが好ましい。アセチレン系レベリング剤とシリコーン系レベリング剤とを併用することにより、上記クリアインクのレベリング性がより向上して堅牢性がより向上し、また、吐出安定性もより良好となる。シリコーン系レベリング剤としてはポリエーテル変性シリコーン化合物が好ましい。
 上記アセチレン系レベリング剤としては、たとえば、エアープロダクツ社製のサーフィノール104E、サーフィノール104H、サーフィノール104A、サーフィノール104BC、サーフィノール104DPM、サーフィノール104PA、サーフィノール104PG-50、サーフィノール420、サーフィノール440、日信化学工業社製のオルフィンD-10A、オルフィンD-10PG、オルフィンE1004、オルフィンE1010、オルフィンE1020、オルフィンPD-001、オルフィンPD-002W、オルフィンPD-004、オルフィンPD-005、オルフィンEXP.4001、オルフィンEXP.4200、オルフィンEXP.4123、オルフィンEXP.4300などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 上記シリコーン系レベリング剤としては、例えば、KF-351A、352A、353、354L、355A、615A、945、640、642、643、644、6020、6204、6011、6012、6015、6017(信越化学社製)、BYK-345、347、348、349(BYK社製)、WET240、270、280(Evonik社製)、SAG014、503A(日信化学工業社製)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 上記レベリング剤を使用する場合、その使用量は、本発明のクリアインク100質量%に対し、0.01~2質量%が好ましく、0.05~1.5質量%がより好ましく、0.1~1質量%がさらに好ましい。
 アセチレン系レベリング剤とシリコーン系レベリング剤とを併用する場合、クリアインク100質量%に対する含有量は、各々0.05~1.5質量%が好ましく、各々0.1~1質量%がより好ましい。
 アセチレン系レベリング剤とシリコーン系レベリング剤との質量比としては、アセチレン系レベリング剤/シリコーン系レベリング剤=0.1~20が好ましく、0.2~10がより好ましく、0.4~8がさらに好ましく、0.6~6がよりさらに好ましく、0.8~4が特に好ましく、1.2~3が最も好ましい。
 上記他の成分を添加する場合、その含有量は、特に限定されるものではないが、本発明のクリアインク100質量%に対し、2質量%以下が好ましく、1質量%以下が好ましい。また添加効果を発揮するためには0.01質量%以上が好ましく、0.05質量%以上がより好ましい。
<インクジェット捺染用クリアインクの製造方法>
 本発明のクリアインクの製造方法は、特に限定されない。たとえば、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を混合することにより、製造することができるが、好ましい製造例を示す。
 まず、樹脂エマルション粒子を含むエマルションを準備する。樹脂エマルション粒子を含むエマルションは、上記したように従来公知の乳化重合法により製造することができる。上記エマルションにおける樹脂エマルション粒子の含有率は、特に限定されないが、エマルション100質量%に対し、30~65質量%であることが好ましい。乳化重合法により得られるエマルションには、通常、乳化に用いた界面活性剤等の乳化剤が含まれるが、該エマルションをそのまま、本発明のクリアインクを調製するエマルションとして用いてもよい。
 次に、上記エマルション、オキサゾリン基含有化合物及び必要に応じて水性媒体を混合する。混合にあたり、上記オキサゾリン基含有化合物は、該化合物をそのまま用いてもよいし、水性媒体等で希釈した溶液を用いてもよい。
 また本発明のクリアインクにおける各成分の濃度を調整する目的あるいはクリアインクの物性を調整する目的で、水性媒体あるいは水性媒体を構成する水あるいは有機溶剤を各々単独あるいは混合したものを混合してもよいし、上記以外の添加材等の成分をさらに混合してもよい。これら(水性媒体、添加剤等)を混合するタイミングは適宜選択すればよい。また、遠心分離やフィルター濾過等を必要に応じて行うことができる。
 上記した製造方法により、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体、さらに必要に応じて添加剤等の他の成分を含む本発明のクリアインクが得られる。
 本発明のクリアインクは、インクジェットプリンターを用いた、布帛への捺染に好適に用いることができる。
 インクジェット捺染用クリアインクの製造方法におけるインクジェット捺染用クリアインクの好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)は、それぞれ独立して、上記本発明のクリアインクの項で記載した好ましい態様と同様である。
2.インクジェット捺染用インクセット
 本発明のインクジェット捺染用インクセット(以下、単にインクセットという場合がある)は、上述の本発明のクリアインクと、顔料、樹脂エマルション粒子、および水性媒体を含むインクジェット捺染用カラーインクとを含む。
[インクジェット捺染用カラーインク]
 上記インクジェット捺染用カラーインク(以下、単にカラーインクという場合がある)は、顔料、樹脂エマルション粒子および水性媒体を含む。上記カラーインクには、白色インクも含まれる。
<樹脂エマルション粒子>
 上記カラーインクに含まれる樹脂エマルション粒子の平均粒子径は、特に限定されないが、好ましくは150nm以上、より好ましくは170nm以上、さらに好ましくは180nm以上、さらにより好ましくは190nm以上である。一方、上限は特に限定されないが、好ましくは350nm以下であり、より好ましくは330nm以下であり、さらに好ましくは310nm以下である。
 樹脂エマルション粒子のその他の態様については、上記本発明のクリアインクの項で記載したのと同様であり、好ましい態様も、上記本発明のクリアインクの項で記載した好ましい態様と同様である。
 上記カラーインクに含まれる樹脂エマルション粒子は、上記のアクリル-スチレン系重合体を樹脂の主成分として(例えば85~100質量%)含むものであることが好ましい。該粒子をアクリル-スチレン系重合体エマルション粒子ともいう。
 上記インクセットとして、上記クリアインクにおける樹脂エマルション粒子、上記カラーインクにおける樹脂エマルション粒子はいずれもアクリル-スチレン系重合体を樹脂の主成分として(例えば85~100質量%)含むものであることが好ましい。
<水性媒体>
 水性媒体については、上記本発明のクリアインクの項で記載したのと同様であり、好ましい態様も、上記本発明のクリアインクの項で記載した好ましい態様と同様である。
<顔料>
 上記カラーインクは、顔料を含む。顔料としては、有機顔料および無機顔料が挙げられ、これらは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、必要に応じて、それらと体質顔料を併用することもできる。
 有機顔料としては、例えば、ベンジジン、ハンザイエローなどのアゾ顔料、ジアゾ顔料、アゾメチン顔料、メチン顔料、アントラキノン顔料、フタロシアニンブルーなどのフタロシアニン顔料、ペリノン顔料、ペリレン顔料、ジケトピロロピロール顔料、チオインジゴ顔料、イミノイソインドリン顔料、イミノイソインドリノンなどのイソインドリノン顔料、ジオキサジン顔料、キナクリドンレッドやキナクリドンバイオレットなどのキナクリドン顔料、フラバントロン顔料、インダントロン顔料、アントラピリミジン顔料、カルバゾール顔料、モノアリーライドイエロー、ジアリーライドイエロー、ベンゾイミダゾロンイエロー、トリルオレンジ、ナフトールオレンジ、キノフタロン顔料などが挙げられる。
 色相は特に限定されず、イエロー、マゼンタ、シアン、ブルー、レッド、オレンジ、グリーン等の有彩色顔料をいずれも用いることができ、具体例としては、C.I.ピグメント・イエロー、C.I.ピグメント・レッド、C.I.ピグメント・オレンジ、C.I.ピグメント・バイオレット、C.I.ピグメント・ブルー、C.I.ピグメント・グリーンなどの品番製品が挙げられる。ポリプロピレン布帛を対象とする場合は、ポリプロピレンの熱分解を促進しないよう、有機顔料としては金属を含まない顔料を用いることが好ましい。具体的にはピグメント・ブルー16等を選択することができる。
 無機顔料としては、例えば、コロイダルシリカ、二酸化チタン、三酸化アンチモン、亜鉛華等の酸化亜鉛、リトポン、鉛白、赤色酸化鉄、黒色酸化鉄、酸化クロムグリーン、カーボンブラック、黄鉛、モリブデン赤、フェロシアン化第二鉄(プルシアンブルー)、ウルトラマリン、クロム酸鉛などがあげられる。また、無機顔料としては、雲母(マイカ)、クレー、アルミニウム粉末、タルク、ケイ酸アルミニウムなどの扁平形状を有する顔料、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウムなどの体質顔料なども挙げられる。さらに、カーボンブラックとしては、ファーネスブラック、サーマルランプブラック、アセチレンブラック、チャンネルブラック等が挙げられる。
 無機顔料のうち、白色顔料としては、二酸化チタン、三酸化アンチモン、亜鉛華等の酸化亜鉛、リトポン、鉛白、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、クレー、タルク、ケイ酸アルミニウムが好ましい。中でも屈折率が高く隠ぺい性に優れる観点から二酸化チタンが好ましい。二酸化チタンの中でも、結晶構造がルチルである二酸化チタンが好ましい。
 着色顔料としては、上記の有機顔料、赤色酸化鉄、黒色酸化鉄、酸化クロムグリーン、カーボンブラック、黄鉛、モリブデン赤、フェロシアン化第二鉄(プルシアンブルー)、ウルトラマリン、クロム酸鉛等が好ましい。
 顔料の平均粒子径は、分散安定性と発色性あるいは隠ぺい力の観点から10~1000nmが好ましく、20~500nmが好ましい。
 白色顔料の場合、平均粒子径は、隠蔽性により優れる観点から、100~500nmが好ましく、下限については、より好ましくは150nm以上であり,さらに好ましくは200nm以上であり、上限については、より好ましくは450nm以下であり、さらに好ましくは400nm以下である。
 着色顔料の場合、平均粒子径は、特に発色性をより向上する観点から20~200nmが好ましく、下限については、より好ましくは40nm以上であり、さらに好ましくは50nm以上であり、上限については、より好ましくは150nm以下であり、さらに好ましくは100nm以下である。
 上記顔料の平均粒子径は、上記カラーインク中における平均粒子径である。顔料の平均粒子径は、レーザー回折散乱式粒度分布計や動的光散乱法により測定することができる。たとえば、動的光散乱法による粒度分布測定器(大塚電子株式会社製、品番:FPAR-1000)を用いて測定したときのキュムラント法で得られた値を採用することができる。ただし、黒色顔料などのように動的光散乱法による測定が難しい場合は、レーザー回折散乱式粒度分布計により測定し得られた体積基準の粒度分布における50%粒径を平均粒子径として採用することができる。
 顔料は上記カラーインク中で、分散剤で分散安定化されていることが好ましい。上記分散剤としては、たとえば、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸塩等のポリ(メタ)アクリル酸(塩);(メタ)アクリル酸(塩)と、(メタ)アクリル酸エステル、(メタ)アクリルニトリル、(メタ)アクリルアミド、スチレン、マレイン酸、無水マレイン酸、マレイン酸エステル、酢酸ビニル等のエチレン性不飽和二重結合含有単量体の1種または2種以上との共重合体;ポリビニルアルコール;ポリビニルピロリドンなどがあげられる。
 上記カラーインクは、さらに、オキサゾリン基含有化合物を含むことが好ましい。この場合に、後述の、上記本発明のクリアインクが布帛の一部または全部に印刷されて形成されたクリアインク層と、上記カラーインクが該布帛の一部または全部に印刷されて形成されたカラーインク層と、を含む画像を有する画像印刷物品における該画像の堅牢性がより良好となる。オキサゾリン基含有化合物の具体例については、上記本発明のクリアインクの項で記載したのと同様である。
 上記カラーインクに含まれるオキサゾリン基含有化合物の含有量は、上記樹脂エマルション粒子100質量%に対し、0.5~10質量%であることが好ましい。主に摩擦堅牢性をより向上する観点から上記範囲が好ましい。上記含有量は、より好ましくは5質量%以下である。
 上記オキサゾリン基含有化合物は、上記カラーインクに含まれる成分、たとえば、樹脂エマルション粒子、顔料、あるいは顔料分散剤等との相互作用により、あるいは化学反応により、低温においてもより架橋剤的な作用を発揮し、より強靭なクリアインク層及びカラーインク層を含む画像となると推定される。
<組成比>
 上記カラーインクにおける樹脂エマルション粒子の含有量は、上記カラーインク100質量%あたり、10~20質量%であることが好ましい。インクジェット捺染時に低温で処理されて形成されたクリアインク層及びカラーインク層を含む画像の摩擦堅牢性や、印刷時のカラーインクの吐出安定性をより向上する観点から上記範囲が好ましい。より好ましくは10.5質量%以上であり、18質量%以下である。
 上記カラーインクにおける顔料の含有量は、特に制限されないが、上記カラーインク100質量%あたり、1~20質量であることが好ましい。1質量%未満では発色性や隠蔽性が不足するといった虞があり、20質量%を超えると風合いが低下するといった虞がある。より好ましくは2質量%以上であり、18質量%以下である。
 上記カラーインクにおける水性媒体の含有量は、上記カラーインク100質量%に対し、55~89質量%であることが好ましく、より好ましくは70~85質量%である。
 上記カラーインクにおける、顔料、樹脂エマルション粒子および必要により添加されるオキサゾリン基含有化合物の合計含有量100質量%に対する顔料の含有量は、カラーインクが該布帛の一部または全部に印刷されて形成されたカラーインク層の隠蔽性あるいは着色性をより向上させる観点から、好ましくは10~80質量%であり、より好ましくは15~75質量%である。
<他の成分>
 上記カラーインクは、上記した成分以外に、必要に応じて、他の成分を含むこともできる。この他の成分についても、上記本発明のクリアインクの項で記載したのと同様であり、好ましい態様も、上記本発明のクリアインクの項で記載した好ましい態様と同様である。
[クリアインクの製造方法]
 本発明のインクセットに含まれるクリアインクの製造方法におけるクリアインクの好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)は、それぞれ独立して、上記本発明のクリアインクの項で記載したのと同様であり、好ましい態様も、上記本発明のクリアインクの項で記載した好ましい態様と同様である。
[カラーインクの製造方法]
 上記カラーインクの製造方法は、特に限定されない。たとえば、顔料、樹脂エマルション粒子、必要により添加されるオキサゾリン基含有化合物および水性媒体を混合することにより、製造することができるが、好ましい製造例を示す。
 まず、樹脂エマルション粒子を含むエマルション、および顔料分散体をそれぞれ準備する。上記顔料分散体としては顔料が水性媒体に分散されてなるものが好ましい。上記顔料分散体は、たとえば、水等の水性媒体に、顔料および分散剤を混合し、ビーズミル等で分散処理を行うことにより製造することができる。顔料分散体における顔料の含有率は、特に限定されないが、顔料分散体100質量%に対し、15~65質量%であることが好ましい。一方、樹脂エマルション粒子を含むエマルションは、上記したように従来公知の乳化重合法により製造することができる。上記エマルションにおける樹脂エマルション粒子の含有率は、特に限定されないが、エマルション100質量%に対し、30~65質量%であることが好ましい。乳化重合法により得られるエマルションには、通常、乳化に用いた界面活性剤等の乳化剤が含まれるが、該エマルションをそのまま、上記カラーインクを調製するエマルションとして用いてもよい。
 次に、上記顔料分散体、上記エマルション、及び必要に応じてオキサゾリン基含有化合物、水性媒体を混合する。混合にあたり、上記オキサゾリン基含有化合物を混合する場合、該化合物をそのまま用いてもよいし、水性媒体等で希釈した溶液を用いてもよい。上記の各成分を混合する方法や順番は特に限定されない。たとえば、上記エマルションと上記顔料分散体を混合した後、上記オキサゾリン基含有化合物を混合してもよいし、上記顔料分散体と上記オキサゾリン基含有化合物とを混合した後、上記エマルションを混合してもよいし、上記エマルションと上記オキサゾリン基含有化合物とを混合した後、上記顔料分散体を混合してもよいし、上記顔料分散体、上記エマルションおよび上記オキサゾリン基含有化合物をほぼ同時に混合してもよい。
 また上記カラーインクにおける各成分の濃度を調整する目的あるいは上記カラーインクの物性を調整する目的で、水性媒体あるいは水性媒体を構成する水あるいは有機溶剤を各々単独あるいは混合したものを混合してもよいし、上記以外の添加材等の成分をさらに混合してもよい。これら(水性媒体、添加剤等)を混合するタイミングは適宜選択すればよい。また、遠心分離やフィルター濾過等を必要に応じて行うことができる。
 上記した製造方法により、顔料、樹脂エマルション粒子、必要に応じて添加されるオキサゾリン基含有化合物および水性媒体、さらに必要に応じて添加剤等の他の成分を含む上記カラーインクが得られる。
 本発明のインクセットは、インクジェットプリンターを用いた、布帛への捺染に好適に用いることができる。インクジェット捺染法に本発明のインクセットを用いることにより、布帛と、文字、絵柄および図等の任意の画像とを有する画像印刷物品を得ることができる。この場合、本発明のインクセットは、上述した構成により、好ましくは、インクジェット捺染時の加熱温度が低温であっても、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。そのため、布帛等へのインクジェット捺染において本発明のインクセットを用いることにより、乾燥工程を省エネルギー化することができるともに、ポリプロピレン繊維、ポリエステル繊維をはじめ耐熱温度が低い材料を含む布帛に対しても摩擦堅牢性に優れるクリアインク層とカラーインク層の形成(捺染)を行うことができる。
3.画像印刷物品
 本発明の画像印刷物品は、布帛と、上記本発明のインクセットにおけるクリアインクが該布帛の一部または全部に印刷されて形成されたクリアインク層と、上記本発明のインクセットにおけるカラーインクが該布帛の一部または全部に印刷されて形成されたカラーインク層とを含む画像を有する。クリアインク層は、上記クリアインクを印刷後に、加熱または非加熱で乾燥することにより形成される。また、カラーインク層は、上記カラーインクを印刷後に、加熱または非加熱で乾燥することにより形成される。上記クリアインク層と上記カラーインク層とは、上記布帛上に、この順に形成されていることが好ましい。この場合に、画像印刷物品の堅牢性をより高めることができる。上記クリアインク層と上記カラーインク層とは、上記クリアインク層と上記カラーインク層との界面において、2層は明確に分かれていても良いし、明確に分かれておらず、一部が混ざり合った状態であってもよい。
 クリアインク層は、樹脂(R)を含み、上記樹脂(R)がカルボキシ基を有するアクリル-スチレン系重合体(A)とオキサゾリン基含有化合物(B)との反応生成物(C)を含むことが好ましい。また、カラーインク層は、顔料と樹脂(R’)とを含み、上記樹脂(R’)がカルボキシ基を有するアクリル-スチレン系重合体(A’)とオキサゾリン基含有化合物(B’)との反応生成物(C’)を含むことが好ましい。
 上記反応生成物(C)(C’)は、室温超の温度で加熱しなくても、常温乾燥であっても生成する。そして、温度が高い程に反応が進む。室温超の温度で加熱した方が、上記反応生成物(C)(C’)の生成速度は速いが、常温乾燥でも時間と共に少量ずつ生成が進むと考えられる。
 上記アクリル-スチレン系重合体(A)(A’)は、(メタ)アクリル系単量体由来の構成単位およびスチレン系単量体由来の構成単位を含んでいることが好ましい。また、これらの構成単位以外の他の構成単位を含んでいてもよい。上記重合体(A)(A’)を構成する構成単位の合計100質量%に対する、(メタ)アクリル系単量体由来の構成単位とスチレン系単量体由来の構成単位との合計含有量は、それぞれ独立して、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。
 上記アクリル-スチレン系重合体(A)(A’)におけるスチレン系単量体由来の構成単位の含有量は、特に限定されないが、(メタ)アクリル系単量体由来の構成単位およびスチレン系単量体由来の構成単位の合計量100質量%に対し、それぞれ独立して、1~55質量%が好ましく、5~50質量%がより好ましく、10~45質量%がさらに好ましい。スチレン系単量体の含有量を上記範囲とすることにより、風合いにより優れる、あるいは洗濯堅牢性により優れる画像印刷物品(例えば、捺染物)となり易い。
 上記アクリル-スチレン系重合体(A)(A’)におけるカルボキシ基の含有量は、上記アクリル-スチレン系重合体(A)(A’)100質量%に対し、それぞれ独立して、0.06~3質量%であることが好ましい。また上記カルボキシ基が(メタ)アクリル酸由来のカルボキシ基であることが好ましい。よって、上記アクリル-スチレン系重合体(A)(A’)は、(メタ)アクリル酸由来の構成単位を含むものであることがより好ましい。上記アクリル-スチレン系重合体(A)(A’)における(メタ)アクリル酸由来の構成単位の含有量は、(メタ)アクリル系単量体由来の構成単位およびスチレン系単量体由来の構成単位の合計量100質量%に対し、それぞれ独立して、0.1~5質量%が好ましく、0.2~4質量%がより好ましく、1~3質量%がさらに好ましい。
 上記アクリル-スチレン系重合体(A)(A’)は、さらに、(メタ)アクリル酸エステル由来の構成単位を含むことが好ましい。中でも、アルキル(メタ)アクリレート由来の構成単位、ヒドロキシアルキル(メタ)アクリレート由来の構成単位を含むことが好ましい。さらに、アルキル(メタ)アクリレート由来の構成単位と、ヒドロキシアルキル(メタ)アクリレート由来の構成単位とを含むことがより好ましい。
 上記アルキル(メタ)アクリレート由来の構成単位において、該構成単位に含まれるアルキル基が、炭素数が1~18のアルキル基を含むことが好ましく、炭素数が4~12のアルキル基を含むことがさらに好ましい。また、上記アルキル基が、炭素数が異なる2種以上のアルキル基を含むことも好ましい形態である。たとえば、炭素数が1~5のアルキル基と炭素数が6~18のアルキル基とを含む形態、炭素数が1のアルキル基と炭素数が8~18のアルキル基とを含む形態、炭素数が1のアルキルと炭素数が4~6のアルキル基と炭素数が8~18のアルキル基とを含む形態、炭素数が2~6のアルキル基と炭素数が8~12のアルキル基とを含む形態などがあげられる。また、上記ヒドロキシアルキル(メタ)アクリレート由来の構成単位において、ヒドロキシアルキル基における炭素数が1~18のものが好ましく、該炭素数が2~4のものがよりに好ましい。
 なお、上記アクリル-スチレン系重合体(A)(A’)における構成単位としては、それぞれ独立して、(メタ)アクリル系単量体由来の構成単位、スチレン系単量体由来の構成単位以外の他の構成単位を含んでいてもよい。他の構成単位としては、たとえば、アクリロニトリル、酢酸ビニル、アクリルアミド等の各単量体由来の構成単位があげられる。
 上記オキサゾリン基含有化合物(B)(B’)は、それぞれ独立して、上記のオキサゾリン基含有化合物と、好ましい形態も含め、同様であり、上述の説明を準用することができる。よって説明は省略する。
 上記反応生成物(C)は、上記アクリル-スチレン系重合体(A)が有するカルボキシ基とオキサゾリン基含有化合物(B)が有するオキサゾリン基との反応により生成する。また、上記反応生成物(C’)は、上記アクリル-スチレン系重合体(A’)が有するカルボキシ基とオキサゾリン基含有化合物(B’)が有するオキサゾリン基との反応により生成する。好ましくは、上記反応により、アミドエステル結合を形成してなる。アミドエステル結合の含有量は特に限定されないが、上記各樹脂(R)(R’)100質量%に対し、それぞれ独立して、0.05~5質量%である。より好ましくは0.1~3質量%である。上記各樹脂(R)(R’)における上記反応生成物(C)(C’)の含有量は特に限定されないが、上記各樹脂(R)(R’)100質量%に対する割合で、それぞれ独立して、0.1~50質量%であることが好ましい。より好ましくは0.2~40質量%であり、さらに好ましくは0.3~30質量%である。
 上記各樹脂(R)(R’)は、上記反応生成物(C)(C’)以外に、さらに上記アクリル-スチレン系重合体(A)(A’)を含むことが好ましい。上記アクリル-スチレン系重合体(A)(A’)を含むことにより、風合いにより優れる布帛となり易い。上記各樹脂(R)(R’)における上記アクリル-スチレン系重合体(A)(A’)の含有量は、それぞれ独立して、上記各樹脂(R)(R’)100質量%に対する割合で50~99.9質量%であることが好ましい。下限値は60質量%以上がより好ましく、70質量%以上がさらに好ましく、上限値は99.8質量%以下がより好ましく、99.7質量%がさらに好ましく、99質量%以下がさらにより好ましい。
 上記各樹脂(R)(R’)は、オキサゾリン基含有化合物(B)(B’)をさらに含んでいてもよい。上記各樹脂(R)(R’)における上記重合体(B)(B’)の含有量は、上記各樹脂(R)(R’)100質量%に対する割合で、それぞれ独立して、0~5質量%であることが好ましい。より好ましくは0~2質量%であり、さらに好ましくは0~1質量%である。
 上記カラーインク層に含まれる顔料は、上記カラーインクを構成する顔料と好ましい形態も含め、同様であり、上述の説明を準用することができる。よって説明は省略する。
 上記クリアインク層と上記カラーインク層の膜厚は、特に限定されないが、それぞれ独立して、0.1~1000μmであることが好ましく、より好ましくは0.3~500μmであり、さらに好ましくは0.5~100μmである。上記膜厚は、たとえば、レーザー顕微鏡等により観察し計測できる。
 <布帛>
 本発明の画像印刷物品に含まれる布帛としては、好ましくは、天然繊維および/または合成繊維を原糸とする、布、織物等の繊維製品を全て包含する。たとえば、織布、不織布、編布等があげられる。布帛を構成する繊維も特に限定されず、たとえば、天然繊維、化学繊維またはこれらの混合物があげられる。
 天然繊維としては、たとえば、絹、綿、羊毛等が好ましい例としてあげられる。化学繊維としては合成繊維、再生繊維および半合成繊維があげられる。合成繊維としては、たとえば、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、ポリエチレン繊維、ポリプロピレン繊維、ビニロン繊維等が好ましい例としてあげられる。再生繊維としては、たとえばレーヨン等が好ましい例としてあげられる。半合成繊維としてはアセテート、トリアセテート等が好ましい例としてあげられる。
 これらの中でも、綿、ポリエステル繊維、ポリプロピレン繊維をそれぞれ含む布帛が好ましい。布帛を構成する繊維の種類により好ましい加熱処理温度は異なる。該加熱処理温度が低い、ポリエステル繊維を主成分として含む布帛やポリプロピレン繊維を主成分として含む布帛に対しても、本発明のクリアインクまたはインクセットを用いると摩擦堅牢性により優れる捺染物の製造が可能となる。また、綿のように、従来、画像を定着させ堅牢性を確保するために160℃で加熱処理を行っていた布帛の場合でも、本発明のクリアインクまたはインクセットを用いることにより、より低い加熱温度での処理によっても、摩擦堅牢性により優れる画像印刷物品の製造が可能となる。
4.画像印刷物品の製造方法
 本開示においては、布帛と、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むインクジェット捺染用クリアインクであって:前記樹脂エマルション粒子の平均粒子径が150nm以上であり、前記オキサゾリン基含有化合物の含有量が前記樹脂エマルション粒子100質量%に対し0.5~70質量%であるインクジェット捺染用クリアインクと;顔料、樹脂エマルション粒子、および水性媒体を含むインクジェット捺染用カラーインクと;を含むインクジェット捺染用インクセットにおけるクリアインクが、該布帛の一部または全部に印刷されて形成されたクリアインク層と、上記インクジェット捺染用インクセットにおけるカラーインクが、該布帛の一部または全部に印刷されて形成されたカラーインク層と、を含む画像を有する画像印刷物品の製造方法もまた提供される。上記画像印刷物品の製造方法では、例えばカラーインク層の下地等として上記クリアインクを用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。
 本発明の画像印刷物品の製造方法としては、種々の製造方法が使用できるが、中でも、クリアインクとカラーインクとを布帛に直接塗布する製造方法、転写紙基材を用いた製造方法等が好ましい。
 クリアインクとカラーインクとを布帛に直接塗布する製造方法では、クリアインク層とカラーインク層とを形成する画像形成工程を含み、該工程は、上記本発明のクリアインクを上記布帛の一部または全部に印刷し、必要により乾燥することにより、クリアインク層を形成する工程と、上記カラーインクを上記布帛の一部または全部に印刷し、必要により乾燥することにより、カラーインク層を形成する工程とを有する。
 クリアインクとカラーインクの布帛への印刷の順番は特に限定されない。クリアインクを印刷後にカラーインクを印刷してもよいし、カラーインクを印刷後にクリアインクを印刷してもよいし、クリアインクとカラーインクとを同時に印刷してもよい。
 好ましくは、先に上記クリアインク層を形成する工程を行った後に、上記カラーインク層を形成する工程を行って、上記布帛上に、上記クリアインク層と上記カラーインク層とが、この順に形成された、画像印刷物品を製造することが好ましい。乾燥は、常温で行っても良く、加熱して行っても良い。
 また、転写紙基材を用いた製造方法(以下、転写捺染法という場合がある)としては従来公知の方法を採用することができる。転写捺染法は、たとえば、インクジェットプリンターにより、上記本発明のクリアインクを転写紙基材の一部または全部に印刷し、必要により乾燥することにより、クリアインク層を形成する工程と、上記カラーインクを上記転写紙基材の一部または全部に印刷し、必要により乾燥することにより、カラーインク層を形成する工程とを有する転写紙製造工程を含む。上記転写紙基材は、例えば、紙、フィルム(PET等の高分子フィルム)を含む。
 上記転写紙基材は、その少なくとも一方の面に、離型層が設けられていてもよい。たとえば高分子フィルムの一方の表面に離型層を形成(積層)したものを転写紙基材として用いてもよい。
 上記離型層を有する転写紙基材を用いる場合は、クリアインクやカラーインク等のインクの印刷は離型層が形成(積層)された側に行われる(クリアインク層やカラーインク層等のインク層は離型層が形成(積層)された側に形成される)ことが好ましい。
 上記転写紙基材が、離型層を有することにより、転写紙基材からクリアインク層やカラーインク層等のインク層の剥離が容易となるため、転写紙基材から布帛への転写がより容易になる。また、転写紙基材が、クリアインク層やカラーインク層等のインク層が形成される面の反対側に離型層を備えることにより、転写紙基材同士のブロッキングや転写紙基材にクリアインク層やカラーインク層等のインク層を積層した積層体同士、該積層体にさらに後述する接着層を積層した積層体同士のブロッキングを抑制することができる。
 上記離型層は、高分子フィルム等の転写紙基材の少なくとも一方の面に、離型剤をコーティングして得られた層であることが好ましい。前記離型剤としては、例えば、ポリエチレンワックス系離型剤、シリコーン系離型剤、及びフッ素系離型剤が挙げられる。離型層の厚さは、特に限定されないが、10nm~2μmが好ましく、30nm~2μmがより好ましい。
 上記転写紙基材は、インク受容層を有する形態であってもよく、たとえば高分子フィルムの一方の表面にインク受容層を形成(積層)したものを転写紙基材として用いてもよい。
 上記インク受容層を有する転写紙基材を用いる場合は、クリアインクやカラーインク等のインクの印刷はインク受容層が形成(積層)された側に行われる(クリアインク層やカラーインク層等のインク層はインク受容層が形成(積層)された側に形成される)ことが好ましい。
 上記転写紙基材が、上記インク受容層を有する場合、カラーインク層や着色インク層の一部または全部が、インク受容層に吸収されていてもよい。
 前記インク受容層は、高分子フィルム等の転写紙基材にインク受容層形成用樹脂を含む溶液をコーティングすることで形成できる。該樹脂としては、例えば、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-スチレン共重合樹脂等の(メタ)アクリル系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のオレフィン系樹脂;シリコーン樹脂;ポリビニルアルコール樹脂;カルボキシメチルセルロースナトリウム等のセルロース系樹脂;等が挙げられる。インク受容層形成用樹脂を含む溶液は、さらには炭酸カルシウムやシリカ等の無機粒子を含んでいてもよい。インク受容層の厚さは、特に限定されないが、30nm~20μmが好ましく、100nm~10μmがより好ましい。
 上記転写紙基材は、上記離型層、上記インク受容層をこの順に有する形態であってもよく、たとえば高分子フィルムの一方の表面に離型層、インク受容層をこの順に形成(積層)したものを転写紙基材として用いてもよい。クリアインクやカラーインク等のインクの印刷は離型層、インク受容層がこの順に形成(積層)された側に行われる(クリアインク層やカラーインク層等のインク層は離型層、インク受容層がこの順に形成(積層)された側に形成される)ことが好ましい。
 上記転写紙製造工程は、接着層を転写紙基材の最上面(たとえば、カラーインク層、またはクリアインク層の上)の一部または全部に形成する工程をさらに含むことができる。上記接着層は、加熱により溶融する樹脂を含むものであれば、特に限定されない。上記接着層を形成する方法としては、従来公知の方法、たとえば、加熱により溶融する樹脂エマルションを分散含有する液状組成物(接着層形成用組成物)を転写紙基材の最上面に塗布し、溶媒を蒸発させることにより接着層を形成させる方法等を用いることができる。該工程を含むことにより、接着層を介してカラーインク層およびクリアインク層を含む画像が布帛に転写されることになり、画像と布帛との密着性をより向上するものとすることが可能となる。
 乾燥は、常温で行っても良く、加熱して行っても良い。そして、上記転写紙製造工程によって製造された上記転写紙基材を布帛に重ね合わせて、加熱および/または加圧することにより上記転写紙基材に形成されたクリアインク層とカラーインク層とを上記布帛に転写する転写工程と、上記転写工程によってクリアインク層とカラーインク層とを含む画像が転写された後の上記布帛から上記転写紙基材を剥離する剥離工程と、を含む。
 クリアインクとカラーインクの上記転写紙基材への印刷の順番は特に限定されない。クリアインクを印刷後にカラーインクを印刷してもよいし、カラーインクを印刷後にクリアインクを印刷してもよいし、クリアインクとカラーインクとを同時に印刷してもよい。
 好ましくは、先に上記カラーインク層を形成する工程を行った後に、上記クリアインク層を形成する工程を行って、上記転写紙基材上に、上記カラーインク層と上記クリアインク層とを、この順に形成し、好ましくはさらに接着層を形成することにより、転写紙を製造する。その後、得られた転写紙を用いて、上記転写工程と上記剥離工程とを行って、上記布帛上に、上記クリアインク層と上記カラーインク層とが、この順に形成された、画像印刷物品を製造することが好ましい。
 クリアインクとカラーインクとを布帛に直接塗布する製造方法における上記画像形成工程、及び転写紙基材を用いた製造方法における転写紙製造工程において用いるインクジェットプリンターは特に限定されず、従来公知のインクジェットプリンターを用いることができる。インクジェットプリンターは、たとえば、ピエゾ方式、サーマル方式、荷電変更制御方式(連続吐出方式)等、いずれの方式のものであっても良く、ピエゾ方式のインクジェットプリンターが特に好ましい。上記ピエゾ方式のインクジェットプリンターを用いる場合、クリアインク及びカラーインクの突出条件等は特に限定されない。クリアインク及びカラーインクの性状、布帛の種類、文字、絵柄および図等の任意の画像の種類等により適宜選択すればよい。クリアインク及びカラーインクの粘度は、それぞれ独立して、2~20mPa/sの範囲が好ましい。クリアインク及びカラーインクの表面張力は、それぞれ独立して、25~45mN/mの範囲が好ましい。
 上記画像形成工程、及び転写紙製造工程において、インクジェットプリンターヘッドのノズル開口より、吐出されたクリアインク及びカラーインクは、布帛表面、及び転写紙基材にそれぞれ付着し、クリアインク層とカラーインク層とが形成され、これらを含む画像を有する画像印刷物品が得られる。
 本発明の画像印刷物品の製造方法では、上記画像形成工程におけるクリアインク層及びカラーインク層が形成された布帛を、室温超の温度で加熱(乾燥)する工程(加熱(乾燥)処理工程ともいう)を含むことが好ましい。また、上記転写捺染法では、転写工程において転写紙基材から画像が転写された布帛を、室温超の温度で加熱(乾燥)する工程(加熱(乾燥)処理工程ともいう)を含むことが好ましい。室温超の温度での加熱処理により、クリアインク層及びカラーインク層中に含まれる、クリアインク及びカラーインク由来の水性媒体等の揮発成分の除去をより促進でき、画像の定着をより促進することができる。またクリアインク及びカラーインクに含まれる各樹脂エマルション粒子の成膜(融着)により画像の密着性等をより向上できる。また、上記反応生成物(C)(C’)の生成反応もより進みやすい。
 加熱処理工程は、画像形成工程や転写工程と同時であっても画像形成工程や転写工程の後であってもよい。また両者を組み合わせてもよい。たとえば、加熱処理工程を画像形成工程や転写工程と同時に行う方法としては、布帛を加熱しながら、画像形成工程や転写工程を行う方法があげられる。画像形成工程や転写工程の後に加熱処理工程を行う場合の加熱処理方法としては、たとえば、加熱乾燥炉による加熱方法、ヒートプレスによる加熱方法、赤外線ランプによる加熱方法、常圧スチームまたは高圧スチーム等のスチームを用いる方法等が好ましくあげられる。中でも加熱方法としては、同時に行うと気流が乱れる虞から、加熱処理工程は画像形成工程や転写工程の後に行うことが好ましい。
 上記加熱処理工程における加熱する温度は、それぞれ、90~180℃が好ましい。上限値は、より好ましくは150℃以下、さらに好ましくは130℃以下、特に好ましくは120℃以下であり、下限値は、より好ましくは95℃以上であり、さらに好ましくは100℃以上である。なお、加熱処理工程において、布帛を構成する繊維により推奨される加熱温度、時間は異なる。たとえば、綿は160℃、ポリプロピレンは125℃、ポリエステルは110℃でいずれも5分以内であり、好ましくは3分以内、より好ましくは2分以内である。上記の加熱処理工程後に得られた捺染物(布帛と画像とを有する画像印刷物品)を水洗し乾燥しても良い。
 本発明のインクジェット捺染用インクセットを用いた、本発明の画像印刷物品の製造方法、及び上記転写捺染法により、好ましくは、加熱温度が低温であっても、形成されたクリアインク層及びカラーインク層を含む画像の摩擦堅牢性に優れた捺染物(布帛と画像とを有する画像印刷物品)を省エネルギーで環境に優しく製造することが可能となる。
 摩擦堅牢性に優れる捺染物を短時間で得るためには、上述したように加熱する温度が90℃以上であることが好ましい。しかし、上記加熱処理工程において加熱する温度は、上記した範囲に限定されず、たとえば、常温付近の温度、たとえば15~25℃であってもよい。このような温度であっても、長時間、加熱することにより、形成されたクリアインク層及びカラーインク層を含む画像の摩擦堅牢性をより向上することができる。加熱時間の短縮の観点から、30℃以上が好ましく、50℃以上がより好ましく、90℃以上がさらに好ましい。
 ここで、常温とは、たとえば15~25℃であり、室温とは、室内の実際の温度であるが、通常、15~25℃程度と考えられる。
 本開示においては、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むクリアインクであって、前記樹脂エマルション粒子の平均粒子径が150nm以上であり、前記オキサゾリン基含有化合物の含有量が前記樹脂エマルション粒子100質量%に対し0.5~70質量%であるクリアインクを用いたインクジェット捺染方法もまた提供される。上記インクジェット捺染方法では、例えばカラーインク層の下地等として上記クリアインクを用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。
 上記インクジェット捺染方法は、布帛に直接塗布する捺染方法や、転写紙基材を用いた捺染方法に、特に好適である。
 上記インクジェット捺染方法において用いる上記クリアインクにおける好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)は、それぞれ独立して、上記の本発明のインクジェット捺染用クリアインクについて記載した好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)と同様である。
 上記インクジェット捺染方法において、上記クリアインクを用いる以外に特に制限はされない。上記インクジェット捺染方法としては、たとえば、布帛に直接塗布する捺染方法や、転写紙基材を用いた捺染方法が挙げられ、これらの好適な態様(たとえば、インクジェットプリンターの種類、加熱処理工程における加熱方法・温度、布帛に直接塗布する捺染方法における印刷方法、転写紙基材を用いた捺染方法における転写紙基材の形態や転写紙製造工程における具体的な方法等)は、それぞれ独立して、上記の本発明の画像印刷物品の製造方法の項で記載した好適な態様(たとえば、インクジェットプリンターの種類、加熱処理工程における加熱方法・温度、布帛に直接塗布する捺染方法における印刷方法、転写紙基材を用いた捺染方法における転写紙基材の形態や転写紙製造工程における具体的な方法等)と同様である。
 本開示においては、樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むクリアインクであって、前記樹脂エマルション粒子の平均粒子径が150nm以上であり、前記オキサゾリン基含有化合物の含有量が前記樹脂エマルション粒子100質量%に対し0.5~70質量%であるクリアインクのインクジェット捺染への使用もまた、提供される。上記クリアインクのインクジェット捺染への使用により、例えばカラーインク層の下地等として上記クリアインクを用いることにより、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。
上記クリアインクのインクジェット捺染への使用は、布帛に直接塗布する捺染方法や、転写紙基材を用いた捺染方法に、特に好適である。
 上記クリアインクのインクジェット捺染への使用における、上記クリアインクにおける好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)は、それぞれ独立して、上記の本発明のインクジェット捺染用クリアインクについて記載した好適な態様(たとえば、樹脂エマルション粒子の平均粒子径、前記オキサゾリン基含有化合物の含有量等)と同様であり、捺染方法の好適な態様(たとえば、インクジェットプリンターの種類、加熱処理工程における加熱方法・温度、布帛に直接塗布する捺染方法における印刷方法、転写紙基材を用いた捺染方法における転写紙基材の形態や転写紙製造工程における具体的な方法等)は、それぞれ独立して、上記の本発明の画像印刷物品の製造方法の項で記載した好適な態様(たとえば、インクジェットプリンターの種類、加熱処理工程における加熱方法・温度、布帛に直接塗布する捺染方法における印刷方法、転写紙基材を用いた捺染方法における転写紙基材の形態や転写紙製造工程における具体的な方法等)と同様である。
 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
 各測定方法、評価方法は以下のとおりである。
<樹脂エマルション粒子の平均粒子径>
 樹脂エマルション粒子の平均粒子径は、樹脂エマルションを動的光散乱法による粒度分布測定器(大塚電子株式会社製、品番:FPAR-1000)を用いて測定したときのキュムラント法で得られた値を採用した。
<樹脂エマルション粒子の重量平均分子量>
 樹脂エマルション粒子の重量平均分子量は、樹脂エマルションをゲルパーミエイションクロマトグラフィー〔東ソー(株)製、品番:HLC-8120GPC、カラム:TSKgel G-5000HXLとTSKgel GMHXL-Lとを直列に使用〕を用いて測定したときの重量平均分子量(ポリスチレン換算)で得られた値を採用した。
<顔料の平均粒子径>
 顔料の平均粒子径は、顔料分散体を動的光散乱法による粒度分布測定器(大塚電子株式会社製、品番:FPAR-1000)を用いて測定したときのキュムラント法で得られた値を採用した。
<インクの粘度>
 各実施例、比較例で製造した各クリアインク、各製造例で製造したシアンインク、ホワイトインク等の各カラーインクについて、E型粘度計のTPE-100(東機産業社製)で、ローターR24、0.8度、25℃にて測定した。
<インクの保存安定性>
 各実施例、比較例で製造した各クリアインクの保存安定性を以下のようにして評価した。各実施例、比較例で製造した各クリアインクを、密閉容器に封入した状態で50℃の恒温槽内中で30日間保存し、下記評価基準に従い評価した。
 ◎:保存前後での粘度変化率5%未満。
 〇:保存前後での粘度変化率5~10%。
 △:保存前後での粘度変化率11~20%。
 ×:保存によりゲル化。
<吐出安定性>
 各実施例、比較例で製造した各クリアインクについて吐出安定性を以下のようにして評価した。マスターマインド社製テキスタイルプリンタMMP-TX13に各実施例、比較例で製造した各クリアインクを導入し、PETフィルムに、ノズルチェック印刷(全180ノズルを順に吐出させて罫線を印字)して、飛び散り(曲がり)、ドット抜けを目視にて評価した。更にヘッドをキャップして1週間静置した後、再度ノズルチェック印刷して飛び散り(曲がり)、ドット抜けを目視にて評価した。
 ◎:飛び散り(曲がり)、ドット抜けが、初期および1週間後が共に全くない。
 〇:飛び散り(曲がり)、ドット抜けが、初期および1週間後の多い方が1個以上2個以内。
 △:飛び散り(曲がり)、ドット抜けが、初期および1週間後の多い方が3個以上4個以内。
 ×:飛び散り(曲がり)、ドット抜けが、初期および1週間後の多い方が5個以上。
<摩擦堅牢性>
 各実施例、各比較例で得られた各画像印刷物品の摩擦堅牢性を、JIS L0849の規定の方法に従い、II型試験機で綿3-1号の添付白布を使用し、荷重200g、100往復の乾燥摩擦試験および湿潤摩擦試験を行い、変退色グレースケールを用いて評価した。なお白インクを用いた実施例(たとえば、実施例2-11,実施例2-12、および実施例2-13等)については、綿布帛(Hanes社製綿100%黒色Tシャツ)に印刷した布帛で評価した。
 ◎:乾燥摩擦試験および湿潤摩擦試験が共に4-5級以上。
 〇:乾燥摩擦試験および湿潤摩擦試験が共に3-4級~4級。
 △:乾燥摩擦試験および湿潤摩擦試験が共に2-3級~3級。
 ×:乾燥摩擦試験および湿潤摩擦試験のいずれかが2級以下。
<洗濯堅牢性>
 各実施例、各比較例で得られた各画像印刷物品について、家庭用洗濯機で通常の洗濯(洗濯条件:通常モードでの洗濯→すすぎ→脱水→乾燥、液体洗剤アリエール(登録商標;P&G社製)使用)を10回実施し、変退色グレースケールを用いて、退色の度合いを評価した。
 ◎:4-5級~5級。
 〇:3-4級~4級。
 △:2-3級~3級。
 ×:2級以下。
<風合い>
 各実施例、各比較例で得られた各画像印刷物品を触手により評価した。
 ◎:画像印刷物品が容易に折れ曲がり、布帛そのものの柔らかさに近いもの。
 〇:画像印刷物品が容易に折れ曲がるが、布帛そのものよりも若干ごわつきを感じるもの。
 △:画像印刷物品がごわつきを感じるもの。
 ×:画像印刷物品が自由に折れ曲がらないほど固いもの。
<エマルション製造例>
[エマルション製造例1]
 滴下ロート、撹拌機、窒素ガス導入管、温度計および還流冷却管を備えたフラスコ内に、脱イオン水252部を仕込んだ。滴下ロートに、脱イオン水437部、乳化剤〔(株)ADEKA製、商品名:アデカリアソーブSR-10〕の25%水溶液80部、アクリル酸25部、2-エチルヘキシルアクリレート565部、シクロヘキシルメタクリレート50部、ヒドロキシエチルメタクリレート10部およびスチレン350部からなる滴下用プレエマルションを調製し、そのうち全単量体成分の総量の3%にあたる44部をフラスコ内に添加し、ゆるやかに窒素ガスを吹き込みながら80℃まで昇温し、5%過硫酸アンモニウム水溶液30部を添加し、重合を開始した。その後、滴下用プレエマルションの残部と5%過硫酸アンモニウム水溶液30部を240分間にわたり均一にフラスコ内に滴下した。滴下終了後、フラスコの内容物を80℃で180分間維持し、25%アンモニア水および脱イオン水を添加することによってpHを8.5、固形分50%に調整し、重合を終了した。得られた反応液を室温まで冷却した後、300メッシュの金網で濾過することによりエマルションを得た。このエマルション樹脂粒子におけるスチレンモノマー含有量は35%であり、Tgは-21℃であり、このエマルションの粒子径は200nmであった。このエマルション樹脂粒子の重量平均分子量は75万であった。
[エマルション製造例2]
 エマルション製造例1における滴下用プレエマルションのうち全単量体成分の総量の0.5%にあたる7部をフラスコ内に添加するよう変更した以外はエマルション製造例1と同様にしてエマルションを得た。このエマルション樹脂粒子におけるスチレンモノマー含有量は35%であり、Tgは-21℃であり、このエマルションの粒子径は310nmであった。このエマルション樹脂粒子の重量平均分子量は100万であった。
[エマルション製造例3]
 エマルション製造例1における滴下用プレエマルションのうち全単量体成分の総量の6%にあたる87部をフラスコ内に添加するよう変更した以外はエマルション製造例1と同様にしてエマルションを得た。このエマルション樹脂粒子におけるスチレンモノマー含有量は35%であり、Tgは-21℃であり、このエマルションの平均粒子径は140nmであった。このエマルション樹脂粒子の重量平均分子量は75万であった。
<顔料分散体製造例>
[顔料分散体製造例1]
 分散剤のジョンクリル678(BASF社製)を3部、ジメチルアミノエタノールを1.3部、脱イオン水81部を70℃で撹拌し混合した。次いで、青色顔料のC.I.Pigment Blue15:3 LIONOL BLUE FG-7330(東洋インキ社製)を15部、界面活性剤のオルフィンD-10PG(日信化学工業社製)を0.1部、粒子径0.5mmジルコニアビーズを体積率で50%充填し、ビーズミルを用いて分散し、孔径1μmフィルター(アドバンテック社製、MCP-1-C10S)で濾過することにより、顔料15%の青色顔料分散体を得た。平均粒子径は90nmであった。
[顔料分散体製造例2]
 分散剤のディスコートN-14(第一工業製薬社製)を5部、プロピレングリコール6部、脱イオン水を70部、酸化チタンのCR-95(石原産業社製)100部、粒子径0.5mmジルコニアビーズを体積率で50%充填し、ビーズミルを用いて分散し、顔料55%の白色顔料分散体を得た。平均粒子径は330nmであった。
<クリアインクの製造および評価>
[実施例1-1]
 エマルション製造例1で得られたエマルションを30部(エマルション粒子として15部)、エポクロスWS-700(日本触媒社製、固形分25%)を1.2部(固形分として0.3部)、ジエチレングリコールモノブチルエーテル2部、トリエチレングリコール15部、レベリング剤としてシリコーン系界面活性剤のKF-6011(信越化学社製)0.3部、同じくレベリング剤としてアセチレン系界面活性剤のオルフィンD-10PG(日信化学工業社製)0.3部、及び脱イオン水を51部を混合し、孔径1μmフィルター(アドバンテック製、MCP-1-C10S)で濾過することにより、クリアインク(1)を製造した。
[実施例1-2~1-7、比較例1-1~1-4]
 実施例1-1における、各原料の種類、仕込み量をそれぞれ、表1に示すように変更し、且つ合計量が100部となるよう脱イオン水の仕込み量で調整した以外は、実施例1-1と同様にして、クリアインク(2)~(11)を製造した。クリアインク(11)の製造においては、エマルションとして、ウレタン樹脂エマルションA:タケラックW6110(三井化学社製、固形分30%)を用いた。
 上記実施例、比較例で各々得られたクリアインクの物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<カラーインク製造例>
[シアンインク製造例1]
 エマルション製造例1のエマルションを30部(エマルション粒子として15部)、顔料分散体製造例1の顔料分散体を23部(顔料として3.5部)、ジエチレングリコールモノブチルエーテル2部、トリエチレングリコール15部、シリコーン系界面活性剤のKF-6011(信越化学社製)0.3部、アセチレン系界面活性剤のオルフィンD-10PG(日信化学工業社製)0.3部、及び脱イオン水を29.5部を混合し、孔径1μmフィルター(アドバンテック社製、MCP-1-C10S)で濾過することにより、シアンインク(1)を製造した。
[シアンインク製造例2~3、ホワイトインク製造例1~3]
 シアンインク製造例1における、各原料の種類、仕込み量をそれぞれ、表2に示すように変更し、且つ合計量が100部となるよう脱イオン水の仕込み量で調整した以外は、シアンインク製造例1と同様にして、シアンインク(2)~(3)、及びホワイトインク(1)~(3)を製造した。シアンインク(3)、及びホワイトインク(3)の製造においては、エマルションとして、ウレタン樹脂エマルションA:タケラックW6110(三井化学社製、固形分30%)を用いた。
Figure JPOXMLDOC01-appb-T000002
<画像印刷物品の製造>
[実施例2-1]
 上記で得られたクリアインク(1)、及びシアンインク(1)をマスターマインド社製テキスタイルプリンタMMP-TX13に導入した。綿布帛(Hanes社製綿100%白色Tシャツ)に、クリアインク(1)で1440dpi×1440dpi、印刷速度設定8、120mm×120mmのベタ印刷を行うことにより布帛にクリアインクを印刷した。その後、クリアインク層が形成された領域に、続けてシアンインク(1)で1440dpi×1440dpi、印刷速度設定8、110mm×110mmのベタ印刷を行うことにより画像を印刷した。クリアインク(1)とシアンインク(1)とが印刷された布帛を110℃の熱風乾燥機で90秒間の加熱処理を行い、布帛上に、クリアインク層とカラーインク層とがこの順に形成された画像を有する画像印刷物品(1)を得た。
[実施例2-2~2-13および比較例2-1~2-5]
 実施例2―1におけるクリアインク(1)、及びシアンインク(1)の代わりに、上記実施例1-2~1~7、比較例1-1~1-4でそれぞれ得られたクリアインク、上記カラーインク製造例で各々製造したカラーインクを表3、表4に示すように用いる以外は、実施例2-1と同様にしてインクジェット法による印刷を行い、布帛上に、クリアインク層とカラーインク層とがこの順に形成された、実施例の画像印刷物品(2)~(13)および比較例の画像印刷物品(c1)~(c5)を得た。なお、各実施例、比較例において用いた布帛の種類は表3、表4に示すとおりである。ポリエステル布帛はグンゼ社製ポリエステル100%白Tシャツの布帛を使用した。
 各実施例、比較例で得られたクリアインクにおける各評価結果、及び画像印刷物品における各評価結果を表3、表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、実施例2-1~2-13のインクセットを用いた各画像印刷物品は、いずれもクリアインクの保存安定性、吐出安定性が○~◎と優れており、且つ、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能も△~◎と良好であった。
 本発明のインクジェット捺染用クリアインクは、インクとしての保存安定性に優れ、印刷時の吐出安定性に優れ、インクジェット法による捺染法において、摩擦堅牢性、洗濯堅牢性等の堅牢性や風合いといった性能に優れた画像印刷物品を提供できる。

Claims (4)

  1.  樹脂エマルション粒子、オキサゾリン基含有化合物および水性媒体を含むインクジェット捺染用クリアインクであって、
     前記樹脂エマルション粒子の平均粒子径が150nm以上であり、
     前記オキサゾリン基含有化合物の含有量が前記樹脂エマルション粒子100質量%に対し0.5~70質量%である、
    インクジェット捺染用クリアインク。
  2.  請求項1に記載のインクジェット捺染用クリアインクと、顔料、樹脂エマルション粒子、および水性媒体を含むインクジェット捺染用カラーインクとを含む、
    インクジェット捺染用インクセット。
  3.  布帛と、
     請求項2に記載のインクジェット捺染用インクセットにおけるクリアインクが、該布帛の一部または全部に印刷されて形成されたクリアインク層と、
     請求項2に記載のインクジェット捺染用インクセットにおけるカラーインクが、該布帛の一部または全部に印刷されて形成されたカラーインク層と、を含む画像を有する、
    画像印刷物品。
  4.  前記布帛上に、前記クリアインク層と前記カラーインク層とが、この順に形成された、
    請求項3に記載の画像印刷物品。
PCT/JP2024/001069 2023-02-20 2024-01-17 インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品 WO2024176664A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023024440 2023-02-20
JP2023-024440 2023-02-20
JP2023-027251 2023-02-24
JP2023027251 2023-02-24

Publications (1)

Publication Number Publication Date
WO2024176664A1 true WO2024176664A1 (ja) 2024-08-29

Family

ID=92500941

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2024/001045 WO2024176662A1 (ja) 2023-02-20 2024-01-17 接着剤インク、及び該接着剤インクを用いた捺染物の製造方法
PCT/JP2024/001069 WO2024176664A1 (ja) 2023-02-20 2024-01-17 インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001045 WO2024176662A1 (ja) 2023-02-20 2024-01-17 接着剤インク、及び該接着剤インクを用いた捺染物の製造方法

Country Status (1)

Country Link
WO (2) WO2024176662A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058913A (ja) * 2016-09-30 2018-04-12 ブラザー工業株式会社 オーバーコート剤及び画像形成方法
JP2019157071A (ja) * 2018-03-16 2019-09-19 セイコーエプソン株式会社 インクジェット捺染用クリアインク組成物、インクジェット捺染用インクセット及びインクジェット捺染方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111867A (ja) * 2005-10-18 2007-05-10 Watanabe Norihiko インクジェット転写印刷法、転写シート及びその製造方法
JP5773120B2 (ja) * 2010-12-15 2015-09-02 セイコーエプソン株式会社 転写媒体及びその製造方法、並びに転写物
JP5942369B2 (ja) * 2011-09-15 2016-06-29 セイコーエプソン株式会社 転写媒体の製造方法
WO2016027835A1 (ja) * 2014-08-20 2016-02-25 株式会社ミマキエンジニアリング 捺染方法、捺染装置、捺染物の製造方法、インク、及び転写用の媒体
JP2019034492A (ja) * 2017-08-18 2019-03-07 株式会社ミマキエンジニアリング 転写媒体、印刷物、樹脂組成物及び転写方法
JP2022076429A (ja) * 2020-11-09 2022-05-19 憲一 古川 ガーメントプリント方式

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058913A (ja) * 2016-09-30 2018-04-12 ブラザー工業株式会社 オーバーコート剤及び画像形成方法
JP2019157071A (ja) * 2018-03-16 2019-09-19 セイコーエプソン株式会社 インクジェット捺染用クリアインク組成物、インクジェット捺染用インクセット及びインクジェット捺染方法

Also Published As

Publication number Publication date
WO2024176662A1 (ja) 2024-08-29

Similar Documents

Publication Publication Date Title
US9296908B2 (en) Aqueous inkjet ink composition
JP5720679B2 (ja) インクジェットインク及びインクジェット記録方法
JP5433863B2 (ja) インクジェットインク及び記録方法
JP5729066B2 (ja) 水性インクジェットインキ用バインダー樹脂組成物、およびそれを用いた水性インクジェット用インキ組成物
JP5776249B2 (ja) 水性インクジェット用インキ組成物
US9039130B2 (en) Ink composition and method for ink jet recording
JP6961154B2 (ja) プライマーに用いられる微粒子分散体及びそれを用いたプライマー。
JP5927752B2 (ja) インクジェットインク及びインクジェット記録方法
JP5891631B2 (ja) 水性インクジェット用バインダー樹脂用樹脂微粒子、およびそれを用いたインクジェットインキ
JP6667088B2 (ja) 凝集剤を含む水性プライマー用微粒子分散体及びそれを用いた水性プライマー。
CN104910686A (zh) 油墨组合物和记录装置
JP6059584B2 (ja) インクジェット記録用水系インク
JP2017043701A (ja) インクセット及び記録方法
JP6115694B1 (ja) 水性インクジェットインキ用樹脂分散体
JP5981840B2 (ja) インクジェット記録用水系インク
JP7547720B2 (ja) 被覆着色剤、着色組成物、および被覆着色剤の製造方法
JP2022170110A (ja) 着色剤分散体、インキ、インキセット、および塗工物
WO2024176664A1 (ja) インクジェット捺染用クリアインク、該インクを含むインクセット、及び画像印刷物品
JP7343655B2 (ja) インクジェット捺染用インク、該インクを用いた印刷物の製造方法および画像固着物品
JP2015178549A (ja) インク組成物、記録装置及び記録方法
WO2022270171A1 (ja) インクジェット捺染用インク、該インクを用いた印刷物の製造方法および画像固着物品
JP2018177828A (ja) 水性インクジェットインキ用樹脂分散体
CN117529533A (zh) 喷墨纺织品印刷用墨、使用所述墨制造印刷物的方法以及具有附着图像的制品
WO2024106276A1 (ja) 捺染インク用重合体、該重合体を含む捺染インク用エマルション、及び捺染インク
JP7540427B2 (ja) 着色剤分散体、インキ、インキセット、および印刷物