WO2024120405A1 - 抑制Rapsyn基因表达的脂质体复合物及其应用 - Google Patents

抑制Rapsyn基因表达的脂质体复合物及其应用 Download PDF

Info

Publication number
WO2024120405A1
WO2024120405A1 PCT/CN2023/136574 CN2023136574W WO2024120405A1 WO 2024120405 A1 WO2024120405 A1 WO 2024120405A1 CN 2023136574 W CN2023136574 W CN 2023136574W WO 2024120405 A1 WO2024120405 A1 WO 2024120405A1
Authority
WO
WIPO (PCT)
Prior art keywords
scfv
liposome complex
leukemia
rapsyn
sirna
Prior art date
Application number
PCT/CN2023/136574
Other languages
English (en)
French (fr)
Inventor
陈依军
张灿
孙延紫
鞠曹云
黄滢霜
刘春艳
Original Assignee
中国药科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国药科大学 filed Critical 中国药科大学
Publication of WO2024120405A1 publication Critical patent/WO2024120405A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the technical field of gene therapy drugs, and in particular relates to a liposome complex for inhibiting Rapsyn gene expression and an application thereof.
  • Leukemia is a type of malignant clonal disease of hematopoietic stem cells. Clonal leukemia cells proliferate and accumulate in large quantities in the bone marrow and other hematopoietic tissues due to mechanisms such as uncontrolled proliferation, differentiation disorders, and blocked apoptosis, and infiltrate other non-hematopoietic tissues and organs, while inhibiting normal hematopoietic function. Clinically, leukemia is often divided into lymphocytic leukemia, myeloid leukemia, mixed cell leukemia, etc. With the advancement of medicine, each type of leukemia has a more precise treatment strategy. Currently, there are mainly the following types of treatments: chemotherapy, radiotherapy, targeted therapy, immunotherapy, stem cell transplantation, etc.
  • Chimeric antigen receptor (CAR)-T cell therapy is a new pillar of progress in cancer immune cell therapy. It has produced significant clinical responses in patients with B-cell leukemia or lymphoma.
  • CAR-T cell therapy is severe life-threatening toxicities, such as cytokine release syndrome and limited anti-tumor efficacy (JOGALEKAR M P and RAJENDRAN R L. Front Immunol, 2022, 13: 925985.). Therefore, it is crucial to discover other key factors involved in the pathogenesis of leukemia and design targeted treatment strategies based on this.
  • Rapsyn is specifically highly expressed in the peripheral blood of leukemia patients. This overexpression can promote the malignant proliferation of leukemia cells and is associated with the short prognosis and survival time of leukemia patients. These research results provide a strong theoretical basis for Rapsyn to be a potential target for leukemia treatment.
  • Rapsyn is widely expressed in neuromuscular tissue and plays an important role in the transmission of neurotransmitters. If it is missing, it will cause serious diseases such as myasthenia gravis (LI L and CAO Y. Neuron, 2016, 92(5):1007-19.), and there are major problems with the safety of medication.
  • the present invention aims at the deficiencies of existing treatment technologies and provides a liposome complex that can target leukemia cells and load nucleic acids that inhibit Rapsyn gene expression.
  • the liposome complex provided by the present invention has a target head DSPE-PEG2000-scFv, which can selectively target CD79b + leukemia cells, effectively deliver nucleic acids that inhibit Rapsyn gene expression into leukemia cells, and is not degraded by nucleases, so that the loaded siRNA enters the cytoplasm and inhibits Rapsyn gene expression.
  • a liposome complex for inhibiting Rapsyn gene expression wherein the liposome complex has a target head DSPE- PEG2000-scFv, the lipid material is lysine glutamic acid dioleyl alcohol ester OA 2 -Glu-Lys; the liposome complex is loaded with nucleic acid that inhibits the expression of Rapsyn gene.
  • the nucleotide sequence of the Rapsyn gene is shown in SEQ ID No: 49.
  • the anti-CD79b-scFv (scFv for short) (amino acid sequence such as SEQ ID No: 48, USA20200207852).
  • the present invention translates the amino acids of anti-CD79b-scFv and optimizes the codons to make it suitable for expression in Escherichia coli.
  • a pET28a plasmid with a solubilizing protein tag MBP and a scFv gene sequence was constructed to improve the soluble expression of scFv, and a highly active anti-CD79b-scFv was obtained by heterologous expression and purification.
  • the target head DSPE-PEG2000-scFv is prepared by mixing DSPE-PEG2000-Mal micelles and scFv, and the molar ratio of DSPE-PEG2000-Mal micelles to scFv is preferably 1:1-50:1.
  • Lysine glutamic acid dioleyl ester OA 2 -Glu-Lys is an unsaturated cationic lipid derivative disclosed in Chinese patent document CN111087317A:
  • OA 2 -Glu-Lys has good biocompatibility and degradability; its positively charged head group can stabilize the complex DNA and improve its stability during delivery; and its tail chain introduces different unsaturated bonds, which can increase the release of DNA in the cytoplasm through membrane fusion under acidic conditions, ultimately improving the gene transfection efficiency of DNA.
  • the nucleic acid for inhibiting Rapsyn gene expression carried by the liposome complex of the present invention includes one or more of antisense oligonucleotides, siRNA, miRNA, shRNA, nucleic acid aptamers, and transcriptional activation RNA targeting Rapsyn, preferably siRNA.
  • siRNA target sequence nucleotide sequence is shown in SEQ ID No: 1 to 14.
  • the siRNA sequence is evaluated by GC content and off-target rate, and verified by knockdown of genes and proteins in cells, and the gene silencing efficiency is more than 80%.
  • the preferred siRNA is
  • siRNA1 Sense(5’-3’)CAUGAAGCCUGGCUUUGUA(SEQ ID No:15).
  • siRNA2 Sense(5’-3’)CGAGAAGCUGUGCGAGUUU(SEQ ID No:17).
  • siRNA3 Sense(5’-3’)GCGCUAUGCCCACAACAAU(SEQ ID No:19).
  • Antisense (3'-5') AUUGUUGUGGGCAUAGCGC SEQ ID No: 20.
  • the molar percentage of scFv in the liposome complex is no higher than 0.06%.
  • the nitrogen-phosphorus ratio of the lipid material and the nucleotide is not less than 3:1.
  • Another object of the present invention is to provide the use of the liposome complex for inhibiting the expression of the Rapsyn gene in the present invention in the preparation of a drug for preventing or treating a disease caused by abnormal expression of the Rapsyn gene.
  • the disease is leukemia, including lymphocyte-type blood tumors and myeloid-type blood tumors.
  • the lymphocyte-type blood tumors are acute lymphocytic blood disease, acute primitive lymphocytic leukemia, B-cell leukemia, T-cell leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma or Burkett's lymphoma; the myeloid-type blood tumors are acute myeloid leukemia, chronic myeloid leukemia, myelodysplasia or promyelocytic leukemia.
  • Another object of the present invention is to provide a liposome preparation, comprising the liposome complex for inhibiting Rapsyn gene expression of the present invention and a pharmaceutically acceptable gene drug delivery vector.
  • the vector includes a retrovirus vector and an adenovirus vector, and the non-viral method includes liposome, microinjection, calcium phosphate precipitation, etc.
  • the liposome complex of the present invention can be administered to the human body through different routes, including oral administration, parenteral administration, oral inhalation, transdermal administration, rectal administration, nasal administration, sublingual administration, buccal administration, vaginal administration and administration through an implanted container; parenteral administration includes subcutaneous, intravenous, intramuscular, intra-articular, synovial cavity, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infiltration.
  • the dosage used is affected by many factors, including age, weight, health status, gender, race, eating habits, administration time, urination frequency, and whether other drugs are used.
  • the present invention conducted an analysis in the GEO database, and found that CD79b is specifically highly expressed on the surface of leukemia cells, and then selected CD79b as the target in the drug design of the present invention.
  • Anti-CD79b-scFv was designed and expressed and purified for CD79b, and the scFv was incorporated into liposomes loaded with nucleic acids that inhibit Rapsyn gene expression to achieve the purpose of selectively targeting and binding leukemia cells.
  • the liposome complex provided by the present invention can efficiently transfect cells in vitro and can successfully deliver siRNA into the cytoplasm.
  • the liposome complex for inhibiting Rapsyn gene expression developed by the present invention can specifically identify leukemia cells, inhibit the expression of Rapsyn gene in leukemia cells, inhibit the growth of tumor cells, and effectively prolong the survival of leukemia cell heterologous transplantation mouse models, providing a new choice for drugs for treating leukemia.
  • Figure 1 shows the screening results of effective siRNA sequences in Example 1, wherein: (A) is qRT-PCR detection of the silencing effect of three siRNA sequences on the mRNA level of Rapsyn gene in K562 cells; (B) is protein immunoblotting detection of the inhibitory effect of three siRNA sequences on the expression of Rapsyn gene in K562 cells.
  • Figure 2 shows the preparation and characterization of OA2 cationic liposomes in Example 2, wherein: (A) is an agarose gel electrophoresis diagram after loading siRNA at different N/P ratios; (B) is the particle size and potential of the cationic liposome/siRNA binary complex of the present invention at different nitrogen-phosphorus ratios.
  • FIG. 3 shows the effect of the siRNA-OA 2 liposome complex of the present invention on four leukemia cells in vitro in Example 3.
  • FIG. 4 shows the selection and verification results of leukemia cell surface molecular targets.
  • Figure 5 shows the expression and purification of anti-CD79b-scFv and its activity detection results in Example 5.
  • A 10% SDS-PAGE was used to detect the expression and purification of scFv;
  • B ELISA was used to detect the binding ability of scFv to four leukemia cells at different concentrations.
  • Figure 6 shows the preparation and characterization of the scFv-siRNA liposome complex in Example 6, wherein: (A) flow cytometry was used to detect the efficiency of the targeted siRNA liposome complex prepared with different ratios of scFv in delivering Fam-siRNA to K562 cells; (B) is a transmission electron microscopy observation of the scFv-OA 2 liposome of the present invention (scale bar: 50 ⁇ m); (C) is an agarose gel electrophoresis image of the scFv-OA 2 liposome of the present invention after loading siRNA at a nitrogen-to-phosphorus ratio of 5.
  • Figure 7 shows the inhibitory effect of the scFv-siRNA liposome complex of the present invention on cancer cell proliferation and tumor formation in the K562 cell line subcutaneous tumor model in Example 7, which is divided into a saline group, a siNC-scFv-OA 2 group, a siRNA-OA 2 group and a siRNA-scFv-OA 2 group, wherein (A) is the weight of mice; (B) is a tumor picture; (D) is the tumor volume; and (C) is the tumor weight of mice.
  • FIG. 8 shows the survival results of the K562 cell xenograft mouse model treated with the siRNA-scFv-OA 2 liposome complex of the present invention in Example 8.
  • siRNA target sequences targeting the Rapsyn gene were designed using software (SEQ ID No: 1-14), and siRNA sequences (SEQ ID No: 15-42) were designed accordingly.
  • siRNA-3 was selected based on the GC content and off-target rate evaluation, and then the optimal sequence was screened out by intracellular verification combined with qRT-PCR and Western Blot experiments.
  • the 14 target sequences are as follows:
  • the primer sequences are as follows:
  • Preparation method of blank OA 2 cationic liposomes Weigh an appropriate amount of cationic lipid OA 2 (lysine glutamic acid dioleyl ester OA 2 -Glu-Lys prepared by referring to the method disclosed in Chinese patent document CN111087317A), dissolve it in a mixed solvent containing 3ml chloroform and 2ml methanol, remove the solvent by vacuum evaporation at 40°C, and vacuum dry overnight.
  • OA 2 lysine glutamic acid dioleyl ester OA 2 -Glu-Lys prepared by referring to the method disclosed in Chinese patent document CN111087317A
  • the particle size of the various liposomes of the present invention is between 50 and 150 nm, which meets the particle size requirements of gene carriers; the PDI is less than 0.3, indicating that the liposomes prepared by the film extrusion method have uniform particle size; the surface potential is between +20 and +50 mV, indicating that the prepared cationic liposomes can bind to negatively charged nucleic acid drugs through electrostatic interactions and effectively compress siRNA, which meets the requirements as gene delivery carriers.
  • siRNA-OA 2 cationic liposome binary complex fix the mass of siRNA (siRapsyn3), take the corresponding amount of siRNA volume and dilute to 50 ⁇ L with DEPC water or RNase-free water, take the corresponding cationic liposome amount and dilute to 50 ⁇ L according to N/P of 5, and add the diluted plasmid to the diluted cationic liposome (50 ⁇ L+50 ⁇ L) and mix evenly, and incubate at room temperature for 30 min to obtain a cationic liposome/siRNA binary complex.
  • each cationic liposome for siRNA was investigated by agarose gel electrophoresis experiment (as shown in Figure 2A), and the particle size and potential of each binary complex were determined using DLS (as shown in Figure 2B).
  • the above experimental results show that the cationic liposome OA 2 of the present invention can stably load siRNA without leakage when N/P is greater than 3, and the particle size of the binary complex is between 100 and 200 nm, and the Zeta potential is between +10 and +30 mV, which can be further used in cell transfection experiments.
  • Example 3 Inhibitory effect of the siRNA-OA 2 liposome complex of the present invention on CML cells in vitro
  • the effect of the siRNA-OA 2 liposome complex of the present invention on the proliferation of leukemia cells was detected.
  • K562 cells, MEG-01 cells, KU812 cells, and Jurkat cells in logarithmic growth were taken, and 5 ⁇ 10 4 cells per well were inoculated in a 96-well plate.
  • the blank group, OA 2 group, and siRNA-OA 2 group were set to treat the three types of cells respectively, and the cell proliferation was detected by CCK8 method 24h, 48h, 72h, and 96h after transfection of the cells.
  • the test results are shown in Figure 3. Compared with the blank control group and the NC group, the cell viability was significantly reduced after knocking down Rapsyn at different time points. It can be seen that knocking down Rapsyn can significantly inhibit the growth and proliferation of leukemia cells.
  • the whole genome expression matrix of peripheral blood cells of leukemia patients and normal people was found in the GEO DataSets database.
  • the differential gene dataset was obtained by online analysis using GEO2R.
  • the database https://www.genecards.org/
  • the database was then used to analyze the differentially highly expressed genes (LogFc>1) in the data set one by one, and the gene CD79b, which was highly expressed and distributed on the cell membrane surface, was screened out.
  • MBP-scFv-pET28a expression plasmid The amino acid sequence of MBP lytic protein was inserted into pET28a by Gibson assembly, and then the gene sequence of anti-CD79b-scFv (SEQ ID No: 47) synthesized by Bio-Industry after optimization was inserted into the plasmid, and a His tag was added to the C-terminus. The MBP-scFv-pET28a expression plasmid was obtained.
  • Transformation of recombinant products Take 100 ⁇ l BL21 and melt it naturally on ice, then add the recombinant ligation product, mix and place on ice for 30 minutes. Heat shock at 42°C for 90s, then place on ice for 2 minutes. Transfer to 1ml LB and culture in a 37°C shaking incubator for 45 minutes. Centrifuge after 45 minutes and discard the supernatant, take about 800 ⁇ l and apply it on the LB solid culture plate containing Kan. Invert and culture overnight in a 37°C constant temperature incubator.
  • Plasmid sequencing verification Randomly select 5 positive monoclonal colonies in 5 ml LB containing Kan resistance and culture them in a shaking incubator at 37°C and 220 rpm for 8 hours. Collect the bacterial solution, extract the plasmid and send it to Bioengineering for sequencing, and store 1 ml of bacterial solution in a refrigerator at -80°C in parallel. The plasmids with correct numbering and sequencing were used for subsequent protein expression.
  • the preserved bacterial solution was inoculated into LB containing Kan, and cultured overnight in a shaking incubator at 37°C and 220rpm.
  • 200ul of bacterial solution was inoculated into 200ml of LB containing Kan, and continued to be cultured in a shaking incubator at 37°C and 220rpm until the absorbance was close to 0.8.
  • IPTG (1M) 200ul/200ml LB was added, and cultured for 18h at 20°C and 200rpm. Then the bacterial solution was collected, and 20ml of the equilibrium solution was mixed and then ultrasonically broken with 120w, 3s for 6s, and 15min. The supernatant was centrifuged and first purified with a nickel column.
  • the target protein was in a 300mM imidazole solution, and then purified twice with dextrin agarose to obtain the target protein.
  • the purity of the expression and purification was detected by 10% SDS-PAGE. The detection results are shown in Figure 5A. There are still some miscellaneous bands in the first round of purification, and after the second round of purification, a scFv with a purity of more than 95% can be obtained.
  • scFv activity detection 100ul 0.1mg/mL ⁇ -D-polylysine solution was added to a 96-well plate 24 hours in advance, washed with water and dried. K562 cells, MEG-01 cells, KU812 cells and Jurkat cells were inoculated in a 96-well plate, 1 ⁇ 10 5 cells per well, and cultured in a 37°C, 5% CO2 incubator for 24 hours. After 24 hours, the supernatant was discarded and fixed with 4% paraformaldehyde. 15min, then 5% BSA solution was blocked for 30min, and then different concentrations of anti-CD79b-scFv were added to the experimental wells and incubated for 2h.
  • the scFv-OA 2 liposomes were prepared by the post-insertion method as follows: DSPE-PEG2000-Mal and scFv reduced by TCEP were mixed at a molar ratio of 20:1, reacted at 4°C for 2 hours, and then dialyzed against PBS in an ice bath to obtain DSPE-PEG2000-scFv. DSPE-PEG2000-scFv was incubated with pre-prepared blank OA 2 cationic liposomes at 45°C for 30 minutes according to the calculated required amount to prepare scFv-OA 2 liposomes with a final scFv molar ratio of 0.08%, 0.06%, and 0.01%. The particle size, potential, and PDI of the scFv-OA 2 liposomes were measured by DLS, and the results are shown in Table 2.
  • scFv-OA 2 liposome complexes with scFv molar percentages of 0.08%, 0.06%, 0.04%, 0.02%, and 0 were further prepared.
  • Logarithmically growing K562 cells were taken, and the cell suspension was adjusted to a cell density of 2.5 ⁇ 10 5 cells/ml, inoculated in 6-well plates, 2 ml per well, and 2 ⁇ g of siRNA was added to each group.
  • the cells were placed in a 37°C, 5% CO 2 constant temperature incubator and cultured for 6 hours. After 6 hours, the cells were collected, washed three times with PBS, and passed through a 300-mesh sieve.
  • the fluorescence intensity under the FITC channel was detected using a BD flow cytometer to compare their ability to deliver siRNA.
  • siRNA was mixed with OA 2 or scFv-OA 2 liposome solution, diluted to 200ul with deionized water, mixed evenly, and incubated at room temperature for 30min to obtain siRNA liposome complex.
  • Example 7 Inhibitory effect of siRNA-scFv-OA 2 liposome complex on tumor cells in vivo
  • siRNA-scFv-OA 2 complex The anti-tumor effect of siRNA-scFv-OA 2 complex was evaluated in an orthotopic nude mouse model in which K562 cells were subcutaneously inoculated in nude mice. Specifically, K562 cells were injected into the flank of 4-week-old NOD-SCID female mice. 50mm 3 , the mice were randomly divided into 4 treatment groups: saline group, empty scFv-OA 2 group, siRNA-OA 2 group and siRNA-scFv-OA 2 group. 10ug siRNA/mouse or an equal volume of saline or an equal amount of scFv-OA 2 was intratumorally administered once every other day until the tumor volume exceeded 1500mm 3. The tumor volume and weight of the mice were monitored during this period.
  • Example 8 Survival test of the K562 cell xenograft mouse model treated with the scFv-OA 2 -siRNA liposome complex of the present invention.
  • Tail vein group administration began 7 days later, with 2.5nmol siRNA per group. The drug was administered every two days, and the survival time of each mouse was recorded. The results are shown in Figure 8.
  • siRNA-scFv-OA 2 can effectively prolong the survival of mice, while non-targeted siRNA-OA 2 has no therapeutic effect, just like the saline group and siNC-scFv-OA 2 group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Oncology (AREA)

Abstract

本发明涉及基因治疗药物技术领域,具体涉及一种能靶向白血病细胞荷载抑制Rapsyn基因表达的核酸脂质体复合物和其在制备预防和治疗白血病药物中应用。本发明提供的脂质体复合物具有靶头DSPE-PEG2000-scFv,能选择性靶向CD79b+白血病细胞,有效递送siRapsyn序列进入白血病细胞,不被核酸酶降解,使荷载的siRNA进入细胞质,抑制Rapsyn基因表达,具有更高的生物利用率和安全性,能有效抑制白血病细胞的增殖和肿瘤形成、延长白血病动物模型的生存期,达到治疗白血病的目的。本发明为治疗白血病药物提供了新的选择。

Description

抑制Rapsyn基因表达的脂质体复合物及其应用 技术领域
本发明属于基因治疗药物技术领域,具体涉及一种抑制Rapsyn基因表达的脂质体复合物及其应用。
背景技术
白血病是一类造血干细胞恶性克隆性疾病。克隆性白血病细胞因为增殖失控、分化障碍、凋亡受阻等机制在骨髓和其他造血组织中大量增殖累积,并浸润其他非造血组织和器官,同时抑制正常造血功能。临床上常将白血病分为淋巴细胞白血病、髓细胞白血病、混合细胞白血病等。随着医学的进步,每种类型的白血病都有了更加精准的治疗策略。目前主要有下列几类治疗方法:化学治疗﹑放射治疗﹑靶向治疗、免疫治疗、干细胞移植等。
虽然移植可以获得较好的生存效果,但是移植物抗宿主病等并发症可能严重影响患者的生活质量。因此,选择性免疫治疗和各种分子靶向治疗是将来治愈白血病的希望。嵌合抗原受体(CAR)-T细胞疗法是癌症免疫细胞疗法中一个进步的新支柱。它在B细胞白血病或淋巴瘤患者中产生了显著的临床反应。不幸的是,CAR-T细胞疗法的主要障碍是严重威胁生命的毒性,例如细胞因子释放综合征和有限的抗肿瘤功效(JOGALEKAR M P and RAJENDRAN R L.Front Immunol,2022,13:925985.)。因此,发现参与白血病发病机制的其他关键因素,以此为基础设计靶向治疗策略至关重要。
前期研究发现Rapsyn在白血病外周血中特异性高表达,该过表达能够促进白血病细胞的恶性增殖,并且与白血病病人短的预后生存时间有关。这些研究成果为Rapsyn可作为白血病治疗的潜在靶点提供了有力的理论依据。
然而Rapsyn在神经肌肉组织中广泛表达,与神经递质的传递有着重要作用,如果缺失会造成重症肌无力等严重疾病(LI L and CAO Y.Neuron,2016,92(5):1007-19.),用药安全性存在很大问题。
发明内容
本发明针对现有治疗技术不足,提供了一种能靶向白血病细胞荷载抑制Rapsyn基因表达核酸的脂质体复合物。本发明提供的脂质体复合物具有靶头DSPE-PEG2000-scFv,能选择性靶向CD79b+白血病细胞,有效递送抑制Rapsyn基因表达核酸进入白血病细胞,不被核酸酶降解,使荷载的siRNA进入细胞质,抑制Rapsyn基因表达。
本发明具体技术方案如下:
一种抑制Rapsyn基因表达的脂质体复合物,所述脂质体复合物具有靶头DSPE- PEG2000-scFv,脂质材料为赖氨酸谷氨酸双油醇酯OA2-Glu-Lys;所述脂质体复合物荷载有抑制Rapsyn基因表达的核酸。
Rapsyn基因核苷酸序列如SEQ ID No:49所示。
所述anti-CD79b-scFv(简称scFv)(氨基酸序列如SEQ ID No:48,USA20200207852)。本发明对anti-CD79b-scFv的氨基酸进行翻译,并对密码子优化使其适用于大肠杆菌的表达。构建了带有助溶蛋白标签MBP和scFv基因序列的pET28a质粒,提高了scFv的可溶性表达,通过异源表达纯化得到具有高活性的anti-CD79b-scFv。
所述靶头DSPE-PEG2000-scFv为DSPE-PEG2000-Mal胶束与scFv混合制得,优选DSPE-PEG2000-Mal胶束与scFv摩尔比为1:1-50:1。
赖氨酸谷氨酸双油醇酯OA2-Glu-Lys是中国专利文献CN111087317A公开的不饱和阳离子脂质衍生物:
OA2-Glu-Lys具有良好的生物相容性和可降解性;其正电性头基可以可稳定复合DNA,提高其在递送过程中的稳定性;且其尾链引入不同的不饱和键,可以通过酸性条件下的膜融合作用提高DNA在胞质中的释放;最终提高DNA的基因转染效率。
本发明所述的脂质体复合物荷载的抑制Rapsyn基因表达的核酸包括靶向Rapsyn的反义寡核苷酸、siRNA、miRNA、shRNA、核酸适配体、转录激活RNA中的一种或几种。优选siRNA。
本发明一个具体的示例,所述siRNA靶序列核苷酸序列如SEQ ID No:1~14所示。
所述的siRNA序列中经过GC含量和脱靶率评估,以及在细胞内基因和蛋白水平敲低的验证,基因沉默效率达到80%以上。优选siRNA为
siRNA1:Sense(5’-3’)CAUGAAGCCUGGCUUUGUA(SEQ ID No:15)。
Antisense(3’-5’)UACAAAGCCAGGCUUCAUG(SEQ ID No:16)。
siRNA2:Sense(5’-3’)CGAGAAGCUGUGCGAGUUU(SEQ ID No:17)。
Antisense(3’-5’)AAACUCGCACAGCUUCUCG(SEQ ID No:18)。
siRNA3:Sense(5’-3’)GCGCUAUGCCCACAACAAU(SEQ ID No:19)。
Antisense(3’-5’)AUUGUUGUGGGCAUAGCGC(SEQ ID No:20)。
本发明一个优选的方案,scFv在脂质体复合物的摩尔百分比不高于0.06%。
本发明一个优选的方案,所述脂质材料和核苷酸的氮磷比不低于3:1。
本发明另一目的在于提供本发明所述抑制Rapsyn基因表达的脂质体复合物在制备预防或治疗Rapsyn基因异常表达引起的疾病药物中的用途。所述疾病为白血病,包括淋巴细胞型血液类肿瘤和骨髓细胞型血液类肿瘤,所述淋巴细胞型血液类肿瘤为急性淋巴细胞型血病、急性原始淋巴细胞型白血病、B细胞型白血病、T细胞型白血病、何杰金氏淋巴瘤、非何杰金氏淋巴瘤、毛状细胞淋巴瘤或Burkett氏淋巴瘤;所述骨髓细胞型血液类肿瘤为急性骨髓细胞型白血病、慢性骨髓细胞型白血病、骨髓发育不全症或早幼粒细胞型白血病。
本发明另一目的在于提供一种脂质体制剂,包含本发明所述抑制Rapsyn基因表达的脂质体复合物及药学上可接受的基因药物递送载体。所述载体包括反转录病毒载体和腺病毒载体,非病毒法包括脂质体、显微注射法、磷酸钙沉淀法等。
本发明所述的脂质体复合物可通过不同途径对人体给药,具体的给药途径包括口服、非胃肠道给药、口腔吸入、透过皮肤给药、直肠给药、鼻腔给药、舌下给药、面颊给药、阴道给药及通过植入性容器给药;非胃肠道给药又包括在皮下、静脉内、肌肉内、关节内、滑膜腔内、胸骨内、鞘内、肝内、损伤部位内和颅内注射或浸渗。
本发明所述的脂质体复合物在用于人体进行肿瘤以及相关疾病治疗时,所用的剂量受多种因素的影响,这些因素包括年龄、体重、健康状况、性别、种族、饮食习惯、给药时间、排尿频率及是否使用其它药物等等。
本发明优点:
(1)目前,临床上尚没有靶向性强的沉默Rapsyn表达的抑制剂。本发明为了提高药物的安全性,在GEO数据库进行了分析,结果发现CD79b在白血病细胞表面特异性高表达,进而选择了CD79b作为本发明药物设计中的靶标。针对CD79b设计表达纯化了anti-CD79b-scFv,将scFv掺入荷载有抑制Rapsyn基因表达的核酸的脂质体中,实现选择性靶向结合白血病细胞的目的。
(2)本发明提供的脂质体复合物在体外细胞中能高效转染,并能成功递送siRNA到细胞质中。
(3)本发明开发的抑制Rapsyn基因表达的脂质体复合物,能特异性识别白血病细胞,抑制Rapsyn基因在白血病细胞中的表达,抑制肿瘤细胞的生长,有效地延长白血病细胞异源移植小鼠模型的生存期,为治疗白血病的药物提供了一种新的选择。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为实施案例1中siRNA有效序列的筛选结果其中:(A)为qRT-PCR检测三种siRNA序列对K562细胞Rapsyn基因mRNA水平的沉默作用;(B)为蛋白免疫印迹检测三种siRNA序列对K562细胞Rapsyn基因表达的抑制作用。
图2为实施案例2中OA2阳离子脂质体的制备和表征,其中:(A)为按不同N/P荷载siRNA后的的琼脂糖凝胶电泳图;(B)为本发明的阳离子脂质体/siRNA二元复合物在不同氮磷比下的粒径和电位。
图3为实施案例3中本发明的siRNA-OA2脂质体复合物在体外对四种白血病细胞的作用。
图4为白血病细胞表面分子靶标的选择与验证结果。
图5为实施案例5中anti-CD79b-scFv的表达和纯化以及其活性检测结果。其中,(A)10%SDS-PAGE检测scFv表达纯化的情况;(B)ELISA实验检测scFv不同浓度下与四种白血病细胞结合能力。
图6为实施案例6中scFv-siRNA脂质体复合物的制备与表征,其中:(A)流式细胞术检测不同比例scFv制备的靶向siRNA脂质体复合物递送Fam-siRNA至K562细胞的效率;(B)为本发明的scFv-OA2脂质体的透射电子显微镜观察图(比例尺:50μm);(C)为本发明的scFv-OA2脂质体在氮磷比为5的情况下荷载siRNA后的的琼脂糖凝胶电泳图。
图7为实施案例7中本发明的scFv-siRNA脂质体复合物在K562细胞系皮下瘤模型中对癌细胞增殖和肿瘤形成的抑制作用,分为生理盐水组、siNC-scFv-OA2组、siRNA-OA2组和siRNA-scFv-OA2,其中,(A)为小鼠体重;(B)为瘤图片;(D)为瘤体积;(C)为小鼠瘤重。
图8为实施案例8中本发明的siRNA-scFv-OA2脂质体复合物治疗K562细胞异源移植小鼠模型的生存期结果。
具体实施方式
以下通过实施例说明本发明的具体步骤,但不受实施例限制。
在本发明中所使用的术语,除非另有说明,一般具有本领域普通技术人员通常理解的含义。下面结合具体实施例并参照数据进一步详细描述本发明。应理解,这些实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。在以下实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。下面通过实施例具体说明本发明的内容:
实施例1:siRNA的筛选
针对Rapsyn基因的同源区域,用软件设计了14种针对Rapsyn基因的siRNA靶序列 (SEQ ID No:1~14),并相应地设计了siRNA序列(SEQ ID No:15~42),从中根据GC含量和脱靶率评估,优选siRNA-3,再结合qRT-PCR和Western Blot实验进行细胞内验证,筛选出最优序列。14种靶序列如下:
取对数生长的K562细胞、MEG-01细胞和KU812细胞,调整细胞密度为2.5×105个/ml的细胞悬液,接种于6孔板,每孔2ml,每孔分别加入2μg的siRNA1~3,置于37℃,5%CO2恒温培养箱内培养48h。48h后收取细胞,PBS洗三遍,提取细胞总RNA或总蛋白。设置空白对照组、siNC组和siRNA1-3组。
引物序列如下:
检测结果如图1所示,qRT-PCR和蛋白免疫印迹结果显示siRNA3序列不论是在mRNA转录水平,还是蛋白的翻译水平都能有效沉默Rapsyn的表达。所以后续研究选择siRNA3 作为siRNA有效序列。
实施例2:阳离子脂质体的制备与表征
空白OA2阳离子脂质体制备方法:称取适量阳离子脂质OA2(赖氨酸谷氨酸双油醇酯OA2-Glu-Lys参照中国专利文献CN111087317A公开的方法制备),用含有3ml氯仿和2ml甲醇的混合溶剂溶解,40℃减压旋蒸除去溶剂,真空干燥过夜。加入适量去离子水,在37℃水合30min,将脂质体悬液依次过0.8μm,0.45μm,0.22μm微孔滤膜各11次,即得到空白OA2阳离子脂质体溶液,置于4℃保存备用。使用DLS测量空白阳离子脂质体的粒径、电位和多分散系数(Polydispersity Index,PDI),结果如表1所示。
表1本发明的空白阳离子脂质体的性质(n=3)
上述实验数据表明,本发明的各类脂质体粒径在50~150nm之间,符合基因载体的粒径要求;PDI均小于0.3,表明通过薄膜挤出法制备的脂质体粒径均一;表面电位在+20~+50mV之间,表明所制备的阳离子脂质体可以与负电性的核酸药物通过静电相互作用结合并有效压缩siRNA,符合作为基因递送载体的要求。
siRNA-OA2阳离子脂质体二元复合物的制备:固定siRNA(siRapsyn3)的质量,取相应量的siRNA体积并用DEPC水或无RNA酶水稀释至50μL,按N/P为5取对应的阳离子脂质体量并稀释至50μL,并将稀释好的质粒加入至稀释的阳离子脂质体中(50μL+50μL)混合均匀后,室温静置孵育30min,得到阳离子脂质体/siRNA二元复合物。通过琼脂糖凝胶电泳实验考察各阳离子脂质体对siRNA的荷载能力(如图2A所示),并使用DLS测定各二元复合物的粒径和电位(如图2B所示)。上述实验结果表明,本发明的阳离子脂质体OA2在N/P大于3时均能稳定荷载siRNA不发生泄漏,且二元复合物的粒径在100~200nm之间,Zeta电位在+10~+30mV之间,可进一步用于细胞转染实验。
实施例3:本发明的siRNA-OA2脂质体复合物在体外对CML细胞的抑制作用
检测本发明的siRNA-OA2脂质体复合物对白血病细胞增值的作用。取对数生长的K562细胞、MEG-01细胞、KU812细胞、Jurkat细胞,每孔5×104个细胞接种于96孔板,设置空白组、OA2组和siRNA-OA2组分别处理三种细胞,分别于转染细胞24h、48h、72h、96h后用CCK8法检测细胞增殖情况。检测结果如图3,相对于空白对照组和NC组,不同时间点敲低Rapsyn后细胞活力都显著降低,由此可知敲低Rapsyn能显著抑制白血病细胞的生长增殖。
实施例4:白血病细胞CD79b靶标的选择与验证
在GEO DataSets数据库中找到有关白血病患者和正常人外周血细胞的全基因组表达矩阵。利用GEO2R在线分析得到差异基因数据集。再利用数据库(https://www.genecards.org/)逐个分析数据组中差异高表达的基因(LogFc>1),筛选出高表达且分布在细胞膜表面的基因—CD79b。
白血病细胞是否表达CD79b的验证:收集对数生长期的K562细胞、MEG-01细胞、KU812细胞、Jurkat细胞、KG-1细胞、Sup-B15细胞,提取细胞总蛋白,Western Blot检测CD79b和内参GAPDH的表达结果如图4所示,白血病细胞均表达CD79b,因此后续选择CD79b蛋白作为药物的靶标。
实施例5:anti-CD79b-scFv的表达与纯化
构建MBP-scFv-pET28a表达质粒:利用Gibson组装将MBP助溶蛋白氨基酸序列插入到pET28a,再将经优化后由生工合成的anti-CD79b-scFv的基因序列(SEQ ID No:47)插入到质粒中,并在C端加上His标签。得到MBP-scFv-pET28a表达质粒。
重组产物转化:取100μl BL21于冰上自然融化,然后加入重组连接产物,混合后冰浴30min。42℃热激90s,再冰浴2min。移至1ml LB中,在37℃振荡摇床中培养45min。45min后离心弃上清,取800μl左右涂含有Kan的LB固体培养板上。倒置于37℃恒温培养箱过夜培养。
质粒测序验证:随机挑选5个阳性单克隆菌落于5ml含Kan抗性的LB中,在37℃、220rpm振荡培养箱中培养8h。收菌液,提取质粒送生工测序,另平行保存1ml菌液于-80℃的冰箱。将编号测序无误的质粒进行后续的蛋白表达。
将保存的菌液接种于含Kan的LB中,37℃,220rpm在振荡摇床中培养过夜,第二天取200ul菌液接种至200ml含Kan的LB中,继续放置在37℃、220rpm振荡摇床中培养,至吸光度近0.8,加入IPTG(1M)200ul/200ml LB,在20℃,200rpm条件下振荡培养18h。然后收菌液,20ml的平衡液混合后用120w,超3s间6s,15min的条件超声破菌。离心取上清,先用镍柱纯化,目的蛋白在300mM咪唑溶液中,然后用糊精琼脂糖二次纯化,得到目的蛋白。用10%SDS-PAGE检测表达纯化的纯度,检测结果如图5A显示,一轮纯化还有些许杂带,再二轮纯化后能得到95%以上纯度的scFv。
scFv活性检测:将β-D-多聚赖氨酸溶液100ul 0.1mg/mL提前24小时加入96孔板中,用水洗净晾干。K562细胞、MEG-01细胞、KU812细胞和Jurkat接种于96孔板,每孔1×105个细胞,置于37℃、5%CO2培养箱中培养24h。24h后弃上清,用4%多聚甲醛固定 15min,然后5%BSA溶液封闭30min后,在实验孔中加入不同浓度的anti-CD79b-scFv,孵育2h。弃上清,PBS洗三遍,加入辣根过氧化物酶标记的抗his标签单克隆抗体,37℃孵育1.5h。弃上清用PBS清洗三遍。然后加入3,3',5,5'-四甲基联苯胺100ul显色,最后加入50ul 2M H2SO4停止反应。在450nm OD下测定反应孔的吸光度。检测结果如图5B所示,随着scFv浓度的提高,与细胞的结合量也随之提升。
实施例6:scFv-OA2脂质体的制备与表征
使用后插入法制备scFv-OA2脂质体,方法如下:将DSPE-PEG2000-Mal与TCEP还原后的scFv以20:1的摩尔比混合,4℃反应2h后在冰浴下对PBS透析,制得DSPE-PEG2000-scFv。分别按计算所需量将DSPE-PEG2000-scFv与预制好的空白OA2阳离子脂质体在45℃共孵30min,制备最终scFv摩尔比为0.08%、0.06%、0.01%的scFv-OA2脂质体。使用DLS测量scFv-OA2脂质体的粒径、电位和PDI,结果如表2所示。
表2为本发明的scFv-OA2脂质体的性质(n=3)
上述实验表明,掺入靶头量过大会导致脂质体电位下降,稳定性降低而出现聚集。掺入不高于0.06%的靶头后脂质体的粒径较为稳定,相比于无靶头的空白OA2阳离子脂质体粒径增加约20~30nm,均一性较好,Zeta电位在+10~+40mV之间,可进一步用于后续实验。
不同比例scFv与OA2复合的脂质体对siRNA递送的影响:进一步制备了scFv摩尔百分比为0.08%、0.06%、0.04%、0.02%、0的scFv-OA2脂质体复合物。取对数生长的K562细胞,调整细胞密度为2.5×105个/ml的细胞悬液,接种于6孔板,每孔2ml,分组加入2μg的siRNA,置于37℃、5%CO2恒温培养箱内培养6h,6h后收取细胞,PBS洗三次,过300目筛网,用BD的流式细胞仪检测FITC通道下的荧光强度,比较他们的递送siRNA的能力。
流式细胞术检测结果如图6A所示,与对照组相比,0%、0.04%、0.06%比例的scFv-OA2都能有效递送95%以上的siRNA入K562细胞,考虑能靶向更多白血病细胞,最终选择最高比例的scFv,即0.06%scFv-OA2脂质体作为递送siRNA药物的载体。
scFv-OA2脂质体的透射电子显微镜(TEM)表征:取20μL总脂质浓度为1mg/ml scFv-OA2脂质体滴加到覆有碳膜的铜网上,静置3min后用滤纸吸去脂质体溶液,随后滴加20 μL 2%磷钨酸染色3min,用滤纸吸去染色剂,干燥后通过TEM拍摄脂质体形貌。scFv-OA2脂质体的形貌如图6B所示(标尺为50nm)。上述实验表明,scFv-OA2脂质体呈近球形,并且两者的粒径与DLS测定结果一致。
按照氮磷比(N/P=5)将siRNA与OA2或scFv-OA2脂质体溶液混合,用去离子水稀释至200ul混匀,室温孵育30min,即得siRNA脂质体复合物。通过琼脂糖凝胶电泳实验考察脂质体荷载siRNA的能力,如图6C所示。结果表明,所有阳离子脂质体均能在N/P=5的条件下稳定荷载siRNA,不发生泄漏。
实施例7:siRNA-scFv-OA2脂质体复合物的对体内肿瘤细胞的抑制作用
在裸鼠皮下接种了K562细胞的原位裸鼠模型,评估siRNA-scFv-OA2复合物的抗肿瘤作用。具体而言,将K562细胞注射到4周龄NOD-SCID雌性小鼠侧腹,当肿瘤体积达到50mm3,时,将小鼠随机分为4个治疗组:生理盐水组、空载scFv-OA2组、siRNA-OA2组和siRNA-scFv-OA2组。10ug siRNA/只或等体积的生理盐水或等量的scFv-OA2,每隔1天瘤内给药一次,直到瘤体积超过1500mm3时停止给药。期间监测小鼠肿瘤体积和重量,结果如7A,各组小鼠体重无异常变化,随着时间增长,对照组和NC组的瘤子增长速度显著提高(如图7C和7D),而OA2-siRNA组瘤子生长缓慢,scFv-OA2-siRNA组瘤体积减少,结合最后提取的瘤重数据(图7C),结果发现敲低Rapsyn能显著抑制瘤子的生长,并且带有scFv的siRNA脂质体复合物能更高效的抑制瘤子的生长。
实施例8:本发明的scFv-OA2-siRNA脂质体复合物治疗K562细胞异源移植小鼠模型的生存期检测。
构建K562细胞异源移植小鼠模型:将对数生长期K562细胞1×10^7个/200μl尾静脉注射入4周龄NCG雌鼠中,40只小鼠随机分成4组(n=10):生理盐水组、siNC-scFv-OA2组、siRNA-OA2组和siRNA-scFv-OA2组。7天后开始尾静脉分组给药,每组2.5nmol siRNA。每隔两天给药,记录每只小鼠的生存时间。结果如图8所示,与生理盐水组、siNC-scFv-OA2组和siRNA-OA2组相比,siRNA-scFv-OA2能有效延长小鼠的生存期,而非靶向的siRNA-OA2与生理盐水组和siNC-scFv-OA2组一样,无治疗效果。

Claims (10)

  1. 一种抑制Rapsyn基因表达的脂质体复合物,其特征在于,所述脂质体复合物具有靶头DSPE-PEG2000-scFv,脂质材料为赖氨酸谷氨酸双油醇酯OA2-Glu-Lys;所述脂质体复合物荷载有抑制Rapsyn基因表达的核酸,所述scFv为anti-CD79b-scFv。
  2. 根据权利要求1所述的脂质体复合物,其特征在于,所述核酸包括靶向Rapsyn的反义寡核苷酸、siRNA、miRNA、shRNA、核酸适配体、转录激活RNA中的一种或几种。
  3. 根据权利要求2所述的脂质体复合物,其特征在于,所述siRNA的靶序列如SEQ ID No:1~14所示。
  4. 根据权利要求1所述的脂质体复合物,其特征在于,所述anti-CD79b-scFv氨基酸序列如SEQ ID No:48所示。
  5. 根据权利要求1所述的脂质体复合物,其特征在于,所述靶头DSPE-PEG2000-scFv为DSPE-PEG2000-Mal胶束与anti-CD79b-scFv以摩尔比1:1-50:1混合制得。
  6. 根据权利要求1所述的脂质体复合体,其特征在于,scFv在脂质体复合物的摩尔百分比不高于0.06%。
  7. 根据权利要求1所述的脂质体复合体,其特征在于,所述脂质材料和核酸的氮磷比不低于3:1。
  8. 权利要求1-7任一项所述抑制Rapsyn基因表达的脂质体复合物在制备预防或治疗Rapsyn基因异常表达引起的疾病药物中的用途。
  9. 根据权利要求8所述的用途,其特征在于,所述疾病为白血病,包括淋巴细胞型血液类肿瘤和骨髓细胞型血液类肿瘤,所述淋巴细胞型血液类肿瘤为急性淋巴细胞型血病、急性原始淋巴细胞型白血病、B细胞型白血病、T细胞型白血病、何杰金氏淋巴瘤、非何杰金氏淋巴瘤、毛状细胞淋巴瘤或Burkett氏淋巴瘤;所述骨髓细胞型血液类肿瘤为急性骨髓细胞型白血病、慢性骨髓细胞型白血病、骨髓发育不全症或早幼粒细胞型白血病。
  10. 一种脂质体制剂,其特征在于,包含权利要求1-7任一项所述抑制Rapsyn基因表达的脂质体复合物及药学上可接受的基因药物递送载体。
PCT/CN2023/136574 2022-12-07 2023-12-05 抑制Rapsyn基因表达的脂质体复合物及其应用 WO2024120405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211563690.2A CN115969791A (zh) 2022-12-07 2022-12-07 抑制Rapsyn基因表达的脂质体复合物及其应用
CN202211563690.2 2022-12-07

Publications (1)

Publication Number Publication Date
WO2024120405A1 true WO2024120405A1 (zh) 2024-06-13

Family

ID=85963821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136574 WO2024120405A1 (zh) 2022-12-07 2023-12-05 抑制Rapsyn基因表达的脂质体复合物及其应用

Country Status (2)

Country Link
CN (1) CN115969791A (zh)
WO (1) WO2024120405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115969791A (zh) * 2022-12-07 2023-04-18 中国药科大学 抑制Rapsyn基因表达的脂质体复合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287337A1 (en) * 2001-11-09 2006-12-21 Proteologics, Inc. Trans-golgi network-associated processes, methods and compositions related thereto
CN110799640A (zh) * 2017-06-07 2020-02-14 综合医院公司 表达嵌合抗原受体的t细胞
CN111087317A (zh) * 2019-11-11 2020-05-01 中国药科大学 不饱和阳离子脂质衍生物、制备方法以及在质粒递送系统中的应用
CN115969791A (zh) * 2022-12-07 2023-04-18 中国药科大学 抑制Rapsyn基因表达的脂质体复合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287337A1 (en) * 2001-11-09 2006-12-21 Proteologics, Inc. Trans-golgi network-associated processes, methods and compositions related thereto
CN110799640A (zh) * 2017-06-07 2020-02-14 综合医院公司 表达嵌合抗原受体的t细胞
CN111087317A (zh) * 2019-11-11 2020-05-01 中国药科大学 不饱和阳离子脂质衍生物、制备方法以及在质粒递送系统中的应用
CN115969791A (zh) * 2022-12-07 2023-04-18 中国药科大学 抑制Rapsyn基因表达的脂质体复合物及其应用

Also Published As

Publication number Publication date
CN115969791A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN107075515B (zh) C/EBPα组合物和使用方法
JP6457645B2 (ja) GST−π遺伝子を調節するためのRNA干渉剤
WO2024120405A1 (zh) 抑制Rapsyn基因表达的脂质体复合物及其应用
JP2007528899A (ja) 受容体特異的ナノ容器を使用するショートヘアピンrnaをコードする遺伝子の送達
Huang et al. Non-viral delivery of RNA interference targeting cancer cells in cancer gene therapy
JP2015500826A (ja) トランスフェリンペプチドを有するエキソソーム
US8546349B2 (en) siRNA targeting VEGFA and methods for treatment in vivo
US11304970B2 (en) EGFR gene expression-suppressing siRNA, precursor of same, and applications thereof
US10533173B2 (en) Precursor miRNA and applications in tumor therapy thereof
Wu et al. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes
Liu et al. Combination gene therapy using VEGF-shRNA and fusion suicide gene yCDglyTK inhibits gastric carcinoma growth
JP2018537104A (ja) 高活性及びオフターゲット削減のためのsiRNA構造
JP2013515498A (ja) c−Metの発現を阻害するsiRNA及びこれを含む抗癌組成物
JP2021520402A (ja) 核酸複合体を含有する皮膚透過性伝達体及びその用途
US20240124880A1 (en) DIAGNOSTIC KIT FOR METASTASIS AND INVASION OF BREAST CANCER AND USE OF shRNA MOLECULE FOR SILENCING EXPRESSION OF HUMAN LINC01614
KR102574253B1 (ko) 펩티드 핵산 복합체를 유효성분으로 함유하는 교모세포종 예방 또는 치료용 조성물
US8242094B2 (en) siRNA of NF-kB p105 for inhibiting cell proliferation and migration and a composition comprising same
CN111407891B (zh) 新型自噬受体ccdc50作为靶点在制备治疗病原体感染或癌症的药物中的应用
JP6751185B2 (ja) GST−π遺伝子を調節するためのRNA干渉剤
KR102603739B1 (ko) 암 특이적 핵산 분자 전달용 조성물 및 그 용도
KR102125961B1 (ko) 세포질 내 shRNA의 지속적 발현을 위한 변형된 pT7/T7 폴리머라제 시스템 및 이를 포함하는 리포좀 전달체
US20150111952A1 (en) Method for treating glioma using tarbp2 expression inhibitor
US10561679B2 (en) Double-stranded nucleic acid molecule, DNA, vector, cancer cell growth inhibitor, cancer cell migration inhibitor, and drug
CN114958839A (zh) 抑制肌肉瘤细胞中FOXO1基因表达的siRNA序列及应用
CN116656674A (zh) 一种靶向circRNA的反义核苷酸及其抗肺动脉高压用途