WO2024159636A1 - 一种二硼化钛可润湿阴极 - Google Patents

一种二硼化钛可润湿阴极 Download PDF

Info

Publication number
WO2024159636A1
WO2024159636A1 PCT/CN2023/090489 CN2023090489W WO2024159636A1 WO 2024159636 A1 WO2024159636 A1 WO 2024159636A1 CN 2023090489 W CN2023090489 W CN 2023090489W WO 2024159636 A1 WO2024159636 A1 WO 2024159636A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium diboride
titanium
cold
diboride
pressed sintered
Prior art date
Application number
PCT/CN2023/090489
Other languages
English (en)
French (fr)
Inventor
包生重
李冬生
陈开斌
王怀江
侯光辉
石序
罗丽芬
张芳芳
刘彦辉
Original Assignee
中铝郑州有色金属研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝郑州有色金属研究院有限公司 filed Critical 中铝郑州有色金属研究院有限公司
Priority to AU2023428608A priority Critical patent/AU2023428608A1/en
Publication of WO2024159636A1 publication Critical patent/WO2024159636A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of aluminum electrolysis, and in particular to a titanium diboride wettable cathode.
  • Wettable cathodes are very important for the development of both inert anode aluminum electrolysis and prebaked carbon anode aluminum electrolysis.
  • titanium diboride (TiB 2 ) is an ideal wettable cathode material. Pure titanium diboride has the advantages of good conductivity, high strength, wear resistance, good wettability with aluminum water, etc., and also has strong resistance to electrolyte melt, aluminum liquid corrosion and sodium potassium penetration.
  • the wettable cathodes made of existing titanium diboride materials can be mainly classified into three categories: titanium diboride ceramic cathodes, titanium diboride composite cathode materials, Titanium diboride coating.
  • wettable cathodes all have certain problems: ceramic cathodes are difficult to prepare, costly, and have poor thermal shock resistance, which severely restricts their industrial application; titanium diboride composite cathode materials have high carbon content, high porosity, and short life; titanium diboride coatings are easy to peel off and have a short life. This makes titanium diboride still difficult to apply to wettable cathodes.
  • the purpose of the present disclosure is to provide a titanium diboride wettable cathode, so as to solve the technical problem that titanium diboride is difficult to be applied to wettable cathodes in the prior art.
  • a titanium diboride wettable cathode comprising: a titanium diboride cold-pressed sintered block, the titanium diboride cold-pressed sintered block comprising titanium diboride and additives, the additives comprising graphite, carbon fiber, and titanium nitride; and a titanium diboride coating applied to the surface of the titanium diboride cold-pressed sintered block.
  • a method for preparing a titanium diboride wettable cathode comprises the following steps: mixing titanium diboride powder with additives, water, a dispersant, and a binder to form a slurry, wherein the additives include graphite, carbon fiber, and titanium nitride; spray drying and granulating the slurry to obtain a powder; isostatically pressing the powder to obtain a compact; after processing and adjusting the shape and size of the compact, performing a high-temperature degreasing treatment on the compact at a first temperature and an inert atmosphere to obtain a degreased compact; densifying and sintering the degreased compact at a second temperature and an inert atmosphere to obtain a titanium diboride cold-pressed sintered block; using titanium diboride micropowder as a raw material, plasma spraying the surface of the titanium diboride cold
  • FIG1 is a schematic flow diagram of a method for preparing a titanium diboride wettable cathode according to some embodiments of the present disclosure.
  • the directional words used such as “upper” and “lower”, refer specifically to the directions of the drawings in the accompanying drawings.
  • the terms “include”, “comprise”, etc. mean “including but not limited to”.
  • the terms “include”, “comprises”, or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, article, or device that includes a series of elements includes not only those elements, but also other elements that are not explicitly listed, or also includes elements that are inherent to such process, method, article, or device.
  • relational terms such as “first” and “second”, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations.
  • "and/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • association relationship of more than three associated objects described with "and/or” it means that any one of the three associated objects may exist alone, or Or any at least two of them exist at the same time, for example, for A, and/or B, and/or C, it can mean that any one of A, B, and C exists alone, or any two of them exist at the same time, or three of them exist at the same time.
  • at least one means one or more
  • plural means two or more.
  • “At least one”, “the following at least one” or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, or c can all mean: a, b, c, a ⁇ b (i.e. a and b), a ⁇ c, b ⁇ c, or a ⁇ b ⁇ c, where a, b, and c can be single or multiple, respectively.
  • an embodiment of the present disclosure provides a titanium diboride wettable cathode, which may include: a titanium diboride cold-pressed sintered block, which includes titanium diboride and additives, wherein the additives include graphite, carbon fiber, and titanium nitride; and a titanium diboride coating applied to the surface of the titanium diboride cold-pressed sintered block.
  • Carbon fiber can play a role in increasing the strength of the titanium diboride cold-pressed sintered block. Titanium nitride can assist in sintering.
  • Titanium nitride can assist in sintering.
  • Those skilled in the art can understand that carbon-containing composite ceramic materials with titanium diboride as the main body are generally processed by hot pressing and sintering process. Hot pressing and sintering process is the key factor leading to the high cost of titanium diboride-C composite hot-pressed ceramics, accounting for about 75% of the total cost. Therefore, the present disclosure uses cold pressing and sintering instead of hot pressing and sintering to greatly reduce the process cost. Compared with hot pressing and sintering, the density and strength of cold pressing and sintering will be relatively weak.
  • the present disclosure adopts carbon fiber reinforcement, titanium nitride assisted sintering, isostatic pressing and other measures to greatly improve the strength and density of the cold-pressed sintered composite block, and also reduce the required sintering temperature.
  • the cost of the present disclosure is much lower than the hot pressing process itself.
  • the titanium diboride coating can be formed by plasma spraying, and its cost increase is related to the surface area, which is estimated to be less than 1,500 yuan/ m2 . Measures to improve the strength and density of the titanium diboride cold-pressed sintered block itself also bring about a small increase in cost. According to comprehensive calculations, the cost of the disclosed ceramic can be reduced by 30% or even more than 50% compared with carbon-containing titanium diboride hot-pressed ceramics.
  • the disclosed ceramic takes a low-carbon titanium diboride cold-pressed sintered block as the matrix, and further arranges a titanium diboride coating on its surface, which can further reduce the cathode surface porosity and improve the cathode comprehensive performance.
  • Pure titanium diboride has the advantages of good electrical conductivity, high strength, wear resistance, and good wetting with aluminum water. It also has a strong ability to resist electrolyte melts, aluminum liquid corrosion, and sodium-potassium penetration.
  • the disclosed ceramic fully combines the advantages of the two, and the obtained titanium diboride can wet the cathode surface at a level similar to that of pure titanium diboride ceramics.
  • the present invention discloses a low-carbon content titanium diboride wettable cathode, which has the following advantages: (1) Compared with carbon-containing titanium diboride hot-pressed ceramic cathodes or pure titanium diboride ceramic cathodes, the preparation cost is greatly reduced; (2) Compared with carbon-containing titanium diboride hot-pressed ceramic cathodes or pure titanium diboride ceramic cathodes, the structural size of the sample will not be limited, the thermal shock resistance is strong, and it is easier to process; (3) Compared with traditional titanium diboride-C composite cathodes and ordinary titanium diboride coated cathodes, the carbon content can be made very low and the density is high, the wettability with aluminum water and the resistance to electrolyte melt and sodium and potassium penetration are better, it is not easy to form an intercalation structure, and the service life is longer; (4) It can simultaneously meet the needs of inert anode aluminum electrolysis technology and prebaked carbon anode aluminum electrolysis technology for wettable cathodes under thin aluminum liquid layer
  • the present invention adopts carbon fiber reinforcement, titanium nitride assisted sintering, isostatic pressing and other measures to greatly improve the strength and density of the cold-pressed sintered composite block, while reducing the required sintering temperature, so that the present invention can adopt a low-cost cold-pressed sintering process, and the structure size will not be restricted, the thermal shock resistance is strong, and it is easier to process; at the same time, a titanium diboride coating is provided on the surface of the titanium diboride cold-pressed sintered block, and the performance of the obtained titanium diboride in wetting the cathode surface reaches a level similar to that of pure titanium diboride ceramics.
  • the titanium diboride cold-pressed sintered block includes 16 to 19 parts of titanium diboride and 1 to 4 parts of additives, measured by weight.
  • the additives include, based on the mass fraction of the additives: 0.1% to 2% of carbon fiber; 0.5% to 10% of titanium nitride; 0.5% to 5% of titanium oxide; and the remainder is graphite.
  • the ratio of the additives can make the titanium diboride wettable cathode have low carbon content and high density.
  • the thickness of the titanium diboride coating may be 200-1000 ⁇ m.
  • the present disclosure provides a method for preparing a titanium diboride wettable cathode.
  • the method for preparing a titanium diboride wettable cathode may include the following steps:
  • S1 mixing titanium diboride powder with additives, water, a dispersant, and a binder to form a slurry, wherein the additives include graphite, carbon fiber, and titanium nitride;
  • the method for preparing the titanium diboride wettable cathode can prepare the titanium diboride wettable cathode described in the first aspect. Therefore, the second aspect of the present disclosure has the beneficial effects possessed by any embodiment of the first aspect, which will not be repeated here.
  • the inert gas described in the present disclosure refers to at least one of nitrogen or rare gases. Plasma spraying is conducive to the formation of a dense coating. Those skilled in the art will appreciate that before plasma spraying, the surface of the titanium diboride cold-pressed sintered block is generally roughened and cleaned, and the entire block is dried.
  • the mass ratio of the titanium diboride powder to the additive may be 16-19:1-4.
  • the additives may include, based on the mass fraction of the additives: 0.1% to 2% of carbon fiber; 0.5% to 10% of titanium nitride; 0.5% to 5% of titanium oxide; and the remainder being graphite.
  • the first temperature may be 400-600°C; and/or, the second temperature may be 1250-1400°C; and/or, the time of the high-temperature degreasing treatment may be 4-6 hours; and/or, the pressure of the isostatic pressing treatment may be 120-200 MPa; and/or, the dispersant may be at least one of alcohol, polyacrylamide, and fatty acid polyethylene glycol ester; and/or, the binder may be polyvinyl alcohol.
  • the particle size d50 of the titanium diboride powder can be 15 to 25 um; and/or, the plasma spraying can be atmospheric pressure plasma spraying or vacuum plasma spraying; and/or, the plasma spraying can have a thickness of 10 to 50 ⁇ m each time and be completed in 5 to 20 times; and/or, the thickness of the titanium diboride coating can be 200 to 1000 ⁇ m; and/or, before the plasma spraying, the titanium diboride cold-pressed sintered block can be preheated to 100 to 200°C.
  • the plasma spraying is atmospheric pressure plasma spraying.
  • 5N high-purity argon can be used as a powder carrier gas
  • 5N high-purity hydrogen or 5N high-purity helium can be used as an auxiliary gas.
  • titanium diboride powder Take 95wt% of titanium diboride powder, 1wt% of carbon fiber, 1wt% of titanium nitride powder, 0.5wt% of titanium oxide powder, and 2.5wt% of graphite powder, and mix them evenly in a three-dimensional mixer; add pure water with a weight ratio of 1:1, add polyacrylamide and polyvinyl alcohol solution, and mix by ball milling to form a slurry; use spray drying to granulate, and then form a compact at 200MPa in an isostatic press, and obtain the desired cathode structure morphology by processing the compact; degrease the processed compact at 600°C for 4h in a nitrogen atmosphere to obtain a degreased compact; densify and sinter the degreased compact at 1400°C in an argon atmosphere to obtain a titanium diboride cold-pressed sintered block. After detection and analysis, the porosity of the titanium diboride cold-pressed sintered block is 12.5%, and the room temperature bending strength is 48MP
  • the obtained titanium diboride cold-pressed sintered block is subjected to surface roughening, purification, and overall drying treatment; titanium diboride powder is provided as the raw material for atmospheric pressure plasma spraying, with a purity greater than 98% and a particle size d50 of 25um.
  • 5N high-purity argon is used as the powder carrier gas for atmospheric pressure plasma spraying, and 5N high-purity hydrogen is used as the auxiliary gas; the thickness of each spraying is 10 to 50 ⁇ m, and the titanium diboride coating is formed after 20 sprayings; before the first spraying, the base material is preheated with a spray gun, and the preheating temperature is about 160°C.
  • the oxygen content of the titanium diboride coating is 9.6%
  • the porosity is 8.4%
  • the bonding strength between the coating and the substrate is 6.7N ⁇ mm -2 .
  • the actual working area is 200cm2 *2. It is matched with two inert anodes and operated for 1000h in the KF-NaF- AlF3 - Al2O3 electrolyte system at 820°C, 200A current, and cathode current density of 0.5A/ cm2 .
  • the cathode is intact and well wetted with aluminum water.
  • titanium diboride powder Take 80wt% of titanium diboride powder, 2wt% of carbon fiber, 10wt% of titanium nitride powder, 0.5wt% of titanium oxide powder, and 7.5wt% of graphite powder, and mix them evenly in a three-dimensional mixer; add pure water in a ratio of 1:1 to the weight of the material, add fatty acid polyethylene glycol ester, and polyvinyl alcohol solution, and perform ball milling to mix to form a slurry; The process is spray-dried and granulated, and then formed into a compact at 180 MPa in an isostatic press, and the desired cathode structure morphology is obtained by processing the compact; the processed compact is degreased at 400°C for 6 hours in a nitrogen atmosphere to obtain a degreased compact; the degreased compact is densified and sintered at 1350°C in an argon atmosphere to obtain a titanium diboride cold-pressed sintered block. According to detection and analysis, the titanium diboride cold-pressed
  • the obtained titanium diboride cold-pressed sintered block is subjected to surface roughening, purification, and overall drying treatment; titanium diboride powder is provided as the raw material for atmospheric pressure plasma spraying, with a purity greater than 98% and a particle size d50 of 25um.
  • 5N high-purity argon gas is used as the powder carrier gas for atmospheric pressure plasma spraying, and 5N high-purity hydrogen gas is used as the auxiliary gas; the thickness of each spraying is 10 to 50 ⁇ m, and the titanium diboride coating is formed after 20 sprayings; before the first spraying, the base material is preheated with a spray gun, and the preheating temperature is about 120°C.
  • the oxygen content in the titanium diboride coating is 10.3%, the porosity is 8.8%, and the bonding strength between the coating and the substrate is 6.4N ⁇ mm -2 .
  • the actual working area is 200cm2 *2. It is matched with two inert anodes and operated for 1000h in the KF-NaF- AlF3 - Al2O3 electrolyte system at 820°C, 200A current, and cathode current density of 0.5A/ cm2 .
  • the cathode is intact and well wetted with aluminum water.
  • titanium diboride powder Take 80wt% of titanium diboride powder, 0.1wt% of carbon fiber, 0.5wt% of titanium nitride powder, 5wt% of titanium oxide powder, and 14.4wt% of graphite powder, and mix them evenly in a three-dimensional mixer; add pure water with a weight ratio of 1:1, add fatty acid polyethylene glycol ester, and polyvinyl alcohol solution, and mix by ball milling to form a slurry; use spray drying granulation, and then form a compact at 160MPa in an isostatic press, and obtain the desired cathode structure morphology by processing the compact; degrease the processed compact at 500°C for 4h in a nitrogen atmosphere to obtain a degreased compact; densify and sinter the degreased compact at 1350°C in an argon atmosphere to obtain a titanium diboride cold-pressed sintered block. After detection and analysis, the porosity of the titanium diboride cold-pressed sintered block is 11.8%, and the
  • the obtained titanium diboride cold-pressed sintered block is subjected to surface roughening, purification, and overall drying treatment; titanium diboride powder is provided as a raw material for atmospheric pressure plasma spraying, wherein the purity is greater than 98%, and the particle size d50 is 25 ⁇ m; 5N high-purity argon is used as a powder carrier gas for atmospheric pressure plasma spraying, and 5N high-purity hydrogen is used as an auxiliary gas; the thickness of each spraying is 10 to 50 ⁇ m, and the titanium diboride coating is formed after 20 sprayings; Before the first spraying, the substrate material is preheated with a spray gun at a preheating temperature of about 200° C. According to the test and analysis, the oxygen content of the titanium diboride coating is 11.2%, the porosity is 9.2%, and the bonding strength between the coating and the substrate is 5.8 N ⁇ mm -2 .
  • the actual electrode working area is 300cm2 .
  • KF-NaF- AlF3 - Al2O3 electrolyte system it operates for 48h at 820°C, 240A current, and a cathode current density of 0.8A/ cm2 .
  • the cathode is intact and well wetted with aluminum water.
  • titanium diboride powder Take 80wt% of titanium diboride powder, 1wt% of carbon fiber, 5wt% of titanium nitride powder, 2wt% of titanium oxide powder, and 12wt% of graphite powder, and mix them evenly in a three-dimensional mixer; add pure water with a weight ratio of 1:1, add fatty acid polyethylene glycol ester, and polyvinyl alcohol solution, and mix by ball milling to form a slurry; use spray drying granulation, and then form a compact at 180MPa in an isostatic press, and obtain the desired cathode structure morphology by processing the compact; degrease the processed compact at 600°C for 4h in a nitrogen atmosphere to obtain a degreased compact; densify and sinter the degreased compact at 1400°C in an argon atmosphere to obtain a titanium diboride cold-pressed sintered block. After detection and analysis, the porosity of the titanium diboride cold-pressed sintered block is 10.2%, and the room temperature
  • the obtained titanium diboride cold-pressed sintered block is subjected to surface roughening, purification, and overall drying treatment; titanium diboride powder is provided as the raw material for atmospheric pressure plasma spraying, with a purity greater than 98% and a particle size d50 of 25um.
  • 5N high-purity argon gas is used as the powder carrier gas for atmospheric pressure plasma spraying, and 5N high-purity hydrogen gas is used as the auxiliary gas; the thickness of each spraying is 10 to 50 ⁇ m, and the titanium diboride coating is formed after 20 sprayings; before the first spraying, the base material is preheated with a spray gun, and the preheating temperature is about 180°C.
  • the oxygen content of the titanium diboride coating is 9.2%
  • the porosity is 8.4%
  • the bonding strength between the coating and the substrate is 7.5N ⁇ mm -2 .
  • the actual working area is 200cm2 *2. It is matched with two inert anodes and operated for 1000h in the KF-NaF- AlF3 - Al2O3 electrolyte system at 820°C, 200A current, and cathode current density of 0.5A/ cm2 .
  • the cathode is intact and well wetted with aluminum water.
  • titanium diboride powder Take 85wt% of titanium diboride powder, 1wt% of carbon fiber, 5wt% of titanium nitride powder, 0.5wt% of titanium oxide powder, and 8.5wt% of graphite powder, and mix them evenly in a three-dimensional mixer; add pure water with a weight ratio of 1:1, add fatty acid polyethylene glycol ester, and polyvinyl alcohol solution, and mix by ball milling to form a slurry; use spray drying granulation, and then form a compact at 180MPa in an isostatic press, and obtain the desired cathode structure morphology by processing the compact; degrease the processed compact at 600°C for 4h in a nitrogen atmosphere to obtain a degreased compact; densify and sinter the degreased compact at 1350°C in an argon atmosphere to obtain a titanium diboride cold-pressed sintered block. After detection and analysis, the porosity of the titanium diboride cold-pressed sintered block is 10.8%, and the room
  • the obtained titanium diboride cold-pressed sintered block is subjected to surface roughening, purification, and overall drying treatment; titanium diboride powder is provided as the raw material for atmospheric pressure plasma spraying, with a purity greater than 98% and a particle size d50 of 25um.
  • 5N high-purity argon gas is used as the powder carrier gas for atmospheric pressure plasma spraying, and 5N high-purity hydrogen gas is used as the auxiliary gas; the thickness of each spraying is 10 to 50 ⁇ m, and the titanium diboride coating is formed after 20 sprayings; before the first spraying, the substrate material is preheated with a spray gun, and the preheating temperature is about 200°C.
  • the oxygen content in the titanium diboride coating is 10.5%
  • the porosity is 8.6%
  • the bonding strength between the coating and the substrate is 7.8N ⁇ mm -2 .
  • the actual electrode working area is 300cm2 .
  • KF-NaF- AlF3 - Al2O3 electrolyte system it operates for 48h at 820°C, 240A current, and a cathode current density of 0.8A/ cm2 .
  • the cathode is intact and well wetted with aluminum water.
  • the titanium diboride wettable cathode provided in the embodiments of the present disclosure greatly improves the strength and density of the cold-pressed sintered composite block by adopting measures such as carbon fiber reinforcement, titanium nitride assisted sintering, and isostatic pressing, while reducing the required sintering temperature, so that the present disclosure can adopt a low-cost cold-pressed sintering process, and the structural size will not be restricted, the thermal shock resistance is strong, and it is easier to process; at the same time, a titanium diboride coating is provided on the surface of the titanium diboride cold-pressed sintered block, and the performance of the titanium diboride wettable cathode surface obtained reaches a level similar to that of pure titanium diboride ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Powder Metallurgy (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本公开涉及一种二硼化钛可润湿阴极包括:二硼化钛冷压烧结块,所述二硼化钛冷压烧结块包括二硼化钛和添加剂,所述添加剂包括石墨、碳纤维、氮化钛;二硼化钛涂层,涂覆于所述二硼化钛冷压烧结块的表面。本公开通过采用碳纤维增强、氮化钛助烧结、等静压成型等措施,大幅提高冷压烧结复合块的强度和致密度,同时降低了所需的烧结温度,使得本公开可采用成本较低的冷压烧结工艺,且结构尺寸将不会受到限制,抗热震性能强,也更容易加工;同时在二硼化钛冷压烧结块表面设置二硼化钛涂层,制得的二硼化钛可润湿阴极表面的性能达到与纯二硼化钛陶瓷相近的水平。

Description

一种二硼化钛可润湿阴极
相关申请的交叉引用
本公开要求于2023年1月31日提交、申请号为202310047908.7且名称为“一种二硼化钛可润湿阴极”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及铝电解领域,尤其涉及一种二硼化钛可润湿阴极。
背景技术
可湿润阴极对于惰性阳极铝电解和预焙炭阳极铝电解的发展都非常重要。采用惰性阳极时,铝电解反应方程由Al2O3+C=Al+CO2转化为Al2O3=Al+O2,理论分解电压也由1.2V升高至2.2V。即采用惰性阳极时铝电解的理论分解电压比采用炭阳极时理论分解电压高出1V。惰性阳极铝电解如果要保持于炭阳极铝电解同等或更少的能耗,就必须与可润湿阴极配合,采用竖式电极结构的铝电解槽。当前,预焙阳极铝电解已经通过降低外围导体压降(如阳极、钢爪、阴极、阴极钢棒、外围母线等)以及水平电流,实现了能耗的大幅降低。采用可湿润阴极,实现“干式阴极”运行,即取消铝液层,是下一个阶段深度节能的一个重要选择。没有了铝液层的波动以及铝液层的散热损失,极距可以小于3.5cm甚至更低,从而大幅降低槽电压和能耗。
无论是惰性阳极铝电解还是炭阳极铝电解,在没有铝液层或薄铝液层的条件下,对可润湿阴极的要求均较高。首先是需要良好的润湿性,铝水能够在可润湿阴极表面直接析出,其次是没有了铝液层的保护,需要阴极本身抵抗电解质熔体以及钠钾渗透腐蚀的性能要大大加强。
目前,二硼化钛(TiB2)较理想的可润湿性阴极材料。纯的二硼化钛具有导电性能好、强度高、耐磨、与铝水润湿好等优点的同时,还具备较强的抗电解质熔体、铝液腐蚀以及钠钾渗透的能力。现有二硼化钛材料制作的可湿润性阴极主要可归纳为3类:二硼化钛陶瓷阴极、二硼化钛复合阴极材料、 二硼化钛涂层。这三类可湿润阴极均存在一定的问题:陶瓷阴极制备困难、成本高、抗热震性能差,工业化应用受到严重制约;二硼化钛复合阴极材料碳含量高、气孔率高、寿命短;二硼化钛涂层易剥落、寿命短。这使得二硼化钛仍难以应用于可润湿阴极。
发明内容
本公开的目的在于提供一种二硼化钛可润湿阴极,解决现有技术中二硼化钛难以应用于可润湿阴极的技术问题。
依据本公开第一方面,提供了一种二硼化钛可润湿阴极,所述二硼化钛可润湿阴极包括:二硼化钛冷压烧结块,所述二硼化钛冷压烧结块包括二硼化钛和添加剂,所述添加剂包括石墨、碳纤维、氮化钛;以及二硼化钛涂层,涂覆于所述二硼化钛冷压烧结块的表面。
依据本公开第二方面,提供了一种二硼化钛可润湿阴极的制备方法,所述二硼化钛可润湿阴极的制备方法包括如下步骤:将二硼化钛粉末与添加剂、水、分散剂、粘结剂混合形成浆料,其中,所述添加剂包括石墨、碳纤维、氮化钛;对所述浆料进行喷雾干燥造粒,得到粉体;等静压处理所述粉体,得到压块;加工调整所述压块的形状尺寸后,在第一温度和惰性气氛下对所述压块进行高温脱脂处理,得到脱脂压块;在第二温度和惰性气氛下对所述脱脂压块进行致密化烧结,得到二硼化钛冷压烧结块;以二硼化钛微粉为原料,对所述二硼化钛冷压烧结块表面进行等离子喷涂形成二硼化钛涂层,得到所述二硼化钛可润湿阴极。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了依据本公开的一些实施方式的二硼化钛可润湿阴极的制备方法的流程示意图。
具体实施方式
下文将结合具体实施方式和实施例,具体阐述本公开,本公开的优点和各种效果将由此更加清楚地呈现。本领域技术人员应理解,这些具体实施方式和实施例是用于说明本公开,而非限制本公开。
在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本公开所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。除非另有特别说明,本公开中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买获得或者可通过现有方法获得。
本公开的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本公开范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本公开中,在未作相反说明的情况下,使用的方位词如“上”和“下”具体为附图中的图面方向。另外,在本公开说明书的描述中,术语“包括”“包含”等是指“包括但不限于”。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。在本文中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。对于用“和/或”描述的三项以上的关联对象的关联关系,表示这三个关联对象可以单独存在任意一项,或 者其中任意至少两项同时存在,例如,对于A,和/或B,和/或C,可以表示单独存在A、B、C中的任意一项,或者同时存在其中的任意两项,或者同时存在其中三项。在本文中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a~b(即a和b),a~c,b~c,或a~b~c,其中a,b,c分别可以是单个,也可以是多个。
第一方面,本公开实施例提供了一种二硼化钛可润湿阴极,所述二硼化钛可润湿阴极可以包括:二硼化钛冷压烧结块,所述二硼化钛冷压烧结块包括二硼化钛和添加剂,所述添加剂包括石墨、碳纤维、氮化钛;二硼化钛涂层,涂覆于所述二硼化钛冷压烧结块的表面。
碳纤维可起到增加所述二硼化钛冷压烧结块的强度的作用。氮化钛可辅助烧结。本领域技术人员可以理解,以二硼化钛为主体的含碳复合陶瓷材料一般采用热压烧结工艺处理。热压烧结工艺是导致二硼化钛~C复合热压陶瓷成本高的关键因素,约占总成本的75%。因此,本公开选用冷压烧结替代热压烧结可大幅降低工艺成本。相比热压烧结,冷压烧结的致密度、强度会相对变弱,本公开采用碳纤维增强、氮化钛助烧结、等静压成型等措施,可大幅提高冷压烧结复合块的强度和致密度,也降低了所需的烧结温度。本公开成本上均远低于热压工艺本身。二硼化钛涂层可通过等离子喷涂形成,其成本增加与表面积有关,据测算不足1500元/m2。提升二硼化钛冷压烧结块自身强度、致密度等的措施,所带来成本的增加也较小。综合测算,本公开相比含碳二硼化钛热压陶瓷的成本可降低30%,甚至50%以上。本公开以低碳含量的二硼化钛冷压烧结块为基体,进一步在其表面设置二硼化钛涂层,可进一步降低阴极表面气孔率、提高阴极综合性能。纯的二硼化钛具有导电性能好、强度高、耐磨、与铝水润湿好等优点的同时,还具备较强的抗电解质熔体、铝液腐蚀以及钠钾渗透的能力。本公开充分结合了二者的优点,制得的二硼化钛可润湿阴极表面的性能达到与纯二硼化钛陶瓷相近的水平。
综上所述,本公开一种低碳含量二硼化钛可湿润阴极,具有以下优点: (1)相比含碳二硼化钛热压陶瓷阴极或纯二硼化钛陶瓷阴极,制备成本大幅降低;(2)相比含碳二硼化钛热压陶瓷阴极或纯二硼化钛陶瓷阴极,试样的结构尺寸将不会受到限制,抗热震性能强,也更容易加工;(3)相比传统的二硼化钛~C复合阴极以及普通二硼化钛涂层阴极,碳含量可做得很低、致密度高,与铝水润湿和抵抗电解质熔体及钠钾渗透的性能更好,不易生成插层结构,寿命更长;(4)可同时满足惰性阳极铝电解技术以及预焙炭阳极铝电解技术在薄铝液层或无铝液层条件下对可湿润阴极的需求。本公开通过采用碳纤维增强、氮化钛助烧结、等静压成型等措施,大幅提高冷压烧结复合块的强度和致密度,同时降低了所需的烧结温度,使得本公开可采用成本较低的冷压烧结工艺,且结构尺寸将不会受到限制,抗热震性能强,也更容易加工;同时在二硼化钛冷压烧结块表面设置二硼化钛涂层,制得的二硼化钛可润湿阴极表面的性能达到与纯二硼化钛陶瓷相近的水平。
在本公开的一些实施例中,以重量份数份数计,所述二硼化钛冷压烧结块包括16~19份的二硼化钛和1~4份的添加剂。
在本公开的一些实施例中,以所述添加剂的质量分数计,所述添加剂包括:0.1%~2%的碳纤维;0.5%~10%的氮化钛;0.5~5%的氧化钛;余量为石墨。
上述添加剂的配比可使得所述二硼化钛可润湿阴极的含碳量低、致密度高。
在本公开的一些实施例中,所述二硼化钛涂层的厚度可以为200~1000μm。
第二方面,本公开实施例提供了一种二硼化钛可润湿阴极的制备方法,所述二硼化钛可润湿阴极的制备方法可以包括如下步骤:
S1:将二硼化钛粉末与添加剂、水、分散剂、粘结剂混合形成浆料,其中,所述添加剂包括石墨、碳纤维、氮化钛;
S2:对所述浆料进行喷雾干燥造粒,得到粉体;
S3:等静压处理所述粉体,得到压块;
S4:加工调整所述压块的形状尺寸后,在第一温度和惰性气氛下对所述压块进行高温脱脂处理,得到脱脂压块;
S5:在第二温度和惰性气氛下对所述脱脂压块进行致密化烧结,得到二硼化钛冷压烧结块;
S6:以二硼化钛微粉为原料,对所述二硼化钛冷压烧结块表面进行等离子喷涂形成二硼化钛涂层,得到所述二硼化钛可润湿阴极。
本领域技术人员可以理解,所述二硼化钛可润湿阴极的制备方法可制备第一方面所述的二硼化钛可润湿阴极。因此本公开第二方面具备第一方面任一实施例所具备的有益效果,此处不再赘述。本公开所述的惰性气指的是氮气或稀有气体中的至少一种。等离子喷涂有利于形成致密涂层。本领域技术人员可以理解,在进行等离子喷涂前,一般还对二硼化钛冷压烧结块表面进行粗糙化和净化,并整体烘干处理。
在本公开的一些实施例中,所述二硼化钛粉末与添加剂的质量比可以为16~19:1~4。
在本公开的一些实施例中,以所述添加剂的质量分数计,所述添加剂可以包括:0.1%~2%的碳纤维;0.5%~10%的氮化钛;0.5~5%的氧化钛;余量为石墨。
在本公开的一些实施例中,所述第一温度可以为400~600℃;和/或,所述第二温度可以为1250℃~1400℃;和/或,所述高温脱脂处理的时间可以为4~6h;和/或,所述等静压处理,压强可以为120~200MPa;和/或,所述分散剂可以为酒精、聚丙烯酰胺、脂肪酸聚乙二醇脂中的至少一种;和/或,所述粘结剂可以为聚乙烯醇。
在本公开的一些实施例中,所述二硼化钛微粉的粒径d50可以为15~25um;和/或,所述等离子喷涂可以为大气常压等离子喷涂或者真空等离子喷涂;和/或,所述等离子喷涂,可以每次喷涂的厚度10~50μm,5~20次完成喷涂;和/或,所述所述二硼化钛涂层的厚度可以为200~1000μm;和/或,所述等离子喷涂进行前,可以先将所述二硼化钛冷压烧结块预热至100~200℃。
在本公开的一些实施例中,所述等离子喷涂为大气常压等离子喷涂,所述等离子喷涂进行时,可以以5N高纯氩气作为载粉气体,用5N高纯氢气或5N高纯氦气作为辅气。
以5N高纯氩气作为载粉气体、用5N高纯氢气或5N高纯氦气作为辅 气,可以减少二硼化钛粉末在高温喷涂过程氧化。
下面结合具体实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。下列实施例中未注明具体条件的实验方法,通常按照国家标准测定。若没有相应的国家标准,则按照通用的国际标准、常规条件、或按照制造厂商所建议的条件进行。
实施例1
取95wt%的二硼化钛粉、1wt%的碳纤维、1wt%的氮化钛粉、0.5wt%的氧化钛粉、2.5wt%的石墨粉,在三维混料机中混合均匀;加入与料重1:1的纯水,加入聚丙烯酰胺、聚乙烯醇溶液,进行球磨混合形成浆料;采用喷雾干燥造粒,然后在等静压机中200MPa下成型形成压块,并通过加工所述压块获得所需阴极结构形貌;将加工后的压块在氮气气氛下600℃持续4h脱脂处理,得到脱脂压块;将所述脱脂压块在氩气气氛下1400℃致密化烧结,制得二硼化钛冷压烧结块。经检测分析,二硼化钛冷压烧结块的气孔率12.5%,常温抗弯强度48MPa。
将制得的二硼化钛冷压烧结块进行表面粗糙化、净化,并整体烘干处理;提供二硼化钛粉末作为大气常压等离子喷涂的原料,其纯度大于98%,粒径d50为25um,大气常压等离子喷涂用5N高纯氩气为载粉气体,5N高纯氢气为辅气;每次喷涂的厚度10~50μm,20次完成喷涂形成二硼化钛涂层;在第一次喷涂前,先用喷枪对基体材料进行预热,预热温度约160℃。经检测分析,二硼化钛涂层中氧含量9.6%,气孔率8.4%,涂层与基体结合强度6.7N·mm-2
按以上流程制备的可湿润阴极宽*高*厚=10cm*25cm*3.5cm,竖直安装到惰性阳极铝电解槽的底部,实际工作面积200cm2*2,与两块惰性阳极配合,在KF-NaF-AlF3-Al2O3电解质体系中,820℃,200A电流,阴极电流密度0.5A/cm2条件下运行1000h,阴极完好且与铝水润湿良好。
实施例2
取80wt%的二硼化钛粉、2wt%的碳纤维、10wt%的氮化钛粉、0.5wt%的氧化钛粉、7.5wt%的石墨粉,在三维混料机中混合均匀;加入与料重1:1的纯水,加入脂肪酸聚乙二醇脂、聚乙烯醇溶液,进行球磨混合形成浆料; 采用喷雾干燥造粒,然后在等静压机中180MPa下成型形成压块,并通过加工所述压块获得所需阴极结构形貌;将加工后的压块在氮气气氛下400℃持续6h脱脂处理,得到脱脂压块;将所述脱脂压块在氩气气氛下1350℃致密化烧结,制得二硼化钛冷压烧结块。经检测分析,二硼化钛冷压烧结块的气孔率11.2%,常温抗弯强度52MPa。
将制得的二硼化钛冷压烧结块进行表面粗糙化、净化,并整体烘干处理;提供二硼化钛粉末作为大气常压等离子喷涂的原料,其纯度大于98%,粒径d50为25um,大气常压等离子喷涂用5N高纯氩气为载粉气体,5N高纯氢气为辅气;每次喷涂的厚度10~50μm,20次完成喷涂形成二硼化钛涂层;在第一次喷涂前,先用喷枪对基体材料进行预热,预热温度约120℃。经检测分析,二硼化钛涂层中氧含量10.3%,气孔率8.8%,涂层与基体结合强度6.4N·mm-2
按以上流程制备的可湿润阴极宽*高*厚=10cm*25cm*3.5cm,竖直安装到惰性阳极铝电解槽的底部,实际工作面积200cm2*2,与两块惰性阳极配合,在KF-NaF-AlF3-Al2O3电解质体系中,820℃,200A电流,阴极电流密度0.5A/cm2条件下运行1000h,阴极完好且与铝水润湿良好。
实施例3
取80wt%的二硼化钛粉、0.1wt%的碳纤维、0.5wt%的氮化钛粉、5wt%的氧化钛粉、14.4wt%的石墨粉,在三维混料机中混合均匀;加入与料重1:1的纯水,加入脂肪酸聚乙二醇脂、聚乙烯醇溶液,进行球磨混合形成浆料;采用喷雾干燥造粒,然后在等静压机中160MPa下成型形成压块,并通过加工所述压块获得所需阴极结构形貌;将加工后的压块在氮气气氛下500℃持续4h脱脂处理,得到脱脂压块;将所述脱脂压块在氩气气氛下1350℃致密化烧结,制得二硼化钛冷压烧结块。经检测分析,二硼化钛冷压烧结块的气孔率11.8%,常温抗弯强度44MPa。
将制得的二硼化钛冷压烧结块进行表面粗糙化、净化,并整体烘干处理;提供二硼化钛粉末作为大气常压等离子喷涂的原料,其纯度大于98%,粒径d50为25um,大气常压等离子喷涂用5N高纯氩气为载粉气体,5N高纯氢气为辅气;每次喷涂的厚度10~50μm,20次完成喷涂形成二硼化钛涂层; 在第一次喷涂前,先用喷枪对基体材料进行预热,预热温度约200℃。经检测分析,二硼化钛涂层中氧含量11.2%,气孔率9.2%,涂层与基体结合强度5.8N·mm-2
按以上流程制备的一个带斜面的可湿润阴极块,其正投影面为长方形,长*宽=20cm*15cm,安装到实验室规模炭阳极铝电解槽的底部,一端高度12cm,另一端高度10cm,成倾斜状,与一块倾斜角度相同的炭阳极配合,形成导流槽结构,实际电极工作面积300cm2,在KF-NaF-AlF3-Al2O3电解质体系中,820℃,240A电流,阴极电流密度0.8A/cm2条件下运行48h,阴极完好且与铝水润湿良好。
实施例4
取80wt%的二硼化钛粉、1wt%的碳纤维、5wt%的氮化钛粉、2wt%的氧化钛粉、12wt%的石墨粉,在三维混料机中混合均匀;加入与料重1:1的纯水,加入脂肪酸聚乙二醇脂、聚乙烯醇溶液,进行球磨混合形成浆料;采用喷雾干燥造粒,然后在等静压机中180MPa下成型形成压块,并通过加工所述压块获得所需阴极结构形貌;将加工后的压块在氮气气氛下600℃持续4h脱脂处理,得到脱脂压块;将所述脱脂压块在氩气气氛下1400℃致密化烧结,制得二硼化钛冷压烧结块。经检测分析,二硼化钛冷压烧结块的气孔率10.2%,常温抗弯强度63MPa。
将制得的二硼化钛冷压烧结块进行表面粗糙化、净化,并整体烘干处理;提供二硼化钛粉末作为大气常压等离子喷涂的原料,其纯度大于98%,粒径d50为25um,大气常压等离子喷涂用5N高纯氩气为载粉气体,5N高纯氢气为辅气;每次喷涂的厚度10~50μm,20次完成喷涂形成二硼化钛涂层;在第一次喷涂前,先用喷枪对基体材料进行预热,预热温度约180℃。经检测分析,二硼化钛涂层中氧含量9.2%,气孔率8.4%,涂层与基体结合强度7.5N·mm-2
按以上流程制备的可湿润阴极宽*高*厚=10cm*25cm*3.5cm,竖直安装到惰性阳极铝电解槽的底部,实际工作面积200cm2*2,与两块惰性阳极配合,在KF-NaF-AlF3-Al2O3电解质体系中,820℃,200A电流,阴极电流密度0.5A/cm2条件下运行1000h,阴极完好且与铝水润湿良好。
实施例5
取85wt%的二硼化钛粉、1wt%的碳纤维、5wt%的氮化钛粉、0.5wt%的氧化钛粉、8.5wt%的石墨粉,在三维混料机中混合均匀;加入与料重1:1的纯水,加入脂肪酸聚乙二醇脂、聚乙烯醇溶液,进行球磨混合形成浆料;采用喷雾干燥造粒,然后在等静压机中180MPa下成型形成压块,并通过加工所述压块获得所需阴极结构形貌;将加工后的压块在氮气气氛下600℃持续4h脱脂处理,得到脱脂压块;将所述脱脂压块在氩气气氛下1350℃致密化烧结,制得二硼化钛冷压烧结块。经检测分析,二硼化钛冷压烧结块的气孔率10.8%,常温抗弯强度58MPa。
将制得的二硼化钛冷压烧结块进行表面粗糙化、净化,并整体烘干处理;提供二硼化钛粉末作为大气常压等离子喷涂的原料,其纯度大于98%,粒径d50为25um,大气常压等离子喷涂用5N高纯氩气为载粉气体,5N高纯氢气为辅气;每次喷涂的厚度10~50μm,20次完成喷涂形成二硼化钛涂层;在第一次喷涂前,先用喷枪对基体材料进行预热,预热温度约200℃。经检测分析,二硼化钛涂层中氧含量10.5%,气孔率8.6%,涂层与基体结合强度7.8N·mm-2
按以上流程制备的一个带斜面的可湿润阴极块,其正投影面为长方形,长*宽=20cm*15cm,安装到实验室规模炭阳极铝电解槽的底部,一端高度12cm,另一端高度10cm,成倾斜状,与一块倾斜角度相同的炭阳极配合,形成导流槽结构,实际电极工作面积300cm2,在KF-NaF-AlF3-Al2O3电解质体系中,820℃,240A电流,阴极电流密度0.8A/cm2条件下运行48h,阴极完好且与铝水润湿良好。
本公开的一些实施方式与现有技术相比具有如下优点:本公开实施例提供的二硼化钛可润湿阴极,通过采用碳纤维增强、氮化钛助烧结、等静压成型等措施,大幅提高冷压烧结复合块的强度和致密度,同时降低了所需的烧结温度,使得本公开可采用成本较低的冷压烧结工艺,且结构尺寸将不会受到限制,抗热震性能强,也更容易加工;同时在二硼化钛冷压烧结块表面设置二硼化钛涂层,制得的二硼化钛可润湿阴极表面的性能达到与纯二硼化钛陶瓷相近的水平。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种二硼化钛可润湿阴极,包括:
    二硼化钛冷压烧结块,所述二硼化钛冷压烧结块包括二硼化钛和添加剂,所述添加剂包括石墨、碳纤维、氮化钛;
    二硼化钛涂层,涂覆于所述二硼化钛冷压烧结块的表面。
  2. 根据权利要求1所述的二硼化钛可润湿阴极,其中,以重量份数计,所述二硼化钛冷压烧结块包括16~19份的二硼化钛和1~4份的添加剂。
  3. 根据权利要求2所述的二硼化钛可润湿阴极,其中,以所述添加剂的质量分数计,所述添加剂包括:
    0.1%~2%的碳纤维;0.5%~10%的氮化钛;0.5~5%的氧化钛;余量为石墨。
  4. 根据权利要求1所述的二硼化钛可润湿阴极,其中,所述二硼化钛涂层的厚度为200~1000μm。
  5. 一种二硼化钛可润湿阴极的制备方法,包括:
    将二硼化钛粉末与添加剂、水、分散剂、粘结剂混合形成浆料,其中,所述添加剂包括石墨、碳纤维、氮化钛;
    对所述浆料进行喷雾干燥造粒,得到粉体;
    等静压处理所述粉体,得到压块;
    加工调整所述压块的形状尺寸后,在第一温度和惰性气氛下对所述压块进行高温脱脂处理,得到脱脂压块;
    在第二温度和惰性气氛下对所述脱脂压块进行致密化烧结,得到二硼化钛冷压烧结块;
    以二硼化钛微粉为原料,对所述二硼化钛冷压烧结块表面进行等离子喷涂形成二硼化钛涂层,得到所述二硼化钛可润湿阴极。
  6. 根据权利要求5所述的二硼化钛可润湿阴极的制备方法,其中,所述 二硼化钛粉末与添加剂的质量比为16~19:1~4。
  7. 根据权利要求6所述的二硼化钛可润湿阴极的制备方法,其中,以所述添加剂的质量分数计,所述添加剂包括:
    0.1%~2%的碳纤维;0.5%~10%的氮化钛;0.5~5%的氧化钛;余量为石墨。
  8. 根据权利要求5所述的二硼化钛可润湿阴极的制备方法,其中,所述第一温度为400~600℃;和/或,
    所述第二温度为1250℃~1400℃;和/或,
    所述高温脱脂处理的时间为4~6h;和/或,
    所述等静压处理,压强为120~200MPa;和/或,
    所述分散剂为酒精、聚丙烯酰胺、脂肪酸聚乙二醇脂中的至少一种;和/或,
    所述粘结剂为聚乙烯醇。
  9. 根据权利要求5所述的二硼化钛可润湿阴极的制备方法,其中,所述二硼化钛微粉的粒径d50为15~25um;和/或,
    所述等离子喷涂为大气常压等离子喷涂或者真空等离子喷涂;和/或,
    所述等离子喷涂,每次喷涂的厚度10~50μm,5~20次完成喷涂;和/或,
    所述二硼化钛涂层的厚度为200~1000μm;和/或,
    所述等离子喷涂进行前,先将所述二硼化钛冷压烧结块预热至100~200℃。
  10. 根据权利要求5~9中任意一项所述的二硼化钛可润湿阴极的制备方法,其中,所述等离子喷涂为大气常压等离子喷涂,所述等离子喷涂进行时,以5N高纯氩气作为载粉气体,用5N高纯氢气或5N高纯氦气作为辅气。
PCT/CN2023/090489 2023-01-31 2023-04-25 一种二硼化钛可润湿阴极 WO2024159636A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023428608A AU2023428608A1 (en) 2023-01-31 2023-04-25 Titanium diboride wettable cathode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310047908.7A CN115961310B (zh) 2023-01-31 2023-01-31 一种二硼化钛可润湿阴极
CN202310047908.7 2023-01-31

Publications (1)

Publication Number Publication Date
WO2024159636A1 true WO2024159636A1 (zh) 2024-08-08

Family

ID=87363308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090489 WO2024159636A1 (zh) 2023-01-31 2023-04-25 一种二硼化钛可润湿阴极

Country Status (3)

Country Link
CN (1) CN115961310B (zh)
AU (1) AU2023428608A1 (zh)
WO (1) WO2024159636A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115961310B (zh) * 2023-01-31 2023-12-12 中铝郑州有色金属研究院有限公司 一种二硼化钛可润湿阴极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000566A1 (en) * 1982-07-22 1984-02-16 Martin Marietta Corp Improved cell for electrolytic production of aluminum
CN1552948A (zh) * 2003-05-28 2004-12-08 中南大学 导流型铝电解槽用复合硼化钛阴极制备方法
CN101078130A (zh) * 2007-06-27 2007-11-28 东北大学 工业铝电解槽纯二硼化钛阴极涂层的制备方法
CN101876079A (zh) * 2010-06-13 2010-11-03 中国铝业股份有限公司 一种铝电解用硼化钛阴极材料及其制备方法
CN109943865A (zh) * 2019-04-28 2019-06-28 镇江慧诚新材料科技有限公司 一种氧铝联产电解用阴极材料及其制备方法
US20210355592A1 (en) * 2020-03-25 2021-11-18 Alcoa Usa Corp. Copper-coated titanium diboride articles
CN115961310A (zh) * 2023-01-31 2023-04-14 中铝郑州有色金属研究院有限公司 一种二硼化钛可润湿阴极

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944959B (zh) * 2015-06-26 2017-12-15 中南大学 一种铝电解用TiB2/TiB复合陶瓷阴极材料及其制备方法
RU2724236C9 (ru) * 2019-09-24 2020-09-03 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ защиты катодных блоков алюминиевых электролизёров с обожженными анодами, защитная композиция и покрытие

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000566A1 (en) * 1982-07-22 1984-02-16 Martin Marietta Corp Improved cell for electrolytic production of aluminum
CN1552948A (zh) * 2003-05-28 2004-12-08 中南大学 导流型铝电解槽用复合硼化钛阴极制备方法
CN101078130A (zh) * 2007-06-27 2007-11-28 东北大学 工业铝电解槽纯二硼化钛阴极涂层的制备方法
CN101876079A (zh) * 2010-06-13 2010-11-03 中国铝业股份有限公司 一种铝电解用硼化钛阴极材料及其制备方法
CN109943865A (zh) * 2019-04-28 2019-06-28 镇江慧诚新材料科技有限公司 一种氧铝联产电解用阴极材料及其制备方法
US20210355592A1 (en) * 2020-03-25 2021-11-18 Alcoa Usa Corp. Copper-coated titanium diboride articles
CN115961310A (zh) * 2023-01-31 2023-04-14 中铝郑州有色金属研究院有限公司 一种二硼化钛可润湿阴极

Also Published As

Publication number Publication date
CN115961310A (zh) 2023-04-14
AU2023428608A1 (en) 2024-10-17
CN115961310B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN101724769B (zh) 一种稀土铝合金及其制备方法和装置
WO2024159636A1 (zh) 一种二硼化钛可润湿阴极
CN112981159B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN112851406B (zh) 一种在氮化铝陶瓷表面敷镍或敷镍合金的方法
WO2024208361A1 (zh) 一种铝电解用金属电极及其涂层组合物和制备方法
CN109943865A (zh) 一种氧铝联产电解用阴极材料及其制备方法
CN112725817A (zh) 一种熔盐电解制备碳化物陶瓷涂层的方法
SK281012B6 (sk) Spôsob výroby komponentu elektrolyzéra na výrobu hliníka, komponent a elektrolyzér
CN103848631A (zh) 一种用于多极镁电解技术中的氮化硅陶瓷绝缘材料
CN102010206A (zh) 一种铝电解用硼化钛复合材料及其制备方法
CN110103498B (zh) 一种半连续热压装置及其制备热压材料的方法
CN101302630B (zh) 固体氧化物电解槽制备金属的方法
US20020125125A1 (en) Cathode for aluminum production and electrolytic cell
CN102181676A (zh) Al2O3/Cu复合材料的制备工艺
CN101967660B (zh) 共电脱氧法制取Nb3Al超导材料的方法
CN109797318A (zh) 一种制备Al3Ti增强铝基材料的方法
CN113186569B (zh) 一种铝电解用高耐蚀金属陶瓷惰性阳极材料及其制备方法
CN104944959B (zh) 一种铝电解用TiB2/TiB复合陶瓷阴极材料及其制备方法
CN114605158A (zh) 一种钛合金熔炼用氮化物复合耐火材料及其制备方法
CN108977853A (zh) 一种带导电氧化物涂层的电解铝阳极及其制备方法
CN108147831A (zh) 一种c/c复合材料高温抗氧化涂层的制备方法
CN102864404B (zh) 用等离子喷涂技术制备铝电解槽TiB2阴极涂层的方法
CN109913902B (zh) 一种利用半连续热压装置一次成型制备TiB2块状阴极材料的方法
US6783655B2 (en) Slurry and method for producing refractory boride bodies and coatings for use in aluminium electrowinning cells
CN108505092A (zh) 基于四硼酸钠的Al-Cu-Mg系铝合金表面复合陶瓷膜层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23919204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2023428608

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023428608

Country of ref document: AU

Date of ref document: 20230425

Kind code of ref document: A