WO2024135665A1 - ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池 - Google Patents

ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2024135665A1
WO2024135665A1 PCT/JP2023/045442 JP2023045442W WO2024135665A1 WO 2024135665 A1 WO2024135665 A1 WO 2024135665A1 JP 2023045442 W JP2023045442 W JP 2023045442W WO 2024135665 A1 WO2024135665 A1 WO 2024135665A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
group
ion secondary
lithium ion
polyimide
Prior art date
Application number
PCT/JP2023/045442
Other languages
English (en)
French (fr)
Inventor
敏之 五島
モーソー ウィン
温彦 日比野
明良 西川
Original Assignee
ウィンゴーテクノロジー株式会社
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンゴーテクノロジー株式会社, 第一工業製薬株式会社 filed Critical ウィンゴーテクノロジー株式会社
Publication of WO2024135665A1 publication Critical patent/WO2024135665A1/ja

Links

Definitions

  • the present invention relates to a polyimide compound, and more specifically to a polyimide compound suitable for use as an electrode material for lithium ion secondary batteries, a negative electrode material for lithium ion secondary batteries using the polyimide compound, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • lithium-ion secondary batteries that are small, lightweight, and capable of achieving high energy density.
  • silicon (Si)-based materials which have high discharge capacity and excellent initial charge/discharge efficiency and cycle characteristics, are used.
  • silicon expands and contracts significantly during charging and discharging, and repeated use may cause problems such as disconnection of the conductive paths between the negative electrode active materials and peeling between the current collector and the negative electrode active material layer.
  • Patent Document 1 a polyimide compound containing a specific aromatic diamine compound as a diamine component has been proposed as a polyimide compound that can suppress electrode expansion and improve cycle characteristics even when a silicon-based negative electrode active material is used in a lithium-ion secondary battery.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a polyimide compound capable of realizing a lithium ion secondary battery having excellent cycle characteristics even when the heat treatment temperature for forming a negative electrode active material layer is set to a relatively low temperature of about 200° C., without impairing the inherent properties of a polyimide compound, such as heat resistance and mechanical properties.
  • Another object of the present invention is to provide a negative electrode for a lithium ion secondary battery containing the polyimide compound, and a lithium ion secondary battery including the negative electrode.
  • the inventors have discovered that by using two specific aromatic diamines in combination, it is possible to obtain a lithium ion secondary battery with excellent cycle characteristics, even when the heat treatment temperature for forming the negative electrode active material layer is set at a relatively low temperature of about 200°C, while maintaining the inherent properties of polyimide, such as heat resistance and mechanical properties.
  • the present invention is based on this discovery. That is, the gist of the present invention is as follows.
  • a polyimide used as an electrode material for a lithium ion secondary battery The diamine component is The following formula (1): (Wherein, R 1 to R 4 are hydrogen atoms; any one of R 5 to R 8 is an aromatic group having 6 to 10 carbon atoms, a phenoxy group, a benzyl group, or a benzyloxy group, and the remaining R 5 to R 8 are hydrogen atoms; The following formula (2): and an aromatic diamine compound represented by the formula:
  • the acid anhydride component is represented by the following formula (3): (In the formula, X represents a carbonyl group, an oxygen atom, or a single bond.)
  • the polyimide according to [1] which contains an acid anhydride represented by the following formula: [3]
  • a negative electrode for a lithium ion secondary battery comprising a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, The negative electrode for a lithium ion secondary battery, wherein the negative electrode active material layer contains the polyimide according to [1].
  • a lithium ion secondary battery comprising the negative electrode according to [4] or [5], a positive electrode, and a non-aqueous electrolyte.
  • the polyimide compound of the present invention uses two specific aromatic diamine compounds as diamine components in combination, and thus can realize a lithium ion secondary battery with excellent cycle characteristics, even when the heat treatment temperature for forming the negative electrode active material layer is set to a relatively low temperature of about 200°C, without impairing the inherent properties of the polyimide compound, such as heat resistance and mechanical properties.
  • solvent-soluble means that 5 g or more of the compound dissolves in 100 g of an organic solvent.
  • aromatic group also includes substituents that are bonded to the main skeleton via an oxygen atom, a nitrogen atom, or a carbon atom, and further includes heteroaromatic groups such as a pyrrole group.
  • the polyimide compound of the present invention is composed of a diamine component containing an aromatic diamine compound represented by the following formula (1) or formula (2) and an optional acid anhydride component.
  • R 1 to R 4 are hydrogen atoms
  • any of R 5 to R 8 is an aromatic group having 6 to 10 carbon atoms, a phenoxy group, a benzyl group, or a benzyloxy group, and the remaining R 5 to R 8 are hydrogen atoms.
  • the aromatic diamine compounds represented by the above formulas (1) and (2) in combination as the diamine components of the polyimide compound, it is possible to realize a lithium ion secondary battery having excellent cycle characteristics without impairing the inherent properties of the polyimide compound, such as heat resistance and mechanical properties, even when the heat treatment temperature for forming the negative electrode active material layer is set to a relatively low temperature of about 200° C.
  • the reason for this is unclear, but can be assumed as follows.
  • the present inventors found in the previous application that the cycle characteristics of a lithium secondary battery are significantly improved by using an aromatic diamine compound represented by the above formula (1) as a diamine component of a polyimide compound and using the polyimide compound in a negative electrode material containing Si as a negative electrode active material, but the cycle characteristics may not be improved depending on the conditions (temperature) when forming the negative electrode active material layer on the current collector.
  • the present inventors investigated the reason for this, they found that in a polyimide compound containing an aromatic diamine compound represented by the above formula (1) as a diamine component, if the glass transition temperature (Tg) of the polyimide compound is higher than the heat treatment temperature, the cycle characteristics are reduced.
  • the aromatic group having 6 to 10 carbon atoms is preferably unsubstituted from the viewpoints of ease of synthesis and utilization in the field of electronic component materials, but may have a substituent, for example, an alkyl group, a halogen group such as a fluoro group or a chloro group, an amino group, a nitro group, a hydroxyl group, a cyano group, a carboxyl group, a sulfonic acid group, etc.
  • the alkyl group and the aromatic group may have one or more of these substituents, or two or more of these substituents.
  • Aromatic groups having 6 to 10 carbon atoms include, for example, a phenyl group, a tolyl group, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, a diethylphenyl group, a propylphenyl group, a butylphenyl group, a fluorophenyl group, a pentafluorophenyl group, a chlorophenyl group, a bromophenyl group, a methoxyphenyl group, a dimethoxyphenyl group, an ethoxyphenyl group, a diethoxyphenyl group, an aminophenyl group, a nitrophenyl group, a nitrobenzyl group, a cyanophenyl group, a cyanobenzyl group, a phenethyl group, a phenylpropyl group, a phenylamino group, a diphen
  • phenyl and methylphenyl groups are preferred in terms of availability of starting materials and synthesis costs.
  • aromatic diamine compounds represented by the above formula (1) may be used in combination.
  • 2-phenyl-4-aminophenyl)-4-aminobenzoate which is a compound represented by the following formula (4), can be preferably used.
  • the aromatic diamine compound represented by the above formula (1) can be obtained by reacting a compound represented by the following formula (5) with a compound represented by the following formula (6), and then reducing the nitro group.
  • R 1 to R 4 and R 5 to R 8 are defined as in formula (1).
  • Y represents a hydroxyl group or a halogen group selected from a fluoro group, a chloro group, a bromo group, and an iodo group. From the viewpoint of reactivity with the compound represented by general formula (6), Y is preferably a halogen group, and more preferably a chloro group or a bromo group.
  • the reaction of the compounds represented by formulas (5) and (6) is preferably carried out in the presence of a dehydration condensation agent such as N,N'-dicyclohexylcarbodiimide (DCC) or an organic acid catalyst such as p-toluenesulfonic acid.
  • a dehydration condensation agent such as N,N'-dicyclohexylcarbodiimide (DCC) or an organic acid catalyst such as p-toluenesulfonic acid.
  • DCC N,N'-dicyclohexylcarbodiimide
  • an organic acid catalyst such as p-toluenesulfonic acid.
  • an acid acceptor such as triethylamine.
  • the diamine compound represented by the above formula (4) can be obtained by reacting the compounds represented by the following formulas (7) and (8).
  • the compound represented by the above formula (6) can be obtained by nitrating a commercially available or synthesized compound represented by the following formula (9).
  • the nitration of the compound represented by the following formula (9) can be carried out by a conventionally known nitration method using a mixed acid of concentrated sulfuric acid and concentrated nitric acid, nitric acid, fuming nitric acid, an alkali metal salt of an acid in concentrated sulfuric acid, acetyl nitrate, a nitronium salt, a nitrogen oxide, or the like.
  • R 5 to R 8 are defined as in the above formula (1).
  • the aromatic diamine compound represented by the above formula (1) is contained in the diamine component constituting the polyimide compound in an amount of 10 mol % or more, and more preferably in the range of 30 to 50 mol %.
  • the aromatic diamine compound represented by formula (2) used in combination with the aromatic diamine compound represented by formula (1) above includes three types in which the amino groups are located at the ortho, meta, and para positions, and among these three types, aromatic diamine compounds having amino groups at the meta and para positions can be preferably used.
  • aromatic diamine compounds having amino groups at the meta and para positions can be preferably used.
  • 1,3-bis(3-aminophenoxy)benzene (APB-N) which is a compound represented by formula (10) below
  • TPE-R 1,3-bis(4-aminophenoxy)benzene
  • the aromatic diamine compound represented by the above formula (2) is contained in the diamine component constituting the polyimide compound in an amount of 30 mol % or more, and more preferably in the range of 30 to 50 mol %.
  • the composition ratio of the aromatic diamine compound of formula (1) to the aromatic diamine compound of formula (2) is preferably in the range of 2:1 to 1:5, more preferably in the range of 3:2 to 2:3, and particularly preferably 1:1.
  • the diamine component may contain a diamine compound other than the aromatic diamine compounds represented by the above formulas (1) and (2).
  • a diamine compound other than the aromatic diamine compounds represented by the above formulas (1) and (2) examples include m-phenylenediamine, p-phenylenediamine, p-phenylenediamine sulfate, 2,4-diaminotoluene, 2,4(6)-diamino-3,5-diethyltoluene, 5(6)-amino-1,3,3-trimethyl-1-(4-aminophenyl)-indan, 4,4'-diamino-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diamino-2,2'-ditrifluoromethyl-1,1'-biphenyl, 4,4'-diamino-3,3'-dimethyl-1,1'-biphenyl, 3,4'-diaminodiphenyl
  • the diamine components other than the aromatic diamines represented by the above formulas (1) and (2) include bis[4-(4-aminophenoxy)phenyl]sulfone, 4,4'-diaminodiphenyl sulfide, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-diaminodiphenyl ether, 4,4'-bis(4-aminophenoxy)biphenyl, 3,4'-diaminodiphenyl ether, and 4-aminophenyl 4-aminobenzoate.
  • the content of the diamine components is preferably 40 mol % or less, more preferably in the range of 15 to 35 mol %, based on the total diamine components.
  • the acid anhydride constituting the polyimide of the present invention is not particularly limited, and various acid anhydrides used in polyimides can be used.
  • various acid anhydrides used in polyimides can be used.
  • the polyimide compound of the present invention preferably contains, among the above-mentioned acid anhydrides, an acid anhydride represented by the following formula (3).
  • X is a carbonyl group, an oxygen atom, or a single bond.
  • BTDA 3,4,3',4'-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPDA diphenyl-3,3',4,4'-tetracarboxylic dianhydride
  • the polyimide of the present invention can be obtained by reacting a diamine component containing an aromatic diamine compound represented by the above formulas (1) and (2) with an acid anhydride component to obtain a polyamic acid, and then converting the polyamic acid into a polyimide by a cyclization dehydration reaction.
  • the obtained polyimide is soluble in solvents, so it can be easily made into a film by dissolving it in an appropriate organic solvent to make a varnish.
  • the mixing ratio of the diamine component and the acid anhydride component is preferably 0.5 mol% to 1.5 mol% of the total diamine component per 1 mol% of the total acid anhydride, and more preferably 0.9 mol% to 1.1 mol%.
  • the reaction between the diamine component and the acid anhydride component is preferably carried out in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not react with the diamine compound and the acid anhydride and can dissolve the reaction product of the diamine compound and the acid anhydride, and examples of the organic solvent include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N'-dimethylimidazolidinone, ⁇ -butyrolactone, dimethylsulfoxide, sulfolane, 1,3-dioxolane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dibutyl ether, dibenz
  • the reaction temperature between the diamine compound and the acid anhydride is preferably 40°C or less in the case of chemical imidization. In the case of thermal imidization, the reaction temperature is preferably 150 to 220°C, and more preferably 170 to 200°C.
  • an imidization catalyst may be used, such as methylamine, ethylamine, trimethylamine, triethylamine, propylamine, tripropylamine, butylamine, tributylamine, tert-butylamine, hexylamine, triethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, aniline, benzylamine, toluidine, trichloroaniline, pyridine, collidine, lutidine, picoline, quinoline, isoquinoline, valerolactone, etc.
  • an azeotropic dehydrating agent such as toluene, xylene, or ethylcyclohexane, or an acid catalyst such as acetic anhydride, propionic anhydride, butyric anhydride, or benzoic anhydride, etc. may be used.
  • a sealant such as benzoic acid, phthalic anhydride, or hydrogenated phthalic anhydride can be used.
  • double or triple bonds can be introduced into the ends of polyimide compounds by using maleic anhydride, ethynyl phthalic anhydride, methyl ethynyl phthalic anhydride, phenyl ethynyl phthalic anhydride, phenyl ethynyl trimellitic anhydride, 3- or 4-ethynyl aniline, etc.
  • the glass transition temperature of the polyimide of the present invention is about 200°C, preferably about 180°C, and particularly preferably about 170°C. Therefore, with the polyimide of the present invention, the heat treatment temperature can be set to a relatively low temperature of about 200°C.
  • the polyimide of the present invention described above can be suitably used as a negative electrode material for lithium ion secondary batteries (hereinafter, sometimes simply referred to as "negative electrode material”), particularly as a binder component of the negative electrode. That is, it can be used as a negative electrode material containing the polyimide described above as a binder and a negative electrode active material.
  • the above-mentioned polyimide may be used alone or may contain other resins, for example, polyvinylidene fluoride (PVDF) may be used.
  • PVDF polyvinylidene fluoride
  • PVDF copolymer resin fluororesin, styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPDM), styrene-acrylonitrile copolymer, etc.
  • SBR styrene-butadiene rubber
  • EPDM ethylene-propylene rubber
  • styrene-acrylonitrile copolymer etc.
  • the PVDF copolymer resin for example, hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV), or copolymer resin of tetrafluoroethylene (TFE) and PVDF may be used.
  • fluororesin for example, polytetrafluoroethylene (PTFE), fluororubber, etc. may be used.
  • binders for example, polysaccharides such as carboxymethyl cellulose (CMC), thermoplastic resins such as polyimide resins, etc. may be used. Also, two or more of the above-mentioned binders may be used in combination.
  • the polyimide content in the negative electrode material is preferably 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 18% by mass or less.
  • silicon-based material examples include silicon particles, alloys of silicon with metals such as tin, nickel, iron, copper, silver, cobalt, manganese, and zinc, and compounds of silicon with boron, nitrogen, oxygen, carbon, and the like.
  • silicon-based materials include Si, SiO, SiO2 , SiB4 , Mg2Si , Ni2Si , CoSi2, NiSi2 , Cu5Si , FeSi2 , MnSi2 , ZnSi2 , SiC , Si3N4 , and Si2N2O , with Si , SiO , and SiC being preferred.
  • Anode active materials other than silicon-based materials may be used, such as metallic lithium, metal oxides, and graphite.
  • the cathode material may contain two or more types of anode active materials.
  • the silicon-based negative electrode active material is preferably contained in an amount of 30 parts by mass or more, more preferably 50 parts by mass or more, and particularly preferably 95 parts by mass or more, per 100 parts by mass of the negative electrode active material.
  • the negative electrode material may contain a conductive agent in addition to the polyimide and negative electrode active material described above.
  • conductive agents include carbon black (acetylene black, ketjen black, furnace black, etc.), graphite, carbon fiber, carbon flakes, metal fiber and foil, etc. Among these, carbon black is preferred, and acetylene black is more preferred. These conductive agents may be used alone or in combination of two or more types.
  • the content of the conductive agent in the negative electrode material is preferably 0.1% by mass or more and 25% by mass or less, and more preferably 1% by mass or more and 20% by mass or less, based on the total amount of the negative electrode material.
  • the negative electrode material may contain additives, such as thickeners and fillers, as long as they do not impair the characteristics of the present invention.
  • the negative electrode for a lithium ion secondary battery of the present invention comprises a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, the negative electrode active material layer being made of the above-mentioned negative electrode material.
  • the current collector is not particularly limited, and examples include copper, nickel, stainless steel, gold, iron, aluminum and alloys thereof, nickel-plated steel, and chrome-plated steel. It is preferable to use a current collector with a thickness of 10 ⁇ m or less.
  • the thickness of the negative electrode active material layer is preferably 15 ⁇ m or more and 150 ⁇ m or less, and more preferably 20 ⁇ m or more and 120 ⁇ m or less.
  • the negative electrode for a lithium-ion secondary battery of the present invention can be produced by applying a solution in which the above-mentioned negative electrode material is dissolved or dispersed in an organic solvent onto a current collector and then drying.
  • organic solvent the above-mentioned organic solvents can be used, and from the viewpoint of the solubility or dispersibility of the resin composition, N-methyl-2-pyrrolidone, N,N'-dimethylimidazolidinone and ⁇ -butyrolactone are preferred.
  • the application method is not particularly limited, and examples include the die coater method, the three-roll transfer coater method, the doctor blade method, the dip method, the direct roll method, and the gravure method.
  • the lithium ion secondary battery of the present invention includes the above-mentioned negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the lithium ion secondary battery of the present invention includes a separator disposed between the negative electrode and the positive electrode.
  • the positive electrode any of the conventionally known positive electrodes used in lithium ion secondary batteries can be used as appropriate.
  • the positive electrode can be produced by applying a positive electrode forming material onto a current collector and drying it.
  • the material for forming the positive electrode contains a positive electrode active material and a binder, and may also contain the conductive agent and additives described above.
  • positive electrode active materials include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphate.
  • the binder the polyimide or binder mentioned above that is used as the negative electrode material can be used.
  • the positive electrode is not limited to the above, and lithium foil, etc. can also be used.
  • Any conventional separator can be used, such as a paper separator, a resin separator such as polyethylene or polypropylene, or a glass fiber separator.
  • the positive electrode and the negative electrode are placed in a battery container, and the container is filled with an organic solvent in which an electrolyte is dissolved.
  • the electrolyte is not particularly limited, and examples thereof include non-aqueous electrolytes such as LiPF6 , LiClO4 , LiBF4 , LiClF4 , LiAsF6 , LiSbF6 , LiAlO4 , LiAlCl4 , CF3SO3Li , LiN( CF3SO2 ) 3 , LiCl and LiI.
  • LiPF6 , LiClO4 and CF3SO3Li which have a high degree of dissociation , are preferred.
  • the organic solvent is not particularly limited, and examples include carbonate compounds, lactone compounds, ether compounds, sulfolane compounds, dioxolane compounds, ketone compounds, nitrile compounds, halogenated hydrocarbon compounds, etc.
  • Specific examples of the solvent include carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate, and vinylene carbonate; lactones such as ⁇ -butyl lactone; ethers such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, and 1,4-dioxane; sulfolanes such as sulfolane and 3-methylsulfolane; dioxolanes such as 1,3-dioxolane; ketones such as 4-
  • carbonate compounds are preferably used because they have low solubility for the polyimide used in the negative electrode and can suppress swelling of the polyimide.
  • Lithium ion secondary batteries can be formed into any shape, such as cylindrical, coin, square, laminated, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and the design can be modified according to the purpose.
  • a negative electrode made by applying a negative electrode active material to a negative electrode collector and a positive electrode made by applying a positive electrode active material to a positive electrode collector are wound with a separator between them, and the wound body is stored in a battery can, and a non-aqueous electrolyte is injected and sealed with insulating plates placed above and below.
  • a disc-shaped negative electrode, a separator, a disc-shaped positive electrode, and a stainless steel plate are stacked and stored in a coin-type battery can, and a non-aqueous electrolyte is injected and sealed.
  • Example 1 Into a 500 ml separable flask equipped with a nitrogen inlet tube and a stirrer, 15.22 g (50 mmol) of (2-phenyl-4-aminophenyl)-4-aminobenzoate (PHBAAB), an aromatic diamine compound represented by the formula below, 14.62 g (50 mmol) of 1,3-bis(3-aminophenoxy)benzene (APB-N), an aromatic diamine compound represented by the formula below, 31.02 g (100 mmol) of diphenyl-3,3',4,4'-tetracarboxylic dianhydride (ODPA) represented by the formula below, 261 g of N-methyl-2-pyrrolidone (NMP), 1.58 g (20 mmol) of pyridine, and 26 g of toluene were added, and reacted under a nitrogen atmosphere at 180°C for 9 hours while removing toluene from the system during the reaction, to obtain a
  • Example 2 Using the same apparatus as in Example 1, 12.17 g (40 mmol) of PHBAAB, 11.69 g (40 mmol) of APB-N, 8.65 g (40 mmol) of 4,4'-diaminodiphenyl sulfide (ASD) which is an aromatic diamine compound represented by the following formula, 18.61 g (60 mmol) of ODPA, 19.33 g (60 mmol) of 3,4,3',4'-benzophenonetetracarboxylic dianhydride (BTDA) represented by the following formula, 301 g of NMP, 1.90 g (24 mmol) of pyridine, and 30 g of toluene were added and reacted under a nitrogen atmosphere at 180°C for 5 hours while removing toluene from the system during the reaction, thereby obtaining a 18% by mass polyimide solution.
  • ASD 4,4'-diaminodiphenyl sulfide
  • Example 3 Using the same apparatus as in Example 1, 12.17 g (40 mmol) of PHBAAB, 11.69 g (40 mmol) of APB-N, 16.42 g (40 mmol) of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) which is an aromatic diamine compound represented by the following formula, 18.61 g (60 mmol) of ODPA, 19.33 g (60 mmol) of BTDA, 337 g of NMP, 1.90 g (24 mmol) of pyridine, and 34 g of toluene were added and reacted under a nitrogen atmosphere at 180° C. for 5 hours while removing toluene from the system during the reaction, thereby obtaining an 18% by mass polyimide solution.
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • Example 4 Using the same apparatus as in Example 1, 12.17 g (40 mmol) of PHBAAB, 11.69 g (40 mmol) of 1,3-bis(4-aminophenoxy)benzene (TPE-R) which is an aromatic diamine compound represented by the following formula, 16.42 g (40 mmol) of BAPP, 37.23 g (120 mmol) of ODPA, 333 g of NMP, 1.90 g (24 mmol) of pyridine, and 33 g of toluene were charged and reacted under a nitrogen atmosphere at 180° C. for 5 hours while removing toluene from the system during the reaction, thereby obtaining an 18% by mass polyimide solution.
  • TPE-R 1,3-bis(4-aminophenoxy)benzene
  • Example 5 Using the same apparatus as in Example 1, 15.22 g (50 mmol) of PHBAAB, 14.62 g (50 mmol) of APB-N, 24.82 g (80 mmol) of ODPA, 5.88 g (20 mmol) of diphenyl-3,3',4,4'-tetracarboxylic dianhydride (BPDA) which is an acid anhydride represented by the following formula, 259 g of N-methyl-2-pyrrolidone (NMP), 1.58 g (20 mmol) of pyridine, and 26 g of toluene were added and reacted under a nitrogen atmosphere at 180°C for 9 hours while removing toluene from the system during the reaction, thereby obtaining a 18% by mass polyimide solution.
  • BPDA diphenyl-3,3',4,4'-tetracarboxylic dianhydride
  • Example 6 Using the same apparatus as in Example 1, 7.61 g (25 mmol) of PHBAAB, 21.92 g (75 mmol) of APB-N, 31.02 g (100 mmol) of ODPA, 259 g of N-methyl-2-pyrrolidone (NMP), 1.58 g (20 mmol) of pyridine, and 26 g of toluene were charged and reacted under a nitrogen atmosphere at 180° C. for 9 hours while removing toluene from the system during the reaction, thereby obtaining a 18% by mass polyimide solution.
  • NMP N-methyl-2-pyrrolidone
  • Example 7 Using the same apparatus as in Example 1, 7.61 g (25 mmol) of PHBAAB, 14.62 g (50 mmol) of APB-N, 10.81 g (25 mmol) of bis[4-(4-aminophenoxy)phenyl]sulfone (BAPS) which is an aromatic diamine compound represented by the following formula, 31.02 g (100 mmol) of ODPA, 275 g of NMP, 1.58 g (20 mmol) of pyridine, and 28 g of toluene were added and reacted under a nitrogen atmosphere at 180° C. for 9 hours while removing toluene from the system during the reaction, thereby obtaining a 18% by mass polyimide solution.
  • BAPS bis[4-(4-aminophenoxy)phenyl]sulfone
  • Example 8 Using the same apparatus as in Example 1, 9.13 g (30 mmol) of PHBAAB, 14.62 g (50 mmol) of APB-N, 8.21 g (20 mmol) of BAPP, 31.02 g (100 mmol) of ODPA, 271 g of NMP, 1.58 g (20 mmol) of pyridine, and 27 g of toluene were charged and reacted under a nitrogen atmosphere at 180° C. for 5 hours while removing toluene from the system during the reaction, thereby obtaining an 18% by mass polyimide solution.
  • Example 9 Using the same apparatus as in Example 1, 6.09 g (20 mmol) of PHBAAB, 14.62 g (50 mmol) of APB-N, 12.32 g (30 mmol) of BAPP, 31.02 g (100 mmol) of ODPA, 275 g of NMP, 1.58 g (20 mmol) of pyridine, and 28 g of toluene were charged and reacted under a nitrogen atmosphere at 180° C. for 5 hours while removing toluene from the system during the reaction, thereby obtaining an 18% by mass polyimide solution.
  • Example 10 Using the same apparatus as in Example 1, 3.04 g (10 mmol) of PHBAAB, 14.62 g (50 mmol) of APB-N, 16.42 g (40 mmol) of BAPP, 31.02 g (100 mmol) of ODPA, 280 g of NMP, 1.58 g (20 mmol) of pyridine, and 28 g of toluene were charged and reacted under a nitrogen atmosphere at 180° C. for 5 hours while removing toluene from the system during the reaction, thereby obtaining an 18% by mass polyimide solution.
  • Tg Glass transition temperature
  • the elastic modulus of each test piece was measured in both the MD and TD directions at a tension speed of 10 mm/min using a tensile tester (manufactured by Shimadzu Corporation, product name: AG-Xplus 50 kN). The average of the measured values in the MD and TD directions was calculated and used as the elastic modulus. The measurement results are shown in Table 1.
  • the obtained polyimide was used as a binder, and silicon (Si) as a negative electrode active material and a conductive agent were mixed in the following composition to prepare a negative electrode material for a lithium ion secondary battery.
  • Silicon (Si) as a negative electrode active material and a conductive agent were mixed in the following composition to prepare a negative electrode material for a lithium ion secondary battery.
  • negative electrode current collector electrolytic copper foil with a thickness of 10 ⁇ m was prepared, and the surface of the electrolytic copper foil was coated with the negative electrode material obtained as described above, followed by heat treatment at 200°C to form a negative electrode active material layer with a thickness of 30 ⁇ m, thereby producing negative electrode 1.
  • negative electrode 2 was produced in the same manner as above, except that the heat treatment temperature was changed to 300°C. Note that for the polyimides of Examples 4 to 10, only negative electrode 1 was produced.
  • a lithium foil was used as the positive electrode, ethylene carbonate and ethyl methyl carbonate as the electrolyte, and a polyolefin single-layer separator was prepared.
  • a coin cell-type lithium ion secondary battery was fabricated using the negative electrode obtained as described above.
  • the lithium ion secondary battery prepared as described above was left to stand for 24 hours in an environment at 25°C. After that, the performance of the lithium ion secondary battery was evaluated in an environment at 25°C as follows.
  • CC constant current charging was performed at a current density equivalent to 0.1 C to 5 mV, followed by switching to CV (constant voltage) charging at 5 mV, charging to a current density equivalent to 0.01 C, and then CC discharging to 1.2 V at a current density equivalent to 0.1 C. This cycle was repeated for two cycles at 25° C.
  • the discharge capacity equivalent to 0.1 C in the first cycle was designated as A.
  • CC (constant current) charging was performed at a current density equivalent to 0.2C to 5 mV, then switched to CV (constant voltage) charging at 5 mV, charging until the current density was equivalent to 0.02C, and then CC discharging at a current density equivalent to 0.2C to 1.2V was performed for 3 cycles at 25 ° C., followed by CC (constant current) charging at a current density equivalent to 0.5C to 5 mV, then switched to CV (constant voltage) charging at 5 mV, charging until the current density was equivalent to 0.05CC, and then CC discharging at a current density equivalent to 0.5C to 1.2V was performed for 30 cycles at 25 ° C.
  • the discharge capacity equivalent to 0.5C at this time in the 30th cycle was designated as B.
  • the cycle retention rates of the lithium ion secondary batteries using the negative electrodes 1 and 2 were as shown in Table 1 below.
  • the polyimide compounds (Examples 1 to 3) containing two aromatic diamine compounds of formulas (1) and (2) as diamine components maintain cycle retention without impairing the inherent properties of the polyimide compounds, such as heat resistance and mechanical properties, even when the heat treatment temperature during the preparation of the negative electrode active material layer is changed from 300 ° C. to 200 ° C.
  • the polyimide compounds (Examples 1 to 10) containing two aromatic diamine compounds of formulas (1) and (2) as diamine components maintain high cycle retention without impairing the inherent properties of the polyimide compounds, such as heat resistance and mechanical properties, even when the heat treatment temperature during the preparation of the negative electrode active material layer is relatively low at 200 ° C.
  • the polyimide compounds (Comparative Examples 1 to 5) in which the aromatic diamine compound of formula (1) and other aromatic diamine compounds were used in combination as the diamine components were excellent in heat resistance and mechanical properties, but when the heat treatment temperature during preparation of the negative electrode active material layer was changed from 300° C. to 200° C., the cycle retention rate was found to drop sharply.

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

[課題]比較的な低温で硬化することができる電極材料として使用されるポリイミドを提 供する。 [解決手段]リチウムイオン二次電池の電極材料として使用されるポリイミドであって、ジアミン成分として、下記式(1)および(2)で表される芳香族ジアミン化合物を少なくとも含むポリイミドとする。

Description

ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
 本発明は、ポリイミド化合物に関し、より詳細には、リチウムイオン二次電池の電極材料等に好適に使用されるポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池に関する。
 近年、スマートフォン等をはじめとする電子機器の小型化が急激に進んでおり、小型で軽量かつ、高エネルギー密度を得ることが可能なリチウムイオン二次電池の開発が盛んに行われている。
 リチウムイオン二次電池に含有させる負極活物質として、放電容量が高く、初回充放電効率およびサイクル特性に優れる、シリコン(Si)系材料が使用されているが、シリコンは充放電時における膨張収縮が大きく、繰り返しの使用により、負極活物質間の導電パスの切断や、集電体と負極活性物質層との剥離等が生じるおそれがあった。
 上記シリコン系材料の問題に鑑み、負極を構成する材料、バインダー樹脂として、従来より使用されていたカルボキシメチルセルロース等に代えて、ポリイミド化合物の使用が検討されている(特許文献1等参照)。特に、リチウムイオン二次電池にシリコン系負極活物質を使用した場合であっても、電極の膨張を抑制でき且つサイクル特性を改善できるポリイミド化合物として、特定の芳香族ジアミン化合物をジアミン成分として含むポリイミド化合物が提案されている(特許文献2)。
国際公開WO2017/138604号パンフレット 国際公開WO2022/202701号パンフレット
 上記したようなポリイミド化合物をリチウムイオン二次電池用負極材料として用いる場合、シリコン系負極活物質とポリイミド化合物を含む溶液をアルミニウム箔等の集電体の表面に塗布し、高温で熱処理することによって負極活物質層が形成される。近年、リチウムイオン電池の小型化に伴い集電体の極薄化が進んでおり、集電体として、厚さが10μm以下のものも使用されて始めており、負極活物質層形成時の熱処理の温度によっては集電体が劣化する場合がある。そのため、より低温での熱処理が試みられるようになってきている。しかしながら、負極活物質層を形成する際の熱処理温度を低くすると、得られたリチウムイオン二次電池のサイクル特性が著しく低下するといった新たな問題が生じている。
 本発明は、上記問題に鑑みて行われたものであり、その解決しようとする課題は、耐熱性、機械物性といったポリイミド化合物が本来有する特性を損なうことなく、負極活物質層を形成する際の熱処理温度を200℃程度の比較的低温にした場合であってもサイクル特性に優れたリチウムイオン二次電池を実現することができるポリイミド化合物を提供することである。
 また、本発明の別の目的は、当該ポリイミド化合物を含むリチウムイオン二次電池の負極、および当該負極を備えたリチウムイオン二次電池を提供することである。
 本発明者は、鋭意研究した結果、特定の2種の芳香族ジアミンを併用することにより、耐熱性や機械特性といった本来有するポリイミドの特性を維持しながら、負極活物質層を形成する際の熱処理温度を200℃程度の比較的低温にした場合であってもサイクル特性に優れたリチウムイオン二次電池が得られる、との知見を得た。本発明は係る知見に基づくものである。即ち、本発明の要旨は以下のとおりである。
[1] リチウムイオン二次電池の電極材料として使用されるポリイミドであって、
 ジアミン成分が、
 下記式(1):
(式中、
 R~Rが、水素原子であり、
 R~Rのいずれかが、炭素数6~10の芳香族基、フェノキシ基、ベンジル基またはベンジルオキシ基であり、それ以外のR~Rが水素原子である。)で表される芳香族ジアミン化合物と、
 下記式(2):
で表される芳香族ジアミン化合物と、
を少なくとも含む、ポリイミド。
[2]  酸無水物成分が、下記式(3):
(式中、Xはカルボニル基、酸素原子、または単結合を表す。)
で表される酸無水物を含む、[1]に記載のポリイミド。
[3]前記式(1)の化合物が、ジアミン成分中に10モル%以上の割合で含まれる、[1]または[2]に記載のポリイミド。
[4] 負極集電体と、前記負極集電体上に形成された負極活性物質層とを備えたリチウムイオン二次電池用負極であって、
 前記負極活性物質層が、[1]に記載のポリイミドを含む、リチウムイオン二次電池用負極。
[5] 前記負極活性物質層が、負極活物質100質量部に対してシリコン系負極活物質を95質量部以上含む、[4]に記載のリチウムイオン二次電池用負極。
[6] [4]または[5]に記載の負極と、正極と、非水電解質とを含む、リチウムイオン二次電池。
 本発明のポリイミド化合物によれば、ジアミン成分として特定の2種の芳香族ジアミン化合物を併用することで、耐熱性、機械物性といったポリイミド化合物が本来有する特性を損なうことなく、負極活物質層を形成する際の熱処理温度を200℃程度の比較的低温にした場合であってもサイクル特性に優れたリチウムイオン二次電池を実現することができる。
[定義]
 本発明において、「溶媒可溶性」とは、100gの有機溶媒に5g以上溶解することを意味する。
 また「芳香族基」には、酸素原子、窒素原子や炭素原子を介して主骨格と結合する置換基が含まれる。さらに、芳香族基には、ピロール基等のヘテロ芳香族基が含まれる。
[ポリイミド化合物]
 本発明のポリイミド化合物は、下記式(1)および式(2)で表される芳香族ジアミン化合物を含むジアミン成分と任意の酸無水物成分とから構成される。
 (式中、R~Rが、水素原子であり、R~Rのいずれかが、炭素数6~10の芳香族基、フェノキシ基、ベンジル基またはベンジルオキシ基であり、それ以外のR~Rが水素原子である。)
 本発明によれば、ポリイミド化合物のジアミン成分として、上記した式(1)および式(2)で表される芳香族ジアミン化合物を併用することにより、耐熱性、機械物性といったポリイミド化合物が本来有する特性を損なうことなく、負極活物質層を形成する際の熱処理温度を200℃程度の比較的低温にした場合であってもサイクル特性に優れたリチウムイオン二次電池を実現することができる。この理由は定かではないが、以下のように推測できる。
 即ち、本発明者らは、先の出願において、上記式(1)で表される芳香族ジアミン化合物をポリイミド化合物のジアミン成分として用いることにより、負極活物質としてSiを含む負極材料に当該ポリイミド化合物を使用すると、リチウム二次電池のサイクル特性が顕著に改善されることを見出したものの、負極活性物質層を集電体上に形成する際の条件(温度)によっては、サイクル特性が改善されない場合があった。この理由について発明者らが検討したところ、ジアミン成分として上記式(1)で表される芳香族ジアミン化合物を含むポリイミド化合物において、該ポリイミド化合物のガラス転移温度(Tg)が熱処理温度よりも高いと、サイクル特性が低下することが判明した。そして、更なる検討を進めたところ、ポリイミド化合物を構成するジアミン成分として、上記式(1)の芳香族ジアミン化合物に加えて上記式(2)で表される芳香族ジアミン化合物を併用することにより、低Tg化によるポリイミド化合物が本来有する特性(例えば耐熱性等)が損なわれる問題が低減し、その結果、比較的低温条件(例えば200℃程度)下で負極活性物質層を形成した場合であっても、リチウムイオン二次電池のサイクル特性を改善できたものと考えられる。
<ジアミン成分>
 本発明のポリイミド化合物のジアミン成分として使用する式(1)の芳香族ジアミン化合物において、炭素数6~10の芳香族基は、合成容易性および電子部品材料分野への利用という観点からは無置換であることが好ましいが、置換基を有していてもよく、例えば、アルキル基、フルオロ基やクロロ基等のハロゲン基、アミノ基、ニトロ基、ヒドロキシル基、シアノ基、カルボキシル基、スルホン酸基等が挙げられる。アルキル基、芳香族基は、これらの置換基を1以上または2以上有するものであってもよい。
 炭素数6~10の芳香族基としては、例えば、フェニル基、トリル基、メチルフェニル基、ジメチルフェニル基、エチルフェニル基、ジエチルフェニル基、プロピルフェニル基、ブチルフェニル基、フルオロフェニル基、ペンタフルオロフェニル基、クロルフェニル基、ブロモフェニル基、メトキシフェニル基、ジメトキシフェニル基、エトキシフェニル基、ジエトキシフェニル基、アミノフェニル基、ニトロフェニル基、ニトロベンジル基、シアノフェニル基、シアノベンジル基、フェネチル基、フェニルプロピル基、フェニルアミノ基、ジフェニルアミノ基、ビフェニル基、ナフチル基、フェニルナフチル基、ジフェニルナフチル基、アントリル基、アントリルフェニル基、フェニルアントリル基、ナフタセニル基、フェナントリル基、フェナントリルフェニル基、フェニルフェナントリル基、ピレニル基、フェニルピレニル基、フルオレニル基、フェニルフルオレニル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、やピロール基、イミダゾール基、チアゾール基、オキサゾール基、フラン基、チオフェン基、トリアゾール基、ピラゾール基、イソオキサゾール基、イソチアゾール基、ピリジン基、ピリミジン基、ベンゾフラン基、ベンゾチオフェン基、キノリン基、イソキノリン基、インドリル基、ベンゾチアゾリル基、カルバゾリル基等のヘテロ芳香族基等が挙げられる。
 上記した芳香族基の中でも、出発原料入手容易性、合成コスト面からは、フェニル基およびメチルフェニル基が好ましい。
 また、上記式(1)で表される芳香族ジアミン化合物を2種以上組み合わせて使用してもよい。
 上記式(1)を満たすジアミン化合物としては、具体的には、下記式(4)で表される化合物である2-フェニル-4-アミノフェニル)-4-アミノベンゾエートを好ましく使用することができる。
 上記式(1)で表される芳香族ジアミン化合物は、下記式(5)で表される化合物と、下記式(6)で表される化合物とを反応させた後、ニトロ基を還元することにより得ることができる。
 上記式中、R~R、およびR~Rは上記式(1)の定義と同じである。また、Yは、水酸基またはフルオロ基、クロロ基、ブロモ基およびヨード基から選択されるハロゲン基を表す。一般式(6)で表される化合物との反応性という観点からは、Yは、ハロゲン基であることが好ましく、クロロ基、ブロモ基であることが特に好ましい。
 上記式(5)中、Yが水酸基である場合、上記式(5)および(6)で表される化合物の反応は、N,N’-ジシクロヘキシルカルボジイミド(DCC)のような脱水縮合剤またはP-トルエンスルホン酸のような有機酸触媒の存在下で行うことが好ましい。また、上記式(5)中、Yがハロゲン基である場合、上記式(5)および(6)で表される化合物の反応は、トリエチルアミンのような受酸剤存在下で行われることが好ましい。
 具体的には、下記式(7)および(8)で表される化合物を反応させることによって、上記式(4)で表されるジアミン化合物を得ることができる。
 上記式(6)で表される化合物は、市販される、または合成した下記式(9)で表される化合物をニトロ化することにより得ることができる。下記式(9)で表される化合物のニトロ化は、濃硫酸と濃硝酸との混酸、硝酸、発煙硝酸、濃硫酸中酸アルカリ金属塩、硝酸アセチル、ニトロニウム塩、窒素酸化物等を使用した従来公知のニトロ化法により行うことができる。なお、式中のR~Rは、上記式(1)の定義と同じである。
 本発明において、耐熱性、機械的強度、サイクル特性の観点からは、ポリイミド化合物を構成するジアミン成分中、上記式(1)で表される芳香族ジアミン化合物が10モル%以上含まれることが好ましく、より好ましくは30~50モル%の範囲である。
 上記式(1)で表される芳香族ジアミン化合物と併用される式(2)で表される芳香族ジアミン化合物は、アミノ基がオルト位、メタ位、パラ位にある3種が挙げられるが、これら3種のうち、メタ位およびパラ位にアミノ基がある芳香族ジアミン化合物を好ましく使用することができる。具体的には、下記式(10)で表される化合物である1,3-ビス(3-アミノフェノキシ)ベンゼン(APB-N)または式(11)で表される化合物である1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)を好ましく使用することができる。
 本発明において、耐熱性、機械的強度、加熱温度を低くした際のサイクル特性の保持率の観点からは、ポリイミド化合物を構成するジアミン成分中、上記式(2)で表される芳香族ジアミン化合物が30モル%以上含まれることが好ましく、より好ましくは30~50モル%の範囲である。
 本発明において、式(1)の芳香族ジアミン化合物と式(2)の芳香族ジアミン化合物の構成割合は、2:1~1:5の範囲であることが好ましく、より好ましくは3:2~2:3の範囲であり、特に1:1であることが好ましい。
 本発明においては、ジアミン成分として上記した式(1)および式(2)で表される芳香族ジアミン化合物以外のジアミン化合物を含んでいてもよい。例示すると、m-フェニレンジアミン、p-フェニレンジアミン、p-フェニレンジアミン硫酸塩、2,4-ジアミノトルエン、2,4(6)-ジアミノ-3,5-ジエチルトルエン、5(6)-アミノ-1,3,3-トリメチル-1-(4-アミノフェニル)-インダン、4,4’-ジアミノ-2,2’-ジメチル-1,1’-ビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチル-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジメチル-1,1’-ビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4-アミノベンゾエート、4,4’-(9-フルオレニリデン)ジアニリン、9,9’-ビス(3-メチル-4-アミノフェニル)フルオレン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、4,4’-(ヘキサフルオロイソプロピリデン)ジアニリン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-メチル-4-アミノフェニル)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,3-ジイソプロピルベンゼン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,4-ジイソプロピルベンゼン、3,7-ジアミノ-ジメチルジベンゾチオフェン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、5,5-ジオキシド、ビス(3-カルボキシー4-アミノフェニル)メチレン、3,3’-ジアミノ-4,4’-ジヒドロキシ-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシ-1,1’-ビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、1、3-ビス(3-ヒドロキシ-4-アミノフェノキシ)ベンゼン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ベンゼンおよび3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルフォン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、シリコーン含有ジアミンであるPAM-E等、4-アミノ安息香酸4-アミノフェニル、o-トリジンスルホン、4,4’-〔1,3-フェニレンビス(1-メチルエチリデン)〕、スルホニル基含有ビス(o-アミノフェノール)、4,4’ジアミノ-3,3’ジメトキシビフェニル、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、3,5-ジアミノ安息香酸、5,5’-メチレンビス(2-アミノ安息香酸)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)が挙げられる。
 上記式(1)および(2)で表される芳香族ジアミン以外のジアミン成分として、耐熱性、機械的強度、サイクル特性の観点から、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ジアミノジフェニルスルフィド、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,4’-ジアミノジフェニルエーテル、4-アミノ安息香酸4-アミノフェニルを含むことが好ましい。
 上記式(1)および式(2)で表される芳香族ジアミン以外のジアミン成分が含まれる場合、当該ジアミン成分の含有量は、ジアミン成分全体に対して、40モル%以下であることが好ましく、より好ましくは15~35モル%の範囲である。
<酸無水物成分>
 本発明のポリイミドを構成する酸無水物としては、特に制限されるものではなく、ポリイミドに使用される種々の酸無水物を使用することができる。例えば、オキシジフタル酸、ピロメリット酸二無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、1,2,4,5-ベンゼンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’’,4,4’’-テルフェニルテトラカルボン酸二無水物、3,3’’’,4,4’’’-クァテルフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタンニ無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、エチレングリコールビストリメリテート二無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、3-(カルボキシメチル)1,2,4-シクロペンタンカルボン酸1,4:2,3-二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5,5’-(1,4-フェニレン)ビス(ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン、オクタヒドロ-3H,3’’H-ジスピロ[4,7-メタノイソベンゾフラン-5,1’-シクロペンタン-3’,5’’-[4,7]メタノイソベンゾフラン]-1,1’’,2’,3,3’’(4H,4’’H)-ペンタオン、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、TDA-100、BzDA、2,3,5-トリカルボキシシクロペンチル酢酸、4,4’-[1,4-フェニレンビス(イミノカルボニル)]ビス(シクロヘキサン-1,2-ジカルボン酸)、ダブルデッカーシルセスキオキサン脂環式酸二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレンおよび下記式(3)で表される酸無水物などが挙げられる。こららは、1種単独で使用してもよく、2種以上を併用して用いてもよい。
 本発明のポリイミド化合物は、上記した酸無水物のなかでも、下記式(3)で表される酸無水物を含むことが好ましい。
 式中、Xはカルボニル基、酸素原子、または単結合である。
 上記した酸無水物のなかでも、Xがカルボニル基である3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、Xが酸素原子である4,4’-オキシジフタル酸無水物(ODPA)、Xが単結合であるジフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA)を好ましく使用することができる。
 本発明のポリイミドは、上記式(1)および(2)で表される芳香族ジアミン化合物を含むジアミン成分と酸無水物成分とを反応させてポリアミド酸を得た後、環化脱水反応を行い、ポリイミドに転化させることにより得ることができる。得られたポリイミドは溶剤可溶性を有しているため、適当な有機溶剤に溶解させたワニスとすることにより、フィルム化することが容易である。
 ジアミン成分と酸無水物成分との混合比は、酸無水物の総量1モル%に対し、ジアミン成分の総量を0.5モル%~1.5モル%であることが好ましく、0.9モル%~1.1モル%であることがより好ましい。
 ジアミン成分と酸無水物成分との反応は、有機溶媒中において行うことが好ましい。有機溶剤としては、ジアミン化合物および酸無水物と反応することがなく、ジアミン化合物と酸無水物との反応物を溶解することができるものであれば特に限定されるものではなく、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、ジメチルスルホキシド、スルホラン、1,3-ジオキソラン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジベンジルエーテル、乳酸メチル、乳酸エチル、乳酸ブチル、安息香酸メチル、安息香酸エチル、トリグライム、テトラグライム、トルエン、キシレン等が挙げられる。上記式(1)のジアミン化合物の溶解性の観点からは、N-メチル-2-ピロリドン、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトンが好ましい。
 ジアミン化合物と酸無水物との反応温度は、化学的イミド化の場合は40℃以下であることが好ましい。また、熱イミド化の場合は150~220℃であることが好ましく、170~200℃であることがより好ましい。
 環化脱水反応時には、イミド化触媒を使用してもよく、例えば、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、プロピルアミン、トリプロピルアミン、ブチルアミン、トリブチルアミン、tert-ブチルアミン、へキシルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン、ピリジン、コリジン、ルチジン、ピコリン、キノリン、イソキノリン、バレロラクトン等を使用することができる。また、必要に応じて、トルエン、キシレン、エチルシクロヘキサンのような共沸脱水剤、無水酢酸、無水プロピオン酸、無水酪酸、無水安息香酸等の酸触媒を使用することができる。
 ジアミン化合物と酸無水物との反応において、安息香酸、無水フタル酸、水添無水フタル酸等の封止剤を使用することができる。
 また、無水マレイン酸、エチニルフタル酸無水物、メチルエチニルフタル酸無水物、フェニルエチニルフタル酸無水物、フェニルエチニルトリメリット酸無水物、3-または4-エチニルアニリン等を用いることにより、ポリイミド化合物の末端に二重結合または三重結合を導入することもできる。
 本発明のポリイミドのガラス移転温度は200℃程度であり、好ましくは180℃程度であり、特に好ましくは170℃程度である。そのため、本発明のポリイミドによれば、熱処理温度を200℃程度の比較的低温とすることができる。
[リチウムイオン二次電池の負極材料]
 上記した本発明のポリイミドは、リチウムイオン二次電池用負極材料(以下、単に「負極材料」と略す場合がある。)、とりわけ負極のバインダー成分として好適に使用することができる。すなわち、バインダーとして上記したポリイミドと、負極活物質とを含む負極材料として使用することができる。
 バインダーとして、上記したポリイミドを単独で使用してもよいし、他の樹脂を含んでいてもよく、例えば、ポリフッ化ビニリデン(PVDF)を用いることができる。また、バインダーとしては、PVDFの代わりに、例えば、PVDF共重合体樹脂、フッ素系樹脂、スチレン‐ブタジエンゴム(SBR)、エチレン‐プロピレンゴム(EPDM)、スチレン‐アクリロニトリル共重合体等を用いてもよい。PVDF共重合体樹脂としては、例えば、ヘキサフルオロプロピレン(HFP)、パーフルオロメチルビニルエーテル(PFMV)、またはテトラフルオロエチレン(TFE)と、PVDFとの共重合体樹脂を用いてもよい。フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム等を用いてもよい。その他のバインダーとして、例えば、カルボキシメチルセルロース(CMC)等の多糖類、ポリイミド樹脂等の熱可塑性樹脂を用いてもよい。また、バインダーとして、上述の2種以上を併用してもよい。
 負極材料におけるポリイミドの含有量は、1質量%以上、20質量%以下であることが好ましく、3質量%以上、18質量%以下であることがより好ましい。負極材料におけるポリイミドの含有量を上記数値範囲内とすることにより、リチウムイオン二次電池のサイクル特性をより改善することができる。
 負極活物質としては、電池容量の観点から、シリコン系材料を使用することが好ましい。シリコン系材料としては、シリコン粒子、スズ、ニッケル、鉄、銅、銀、コバルト、マンガンおよび亜鉛等の金属とケイ素との合金、並びに、ホウ素、窒素、酸素および炭素等とケイ素との化合物等が挙げられる。
 シリコン系材料としては、例えば、Si、SiO、SiO、SiB、MgSi、NiSi、CoSi、NiSi、CuSi、FeSi、MnSi、ZnSi、SiC、SiおよびSiO等が挙げられ、これらのなかでもSi、SiO、SiCが好ましい。
 負極活物質として、シリコン系材料以外のものを使用してもよく、例えば、金属リチウム、金属酸化物や黒鉛を挙げることができる。また、負極材料として、負極活物質を2種以上含んでいてもよい。
 電池容量の観点からは、上記したシリコン系負極活物質は、負極活物質100質量部に対して、30質量部以上の割合で含まれることが好ましく、より好ましくは50質量部以上、特に好ましくは95質量部以上である。
 一実施形態において、負極材料は、上記したポリイミドおよび負極活物質に加えて、導電剤を含んでいてもよい。導電剤としては、例えば、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック等)、グラファイト、炭素繊維、カーボンフレーク、金属ファイバーおよび箔等が挙げられる。これらのなかでも、カーボンブラックが好ましく、アセチレンブラックがより好ましい。これら導電剤は1種単独で使用してもよく、2種以上を併用してもよい。
 負極材料における導電剤の含有量は、負極材料全体に対して0.1質量%以上、25質量%以下であることが好ましく、1質量%以上、20質量%以下であることがより好ましい。導電剤の含有量を上記数値範囲内とすることにより、負極活性物質層において良好な導電パスを形成することができる。
 本発明の特性を損なわない範囲において、負極材料は添加剤を含むことができ、例えば、増粘剤、フィラー等が挙げられる。
[リチウムイオン二次電池用負極]
 本発明のリチウムイオン二次電池用負極は、負極集電体と、該負極集電体上に形成された負極活性物質層とを備え、該負極活性物質層が上記した負極材料からなるものである。
 集電体は、特に限定されるものではなく、例えば、銅、ニッケル、ステンレス鋼、金、鉄、アルミニウムおよびこれらの合金、ニッケルメッキ鋼、並びにクロムメッキ鋼等が挙げられる。集電体は、厚さが10μm以下であるものを使用することが好ましい。
 負極活性物質層の厚さは、15μm以上、150μm以下であることが好ましく、20μm以上、120μm以下であることがより好ましい。負極活性物質層の厚さを上記数値範囲内とすることにより、リチウムイオン二次電池の初回充放電効率やサイクル特性をより改善することができる。
 本発明のリチウムイオン二次電池用負極は、上記負極材料を有機溶媒に溶解ないし分散させた溶液を、集電体上に塗布し、乾燥させることにより作製することができる。
 有機溶媒としては、上記したものを使用することができ、樹脂組成物の溶解性または分散性という観点からは、N-メチル-2-ピロリドン、N,N’-ジメチルイミダゾリジノンおよびγ-ブチロラクトンが好ましい。
 塗布方法は、特に限定されず、例えば、ダイコーター法、3本ロール式転写コーター法、ドクターブレード法、ディップ法、ダイレクトロール法およびグラビア法等が挙げられる。
[リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、上記負極と正極と非水電解質とを備える。また、一実施形態において、本発明のリチウムイオン二次電池は、負極と正極との間に配置されたセパレータを備える。
 正極としては、リチウムイオン二次電池の正極に使用されている従来公知のものを適宜使用することができる。正極は、正極形成用材料を、集電体上に塗布、乾燥することにより作製することができる。
 正極形成用材料は、正極活物質およびバインダーを含み、それに加えて上記した導電剤や添加剤を含んでいてもよい。
 正極活物質としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムおよびリン酸鉄リチウム等が挙げられる。
 バインダーとしては、負極材料として使用する上記したポリイミドやバインダーを使用することができる。
 また、上記したものに限定されず、正極として、リチウム箔等を使用することができる。
 セパレータは、従来公知のものを使用することができ、例えば、紙製セパレータ、ポリエチレンおよびポリプロピレン等の樹脂製セパレータ、並びにガラス繊維製セパレータ等を挙げることができる。
 上記正極および負極は、電池容器内に配置され、該容器には、電解質が溶解した有機溶媒が充填されている。電解質は、特に限定されるものではなく、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、CFSOLi、LiN(CFSO、LiClおよびLiI等の非水電界質が挙げられる。これらのなかでも、高い解離度を有するLiPF、LiClOおよびCFSOLiが好ましい。
 有機溶媒も特に限定されるものではなく、例えば、カーボネート化合物、ラクトン化合物、エーテル化合物、スルホラン化合物、ジオキソラン化合物、ケトン化合物、ニトリル化合物、ハロゲン化炭化水素化合物等を挙げることができる。具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネート等のカーボネート類、γ-ブチルラクトン等のラクトン類、ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどのエーテル類、スルホラン、3-メチルスルホラン等のスルホラン類、1,3-ジオキソラン等のジオキソラン類、4-メチル-2-ペンタノン等のケトン類、アセトニトリル、ピロピオニトリル、バレロニトリル、ベンソニトリル等のニトリル類、1,2-ジクロロエタン等のハロゲン化炭化水素類、その他のメチルフォルメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド、イミダゾリウム塩、4級アンモニウム塩などのイオン性液体等を挙げることができる。さらに、これらの混合物であってもよい。
 上記した有機溶媒のなかでも、負極に使用するポリイミドの溶解性が低く、ポリイミドの膨潤を抑えることができるカーボネート化合物を好ましく使用することができる。
 リチウムイオン二次電池は、円筒型、コイン型、角型、ラミネート型、その他任意の形状に形成することができ、電池の基本構成は形状によらず同じであり、目的に応じて設計変更して実施することができる。例えば、円筒型では、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セバレータを介して捲回した捲回体を電池缶に収納し、非水電解液を注入し上下に絶縁板を載置した状態で密封して得られる。また、コイン型リチウム二次電池に適用する場合では、円盤状負極、セパレータ、円盤状正極、およびステンレスの板が積層された状態でコイン型電池缶に収納され、非水電解液が注入され、密封される。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
[実施例1]
 窒素導入管、撹拌装置を備えた500mlセパラブルフラスコに、下記式で表される芳香族ジアミン化合物である(2-フェニル-4-アミノフェニル)-4-アミノベンゾエート(PHBAAB)15.22g(50ミリモル)、下記式で表される芳香族ジアミン化合物である1,3-ビス(3-アミノフェノキシ)ベンゼン(APB-N)14.62g(50ミリモル)、下記式で表されるジフェニル-3,3’,4,4’-テトラカルボン酸二無水物(ODPA)31.02g(100ミリモル)、N-メチル-2-ピロリドン(NMP)261g、ピリジン1.58g(20ミリモル)およびトルエン26gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら9時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例2]
 実施例1と同様の装置を用い、PHBAAB12.17g(40ミリモル)、APB-N11.69g(40ミリモル)、下記式で表される芳香族ジアミン化合物である4,4’-ジアミノジフェニルスルフィド(ASD)8.65g(40ミリモル)、ODPA18.61g(60ミリモル)、下記式で表される3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)19.33g(60ミリモル)、NMP301g、ピリジン1.90g(24ミリモル)およびトルエン30gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例3]
 実施例1と同様の装置を用い、PHBAAB12.17g(40ミリモル)、APB-N11.69g(40ミリモル)、下記式で表される芳香族ジアミン化合物である2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)16.42g(40ミリモル)、ODPA18.61g(60ミリモル)、BTDA19.33g(60ミリモル)、NMP337g、ピリジン1.90g(24ミリモル)およびトルエン34gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例4]
 実施例1と同様の装置を用い、PHBAAB12.17g(40ミリモル)、下記式で表される芳香族ジアミン化合物である1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)11.69g(40ミリモル)、BAPP16.42g(40ミリモル)、ODPA37.23g(120ミリモル)、NMP333g、ピリジン1.90g(24ミリモル)およびトルエン33gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例5]
 実施例1と同様の装置を用い、PHBAAB15.22g(50ミリモル)、APB-N14.62g(50ミリモル)、ODPA24.82g(80ミリモル)、下記式で表される酸無水物であるジフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA)5.88g(20ミリモル)、N-メチル-2-ピロリドン(NMP)259g、ピリジン1.58g(20ミリモル)およびトルエン26gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら9時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例6]
 実施例1と同様の装置を用い、PHBAAB7.61g(25ミリモル)、APB-N21.92g(75ミリモル)、ODPA31.02g(100ミリモル)、N-メチル-2-ピロリドン(NMP)259g、ピリジン1.58g(20ミリモル)およびトルエン26gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら9時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例7]
 実施例1と同様の装置を用い、PHBAAB7.61g(25ミリモル)、APB-N14.62g(50ミリモル)、下記式で表される芳香族ジアミン化合物であるビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)10.81g(25ミリモル)、ODPA31.02g(100ミリモル)、NMP275g、ピリジン1.58g(20ミリモル)およびトルエン28gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら9時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例8]
 実施例1と同様の装置を用い、PHBAAB9.13g(30ミリモル)、APB-N14.62(50ミリモル)、BAPP8.21g(20ミリモル)、ODPA31.02g(100ミリモル)、NMP271g、ピリジン1.58g(20ミリモル)およびトルエン27gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例9]
 実施例1と同様の装置を用い、PHBAAB6.09g(20ミリモル)、APB-N14.62g(50ミリモル)、BAPP12.32g(30ミリモル)、ODPA31.02g(100ミリモル)、NMP275g、ピリジン1.58g(20ミリモル)およびトルエン28gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[実施例10]
 実施例1と同様の装置を用い、PHBAAB3.04g(10ミリモル)、APB-N14.62g(50ミリモル)、BAPP16.42g(40ミリモル)、ODPA31.02g(100ミリモル)、NMP280g、ピリジン1.58g(20ミリモル)およびトルエン28gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら5時間反応させることにより、18質量%のポリイミド溶液を得た。
[比較例1]
 実施例1と同様の装置を用い、PHBAAB15.22g(50ミリモル)、BAPS21.63g(50ミリモル)、ODPA31.02g(100ミリモル)、NMP364g、ピリジン1.58g(20ミリモル)およびトルエン36gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら9時間反応させることにより、15質量%のポリイミド溶液を得た。
[比較例2]
 実施例1と同様の装置を用い、PHBAAB15.22g(50ミリモル)、下記式で表される芳香族ジアミン化合物である4,4’-ジアミノジフェニルエーテル(4,4’-DPE)10.01g(50ミリモル)、ODPA31.02g(100ミリモル)、NMP240g、ピリジン1.58g(20ミリモル)およびトルエン24gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら7時間反応させることにより、18質量%のポリイミド溶液を得た。
[比較例3]
 実施例1と同様の装置を用い、PHBAAB15.22g(50ミリモル)、BAPS21.63g(50ミリモル)、ODPA15.51g(50ミリモル)、BTDA16.11g、NMP368g、ピリジン1.58g(20ミリモル)およびトルエン37gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら4時間反応させることにより、15質量%のポリイミド溶液を得た。
[比較例4]
 実施例1と同様の装置を用い、PHBAAB9.13g(30ミリモル)、BAPP12.32g(30ミリモル)、4,4’-DPE6.01g(30ミリモル)、ODPA27.92g(90ミリモル)、NMP295g、ピリジン1.42g(18ミリモル)およびトルエン30gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら6時間反応させることにより、18質量%のポリイミド溶液を得た。
[比較例5]
 実施例1と同様の装置を用い、APB-N14.62g(50ミリモル)、BAPP20.50g(50ミリモル)、ODPA15.51g(50ミリモル)、BTDA16.11g(50ミリモル)、NMP295g、ピリジン1.42g(18ミリモル)およびトルエン30gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外に除きながら6時間反応させることにより、18質量%のポリイミド溶液を得た。
<ガラス転移温度(Tg)>
 実施例1~10および比較例1~5において得られた各ポリイミド溶液を、スピンコート法にて10cm角のガラス板上に塗布し、130℃で24時間乾燥した。その後、ガラス板から剥離し試験片を得た。このようにして得られた各試験片について、リガク社製のDSC8230(商品名)を使用し、窒素気流下、10℃/分の昇温速度にて、上記試験片のガラス転移温度(Tg)を測定した。測定結果は表1に示す通りであった。
<フィルム物性>
 実施例1~10および比較例1~5において得られた各ポリイミド溶液を、スピンコート法にて10cm角のガラス板上に塗布し、100℃で0.5時間、200℃で0.5時間、250℃で1時間乾燥した。その後、ガラス板から剥離しカットすることにより、縦80mm×横10mm×厚さ15μmの試験片を得た。
 得られた各試験片について、弾性率を引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向およびTD方向のそれぞれの弾性率を測定した。MD方向およびTD方向の各測定値の平均値を算出し、弾性率とした。測定結果は表1に示す通りであった。
<サイクル特性の評価>
 得られたポリイミドをバインダーとし、負極活物質としてケイ素(Si)および導電剤を、以下の組成で混合し、リチウムイオン二次電池用負極材料を調製した。
 ・ポリイミド                    10.0質量%
 ・ケイ素                      87.0質量%
 ・導電剤                      3.00質量%
 負極用集電体として、厚さ10μmの電解銅箔を準備し、電解銅箔の表面に上記のようにして得られた負極材料を塗布、200℃で加熱処理し、厚さ30μmの負極活性物質層を形成することにより、負極1を作製した。また、加熱処理の温度を300℃に変更した以外は上記と同様にして負極2を作製した。なお、実施例4~10のポリイミドについては、負極1のみを作製した。
 正極としてリチウム箔、電解液としてエチレンカーボネートおよびエチルメチルカーボネート、ポリオレフィン製単層セパレータを準備し、上記のようにして得られた負極を用いてコインセル型のリチウムイオン二次電池を作製した。
 上記のようにして作製したリチウムイオン二次電池を25℃の環境下で、24時間静置した。その後、25℃の環境下においてリチウムイオン二次電池の性能評価を下記のようにして行った。
 0.1C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.01C相当の電流密度になるまで充電したのち、0.1C相当の電流密度で1.2VまでCC放電するサイクルを25℃で2サイクル行った。このときの1サイクル目の0.1C相当の放電容量をAとした。
 続いて、0.2C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.02C相当の電流密度になるまで充電したのち、0.2C相当の電流密度で1.2VまでCC放電するサイクルを25℃で3サイクル行い、続いて、0.5C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.05CC相当の電流密度になるまで充電したのち、0.5C相当の電流密度で1.2VまでCC放電するサイクルを25℃で30サイクル行った。このときの30サイクル目の0.5C相当の放電容量をBとした。
 サイクル保持率は、下記式:
  ΔC(%)=(B/A)×100
に基づいて算出した。負極1および2を用いたリチウムイオン二次電池のサイクル保持率は下記表1に示される通りであった。
 表1の評価結果からも明らかなように、ジアミン成分として式(1)および(2)の2種の芳香族ジアミン化合物を含むポリイミド化合物(実施例1~3)は、負極活物質層の作製時の熱処理温度が300℃から200℃に変更されても、耐熱性、機械物性といったポリイミド化合物が本来有する特性を損なうことなく、サイクル保持率も維持されることがわかる。また、ジアミン成分として式(1)および(2)の2種の芳香族ジアミン化合物を含むポリイミド化合物(実施例1~10)は、負極活物質層の作製時の熱処理温度が200℃と比較的低温であっても、耐熱性、機械物性といったポリイミド化合物が本来有する特性を損なうことなく、サイクル保持率が高いことがわかる。
 これに対して、ジアミン成分として式(1)の芳香族ジアミン化合物と他の芳香族ジアミン化合物とを併用したポリイミド化合物(比較例1~5)は、耐熱性、機械物性は優れるものの、負極活物質層の作製時の熱処理温度が300℃から200℃に変更した場合に、急激にサイクル保持率が低下することがわかる。

Claims (6)

  1.  リチウムイオン二次電池の電極材料として使用されるポリイミドであって、
     ジアミン成分が、
     下記式(1):
    (式中、
     R~Rが、水素原子であり、
     R~Rのいずれかが、炭素数6~10の芳香族基、フェノキシ基、ベンジル基またはベンジルオキシ基であり、それ以外のR~Rが水素原子である。)で表される芳香族ジアミン化合物と、
     下記式(2):
    で表される芳香族ジアミン化合物と、
    を少なくとも含む、ポリイミド。
  2.  酸無水物成分が、下記式(3):

    (式中、Xはカルボニル基、酸素原子、または単結合を表す。)
    で表される酸無水物を含む、請求項1に記載のポリイミド。
  3.  前記式(1)の化合物が、ジアミン成分中に10モル%以上の割合で含まれる、請求項1に記載のポリイミド。
  4.  負極集電体と、前記負極集電体上に形成された負極活性物質層とを備えたリチウムイオン二次電池用負極であって、
     前記負極活性物質層が、請求項1に記載のポリイミドを含む、リチウムイオン二次電池用負極。
  5.  前記負極活性物質層が、負極活物質100質量部に対してシリコン系負極活物質を95質量部以上含む、請求項4に記載のリチウムイオン二次電池用負極。
  6.  請求項4または5に記載の負極と、正極と、非水電解質とを含む、リチウムイオン二次電池。
PCT/JP2023/045442 2022-12-22 2023-12-19 ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池 WO2024135665A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022206021 2022-12-22
JP2022-206021 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024135665A1 true WO2024135665A1 (ja) 2024-06-27

Family

ID=91588541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045442 WO2024135665A1 (ja) 2022-12-22 2023-12-19 ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2024135665A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111343A1 (ko) * 2015-12-24 2017-06-29 주식회사 두산 폴리이미드 수지, 이를 이용한 금속 적층체 및 이를 포함하는 인쇄회로기판
WO2018061727A1 (ja) * 2016-09-29 2018-04-05 新日鉄住金化学株式会社 ポリイミドフィルム、銅張積層板及び回路基板
WO2021053800A1 (ja) * 2019-09-19 2021-03-25 ウィンゴーテクノロジー株式会社 溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池
US20210087319A1 (en) * 2019-09-19 2021-03-25 Zhen Ding Technology Co., Ltd. Polyimide film, block copolymer of polyamide acid, and method for manufacturing the block copolymer of polyamide acid
WO2022202701A1 (ja) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 ポリイミド化合物、ならびにそれを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111343A1 (ko) * 2015-12-24 2017-06-29 주식회사 두산 폴리이미드 수지, 이를 이용한 금속 적층체 및 이를 포함하는 인쇄회로기판
WO2018061727A1 (ja) * 2016-09-29 2018-04-05 新日鉄住金化学株式会社 ポリイミドフィルム、銅張積層板及び回路基板
WO2021053800A1 (ja) * 2019-09-19 2021-03-25 ウィンゴーテクノロジー株式会社 溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池
US20210087319A1 (en) * 2019-09-19 2021-03-25 Zhen Ding Technology Co., Ltd. Polyimide film, block copolymer of polyamide acid, and method for manufacturing the block copolymer of polyamide acid
WO2022202701A1 (ja) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 ポリイミド化合物、ならびにそれを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Similar Documents

Publication Publication Date Title
JP5099394B1 (ja) 蓄電デバイスの電極用バインダー組成物
JP5984325B2 (ja) リチウムイオン電池電極用バインダー、それを用いたリチウムイオン電池電極用ペーストおよびリチウムイオン電池電極の製造方法
TWI616505B (zh) 鋰二次電池用電極及鋰二次電池,暨其等之製造方法
WO2021053800A1 (ja) 溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池
WO2012008543A1 (ja) ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法
WO2013035806A1 (ja) ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法
JP5946444B2 (ja) ポリイミド系樹脂微粒子の複合体膜およびその用途
TWI667839B (zh) Negative electrode for secondary battery, method for producing the same, and lithium ion secondary battery having the same
CN112635769B (zh) 锂离子电池负极用粘合剂、其制备方法、含有该粘合剂的负极及锂离子电池
JP5478233B2 (ja) 電池電極形成用バインダー及び電極合材
JP5866918B2 (ja) リチウムイオン電池正極用バインダー、それを含有するリチウムイオン電池正極用ペーストおよびリチウムイオン電池正極の製造方法
JP7158088B2 (ja) バインダ溶液および塗液
WO2022202701A1 (ja) ポリイミド化合物、ならびにそれを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
TWI783002B (zh) 樹脂組成物、積層體及其製造方法、電極、二次電池及電雙層電容器
JP6241213B2 (ja) 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
JP6086537B2 (ja) ポリイミド樹脂
WO2024135665A1 (ja) ポリイミド化合物、それを用いたリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2023113663A (ja) 電極
JP2013229160A (ja) 蓄電デバイスの電極用バインダー組成物
JP5904335B2 (ja) 蓄電デバイスの負極用バインダー組成物
JP2019096401A (ja) リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
TWI496816B (zh) 聚醯亞胺前驅體水溶液組成物及聚醯亞胺前驅體水溶液組成物之製造方法
CN112652772A (zh) 一种粘合剂及其制备方法和含有该粘合剂的负极及锂离子电池
WO2023080059A1 (ja) カーボンナノチューブの分散体、並びにそれを用いた電極用塗工液組成物、電極及びリチウムイオン2次電池
JP2022024668A (ja) 電極形成用材料、電極合剤、エネルギーデバイス用電極、及びエネルギーデバイス