WO2024111390A1 - 化合物及びその製造方法 - Google Patents

化合物及びその製造方法 Download PDF

Info

Publication number
WO2024111390A1
WO2024111390A1 PCT/JP2023/039868 JP2023039868W WO2024111390A1 WO 2024111390 A1 WO2024111390 A1 WO 2024111390A1 JP 2023039868 W JP2023039868 W JP 2023039868W WO 2024111390 A1 WO2024111390 A1 WO 2024111390A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
general formula
hydrogen atom
carbon atoms
Prior art date
Application number
PCT/JP2023/039868
Other languages
English (en)
French (fr)
Inventor
鉄太 忍足
▲高▼橋 由佳 須永
Original Assignee
学校法人帝京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人帝京大学 filed Critical 学校法人帝京大学
Publication of WO2024111390A1 publication Critical patent/WO2024111390A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages

Definitions

  • the present invention relates to a compound and a method for producing the same.
  • This application claims priority based on Japanese Patent Application No. 2022-186458, filed in Japan on November 22, 2022, the contents of which are incorporated herein by reference.
  • Nobiletin represented by the formula below, is a type of flavonoid found in large amounts in the peel of citrus fruits such as Shikwasa and Ponkan.
  • Nobiletin has a variety of physiological activities, including improving dementia, anti-inflammatory effects, inhibiting the proliferation and metastasis of cancer cells, inhibiting lifestyle-related diseases, and inhibiting the production of proMMP-9 (a precursor protein to an enzyme called matrix metalloproteinase-9), and in recent years has been attracting attention as an ingredient in supplements. Therefore, various methods for synthesizing nobiletin have been investigated in order to establish a manufacturing method for it.
  • nobiletin is obtained from the compound represented by formula (92), which is the starting material, through a two-step reaction.
  • the objective of the present invention is to provide a manufacturing method for producing nobiletin and its derivatives with fewer steps using raw materials that are more easily available than before.
  • R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 12 is a hydrogen atom, a hydroxyl group, an alkoxy group, or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q (wherein R 31 is an alkyl group; R 32 is an aryl group; p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from each other, and when q is 2 or 3, q R 32 may be the same or different from each other, with the proviso that p+q is 3);
  • R 13 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy
  • a method for producing a compound comprising the step of obtaining a compound represented by the formula: (wherein R 11 , R 12 , R 13 , R 14 and R 21 are the same as defined above).
  • the compound represented by the general formula (3) is represented by the following general formula (31):
  • R 111 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 121 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 311 ) p (R 321 ) q (wherein R 311 is an alkyl group having 1 to 6 carbon atoms; R 321 is an aryl group having 6 to 15 carbon atoms; p and q each independently represent an integer of 0 to 3, and when p is 2 or 3, p R 311 may be the same or different from each other, and when q is 2 or 3, q R 321 may be the same or different from each other, with the proviso that p+q is 3); R 131 is a hydrogen atom, a hydroxyl group
  • R 112 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 122 is a hydrogen atom, a hydroxyl group, a methoxy group, or a tert-butyldimethylsilyloxy group
  • R 132 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy group, or a tert-butyldimethylsilyloxy group
  • R 142 is a hydrogen atom or a methoxy group
  • R 212 is a hydrogen atom, a bromine atom, a methyl group, a trimethylsilyl group, an acetyl group, or a hydroxymethyl group
  • the compound represented by the general formula (1) is
  • R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 12C is a hydrogen atom, a hydroxyl group, an alkoxy group, or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q (wherein R 31 is an alkyl group; R 32 is an aryl group; p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from each other, and when q is 2 or 3, q R 32 may be the same or different from each other, with the proviso that p+q is 3);
  • R 13C is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzy
  • R 11 , R 12C , R 13C , R 14 and R 21 are the same as defined above, with the proviso that R 12C is not a hydrogen atom, a hydroxyl group or an alkoxy group, and R 13C is not a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group or a dimethoxybenzyloxy group);
  • the group represented by the general formula -OSi(R 31 ) p (R 32 ) q or the group represented by the general formula -OSi(R 41 ) r (R 42 ) s is converted to a hydroxyl group, thereby obtaining a compound represented by the following general formula (1D):
  • R 11 , R 14 and R 21 are the same as defined above;
  • R 12D is a hydrogen atom, a hydroxyl group, or an alkoxy group;
  • R 13D is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group;
  • R 12D is a hydrogen atom or an alkoxy group
  • R 13D is a hydrogen atom, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group.
  • R 012 is an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q
  • R 31 is an alkyl group
  • R 32 is an aryl group
  • p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31s may be the same or different from each other, and when q is 2 or 3, q R 32s may be the same or different from each other, with the proviso that p+q is 3
  • R 013 is an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s (wherein R 41 is an alkyl group; R 42 is an aryl group; r and s each independently represent an integer of 0 to 3, in which when r is 2 or 3, r R 41 may be the same or different from one another, and when s is 2 or 3, s R 42 may be the same or different from one another, with the pro
  • the present invention provides a manufacturing method that can produce nobiletin and its derivatives with fewer steps using raw materials that are more easily available than before.
  • concentration unit "M” means "mol/L.”
  • a method for producing a compound according to one embodiment of the present invention comprises the steps of:
  • R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 12 is a hydrogen atom, a hydroxyl group, an alkoxy group, or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q (wherein R 31 is an alkyl group; R 32 is an aryl group; p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from each other, and when q is 2 or 3, q R 32 may be the same or different from each other, with the proviso that p+q is 3);
  • R 13 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy
  • reaction step (i) a method for producing a compound which has the reaction step (i) and gives compound (1) is sometimes referred to as "production method (i)".
  • both of the compound (2) and compound (3) which are raw materials, can be obtained through a fewer number of steps than conventional methods, as described below, and further, nobiletin or a derivative thereof can be obtained by a one-step reaction using compound (2) and compound (3) and a Lewis acid.
  • compound (1) bismuthin or a derivative thereof
  • compound (1) can be obtained efficiently with fewer steps than conventional methods by selecting compound (2) and compound (3) as production raw materials for compound (1).
  • the compound having such a replaced structure is referred to as a "derivative" of the above-mentioned specific compound.
  • group includes not only an atomic group formed by bonding a plurality of atoms but also a single atom.
  • Compound (1) is the target product of the method for producing a compound of the present embodiment, and is represented by the general formula (1) above.
  • R 21 is a hydrogen atom (—H), a halogen atom, an alkyl group, a trialkylsilyl group, an acyl group, or a hydroxyalkyl group.
  • halogen atom in R 21 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the halogen atom in R21 is preferably a bromine atom.
  • the alkyl group in R21 may be linear, branched, or cyclic, and may have both a chain structure (linear or branched) and a cyclic structure.
  • the alkyl group has a cyclic structure, including the case where the alkyl group is cyclic, the cyclic structure may be either monocyclic or polycyclic.
  • the alkyl group for R 21 preferably has 1 to 10 carbon atoms.
  • examples of the chain-like (linear or branched) alkyl group include chain-like alkyl groups having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a 1-methylbutyl group, an n-hexyl group, a 2-methylpentyl group, a 3-methylpentyl group, a 2,2-dimethylbutyl group, a 2,3-dimethylbutyl group, an n-heptyl group, a 2-methylhexyl group, a 3-methylhexyl group, a 2,2-dimethylbutyl group, a
  • examples of the cyclic (monocyclic or polycyclic) alkyl group include cyclic alkyl groups having 3 to 10 carbon atoms, such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a norbornyl group, an isobornyl group, a 1-adamantyl group, a 2-adamantyl group, and a tricyclodecyl group.
  • the alkyl group for R 21 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atoms.
  • the three alkyl groups bonded to the silicon atom in the trialkylsilyl group for R 21 include the same as the alkyl groups for R 21 described above.
  • the three alkyl groups bonded to the silicon atom may be the same or different, or only some (i.e., only two) may be the same.
  • the combination of these alkyl groups can be arbitrarily selected according to the purpose and is not particularly limited.
  • the number of carbon atoms in the trialkylsilyl group in R 21 is preferably 3 to 12, more preferably 3 to 9, and may be, for example, 3 to 6.
  • Preferred examples of the trialkylsilyl group include tripropylsilyl groups such as trimethylsilyl group (TMS), triethylsilyl group (TES), and triisopropylsilyl group (TIPS), tributylsilyl group, and tert-butyldimethylsilyl group (TBDMS).
  • the acyl group for R 21 preferably has 2 to 11 carbon atoms.
  • the acyl group for R 21 more preferably has 2 to 9 carbon atoms, and further preferably has 2 to 7 carbon atoms. For example, it may be any one of 2 to 5 carbon atoms and 2 to 3 carbon atoms.
  • Examples of the hydroxyalkyl group for R 21 include monovalent groups having a structure in which one hydrogen atom in the alkyl group for R 21 is substituted with a hydroxyl group.
  • the hydroxyalkyl group for R 21 preferably has 1 to 10 carbon atoms.
  • examples of the chain (straight-chain or branched-chain) hydroxyalkyl groups include chain hydroxyalkyl groups having 1 to 10 carbon atoms, such as a hydroxymethyl group (-CH 2 -OH), a hydroxyethyl group (-C 2 H 5 -OH), a hydroxypropyl group (-C 3 H 7 -OH), and a hydroxybutyl group (-C 4 H 9 -OH).
  • examples of the cyclic (monocyclic or polycyclic) hydroxyalkyl groups include cyclic hydroxyalkyl groups having 3 to 10 carbon atoms, such as a hydroxycyclopropyl group (-C 3 H 5 -OH), a hydroxycyclobutyl group (-C 4 H 7 -OH), a hydroxycyclopentyl group (-C 5 H 9 -OH), and a hydroxycyclohexyl group (-C 6 H 11 -OH).
  • the hydroxyalkyl group for R 21 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atoms.
  • R 12 is a hydrogen atom, a hydroxyl group, an alkoxy group, or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q (wherein R 31 is an alkyl group; R 32 is an aryl group; p and q each independently are an integer of 0 to 3, with the proviso that p+q is 3).
  • the alkoxy group for R 12 include monovalent groups having a structure in which a carbon atom having a free valence in the alkyl group for R 21 described above is bonded to an oxygen atom.
  • the alkoxy group for R 12 preferably has 1 to 10 carbon atoms.
  • examples of the chain (straight-chain or branched-chain) alkoxy groups include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentyloxy group, an isopentyloxy group, a neopentyloxy group, a tert-pentyloxy group, a 1-methylbutyloxy group, an n-hexyloxy group, a 2-methylpentyloxy group, a 3-methylpentyloxy group, a 2,2-dimethylbutyloxy group, a 2,
  • Examples of such alkoxy groups include chain-like alkoxy groups having 1 to 10 carbon atoms, such as a 3-dimethylbutyloxy group, an n-heptyloxy group, a 2-methylhe
  • examples of the cyclic (monocyclic or polycyclic) alkoxy groups include cyclic alkoxy groups having 3 to 10 carbon atoms, such as a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a cyclononyloxy group, a cyclodecyloxy group, a norbornyloxy group, an isobornyloxy group, a 1-adamantyloxy group, a 2-adamantyloxy group, and a tricyclodecyloxy group.
  • the alkoxy group for R 12 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atom
  • R 31 in the general formula --OSi(R 31 ) p (R 32 ) q is an alkyl group, and examples of the alkyl group include the same as the alkyl group in R 21 described above.
  • Preferred alkyl groups for R 12 include chain (straight or branched) alkyl groups having 1 to 10 carbon atoms and cyclic (monocyclic or polycyclic) alkyl groups having 3 to 10 carbon atoms.
  • the alkyl group for R 12 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atoms.
  • R 32 in the general formula --OSi(R 31 ) p (R 32 ) q is an aryl group, and the aryl group may be either monocyclic or polycyclic.
  • the aryl group for R 12 preferably has 6 to 15 carbon atoms.
  • Examples of the aryl group in R 12 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 4-methylphenyl group (p-tolyl group), a 3-methylphenyl group (m-tolyl group), a 2-methylphenyl group (o-tolyl group), a 2,3-dimethylphenyl group (2,3-xylyl group), a 2,4-dimethylphenyl group (2,4-xylyl group), a 2,5-dimethylphenyl group (2,5-xylyl group), a 2,6-dimethylphenyl group (2,6-xylyl group), a 3,4-dimethylphenyl group (3,4-xylyl group), a 3,5-dimethylphenyl group (3,5-xylyl group), and a 2,4,6-trimethylphenyl group (mesityl group).
  • the aryl group for R 12 more preferably has 6 to 10 carbon atoms, and may have, for example, 6 to 8 carbon atoms.
  • R 12 p in the general formula --OSi(R 31 ) p (R 32 ) q is the number of R 31 bonded to the silicon atom, and is an integer of 0 to 3.
  • p 2
  • the two R 31 may be the same or different from each other, and when p is 3, the three R 31 may all be the same or all be different, or only two may be the same.
  • the combination of these alkyl groups can be arbitrarily selected depending on the purpose and is not particularly limited.
  • q is the number of R 32 bonded to the silicon atom, and is an integer of 0 to 3.
  • the two R 32 may be the same or different from each other, and when q is 3, the three R 32 may all be the same or all be different, or only two may be the same.
  • the combination of these aryl groups can be arbitrarily selected depending on the purpose and is not particularly limited.
  • p+q is 3.
  • the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in R 12 is a trialkylsilyloxy group, a dialkylmonoarylsilyloxy group, a monoalkyldiarylsilyloxy group, or a triarylsilyloxy group.
  • the trialkylsilyloxy group may, for example, be a monovalent group having a structure in which a silicon atom having a free valence in the trialkylsilyl group for R 21 is bonded to an oxygen atom (—O—).
  • the trialkylsilyloxy group for R 21 preferably has 3 to 12 carbon atoms, more preferably 3 to 9 carbon atoms, and may have, for example, 3 to 6 carbon atoms.
  • trialkylsilyloxy group examples include tripropylsilyloxy groups such as a trimethylsilyloxy group (-OTMS), a triethylsilyloxy group (-OTES), and a triisopropylsilyloxy group (-OTIPS), a tributylsilyloxy group, and a tert-butyldimethylsilyloxy group (-OTBDMS).
  • tripropylsilyloxy groups such as a trimethylsilyloxy group (-OTMS), a triethylsilyloxy group (-OTES), and a triisopropylsilyloxy group (-OTIPS), a tributylsilyloxy group, and a tert-butyldimethylsilyloxy group (-OTBDMS).
  • dialkylmonoarylsilyloxy group examples include monovalent groups having a structure in which one alkyl group in the trialkylsilyloxy group is substituted with an aryl group.
  • the dialkylmonoarylsilyloxy group for R 21 preferably has 8 to 26 carbon atoms, more preferably 8 to 18 carbon atoms, and may have, for example, 8 to 13 carbon atoms.
  • a preferred example of the dialkylmonoarylsilyloxy group is a dimethylphenylsilyloxy group (-ODMPS).
  • the monoalkyldiarylsilyloxy group may, for example, be a monovalent group having a structure in which two alkyl groups in the trialkylsilyloxy group are substituted with aryl groups.
  • the monoalkyldiarylsilyloxy group for R 21 preferably has 13 to 30 carbon atoms, more preferably 13 to 27 carbon atoms, and may be, for example, 13 to 24 carbon atoms.
  • Preferred examples of the monoalkyldiarylsilyloxy group include a methyldiphenylsilyloxy group (-OMDPS) and a tert-butyldiphenylsilyloxy group (-OTBDPS).
  • triarylsilyloxy group examples include monovalent groups having a structure in which three alkyl groups in the trialkylsilyloxy group are substituted with aryl groups.
  • the triarylsilyloxy group for R 21 preferably has 18 to 30 carbon atoms, more preferably 18 to 26 carbon atoms, and may have, for example, 6 to 21 carbon atoms.
  • a preferred example of the triarylsilyloxy group is a triphenylsilyloxy group (-OTPS).
  • R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group (-O-CH 2 C 6 H 5 ), a methoxybenzyloxy group (-O-CH 2 C 6 H 4 OCH 3 ), or a dimethoxybenzyloxy group (-O-CH 2 C 6 H 4 (OCH 3 ) 2 ).
  • R 13 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy group, or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s (wherein R 41 is an alkyl group; R 42 is an aryl group; r and s each independently represent an integer of 0 to 3, and when r is 2 or 3, r R 41s may be the same or different from each other, and when s is 2 or 3, s R 42s may be the same or different from each other, with the proviso that r+s is 3).
  • R 13 is a group other than the group represented by the general formula --OSi(R 41 ) r (R 42 ) s
  • R 11 and R 13 may be the same or different.
  • Examples of the alkoxy group in R 11 and R 13 include the same alkoxy groups as those in R 12 .
  • the number of carbon atoms in the alkoxy group in R 11 and R 13 is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 6, and may be, for example, any one of 1 to 4 and 1 to 2.
  • the methoxybenzyloxy group in R 11 and R 13 includes an o-methoxybenzyloxy group (2-methoxybenzyloxy group), an m-methoxybenzyloxy group (3-methoxybenzyloxy group), and a p-methoxybenzyloxy group (4-methoxybenzyloxy group), and the p-methoxybenzyloxy group is preferable.
  • Examples of the dimethoxybenzyloxy group in R 11 and R 13 include a 2,3-dimethoxybenzyloxy group, a 3,4-dimethoxybenzyloxy group, and a 3,5-dimethoxybenzyloxy group.
  • R41 in the general formula -OSi( R41 ) r ( R42 ) s is an alkyl group.
  • R41 include the same as R31 in the general formula -OSi( R31 ) p ( R32 ) q in R12 .
  • the number of carbon atoms in the alkyl group for R 13 is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 6, and may be, for example, any one of 1 to 4 and 1 to 2.
  • R 42 in the general formula --OSi(R 41 ) r (R 42 ) s is an aryl group.
  • R 42 include the same as R 32 in the general formula --OSi(R 31 ) p (R 32 ) q in the above-mentioned R 12 .
  • the aryl group for R 13 preferably has 6 to 15 carbon atoms, more preferably 6 to 10 carbon atoms, and may have, for example, 6 to 8 carbon atoms.
  • r is the number of R 41 bonded to the silicon atom, and is an integer of 0 to 3.
  • the two R 41 may be the same or different from each other, and when r is 3, the three R 41 may all be the same or all be different, or only two may be the same.
  • the combination of these alkyl groups can be arbitrarily selected depending on the purpose and is not particularly limited.
  • s is the number of R 42 bonded to the silicon atom and is an integer of 0 to 3.
  • s is 2, two R 42 may be the same or different from each other, and when s is 3, three R 42 may all be the same or all be different, or only two may be the same.
  • r+s is 3.
  • the group represented by the general formula -OSi(R 41 ) r (R 42 ) s in R 13 is similar to the group represented by the general formula -OSi(R 31 ) p (R 32 ) q in R 12 , and may be the same as or different from the group represented by the general formula -OSi(R 31 ) p (R 32 ) q .
  • R 14 is a hydrogen atom or an alkoxy group.
  • Examples of the alkoxy group in R 14 include the same alkoxy groups as those in R 12 .
  • the alkoxy group for R 14 preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and further preferably 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atoms.
  • An example of a preferred compound (1) is a compound (1) (sometimes referred to as "compound (1)-1" in this specification) in which R 11 is a hydrogen atom or a hydroxyl group; R 12 is an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q ; R 13 is an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s; the alkoxy groups in R 12 and R 13 may be the same or different from each other, and the group represented by -OSi(R 31 ) p (R 32 ) q in R 12 and the group represented by the general formula -OSi(R 41 ) r (R 42 ) s in R 13 may be the same or different from each other; R 14 is a hydrogen atom; and R 21 is a hydrogen atom, a halogen atom, an alkyl group, a trialkylsilyl group, or an acyl
  • compound (1) examples include compound (1) in which R 11 and R 21 are hydrogen atoms; and R 12 , R 13 , and R 14 are each independently an alkoxy group (sometimes referred to as "compound (1)-2" in this specification).
  • R 12 , R 13 and R 14 are all alkoxy groups, and these alkoxy groups may be all the same, all different, or only some (i.e., only two) may be the same.
  • preferred compound (1) include compound (1) in which R 11 , R 12 and R 14 are hydrogen atoms; R 13 is an alkoxy group; and R 21 is a hydrogen atom, an alkyl group, or a hydroxyalkyl group (sometimes referred to as "compound (1)-3" in this specification).
  • preferred compound (1) include compound (1) in which R 11 , R 14 and R 21 are hydrogen atoms; R 12 is an alkoxy group; and R 13 is a hydroxyl group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group (sometimes referred to as "compound (1)-4" in this specification).
  • preferred compound (1) include compound (1) in which R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group; R 12 is a hydrogen atom or a hydroxyl group; and R 13 , R 14 , and R 21 are hydrogen atoms (sometimes referred to as "compound (1)-5" in this specification).
  • Compound (1) is preferably a compound represented by the following general formula (11) (sometimes referred to as “compound (11)” in this specification).
  • R 111 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 121 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 311 ) p (R 321 ) q (wherein R 311 is an alkyl group having 1 to 6 carbon atoms; R 321 is an aryl group having 6 to 15 carbon atoms; p and q each independently represent an integer of 0 to 3, and when p is 2 or 3, p R 311 may be the same or different from each other, and when q is 2 or 3, q R 321 may be the same or different from each other, with the proviso that p+q is 3); R 131 is a hydrogen atom, a hydroxyl group
  • R 121 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula --OSi(R 311 ) p (R 321 ) q .
  • the alkoxy group having 1 to 6 carbon atoms in R 121 is the same as the alkoxy group having 1 to 6 carbon atoms in R 12 .
  • the alkyl group having 1 to 6 carbon atoms in R 311 is the same as the alkyl group having 1 to 6 carbon atoms in R 31 .
  • the aryl group having 6 to 15 carbon atoms in R 321 is the same as the aryl group having 6 to 15 carbon atoms in R 32 .
  • --OSi(R 311 ) p (R 321 ) q p and q are the same as those in the general formula --OSi(R 31 ) p (R 32 ) q .
  • R 111 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group.
  • R 131 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy group, or a group represented by the general formula --OSi(R 411 ) r (R 421 ) s .
  • R 111 and R 131 may be the same as or different from each other.
  • the alkoxy group having 1 to 6 carbon atoms in R 111 and R 131 is the same as the alkoxy group having 1 to 6 carbon atoms in R 13 or R 12 .
  • the alkyl group having 1 to 6 carbon atoms in R 411 is the same as the alkyl group having 1 to 6 carbon atoms in R 41 .
  • the aryl group having 6 to 15 carbon atoms in R 421 is the same as the aryl group having 6 to 15 carbon atoms in R 42 .
  • r and s are the same as those in the general formula --OSi(R 41 ) r (R 42 ) s .
  • R 141 is a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms.
  • the alkoxy group having 1 to 6 carbon atoms in R 141 is the same as the alkoxy group having 1 to 6 carbon atoms in R 14 or R 12 .
  • R 211 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, an acyl group having 2 to 7 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms in R 211 is the same as the alkyl group having 1 to 6 carbon atoms in R 21 .
  • the trialkylsilyl group having 3 to 9 carbon atoms in R 211 is the same as the trialkylsilyl group having 3 to 9 carbon atoms in R 21 .
  • the acyl group having 2 to 7 carbon atoms in R 211 is the same as the acyl group having 2 to 7 carbon atoms in R 21 .
  • the hydroxyalkyl group having 1 to 6 carbon atoms in R 211 is the same as the hydroxyalkyl group having 1 to 6 carbon atoms in R 21 .
  • R 111 is a hydrogen atom or a hydroxyl group
  • R 121 is an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 311 ) p (R 321 ) q
  • R 311 is an alkyl group having 1 to 6 carbon atoms
  • R 321 is an aryl group having 6 to 15 carbon atoms
  • p and q each independently represent an integer of 0 to 3, and when p is 2 or 3, p R 311 may be the same or different from one another, and when q is 2 or 3, q R 321 may be the same or different from one another, with the proviso that p+q is 3)
  • R 131 is an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 411 ) r (R 421 ) s (wherein R 411 is an alkyl group having 1 to 6 carbon
  • compound (11) examples include compound (11) in which R 111 and R 211 are hydrogen atoms; and R 121 , R 131 and R 141 are each independently an alkoxy group having 1 to 6 carbon atoms (sometimes referred to as "compound (11)-2" in this specification).
  • Compound (11)-2 is a preferred one of the above-mentioned compounds (1)-2.
  • R 121 , R 131 and R 141 are all alkoxy groups having 1 to 6 carbon atoms, and these alkoxy groups may be all the same, all different, or only some (i.e., only two) may be the same.
  • preferable compound (11) examples include compound (11) (sometimes referred to as "compound (11)-3" in this specification) in which R 111 , R 121 and R 141 are hydrogen atoms; R 131 is an alkoxy group having 1 to 6 carbon atoms; and R 211 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms.
  • Compound (11)-3 is a preferred one of the above-mentioned compounds (1)-3.
  • preferred compound (11) include compound (11) (sometimes referred to as "compound (11)-4" in this specification) in which R 111 , R 141 and R 211 are hydrogen atoms; R 121 is an alkoxy group having 1 to 6 carbon atoms; and R 131 is a hydroxyl group, a benzyloxy group, a methoxybenzyloxy group or a dimethoxybenzyloxy group.
  • Compound (11)-4 is a preferred one of the above-mentioned compounds (1)-4.
  • preferred compound (11) include compound (11) in which R 111 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group; R 121 is a hydrogen atom or a hydroxyl group; and R 131 , R 141 , and R 211 are hydrogen atoms (sometimes referred to as "compound (11)-5" in this specification).
  • Compound (11)-5 is a preferred one of the above-mentioned compounds (1)-5.
  • Compound (1) is more preferably a compound represented by the following general formula (111) (sometimes referred to as “compound (111)" in this specification).
  • R 112 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 122 is a hydrogen atom, a hydroxyl group, a methoxy group, or a tert-butyldimethylsilyloxy group
  • R 132 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy group, or a tert-butyldimethylsilyloxy group
  • R 142 is a hydrogen atom or a methoxy group
  • R 212 is a hydrogen atom, a bromine atom, a methyl group, a trimethylsilyl group, an acetyl group, or a hydroxymethyl group.
  • An example of a preferred compound (111) is compound (111) (sometimes referred to as "compound (111)-1" in this specification) in which R 112 is a hydrogen atom or a hydroxyl group; R 122 and R 132 are each independently a methoxy group or a tert-butyldimethylsilyloxy group; R 142 is a hydrogen atom; and R 212 is a hydrogen atom, a bromine atom, a methyl group, a trimethylsilyl group, or an acetyl group.
  • Compound (111)-1 is a preferred one of the above-mentioned compounds (11)-1.
  • compound (111) examples include compound (111) in which R 112 and R 212 are hydrogen atoms; and R 122 , R 132 and R 142 are methoxy groups (sometimes referred to as "compound (111)-2" in this specification).
  • Compound (111)-2 is a preferred one of the above-mentioned compounds (11)-2.
  • preferred compound (111) include compound (111) in which R 112 , R 122 and R 142 are hydrogen atoms; R 132 is a methoxy group; and R 212 is a hydrogen atom, a methyl group, or a hydroxymethyl group (sometimes referred to as “compound (111)-3” in this specification).
  • Compound (111)-3 is a preferred one of the above-mentioned compounds (11)-3.
  • preferred compound (111) include compound (111) in which R 112 , R 142 and R 212 are hydrogen atoms; R 122 is a methoxy group; and R 132 is a hydroxyl group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group (sometimes referred to as “compound (111)-4” in this specification).
  • Compound (111)-4 is a preferred one of the above-mentioned compounds (11)-4.
  • preferred compound (111) include compound (111) in which R 112 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group; R 122 is a hydrogen atom or a hydroxyl group; and R 132 , R 142 , and R 212 are hydrogen atoms (sometimes referred to as "compound (111)-5" in this specification).
  • Compound (111)-5 is a preferred one of the above-mentioned compounds (11)-5.
  • compound (1) is not limited to these.
  • the compound (2) is one of the raw materials for producing the compound (1) and is represented by the above general formula (2).
  • X 1 is a leaving group.
  • the leaving group in X1 may be any group known in the art.
  • the compound (2) used in the reaction step (i) may be one type or two or more types, and when two or more types are used, the combination and ratio thereof can be selected arbitrarily according to the purpose. In the production method, even if two or more types of compound (2) are used in combination, the same type of compound (1) is obtained.
  • Compound (2) can be produced by a known method.
  • compound (2) can be produced using 2,3,4,5,6-pentamethoxybenzoic acid represented by the following formula, which is a precursor of compound (2).
  • Compound (2) in which X1 is a chlorine atom can be produced by converting 2,3,4,5,6-pentamethoxybenzoic acid into an acid chloride.
  • the conversion of 2,3,4,5,6-pentamethoxybenzoic acid into an acid chloride can be carried out by a known method for converting a carboxylic acid into an acid chloride.
  • the acid chloride conversion can be carried out, for example, using as a chlorinating agent oxalyl chloride ((COCl) 2 ), thionyl chloride (CSCl 2 ), sulfuryl chloride (SO 2 Cl 2 ), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), phosphorus oxychloride (POCl 3 ), or the like.
  • the acid chloride may be formed in the presence of, for example, N,N-dimethylformamide (DMF). DMF may be used in a catalytic amount or may also serve as a solvent.
  • DMF N,N-dimethylformamide
  • 2,3,4,5,6-Pentamethoxybenzoic acid can be obtained by known methods, such as the method described in Bioorg. Med. Chem. Lett., 21, 4540 (2011).
  • the compound (3) is the other raw material for producing the compound (1) and is represented by the above general formula (3).
  • R 11 , R 12 , R 13 , R 14 and R 21 in formula (3) are the same as R 11 , R 12 , R 13 , R 14 and R 21 in formula (1), respectively.
  • R 11 , R 12 , R 13 , R 14 and R 21 in the general formula (3) are determined according to the structure of the target compound (1), and for example, preferred ones in R 11 , R 12 , R 13 , R 14 and R 21 in the general formula (3) are the same as preferred ones in R 11 , R 12 , R 13 , R 14 and R 21 in the general formula (1).
  • Preferred compounds (3) include those corresponding to the preferred compounds (1) described above.
  • Compound (3) is preferably a compound represented by the following general formula (31) (sometimes referred to as “compound (31)" in this specification).
  • R 111 , R 121 , R 131 , R 141 and R 211 are the same as defined above.
  • R 111 , R 121 , R 131 , R 141 and R 211 in the general formula (31) are the same as R 111 , R 121 , R 131 , R 141 and R 211 in the general formula (11), respectively.
  • R 111 , R 121 , R 131 , R 141 and R 211 in the general formula (31) are determined according to the structure of the target compound (11), and for example, the preferred ones in R 111 , R 121 , R 131 , R 141 and R 211 in the general formula (31) are the same as the preferred ones in R 111 , R 121 , R 131 , R 141 and R 211 in the general formula (11).
  • Preferred compounds (31) include those corresponding to the preferred compounds (11) described above.
  • Compound (3) is more preferably a compound represented by the following general formula (311) (sometimes referred to as “compound (311)" in this specification).
  • R 112 , R 122 , R 132 , R 142 and R 212 are the same as defined above.
  • R 112 , R 122 , R 132 , R 142 and R 212 in the general formula (311) are the same as R 112 , R 122 , R 132 , R 142 and R 212 in the general formula (111), respectively.
  • R 112 , R 122 , R 132 , R 142 and R 212 in the general formula (311) are determined according to the structure of the target compound (111), and for example, the preferred ones in R 112 , R 122 , R 132 , R 142 and R 212 in the general formula (311) are the same as the preferred ones in R 112 , R 122 , R 132 , R 142 and R 212 in the general formula (111).
  • Preferred compounds (311) include those corresponding to the preferred compounds (111) described above.
  • the compound (3) used in the reaction step (i) may be one type or two or more types. When two or more types are used, the combination and ratio thereof can be selected arbitrarily according to the purpose. When two or more types of compound (3) are used in combination, two or more types of compound (1) are obtained simultaneously.
  • the amount of compound (3) used is preferably 1 to 3 times the molar amount of compound (2), more preferably 1 to 2.5 times the molar amount, and even more preferably 1 to 1.5 times the molar amount.
  • the amount of compound (3) used is equal to or greater than the lower limit, the yield of compound (1) is increased.
  • the amount of compound (3) used is equal to or less than the upper limit, excessive use of compound (3) is suppressed.
  • the compound (3) can be produced by a known method.
  • a compound represented by the following general formula (3A) (sometimes referred to as "compound (3A)" in this specification), which is compound (3) when R21 is a hydrogen atom, can be produced by synthesis from a compound represented by the following general formula (3Ab) via a compound represented by the following general formula (3Aa).
  • This reaction is known as Corey-Fuchs alkyne synthesis.
  • a compound represented by the following general formula (3B) (sometimes referred to as "compound (3B)" in this specification), which is compound (3) in which R 21 is a group other than a hydrogen atom (i.e., a halogen atom, an alkyl group, a trialkylsilyl group, an acyl group, or a hydroxyalkyl group), can be produced by a known method using compound (3A).
  • a strong base such as n-butyllithium or sodium amide is used to abstract a hydrogen atom (R 21 in the case of a hydrogen atom) from the acetylene moiety in compound (3A), and the alkynyl anion thus generated is reacted with various compounds for introducing R 21 in the case of a group other than a hydrogen atom (e.g., N-halosuccinimide, N-halophthalimide, alkyl halide, alkylsulfonate, alkoxyalkyl halide, trialkylsilyl halide, etc.), thereby producing compound (3B).
  • a strong base such as n-butyllithium or sodium amide is used to abstract a hydrogen atom (R 21 in the case of a hydrogen atom) from the acetylene moiety in compound (3A), and the alkynyl anion thus generated is reacted with various compounds for introducing R 21 in the case of a group other than a hydrogen atom (
  • R 11 , R 12 , R 13 and R 14 are the same as defined above;
  • R 21B is a halogen atom, an alkyl group, a trialkylsilyl group, an acyl group or a hydroxyalkyl group.
  • nobiletin or a derivative thereof can be obtained efficiently with fewer steps than conventional methods.
  • Lewis acid promotes the reaction between compound (2) and compound (3).
  • Preferred Lewis acids include, for example, metal salts such as metal halides and metal trifluoromethanesulfonates; and semimetal salts such as semimetal halides.
  • metal halides include metal fluorides, metal chlorides, metal bromides, and metal iodides.
  • metal species constituting the metal salt include tin (Sn), titanium (Ti), iron (Fe), aluminum (Al), zirconium (Zr), niobium (Nb), scandium (Sc), indium (In), gallium (Ga), ytterbium (Yb), cadmium (Cd), etc.
  • Examples of the metalloid halides include metalloid fluorides, metalloid chlorides, metalloid bromides, and metalloid iodides.
  • Examples of the metalloid (semimetal) species constituting the metalloid salt include boron (B), germanium (Ge), arsenic (As), antimony (Sb), etc.
  • Examples of preferred boron fluorides include boron trifluoride diethyl ether complex ( BF3.O ( C2H5 ) 2 ), boron trifluoride phenol complex ( BF3.2C6H5OH ), etc.
  • the Lewis acid used in the reaction step (i) may be one type or two or more types. When two or more types are used, the combination and ratio of the Lewis acids can be selected arbitrarily according to the purpose.
  • Preferred Lewis acids include, for example, metal halides, and more preferred Lewis acids include, for example, metal chlorides.
  • the Lewis acid is more preferably tin(IV) chloride (SnCl 4 ), titanium(IV) chloride (TiCl 4 ), iron(III) chloride (FeCl 3 ) or aluminum chloride (AlCl 3 ).
  • the amount of Lewis acid used is preferably 1 to 5 times the molar amount of compound (2) used, more preferably 1 to 4 times the molar amount, and even more preferably 1 to 3 times the molar amount.
  • the amount of Lewis acid used is equal to or more than the lower limit, the reaction rate of compound (2) and compound (3) (production rate of compound (1)) becomes higher, and the yield of compound (1) becomes higher.
  • the amount of Lewis acid used is equal to or less than the upper limit, excessive use of Lewis acid is suppressed.
  • a solvent that is, the reaction between compound (2) and compound (3) is preferably carried out using a solvent.
  • the intended reaction can be carried out more smoothly.
  • the solvent is not particularly limited as long as it is liquid at room temperature and does not interfere with the reaction between compound (2) and compound (3), and is preferably capable of dissolving either or both of compound (2) and compound (3).
  • room temperature means a temperature that is neither particularly cold nor hot, i.e., a normal temperature, such as a temperature between 15 and 25°C.
  • the solvent is preferably an organic solvent. More specifically, preferred solvents include, for example, halogenated hydrocarbons such as methylene chloride (CH 2 Cl 2 ), chloroform (CHCl 3 ), and carbon tetrachloride (CCl 4 ); aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene ((C 6 H 4 (CH 3 ) 2 ); and nitriles such as acetonitrile (CH 3 CN) and propionitrile (C 2 H 5 CN).
  • halogenated hydrocarbons such as methylene chloride (CH 2 Cl 2 ), chloroform (CHCl 3 ), and carbon tetrachloride (CCl 4 )
  • aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene ((C 6 H 4 (CH 3 ) 2 )
  • nitriles such as ace
  • the amount of solvent used ([amount of solvent used (L)]/([amount of compound (2) used (mol)]+[amount of compound (3) used (mol)]+[amount of Lewis acid used (mol)])) per mole of the total amount of compound (2), compound (3) and Lewis acid used is preferably 0.6 to 3 L, more preferably 0.8 to 2.5 L, and even more preferably 1 to 2 L.
  • the amount of solvent used is within such a range, the effect obtained by using the solvent is enhanced. Furthermore, when the amount of solvent used is equal to or less than the upper limit, excessive use of the solvent is suppressed.
  • a component other than compound (2), compound (3), Lewis acid, and solvent may be used within a range that does not impair the effects of the present invention.
  • the other components can be arbitrarily selected depending on the purpose and are not particularly limited.
  • the other components used in the reaction step (i) may be one type only, or two or more types. When two or more types are used, the combination and ratio of the other components can be selected arbitrarily according to the purpose.
  • reaction step (i) compound (2), compound (3), and a Lewis acid are mixed and the resulting mixture is stirred, whereby compound (2) and compound (3) are reacted to produce compound (1).
  • nobiletin or a derivative thereof can be obtained in a one-step reaction.
  • the order in which the components are mixed is not particularly limited.
  • An example of a preferred method for mixing the components is a mixing method in which compound (2) and compound (3) are mixed together, and then a Lewis acid is added to the resulting first mixture to prepare a second mixture.
  • An example of a preferred method for mixing the components when a solvent is used is a mixing method in which compound (2), compound (3), and a solvent are mixed, and a Lewis acid solution obtained by dissolving a Lewis acid in a solvent is added to the first mixture obtained, to prepare a second mixture.
  • a solvent it is preferable that compound (2) and compound (3) are dissolved in the first mixture (in other words, the first mixture is a solution of compound (2) and compound (3)).
  • the Lewis acid solution is preferably added dropwise to the first mixture. By adding the Lewis acid solution dropwise, excessive heat generation in the reaction solution can be avoided and the amount of by-products produced can be reduced.
  • the reaction of compound (2) with compound (3) is preferably carried out at room temperature or lower, and more preferably under cooled conditions (in other words, under temperature conditions below room temperature) at least in the initial stage of the reaction. By doing so, the amount of by-products produced can be reduced.
  • Examples of the method for carrying out the reaction of compound (2) and compound (3) under cooled conditions at least in the initial stage of the reaction include a method for carrying out the reaction by dropping the Lewis acid solution to the first mixture under cooled conditions and stirring the obtained second mixture as it is under cooled conditions; a method for carrying out the reaction by dropping the Lewis acid solution to the first mixture under cooled conditions and stirring the obtained second mixture as it is under cooled conditions for a certain period of time, and then stirring the second mixture at room temperature without cooling; and a method for carrying out the reaction by dropping the Lewis acid solution to the first mixture under cooled conditions and stirring the obtained second mixture at room temperature without cooling.
  • the reaction temperature under the cooling conditions is preferably 15° C. or lower, more preferably 10° C. or lower, and even more preferably 5° C. or lower.
  • the lower limit of the reaction temperature under the cooling conditions is not particularly limited as long as the reaction between compound (2) and compound (3) is possible.
  • the reaction temperature is preferably ⁇ 5° C. or higher in order to accelerate the progress of the reaction.
  • the reaction time when compound (2) and compound (3) are reacted can be appropriately adjusted taking into consideration other reaction conditions.
  • the reaction time is preferably 1 to 36 hours, and may be, for example, any one of 1 to 24 hours, 1 to 8 hours, and 1 to 4 hours.
  • the reaction time is equal to or more than the lower limit, the yield of compound (1) is higher.
  • the reaction time is equal to or less than the upper limit, an excessively long reaction time can be avoided.
  • the time for adding the Lewis acid solution may be appropriately adjusted so as to prevent excessive heat generation in the reaction solution, and may be, for example, 3 to 60 minutes.
  • the time for adding the Lewis acid solution dropwise is included in the reaction time when the compound (2) and the compound (3) are reacted with each other.
  • reaction liquid refers to a liquid obtained by mixing compound (2) and compound (3), in which the reaction between compound (2) and compound (3) is in progress or has been completed.
  • reaction liquid a liquid in which a Lewis acid has been mixed into the first mixture but a part of the Lewis acid has not yet been mixed and the reaction between compound (2) and compound (3) is in progress is the reaction liquid, whereas a liquid in which the reaction between compound (2) and compound (3) is not in progress is not the reaction liquid.
  • second mixture refers to a liquid obtained by mixing the entire amount of compound (2), the entire amount of compound (3), and the entire amount of Lewis acid.
  • the liquid in a state where the reaction between compound (2) and compound (3) has not progressed is the second mixture, but is not the reaction liquid.
  • the liquid in a state where the reaction between compound (2) and compound (3) has progressed or has been completed is both the second mixture and the reaction liquid.
  • reaction step (i) the reaction of compound (2) with compound (3) in the presence of a Lewis acid is preferably carried out in an atmosphere of an inert gas such as argon gas, helium gas, or nitrogen gas.
  • an inert gas such as argon gas, helium gas, or nitrogen gas.
  • reaction step (i) the reaction between compound (2) and compound (3) can be terminated by adding water to the reaction solution.
  • the reaction solution can be subjected to post-treatment as necessary by a known method to extract compound (1). That is, as appropriate, after-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration can be performed alone or in combination of two or more, and compound (1) can be extracted by concentration, crystallization, reprecipitation, distillation, sublimation, column chromatography, etc., as necessary.
  • the extracted compound (1) can be purified by performing operations such as crystallization, reprecipitation, distillation, sublimation, column chromatography, extraction, stirring and washing of crystals with a solvent, alone or in combination of two or more, once or more, as necessary.
  • the reaction solution can be subjected to post-treatment as necessary, and then used for the intended purpose without extracting compound (1). For example, compound (1) can be used for the next intended reaction without being extracted.
  • the post-treatment can be preferably performed by washing with an aqueous solution of an inorganic acid or an organic acid, thereby separating the Lewis acid from the reaction solution.
  • the aqueous solution may be a buffer solution.
  • the inorganic acid include hydrochloric acid and phosphoric acid.
  • the organic acid include carboxylic acids, and the use of polycarboxylic acids can separate the Lewis acid from the reaction solution more efficiently.
  • the benzyloxy group, the methoxybenzyloxy group, or the dimethoxybenzyloxy group can be converted to a hydroxyl group by reduction reaction by catalytic hydrogenation using palladium on carbon (Pd/C) or palladium hydroxide on activated carbon (Pd(OH) 2 /C). This is a well-known reaction as a deprotection reaction of a hydroxyl group.
  • Pd/C palladium on carbon
  • Pd(OH) 2 /C palladium hydroxide on activated carbon
  • compound (1) in which R 11 or R 13 is a hydroxyl group may be obtained at the same time as compound (1) in which R 11 or R 13 is a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group.
  • R 11 or R 13 in some of the compounds (1) is subsequently converted to a hydroxyl group (deprotected) in the reaction solution.
  • the ratio of the compound (1) in which R 11 or R 13 is a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group to the compound (1) in which R 11 or R 13 is a hydroxyl group in the reaction solution may be adjustable by adjusting the reaction conditions.
  • the compound (1) in which R 11 or R 13 is a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group and the compound (1) in which R 11 or R 13 is a hydroxyl group can be separated from each other by purifying the compound (1) after removing it from the reaction solution as a mixture of these or without removing it from the reaction solution.
  • compound (1) can be confirmed by known techniques, such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and infrared spectroscopy (IR).
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • R 111 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 121 is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 311 ) p (R 321 ) q (wherein R 311 is an alkyl group having 1 to 6 carbon atoms; R 321 is an aryl group having 6 to 15 carbon atoms; p and q each independently represent an integer of 0 to 3, and when p is 2 or 3, p R 311 may be the same or different from each other, and when q is 2 or 3, q R 321 may be the same or different from each other, with the proviso that p+q is 3); R 131 is a hydrogen atom, a hydroxyl group
  • R 112 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 122 is a hydrogen atom, a hydroxyl group, a methoxy group, or a t-butyldimethylsilyloxy group
  • R 132 is a hydrogen atom, a hydroxyl group, a methoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzyloxy group, or a t-butyldimethylsilyloxy group
  • R 142 is a hydrogen atom or a methoxy group
  • R 212 is a hydrogen atom, a bromine atom, a methyl group, a trimethylsilyl group, an acetyl group, or a hydroxymethyl group.
  • a method for producing a compound according to one embodiment of the present invention comprises the steps of:
  • R 11 is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group
  • R 12C is a hydrogen atom, a hydroxyl group, an alkoxy group, or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q (wherein R 31 is an alkyl group; R 32 is an aryl group; p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from each other, and when q is 2 or 3, q R 32 may be the same or different from each other, with the proviso that p+q is 3);
  • R 13C is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, a dimethoxybenzy
  • R 11 , R 14 and R 21 are the same as defined above;
  • R 12D is a hydrogen atom, a hydroxyl group, or an alkoxy group;
  • R 13D is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group;
  • R 12D is a hydrogen atom or an alkoxy group
  • R 13D is a hydrogen atom, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group.
  • compound (1D) to obtain a compound represented by the following formula (Herein, this may be referred to as “deprotection step”).
  • deprotection step a production method for a compound which comprises the reaction step (ii) and the deprotection step and gives compound (1D) is sometimes referred to as “production method (ii)”.
  • the silicon-containing group represented by the general formula -OSi(R 31 ) p (R 32 ) q and the silicon-containing group represented by the general formula -OSi(R 41 ) r (R 42 ) s can be regarded as hydroxyl groups protected with silyl-based protecting groups. These silicon-containing groups can be converted to hydroxyl groups by deprotection (desilylation) using a known method.
  • Production method (ii) is a method of producing compound (1D), which is a nobiletin derivative of a different type from compound ( 1C ) (compound ( 1 )), by obtaining , as compound (1), a specific range of compound (1C) having either one or both of a silicon-containing group represented by the general formula -OSi(R 31 ) p (R 32 ) q and a silicon-containing group represented by the general formula -OSi(R 41 ) r (R 42 ) s by the above-mentioned production method (i), and then deprotecting the silicon-containing group in this compound (1C).
  • R 13C when R 12C is a hydrogen atom, a hydroxyl group or an alkoxy group, R 13C is a group represented by the general formula -OSi(R 41 ) r (R 42 ) s , and when R 12C is a group represented by the general formula -OSi(R 31 ) p (R 32 ) q , R 13C may be either a group represented by the general formula -OSi(R 41 ) r (R 42 ) s or another group.
  • R 12C when R 13C is a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group, R 12C is a group represented by the general formula -OSi(R 31 ) p (R 32 ) q , and when R 13C is a group represented by the general formula -OSi(R 41 ) r (R 42 ) s , R 12C may be either a group represented by the general formula -OSi(R 31 ) p (R 32 ) q or another group. Except for these points, R 12C and R 13C in general formula (3C) are the same as R 12 and R 13 in general formula (3), respectively.
  • compound (3C) and compound (1C) are the same as compound (3) and compound (1), respectively, except that compound ( 3C ) and compound (1C) necessarily have either or both of a group represented by the general formula -OSi(R 31 ) p (R 32 ) q and a group represented by the general formula -OSi(R 41 ) r (R 42 ) s.
  • An example of a preferred compound (1C) is one in which R 11 is a hydrogen atom or a hydroxyl group; R 12C is an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q ; R 13C is an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s ; the alkoxy groups in R 12C and R 13C may be the same or different, and the group represented by -OSi(R 31 ) p (R 32 ) q in R 12C and the group represented by the general formula -OSi(R 41 ) r (R 42 ) s in R 13C may be the same or different; with the proviso that R 12C and R 13C are not both alkoxy groups, R 14 is a hydrogen atom; Examples of the compound (1C) (sometimes referred to as "compound (1C)-1" in this specification) include a compound (1C) in which
  • R 12C is preferably an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 311 ) p (R 321 ) q (wherein R 311 is an alkyl group having 1 to 6 carbon atoms; R 321 is an aryl group having 6 to 15 carbon atoms; p and q each independently represent an integer of 0 to 3, and when p is 2 or 3, p R 311 may be the same or different from one another, and when q is 2 or 3, q R 321 may be the same or different from one another, with the proviso that p+q is 3).
  • R 13C is preferably an alkoxy group having 1 to 6 carbon atoms, or a group represented by the general formula -OSi(R 411 ) r (R 421 ) s (wherein R 411 is an alkyl group having 1 to 6 carbon atoms; R 421 is an aryl group having 6 to 15 carbon atoms; r and s each independently represent an integer of 0 to 3, and when r is 2 or 3, r R 411 may be the same or different from one another, and when s is 2 or 3, s R 421 may be the same or different from one another, with the proviso that r+s is 3).
  • R 141 is preferably a hydrogen atom.
  • R 211 is preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, or an acyl group having 2 to 7 carbon atoms.
  • preferred compounds (1C) include the above compounds (1)-106 to 131. However, compound (1C) is not limited to these.
  • reaction step (ii) is the same as the reaction step (i) except that compound (3C) is used instead of compound (3).
  • the reaction solution may be post-treated as necessary by a known method in the same manner as in the reaction step (i) in the production method (i) to extract compound (1C). Furthermore, the extracted compound (1C) may be further purified as necessary in the same manner as in the case of compound (1) in the production method (i). Alternatively, after completion of the reaction step (ii), the reaction solution may be post-treated as necessary, and the next step (e.g., the deprotection step) may be carried out without extracting compound (1C).
  • the next step e.g., the deprotection step
  • deprotecting agent examples include fluorine atom-containing compounds such as tetrabutylammonium fluoride (TBAF), tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF), and ammonium fluoride; acids; and bases.
  • TBAF tetrabutylammonium fluoride
  • TASF tris(dimethylamino)sulfonium difluorotrimethylsilicate
  • ammonium fluoride acids; and bases.
  • the amount of the deprotecting agent used in the deprotection step can be arbitrarily selected depending on the type of the deprotecting agent.
  • the amount of the deprotecting agent used is preferably 2 to 5 times the molar amount of the compound (1C) used, and may be, for example, 2 to 4 times the molar amount.
  • the amount of the deprotecting agent used is equal to or more than the lower limit, the yield of the compound (1C) becomes higher.
  • the amount of the deprotecting agent used is equal to or less than the upper limit, excessive use of the deprotecting agent is suppressed.
  • the reaction temperature and reaction time of the deprotection reaction in the deprotection step can also be arbitrarily selected depending on the type of deprotection agent.
  • the reaction temperature is preferably 15 to 35° C., or may be room temperature, and the reaction time is preferably 0.5 to 5 hours.
  • the deprotection reaction is preferably carried out using a solvent.
  • a solvent for example, either or both of compound (1C) and the deprotecting agent may be mixed as a solution.
  • the solvent used in the deprotection step can be appropriately selected depending on the type of compound (1C) and the deprotection agent.
  • the solvent is preferably an organic solvent, more preferably a solvent capable of dissolving compound (1C) and the deprotection agent. More specifically, preferred solvents in this case include ethers such as tetrahydrofuran (THF), etc.
  • THF tetrahydrofuran
  • the amount of the solvent used in the deprotection reaction can be appropriately adjusted depending on the types of compound (1C) and deprotection agent, and is not particularly limited.
  • the deprotecting agent and the solvent used in the deprotection step may each be one type only, or two or more types. When two or more types are used, the combination and ratio of the two or more types can be selected as desired depending on the purpose.
  • R 12D is a hydrogen atom, a hydroxyl group or an alkoxy group, and the alkoxy group is the same as the alkoxy group in R 12C .
  • R 13D represents a hydrogen atom, a hydroxyl group, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group, and the alkoxy group is the same as the alkoxy group in R 13C .
  • R 12D when R 12D is a hydrogen atom or an alkoxy group, R 13D is a hydroxyl group, and when R 12D is a hydroxyl group, R 13D may be either a hydroxyl group or another group.
  • R 13D when R 13D is a hydrogen atom, an alkoxy group, a benzyloxy group, a methoxybenzyloxy group, or a dimethoxybenzyloxy group, R 12D is a hydroxyl group, and when R 13D is a hydroxyl group, R 12D may be either a hydroxyl group or another group. Except for these points, R 12D and R 13D in general formula (1D) are the same as R 12 and R 13 in general formula (1), respectively.
  • compound (1D) is the same as compound (1) except that compound (1D) necessarily has either or both of a hydroxyl group as R 12D and a hydroxyl group as R 13D .
  • Compound (1D) is included in compound (1) in terms of molecular structure.
  • An example of a preferable compound (1D) is a compound (1D) (sometimes referred to as "compound ( 1D) -1" in this specification) in which R 11 is a hydrogen atom or a hydroxyl group; R 12D and R 13D are each independently a hydroxyl group or an alkoxy group; provided that R 12D and R 13D are not both alkoxy groups, R 14 is a hydrogen atom; and R 21 is a hydrogen atom, a halogen atom, an alkyl group, a trialkylsilyl group, or an acyl group.
  • preferred compound (1D) include the above compound (1)-402 and the following examples. However, compound (1D) is not limited to these.
  • the reaction solution may be post-treated as necessary by a known method in the same manner as in the reaction step (i) in the production method (i) to extract compound (1D). Furthermore, the extracted compound (1D) may be further purified as necessary in the same manner as in the case of compound (1) in the production method (i). Alternatively, after completion of the deprotection step, the reaction solution may be post-treated as necessary, and then the compound (1D) may be used for the intended purpose without being extracted. For example, the compound (1D) may be subjected to the next intended reaction without being extracted.
  • R 012 is an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q
  • R 31 is an alkyl group
  • R 32 is an aryl group
  • p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from one another, and when q is 2 or 3, q R 32 may be the same or different from one another, with the proviso that p+q is 3
  • R 013 is an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s (wherein R 41 is an alkyl group; R 42 is an aryl group; r and s each independently represent an integer of 0 to 3, in which when r is 2 or 3, r R 41 may be the same or different from one another, and when s is 2 or 3, s R 42 may be the same or different from one another, with the proviso
  • R 012 is an alkoxy group or a group represented by the general formula --OSi(R 31 ) p (R 32 ) q
  • R 013 is an alkoxy group or a group represented by the general formula --OSi(R 41 ) r (R 42 ) s
  • the alkoxy group in R 012 and the alkoxy group in R 013 in the general formula (01) are the same as the alkoxy group in R 11 and R 12 in the general formula (1).
  • the group represented by the general formula -OSi(R 31 ) p (R 32 ) q in general formula (01) is the same as the group represented by the general formula -OSi(R 31 ) p (R 32 ) q in general formula (1), and the group represented by the general formula -OSi(R 41 ) r (R 42 ) s in general formula (01) is the same as the group represented by the general formula -OSi(R 41 ) r (R 42 ) s in general formula (1).
  • the alkoxy group in R 012 and the alkoxy group in R 013 may be the same or different.
  • the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in R 012 and the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in R 013 may be the same or different.
  • halogen atom, alkyl group, trialkylsilyl group and acyl group in R 021 in the general formula (01) are the same as the halogen atom, alkyl group, trialkylsilyl group and acyl group in R 21 in the general formula (1), respectively.
  • compound (01) is the same as compound (1) in which R 11 and R 14 in general formula (1) are limited to hydrogen atoms, R 12 is limited to an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q , R 13 is limited to an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s , R 21 is limited to a hydrogen atom, a halogen atom, an alkyl group, a trialkylsilyl group, or an acyl group, and further, when R 21 is a hydrogen atom, the compound (01) is the same as compound (1) in which compound (1) is limited to having either one or both of a group represented by the general formula -OSi(R 31 ) p (R 32 ) q and a group represented by the general formula -OSi(R 41 ) r (R 42 ) s .
  • the alkoxy group in R 012 and R 013 preferably has 1 to 10 carbon atoms
  • the chain (straight-chain or branched-chain) alkoxy group preferably has 1 to 10 carbon atoms
  • the cyclic (monocyclic or polycyclic) alkoxy group preferably has 3 to 10 carbon atoms.
  • the alkoxy group in R 012 and R 013 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms. For example, it may be any one of 1 to 4 carbon atoms and 1 to 2 carbon atoms.
  • Preferred examples of the group represented by the general formula -OSi(R 31 ) p (R 32 ) q and the group represented by the general formula -OSi(R 41 ) r (R 42 ) s include tripropylsilyloxy groups such as trimethylsilyloxy group (-OTMS), triethylsilyloxy group (-OTES), and triisopropylsilyloxy group (-OTIPS), trialkylsilyloxy groups such as tributylsilyloxy group and tert-butyldimethylsilyloxy group (-OTBDMS); dialkylmonoarylsilyloxy groups such as dimethylphenylsilyloxy group (-ODMPS); monoalkyldiarylsilyloxy groups such as methyldiphenylsilyloxy group (-OMDPS) and tert-butyldiphenylsilyloxy group (-OTBDPS); and triarylsilyloxy groups such as triphenyls
  • the number of carbon atoms in the alkyl group in R 021 is preferably 1 to 10, the number of carbon atoms in a chain (straight-chain or branched-chain) alkyl group is preferably 1 to 10, and the number of carbon atoms in a cyclic (monocyclic or polycyclic) alkyl group is preferably 3 to 10.
  • the alkyl group for R 021 more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms, and may be, for example, any one of 1 to 4 and 1 to 2 carbon atoms.
  • the number of carbon atoms in the trialkylsilyl group in R 021 (that is, the total number of carbon atoms in the three alkyl groups) is preferably 3 to 12, more preferably 3 to 9, and may be, for example, 3 to 6.
  • the number of carbon atoms in the acyl group in R 021 is preferably 2 to 11, the number of carbon atoms in a chain (straight-chain or branched-chain) acyl group is preferably 2 to 11, and the number of carbon atoms in a cyclic (monocyclic or polycyclic) acyl group is preferably 4 to 11.
  • the acyl group in R 021 more preferably has 2 to 9 carbon atoms, and further preferably has 2 to 7 carbon atoms, and may be, for example, any one of 2 to 5 and 2 to 3 carbon atoms.
  • R 12A and R 13A each independently represent an alkoxy group; and R 21A represents a halogen atom, an alkyl group, a trialkylsilyl group, or an acyl group.
  • this compound may be referred to as "compound (1A)").
  • the compound (1A) is a novel compound included in the above-mentioned compound (1).
  • R 12A and R 13A each independently represent an alkoxy group. That is, R 12A and R 13A may be the same as or different from each other.
  • the alkoxy group in R 12A and R 13A in general formula (1A) is the same as the alkoxy group in R 11 and R 12 in general formula (1).
  • the halogen atom, alkyl group, trialkylsilyl group and acyl group in R 21A in the general formula (1A) are the same as the halogen atom, alkyl group, trialkylsilyl group and acyl group in R 21 in the general formula (1), respectively.
  • compound (1A) is the same as compound (1) in which R 11 and R 14 in general formula (1) are limited to hydrogen atoms, R 12 and R 13 are limited to alkoxy groups, and R 21 is limited to a halogen atom, an alkyl group, a trialkylsilyl group, or an acyl group.
  • the alkoxy group in R 12A and R 13A preferably has 1 to 10 carbon atoms
  • the chain (straight-chain or branched-chain) alkoxy group preferably has 1 to 10 carbon atoms
  • the cyclic (monocyclic or polycyclic) alkoxy group preferably has 3 to 10 carbon atoms.
  • the alkoxy group for R 12A and R 13A more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms, and may be, for example, any one of 1 to 4 and 1 to 2 carbon atoms.
  • the number of carbon atoms in the alkyl group for R 21A is preferably 1 to 10, the number of carbon atoms in a chain (straight-chain or branched-chain) alkyl group is preferably 1 to 10, and the number of carbon atoms in a cyclic (monocyclic or polycyclic) alkyl group is preferably 3 to 10.
  • the alkyl group for R 21A more preferably has 1 to 8 carbon atoms, and further preferably has 1 to 6 carbon atoms, and may be, for example, any one of 1 to 4 and 1 to 2 carbon atoms.
  • the number of carbon atoms in the trialkylsilyl group in R 21A (that is, the total number of carbon atoms in the three alkyl groups) is preferably 3 to 12, more preferably 3 to 9, and may be, for example, 3 to 6.
  • the number of carbon atoms in the acyl group for R 21A is preferably 2 to 11, the number of carbon atoms in a chain (straight-chain or branched-chain) acyl group is preferably 2 to 11, and the number of carbon atoms in a cyclic (monocyclic or polycyclic) acyl group is preferably 4 to 11.
  • the acyl group for R 21A more preferably has 2 to 9 carbon atoms, and further preferably has 2 to 7 carbon atoms, and may be, for example, any one of 2 to 5 and 2 to 3 carbon atoms.
  • Compound (1A) is preferably a compound represented by the following general formula (11A) (sometimes referred to as “compound (11A)" in this specification).
  • R 121A and R 131A each independently represent an alkoxy group having 1 to 6 carbon atoms; and R 211A represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, or an acyl group having 2 to 7 carbon atoms.
  • R 121A and R 131A each represent an alkoxy group having 1 to 6 carbon atoms and may be the same as or different from each other.
  • the alkoxy group having 1 to 6 carbon atoms in R 121A and R 131A is the same as the alkoxy group having 1 to 6 carbon atoms in R 12 .
  • R 211A represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, or an acyl group having 2 to 7 carbon atoms.
  • the halogen atom in R 211A is the same as the halogen atom in R 21 .
  • the alkyl group having 1 to 6 carbon atoms in R 211A is the same as the alkyl group having 1 to 6 carbon atoms in R 21 .
  • the trialkylsilyl group having 3 to 9 carbon atoms in R 211A is the same as the trialkylsilyl group having 3 to 9 carbon atoms in R 21 .
  • the acyl group having 2 to 7 carbon atoms in R 211A is the same as the acyl group having 2 to 7 carbon atoms in R 21 .
  • Compound (1A) (compound (11A)) is more preferably a compound represented by the following general formula (111A) (sometimes referred to as “compound (111A)" in this specification).
  • R 212A is a bromine atom, a methyl group, a trimethylsilyl group, or an acetyl group.
  • compound (1A) Preferred examples of compound (1A) are shown below. However, compound (1A) is not limited to these.
  • R 12E is an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q
  • R 31 is an alkyl group
  • R 32 is an aryl group
  • p and q each independently represent an integer of 0 to 3, in which when p is 2 or 3, p R 31 may be the same or different from one another, and when q is 2 or 3, q R 32 may be the same or different from one another, with the proviso that p+q is 3
  • R 13E is an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s (wherein R 41 is an alkyl group; R 42 is an aryl group; r and s each independently represent an integer of 0 to 3, in which when r is 2 or 3, r R 41 may be the same or different from one another, and when s is 2 or 3, s R 42 may be the same or different from one another, with the proviso
  • the alkoxy group in R 12E and the alkoxy group in R 13E in general formula (1E) are the same as the alkoxy group in R 11 and R 12 in general formula (1).
  • the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in general formula (1E) is the same as the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in general formula (1).
  • the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in general formula (1E) is the same as the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in general formula (1).
  • the alkoxy group in R 12E and the alkoxy group in R 13E may be the same or different.
  • the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in R 12E and the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in R 13E may be the same or different.
  • compound (1E) is the same as compound (1) in which R 11 , R 14 and R 21 in general formula (1) are limited to hydrogen atoms, R 12E is limited to an alkoxy group or a group represented by the general formula -OSi(R 31 ) p (R 32 ) q , R 13E is limited to an alkoxy group or a group represented by the general formula -OSi(R 41 ) r (R 42 ) s , and further, compound ( 1E ) is limited to having either one or both of a group represented by the general formula -OSi(R 31 ) p (R 32 ) q and a group represented by the general formula -OSi(R 41 ) r (R 42 ) s .
  • the alkoxy group in R 12E and R 13E is preferably the same as the alkoxy group in R 12A and R 13A .
  • the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in R 12E is preferably the same as the group represented by the general formula --OSi(R 31 ) p (R 32 ) q in R 012 .
  • the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in R 13E is preferably the same as the group represented by the general formula --OSi(R 41 ) r (R 42 ) s in R 013 .
  • Compound (1E) is preferably a compound represented by the following general formula (11E) (sometimes referred to as “compound (11E)" in this specification).
  • R 121E and R 131E each independently represent an alkoxy group having 1 to 6 carbon atoms, a trimethylsilyloxy group, a triethylsilyloxy group, a triisopropylsilyloxy group, a tributylsilyloxy group, a tert-butyldimethylsilyloxy group, a dimethylphenylsilyloxy group, a methyldiphenylsilyloxy group, a tert-butyldiphenylsilyloxy group, or a triphenylsilyloxy group;
  • R 121E and R 131E are not both the above-mentioned alkoxy group having 1 to 6 carbon atoms.
  • the alkoxy group having 1 to 6 carbon atoms in R 121E and R 131E is preferably the same as the alkoxy group having 1 to 6 carbon atoms in R 121A and R 131A .
  • the alkoxy group having 1 to 6 carbon atoms in R 121E and the alkoxy group having 1 to 6 carbon atoms in R 131E may be the same or different.
  • R 121E and R 131E are a trimethylsilyloxy group, a triethylsilyloxy group, a triisopropylsilyloxy group, a tributylsilyloxy group, a tert-butyldimethylsilyloxy group, a dimethylphenylsilyloxy group, a methyldiphenylsilyloxy group, a tert-butyldiphenylsilyloxy group, or a triphenylsilyloxy group.
  • Compound (1E) (compound (11E)) is more preferably a compound represented by the following general formula (111E) (sometimes referred to as “compound (111E)" in this specification).
  • R 122E and R 132E each independently represent a methoxy group, a trimethylsilyloxy group, a triethylsilyloxy group, a triisopropylsilyloxy group, a tributylsilyloxy group, a tert-butyldimethylsilyloxy group, a dimethylphenylsilyloxy group, a methyldiphenylsilyloxy group, a tert-butyldiphenylsilyloxy group, or a triphenylsilyloxy group;
  • R 122E and R 132E may not both be methoxy groups.
  • R 122E and R 132E may be the same or different.
  • Compound (111E) necessarily contains a trimethylsilyloxy group, a triethylsilyloxy group, a triisopropylsilyloxy group, a tributylsilyloxy group, a tert-butyldimethylsilyloxy group, a dimethylphenylsilyloxy group, a methyldiphenylsilyloxy group, a tert-butyldiphenylsilyloxy group, or a triphenylsilyloxy group.
  • compound (1E) Preferred examples of compound (1E) are shown below. However, compound (1E) is not limited to these.
  • the yield of compound (1) shown in each of the following examples is the isolated yield based on the amount of compound (2) used.
  • 2,3,4,5,6-Pentamethoxybenzoic acid which is a raw material for producing compound (2) used in each of the following examples, was produced by the synthesis route described above in accordance with the method described in the literature "Bioorg. Med. Chem. Lett., 21, 4540 (2011)".
  • compound (2)-1 (2,3,4,5,6-pentamethoxybenzoyl chloride) was produced as compound (2) by reacting 2,3,4,5,6-pentamethoxybenzoic acid with oxalyl chloride ((COCl) 2 ) in the presence of a catalytic amount of N,N-dimethylformamide (DMF) using methylene chloride as a solvent according to a conventional method.
  • oxalyl chloride ((COCl) 2 )
  • DMF N,N-dimethylformamide
  • Example 2 Nobiletin was obtained as a yellow solid (yield 521 mg (1.29 mmol), yield 70.2%) in the same manner as in Example 1, except that titanium (IV) chloride (4.6 mmol) was used instead of tin (IV) chloride (4.6 mmol). Titanium (IV) chloride was used as a 1 M dichloromethane solution. The obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, confirming that the obtained product was nobiletin. The results are shown in Table 1.
  • Example 3 Nobiletin was obtained as a yellow solid (yield 403 mg (1 mmol), yield 54.3%) in the same manner as in Example 1, except that iron (III) chloride (1.84 mmol) was used instead of tin (IV) chloride (4.6 mmol). Iron (III) chloride was used as a dichloromethane solution with a concentration of 1 M. The obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, confirming that the obtained product was nobiletin. The results are shown in Table 1.
  • Example 4 Nobiletin was obtained as a yellow solid (yield 204 mg (0.5 mmol), yield 27.4%) in the same manner as in Example 1, except that aluminum chloride (4.6 mmol) was used instead of tin (IV) chloride (4.6 mmol), and the reaction was carried out at 0°C to room temperature for 20 hours instead of 2 hours at 0°C.
  • Aluminum chloride was used as a dichloromethane solution with a concentration of 1 M.
  • the obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and as a result, the same results as in Example 1 were obtained, and it was confirmed that the obtained product was nobiletin. The results are shown in Table 1.
  • Example 5 Nobiletin was obtained as a yellow solid (yield 588 mg (1.46 mmol), yield 79.1%) in the same manner as in Example 1, except that the amount of tin (IV) chloride used was 3.68 mmol instead of 4.6 mmol. Tin (IV) chloride was used as a dichloromethane solution with a concentration of 1 M. The obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, confirming that the obtained product was nobiletin. The results are shown in Table 1.
  • Example 6 Nobiletin was obtained as a yellow solid (yield 566 mg (1.4 mmol), yield 76.2%) in the same manner as in Example 1, except that the amount of tin (IV) chloride used was 1.84 mmol instead of 4.6 mmol. Tin (IV) chloride was used as a dichloromethane solution with a concentration of 1 M. The obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, confirming that the obtained product was nobiletin. The results are shown in Table 1.
  • Example 7 Nobiletin was obtained as a yellow solid (yield 384 mg (0.95 mmol), yield 51.7%) in the same manner as in Example 1, except that titanium (IV) chloride (4.6 mmol) was used instead of tin (IV) chloride (4.6 mmol), and instead of reacting at 0° C. for 2 hours, the reaction was carried out at 0° C. for 3 hours and then at room temperature for 1 hour. Titanium (IV) chloride was used as a dichloromethane solution with a concentration of 1 M. The obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, and it was confirmed that the obtained product was nobiletin. The results are shown in Table 1.
  • the obtained product was analyzed by 1 H NMR, 13 C NMR, and HRMS, and the results were similar to those in Example 1, confirming that the obtained product was nobiletin.
  • the obtained dichloromethane solution was cooled to 0° C., and a dichloromethane solution of tin(IV) chloride (3.7 mL, 3.7 mmol as tin(IV) chloride) having a concentration of 1 M was added dropwise to the dichloromethane solution under stirring over 5 minutes. Next, the resulting mixture was stirred at 0° C. for 1 hour, and water (20 mL) was added to the resulting reaction solution to stop the reaction. Dichloromethane (10 mL) was added to the reaction solution after the addition of water to extract the organic layer, and the addition of dichloromethane and extraction of the organic layer were repeated two more times to perform a total of three extractions.
  • the obtained dichloromethane solution was cooled to 0° C., and a dichloromethane solution of 1 M tin(IV) chloride (4.6 mL, 4.6 mmol as tin(IV) chloride) was added dropwise to the dichloromethane solution under stirring over 5 minutes. Next, the resulting mixture was stirred at 0° C. for 1 hour, and water (20 mL) was added to the resulting reaction solution to stop the reaction. Dichloromethane (10 mL) was added to the reaction solution after the addition of water to extract the organic layer, and the addition of dichloromethane and extraction of the organic layer were repeated two more times to perform a total of three extractions.
  • dichloromethane solution was cooled to 0° C., and a 1 M dichloromethane solution of tin (IV) chloride (2.1 mL, tin (IV) chloride) was added to the stirred dichloromethane solution. ) was added dropwise over 5 minutes. The resulting mixture was then stirred at 0°C for 1 hour, and water (10 mL) was added to the resulting reaction solution to stop the reaction. Dichloromethane (10 mL) was added to the reaction solution after the addition of water to extract the organic layer, and the addition of dichloromethane and the extraction of the organic layer were repeated two more times, for a total of three extractions.
  • tin (IV) chloride 2.1 mL, tin (IV) chloride
  • dichloromethane solution was cooled to 0° C., and a 1 M dichloromethane solution of tin (IV) chloride (2.1 mL, tin (IV) chloride) was added to the stirred dichloromethane solution. ) was added dropwise over 5 minutes. The resulting mixture was then stirred at 0°C for 1 hour, and water (10 mL) was added to the resulting reaction solution to stop the reaction. Dichloromethane (10 mL) was added to the reaction solution after the addition of water to extract the organic layer, and the addition of dichloromethane and the extraction of the organic layer were repeated two more times, for a total of three extractions.
  • tin (IV) chloride 2.1 mL, tin (IV) chloride
  • Example 17 A tetrahydrofuran solution (5 mL) of the crude product of compound (1)-106 (3'- ⁇ [(1,1-dimethylethyl)dimethylsilyl]oxy ⁇ tangeretin) before isolation (160 mg, 0.32 mmol as compound (1)-106) obtained by the same method as in Example 15 was added dropwise at room temperature to a tetrahydrofuran solution (0.64 mL, 0.64 mmol as TBAF), and the mixture was stirred at room temperature for 1 hour after the end of the dropwise addition.
  • a tetrahydrofuran solution (0.64 mL, 0.64 mmol as TBAF
  • the present invention can be used to manufacture nobiletin and its derivatives, and can be used to manufacture pharmaceuticals or supplements containing nobiletin and its derivatives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(1)で表される化合物を得る工程を有する、化合物の製造方法。

Description

化合物及びその製造方法
 本発明は、化合物及びその製造方法に関する。
 本願は、2022年11月22日に日本に出願された特願2022-186458号に基づき優先権を主張し、その内容をここに援用する。
 下記式で表されるノビレチン(Nobiletin)は、シークワーサー、ポンカン等の柑橘類の果皮に多く含まれるフラボノイド(Flavonoid)の一種である。
Figure JPOXMLDOC01-appb-C000013
 ノビレチンは、認知症改善作用、抗炎症作用、がん細胞の増殖抑制作用及び転移抑制作用、生活習慣病の抑制作用、並びにproMMP-9(matrix metalloproteinase-9と呼ばれる酵素の前駆タンパク質)の産生抑制作用等の、多様な生理活性を有しており、近年は、サプリメントの配合成分としても注目されている。そこで、その製造方法を確立するために、ノビレチンの合成法が種々検討されてきた。
 これまでに報告されているノビレチンの合成法で、最も効率的といえるのは、下記式(92)で表される化合物と、下記式(81)で表される化合物と、を反応させることで、下記式(91)で表される化合物を得た後、下記式(91)で表される化合物を閉環させることで、ノビレチンを得る合成法である(特許文献1参照)。この合成法では、出発原料である式(92)で表される化合物から、2ステップの反応によって、ノビレチンが得られる。
Figure JPOXMLDOC01-appb-C000014
特許第4559531号公報
 しかし、式(92)で表される化合物を得るためには、下記の合成ルートで示すように、多段階の工程が必要であり、式(92)で表される化合物の製造方法は、工程数が多くかつ煩雑であった(Org. Proc. Res. Dev., 23, 595-602(2019))。そこで、ノビレチン及びその誘導体の新規の製造方法の開発が望まれていた。
Figure JPOXMLDOC01-appb-C000015
 本発明は、従来よりも容易に入手可能な原料を用いて、少ない工程数で、ノビレチン及びその誘導体を製造できる製造方法を提供することを課題とする。
 上記課題を解決するため、本発明は以下の構成を採用する。
 [1] 下記一般式(2)
Figure JPOXMLDOC01-appb-C000016
 (式中、Xは脱離基である。)
で表される化合物と、下記一般式(3)
Figure JPOXMLDOC01-appb-C000017
 (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R12は水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R13は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R14は水素原子又はアルコキシ基であり;
 R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(1)
Figure JPOXMLDOC01-appb-C000018
 (式中、R11、R12、R13、R14及びR21は、前記と同じである。)で表される化合物を得る工程を有する、化合物の製造方法。
 [2] 前記一般式(3)で表される化合物が、下記一般式(31)
Figure JPOXMLDOC01-appb-C000019
 (式中、R111は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R121は水素原子、水酸基、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R131は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R141は水素原子又は炭素数1~6のアルコキシ基であり;
 R211は水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、炭素数2~7のアシル基、又は炭素数1~6のヒドロキシアルキル基である。)で表される化合物であり、
 前記一般式(1)で表される化合物が、下記一般式(11)
Figure JPOXMLDOC01-appb-C000020
 (式中、R111、R121、R131、R141及びR211は、前記と同じである。)で表される化合物である、[1]に記載の化合物の製造方法。
 [3] 前記一般式(3)で表される化合物が、下記一般式(311)
Figure JPOXMLDOC01-appb-C000021
 (式中、R112は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R122は水素原子、水酸基、メトキシ基又はtert-ブチルジメチルシリルオキシ基であり;
 R132は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又はtert-ブチルジメチルシリルオキシ基であり;
 R142は水素原子又はメトキシ基であり;
 R212は水素原子、臭素原子、メチル基、トリメチルシリル基、アセチル基、又はヒドロキシメチル基である。)で表される化合物であり、
 前記一般式(1)で表される化合物が、下記一般式(111)
Figure JPOXMLDOC01-appb-C000022
 (式中、R112、R122、R132、R142及びR212は、前記と同じである。)で表される化合物である、[1]に記載の化合物の製造方法。
 [4] 前記ルイス酸が、塩化スズ(IV)、塩化チタン(IV)、塩化鉄(III)又は塩化アルミニウムである、[1]~[3]のいずれか一項に記載の化合物の製造方法。
 [5] 下記一般式(2)
Figure JPOXMLDOC01-appb-C000023
 (式中、Xは脱離基である。)
で表される化合物と、下記一般式(3C)
Figure JPOXMLDOC01-appb-C000024
 (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R12Cは水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R13Cは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはなく、
 R14は水素原子又はアルコキシ基であり;
 R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(1C)
Figure JPOXMLDOC01-appb-C000025
 (式中、R11、R12C、R13C、R14及びR21は、前記と同じであり、ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)で表される化合物を得る工程と、
 前記一般式(1C)で表される化合物中の、前記一般式-OSi(R31(R32で表される基又は前記一般式-OSi(R41(R42で表される基を、水酸基に変換することにより、下記一般式(1D)
Figure JPOXMLDOC01-appb-C000026
 (式中、R11、R14及びR21は、前記と同じであり;
 R12Dは水素原子、水酸基又はアルコキシ基であり;
 R13Dは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 ただし、R12Dが水素原子又はアルコキシ基であり、かつ、R13Dが水素原子、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)
で表される化合物を得る工程と、を有する、化合物の製造方法。
 [6] 下記一般式(01)
Figure JPOXMLDOC01-appb-C000027
 (式中、R012は、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R013は、アルコキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R021は、水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基であり;
 ただし、R021が水素原子である場合には、R012がアルコキシ基であり、かつ、R013がアルコキシ基である、ことはない。)で表される化合物。
 本発明によれば、従来よりも容易に入手可能な原料を用いて、少ない工程数で、ノビレチン及びその誘導体を製造できる製造方法が提供される。
 本明細書においては、以下に示す官能基又は化合物の略号を用いることがある。
 Me:メチル基(-CH
 Ac:アセチル基(-C(=O)-CH
 Ph:フェニル基(-C
 TMS:トリメチルシリル基(-Si(CH
 THF:テトラヒドロフラン
 本明細書において、濃度の単位「M」は「mol/L」を意味する。
 本明細書においては、化合物を一般式又はそれ以外の式(一般化されていない式。本明細書においては、単に「式」と称することがある。)で表す場合、これら一般式又はそれ以外の式に対して、符号を付している場合がある。その場合には、化合物にその符号を付した名称を与えていることがある。例えば、後述する一般式(1)で表される化合物のことを、本明細書においては、「化合物(1)」と称することがある。
<<化合物の製造方法(製造方法(i))>>
 本発明の一実施形態に係る化合物の製造方法は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000028
 (式中、Xは脱離基である。)
で表される化合物(本明細書においては、「化合物(2)」と称することがある)と、下記一般式(3)
Figure JPOXMLDOC01-appb-C000029
 (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R12は水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R13は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R14は水素原子又はアルコキシ基であり;
 R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
で表される化合物(本明細書においては、「化合物(3)」と称することがある)とを、ルイス酸の共存下で反応させることにより、下記一般式(1)
Figure JPOXMLDOC01-appb-C000030
 (式中、R11、R12、R13、R14及びR21は、前記と同じである。)で表される化合物(本明細書においては、「化合物(1)」と称することがある)を得る工程(本明細書においては、「反応工程(i)」と称することがある)を有する。
 本明細書においては、前記反応工程(i)を有し、化合物(1)を得る化合物の製造方法を「製造方法(i)」と称することがある。
 本実施形態の製造方法(製造方法(i))において、原料である前記化合物(2)及び化合物(3)は、いずれも、後述するように従来よりも少ない工程数で得られ、さらに、これら化合物(2)及び化合物(3)並びにルイス酸を用いて、1ステップの反応によって、ノビレチン又はその誘導体が得られる。
 このように、本実施形態の製造方法によれば、化合物(1)の製造原料として、化合物(2)及び化合物(3)を選択することで、従来よりも少ない工程数で効率的に、化合物(1)(ノビレチン又はその誘導体)が得られる。
 本明細書においては、ある特定の化合物において、1個以上の水素原子が水素原子以外の基で置換された構造が想定される場合、このような置換された構造を有する化合物を、上述の特定の化合物の「誘導体」と称する。
 本明細書において、「基」とは、特に断りのない限り、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。
<化合物(1)>
 化合物(1)は、本実施形態の化合物の製造方法の目的物であり、前記一般式(1)で表される。
 一般式(1)中、R21は水素原子(-H)、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。
 R21における前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R21における前記ハロゲン原子は、臭素原子であることが好ましい。
 R21における前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、鎖状構造(直鎖状構造又は分岐鎖状構造)及び環状構造を共に有していてもよい。前記アルキル基が環状である場合も含めて、環状構造を有する場合には、前記環状構造は単環状及び多環状のいずれであってもよい。
 R21における前記アルキル基の炭素数は、1~10であることが好ましい。
 R21における前記アルキル基のうち、鎖状(直鎖状又は分岐鎖状)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基等の、炭素数1~10の鎖状のアルキル基が挙げられる。
 R21における前記アルキル基のうち、環状(単環状又は多環状)のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等の、炭素数3~10の環状のアルキル基が挙げられる。
 R21における前記アルキル基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R21における前記トリアルキルシリル基中の、ケイ素原子に結合している3個のアルキルとしては、上述のR21における前記アルキル基と同様のものが挙げられる。
 R21における前記トリアルキルシリル基中の、ケイ素原子に結合している3個のアルキル基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ(すなわち2個のみ)同一であってもよい。ケイ素原子に結合している2~3個のアルキル基が互いに異なる場合、これらアルキル基の組み合わせは、目的に応じて任意に選択でき、特に限定されない。
 R21における前記トリアルキルシリル基の炭素数(すなわち、3個のアルキル基の炭素数の合計値)は、3~12であることが好ましく、3~9であることがより好ましく、例えば、3~6であってもよい。
 好ましい前記トリアルキルシリル基としては、例えば、トリメチルシリル基(TMS)、トリエチルシリル基(TES)、トリイソプロピルシリル基(TIPS)等のトリプロピルシリル基、トリブチルシリル基、tert-ブチルジメチルシリル基(TBDMS)等が挙げられる。
 R21における前記アシル基(別名:アルキルカルボニル基)としては、例えば、上述のR21における前記アルキル基中の遊離原子価を有する炭素原子が、カルボニル基(-C(=O)-)中の炭素原子に結合した構造を有する1価の基が挙げられる。
 R21における前記アシル基の炭素数は、2~11であることが好ましい。
 R21における前記アシル基のうち、鎖状(直鎖状又は分岐鎖状)のアシル基としては、例えば、アセチル基(-C(=O)-CH)、プロピオニル基(-C(=O)-C)、ブチロイル基(-C(=O)-C)等の、炭素数2~11の鎖状のアシル基が挙げられる。
 R21における前記アシル基のうち、環状(単環状又は多環状)のアシル基としては、例えば、シクロプロピルカルボニル基(-C(=O)-C)、シクロブチルカルボニル基(-C(=O)-C)、シクロペンチルカルボニル基(-C(=O)-C)、シクロヘキシルカルボニル基(-C(=O)-C11)等の、炭素数4~11の環状のアシル基が挙げられる。
 R21における前記アシル基の炭素数は、2~9であることがより好ましく、2~7であることがさらに好ましく、例えば、2~5、及び2~3のいずれかであってもよい。
 R21における前記ヒドロキシアルキル基としては、例えば、上述のR21における前記アルキル基中の1個の水素原子が、水酸基に置換された構造を有する1価の基が挙げられる。
 R21における前記ヒドロキシアルキル基の炭素数は、1~10であることが好ましい。
 例えば、R21における前記ヒドロキシアルキル基のうち、鎖状(直鎖状又は分岐鎖状)のヒドロキシアルキル基としては、例えば、ヒドロキシメチル基(-CH-OH)、ヒドロキシエチル基(-C-OH)、ヒドロキシプロピル基(-C-OH)、ヒドロキシブチル基(-C-OH)等の、炭素数1~10の鎖状のヒドロキシアルキル基が挙げられる。
 例えば、R21における前記ヒドロキシアルキル基のうち、環状(単環状又は多環状)のヒドロキシアルキル基としては、例えば、ヒドロキシシクロプロピル基(-C-OH)、ヒドロキシシクロブチル基(-C-OH)、ヒドロキシシクロペンチル基(-C-OH)、ヒドロキシシクロヘキシル基(-C11-OH)等の、炭素数3~10の環状のヒドロキシアルキル基が挙げられる。
 R21における前記ヒドロキシアルキル基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 一般式(1)中、R12は水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、ただし、p+qは3である。)で表される基である。
 R12における前記アルコキシ基としては、例えば、上述のR21における前記アルキル基中の遊離原子価を有する炭素原子が、酸素原子に結合した構造を有する1価の基が挙げられる。
 R12における前記アルコキシ基の炭素数は、1~10であることが好ましい。
 例えば、R12における前記アルコキシ基のうち、鎖状(直鎖状又は分岐鎖状)のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、1-メチルブチルオキシ基、n-ヘキシルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2,2-ジメチルブチルオキシ基、2,3-ジメチルブチルオキシ基、n-ヘプチルオキシ基、2-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、2,2-ジメチルペンチルオキシ基、2,3-ジメチルペンチルオキシ基、2,4-ジメチルペンチルオキシ基、3,3-ジメチルペンチルオキシ基、3-エチルペンチルオキシ基、2,2,3-トリメチルブチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基等の、炭素数1~10の鎖状のアルコキシ基が挙げられる。
 例えば、R12における前記アルコキシ基のうち、環状(単環状又は多環状)のアルコキシ基としては、例えば、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ、シクロデシルオキシ基、ノルボルニルオキシ基、イソボルニルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基、トリシクロデシルオキシ基)等の、炭素数3~10の環状のアルコキシ基が挙げられる。
 R12における前記アルコキシ基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R12における前記一般式-OSi(R31(R32中のR31は、アルキル基であり、前記アルキル基としては、上述のR21における前記アルキル基と同様のものが挙げられる。
 R12における好ましい前記アルキル基としては、炭素数1~10の鎖状(直鎖状又は分岐鎖状)のアルキル基と、炭素数3~10の環状(単環状又は多環状)のアルキル基が挙げられる。
 R12における前記アルキル基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R12における前記一般式-OSi(R31(R32中のR32は、アリール基であり、前記アリール基は、単環状及び多環状のいずれであってもよい。
 R12における前記アリール基の炭素数は、6~15であることが好ましい。
 R12における前記アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、4-メチルフェニル基(p-トリル基)、3-メチルフェニル基(m-トリル基)、2-メチルフェニル基(o-トリル基)、2,3-ジメチルフェニル基(2,3-キシリル基)、2,4-ジメチルフェニル基(2,4-キシリル基)、2,5-ジメチルフェニル基(2,5-キシリル基)、2,6-ジメチルフェニル基(2,6-キシリル基)、3,4-ジメチルフェニル基(3,4-キシリル基)、3,5-ジメチルフェニル基(3,5-キシリル基)、2,4,6-トリメチルフェニル基(メシチル基)等が挙げられる。
 R12における前記アリール基の炭素数は、6~10であることがより好ましく、例えば、6~8であってもよい。
 R12における前記一般式-OSi(R31(R32中のpは、ケイ素原子に結合しているR31の数であり、0~3の整数である。pが2である場合には、2個のR31は互いに同一であっても異なっていてもよく、pが3である場合には、3個のR31はすべて同一であってもよいし、すべて異なっていてもよいし、2個のみ同一であってもよい。ケイ素原子に結合している2~3個のアルキル基が互いに異なる場合、これらアルキル基の組み合わせは、目的に応じて任意に選択でき、特に限定されない。
 R12における前記一般式-OSi(R31(R32中のqは、ケイ素原子に結合しているR32の数であり、0~3の整数である。qが2である場合には、2個のR32は互いに同一であっても異なっていてもよく、qが3である場合には、3個のR32はすべて同一であってもよいし、すべて異なっていてもよいし、2個のみ同一であってもよい。ケイ素原子に結合している2~3個のアリール基が互いに異なる場合、これらアリール基の組み合わせは、目的に応じて任意に選択でき、特に限定されない。
 ただし、p+qは3である。
 すなわち、R12における前記一般式-OSi(R31(R32で表される基は、トリアルキルシリルオキシ基、ジアルキルモノアリールシリルオキシ基、モノアルキルジアリールシリルオキシ基又はトリアリールシリルオキシ基である。
 前記トリアルキルシリルオキシ基としては、例えば、上述のR21における前記トリアルキルシリル基中の遊離原子価を有するケイ素原子が、酸素原子(-O-)に結合した構造を有する1価の基が挙げられる。
 R21における前記トリアルキルシリルオキシ基の炭素数は、3~12であることが好ましく、3~9であることがより好ましく、例えば、3~6であってもよい。
 好ましい前記トリアルキルシリルオキシ基としては、例えば、トリメチルシリルオキシ基(-OTMS)、トリエチルシリルオキシ基(-OTES)、トリイソプロピルシリルオキシ基(-OTIPS)等のトリプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基(-OTBDMS)等が挙げられる。
 前記ジアルキルモノアリールシリルオキシ基としては、例えば、前記トリアルキルシリルオキシ基中の1個のアルキル基がアリール基で置換された構造を有する1価の基が挙げられる。
 R21における前記ジアルキルモノアリールシリルオキシ基の炭素数は、8~26であることが好ましく、8~18であることがより好ましく、例えば、8~13であってもよい。
 好ましい前記ジアルキルモノアリールシリルオキシ基としては、例えば、ジメチルフェニルシリルオキシ基(-ODMPS)等が挙げられる。
 前記モノアルキルジアリールシリルオキシ基としては、例えば、前記トリアルキルシリルオキシ基中の2個のアルキル基がアリール基で置換された構造を有する1価の基が挙げられる。
 R21における前記モノアルキルジアリールシリルオキシ基の炭素数は、13~30であることが好ましく、13~27であることがより好ましく、例えば、13~24であってもよい。
 好ましい前記モノアルキルジアリールシリルオキシ基としては、例えば、メチルジフェニルシリルオキシ基(-OMDPS)、tert-ブチルジフェニルシリルオキシ基(-OTBDPS)等が挙げられる。
 前記トリアリールシリルオキシ基としては、例えば、前記トリアルキルシリルオキシ基中の3個のアルキル基がアリール基で置換された構造を有する1価の基が挙げられる。
 R21における前記トリアリールシリルオキシ基の炭素数は、18~30であることが好ましく、18~26であることがより好ましく、例えば、6~21であってもよい。
 好ましい前記トリアリールシリルオキシ基としては、例えば、トリフェニルシリルオキシ基(-OTPS)等が挙げられる。
 一般式(1)中、R11は、水素原子、水酸基、アルコキシ基、ベンジルオキシ基(-O-CH)、メトキシベンジルオキシ基(-O-CHOCH)又はジメトキシベンジルオキシ基(-O-CH(OCH)である。
 一般式(1)中、R13は、水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基である。
 R13が一般式-OSi(R41(R42で表される基以外の基である場合、R11及びR13は、互いに同一であってもよいし、異なっていてもよい。
 R11及びR13における前記アルコキシ基としては、R12における前記アルコキシ基と同様のものが挙げられる。
 R11及びR13における前記アルコキシ基の炭素数は、1~10であることが好ましく、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R11及びR13における前記メトキシベンジルオキシ基としては、o-メトキシベンジルオキシ基(2-メトキシベンジルオキシ基)、m-メトキシベンジルオキシ基(3-メトキシベンジルオキシ基)、p-メトキシベンジルオキシ基(4-メトキシベンジルオキシ基)が挙げられ、p-メトキシベンジルオキシ基が好ましい。
 R11及びR13における前記ジメトキシベンジルオキシ基としては、例えば、2,3-ジメトキシベンジルオキシ基、3,4-ジメトキシベンジルオキシ基、3,5-ジメトキシベンジルオキシ基等が挙げられる。
 R13における前記一般式-OSi(R41(R42中のR41は、アルキル基である。R41としては、上述のR12における前記一般式-OSi(R31(R32中のR31と同様のものが挙げられる。
 R13における前記アルキル基の炭素数は、1~10であることが好ましく、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R13における前記一般式-OSi(R41(R42中のR42は、アリール基である。
 R42としては、上述のR12における前記一般式-OSi(R31(R32中のR32と同様のものが挙げられる。
 R13における前記アリール基の炭素数は、6~15であることが好ましく、6~10であることがより好ましく、例えば、6~8であってもよい。
 R13における前記一般式-OSi(R41(R42中のrは、ケイ素原子に結合しているR41の数であり、0~3の整数である。rが2である場合には、2個のR41は互いに同一であっても異なっていてもよく、rが3である場合には、3個のR41はすべて同一であってもよいし、すべて異なっていてもよいし、2個のみ同一であってもよい。ケイ素原子に結合している2~3個のアルキル基が互いに異なる場合、これらアルキル基の組み合わせは、目的に応じて任意に選択でき、特に限定されない。
 R13における前記一般式-OSi(R41(R42中のsは、ケイ素原子に結合しているR42の数であり、0~3の整数である。sが2である場合には、2個のR42は互いに同一であっても異なっていてもよく、sが3である場合には、3個のR42はすべて同一であってもよいし、すべて異なっていてもよいし、2個のみ同一であってもよい。ケイ素原子に結合している2~3個のアリール基が互いに異なる場合、これらアリール基の組み合わせは、目的に応じて任意に選択でき、特に限定されない。
 ただし、r+sは3である。
 すなわち、R13における一般式-OSi(R41(R42で表される基は、R12における一般式-OSi(R31(R32で表される基と同様のものであり、一般式-OSi(R31(R32で表される基と同一であってもよいし、異なっていてもよい。
 一般式(1)中、R14は水素原子又はアルコキシ基である。
 R14における前記アルコキシ基としては、R12における前記アルコキシ基と同様のものが挙げられる。
 R14における前記アルコキシ基の炭素数は、1~10であることが好ましく、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 好ましい化合物(1)の一例としては、R11が水素原子又は水酸基であり;R12がアルコキシ基又は前記一般式-OSi(R31(R32で表される基であり;R13がアルコキシ基又は前記一般式-OSi(R41(R42で表される基であり;R12及びR13における前記アルコキシ基は、互いに同一であっても異なっていてもよく、R12における前記-OSi(R31(R32で表される基、及びR13における前記一般式-OSi(R41(R42で表される基は、互いに同一であっても異なっていてもよく;R14が水素原子であり;R21が水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基である化合物(1)(本明細書においては、「化合物(1)-1」と称することがある)が挙げられる。
 好ましい化合物(1)の他の例としては、R11及びR21が水素原子であり;R12、R13及びR14がそれぞれ独立にアルコキシ基である化合物(1)(本明細書においては、「化合物(1)-2」と称することがある)が挙げられる。
 化合物(1)-2において、R12、R13及びR14はいずれもアルコキシ基であり、これらアルコキシ基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ(すなわち2個のみ)同一であってもよい。
 好ましい化合物(1)のさらに他の例としては、R11、R12及びR14が水素原子であり;R13がアルコキシ基であり;R21が水素原子、アルキル基、又はヒドロキシアルキル基である化合物(1)(本明細書においては、「化合物(1)-3」と称することがある)が挙げられる。
 好ましい化合物(1)のさらに他の例としては、R11、R14及びR21が水素原子であり;R12がアルコキシ基であり;R13が水酸基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)(本明細書においては、「化合物(1)-4」と称することがある)が挙げられる。
 好ましい化合物(1)のさらに他の例としては、R11が水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;R12が水素原子又は水酸基であり;R13、R14及びR21が水素原子である化合物(1)(本明細書においては、「化合物(1)-5」と称することがある)が挙げられる。
 化合物(1)は、下記一般式(11)で表される化合物(本明細書においては、「化合物(11)」と称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 (式中、R111は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R121は水素原子、水酸基、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R131は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R141は水素原子又は炭素数1~6のアルコキシ基であり;
 R211は水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、炭素数2~7のアシル基、又は炭素数1~6のヒドロキシアルキル基である。)
 一般式(11)中、R121は水素原子、水酸基、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321で表される基である。
 R121における前記炭素数1~6のアルコキシ基は、R12における前記アルコキシ基のうち、炭素数が1~6であるものと同じである。
 R311における前記炭素数1~6のアルキル基は、R31における前記アルキル基のうち、炭素数が1~6であるものと同じである。
 R321における前記炭素数6~15のアリール基は、R32における前記アリール基のうち、炭素数が6~15であるものと同じである。
 前記一般式-OSi(R311(R321中のp及びqは、それぞれ、前記一般式-OSi(R31(R32中のp及びqと同じである。
 一般式(11)中、R111は、水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である。
 一般式(11)中、R131は、水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基、又は一般式-OSi(R411(R421で表される基である。
 R131が一般式-OSi(R411(R421で表される基以外の基である場合、R111及びR131は、互いに同一であってもよいし、異なっていてもよい。
 R111及びR131における前記炭素数1~6のアルコキシ基は、R13又はR12における前記アルコキシ基のうち、炭素数が1~6であるものと同じである。
 R411における前記炭素数1~6のアルキル基は、R41における前記アルキル基のうち、炭素数が1~6であるものと同じである。
 R421における前記炭素数6~15のアリール基は、R42における前記アリール基のうち、炭素数が6~15であるものと同じである。
 前記一般式-OSi(R411(R421中のr及びsは、それぞれ、前記一般式-OSi(R41(R42中のr及びsと同じである。
 一般式(11)中、R141は水素原子又は炭素数1~6のアルコキシ基である。
 R141における前記炭素数1~6のアルコキシ基は、R14又はR12における前記アルコキシ基のうち、炭素数が1~6であるものと同じである。
 一般式(11)中、R211は水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、炭素数2~7のアシル基、又は炭素数1~6のヒドロキシアルキル基である。
 R211における前記炭素数1~6のアルキル基は、R21における前記アルキル基のうち、炭素数が1~6であるものと同じである。
 R211における前記炭素数3~9のトリアルキルシリル基は、R21における前記トリアルキルシリル基のうち、炭素数が3~9であるものと同じである。
 R211における前記炭素数2~7のアシル基は、R21における前記アシル基のうち、炭素数が2~7であるものと同じである。
 R211における前記炭素数1~6のヒドロキシアルキル基は、R21における前記ヒドロキシアルキル基のうち、炭素数が1~6であるものと同じである。
 好ましい化合物(11)の一例としては、R111が水素原子又は水酸基であり;
 R121が炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R131が炭素数1~6のアルコキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R121及びR131における前記炭素数1~6のアルコキシ基は、互いに同一であっても異なっていてもよく、R121における前記-OSi(R311(R321で表される基、及びR131における前記一般式-OSi(R411(R421で表される基は、互いに同一であっても異なっていてもよく;
 R141が水素原子であり;
 R211が水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、又は炭素数2~7のアシル基である化合物(11)(本明細書においては、「化合物(11)-1」と称することがある)が挙げられる。
 化合物(11)-1は、上述の化合物(1)-1の中の好ましいものである。
 好ましい化合物(11)の他の例としては、R111及びR211が水素原子であり;R121、R131及びR141がそれぞれ独立に炭素数1~6のアルコキシ基である化合物(11)(本明細書においては、「化合物(11)-2」と称することがある)が挙げられる。
 化合物(11)-2は、上述の化合物(1)-2の中の好ましいものである。
 化合物(11)-2において、R121、R131及びR141はいずれも、炭素数1~6のアルコキシ基であり、これらアルコキシ基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ(すなわち2個のみ)同一であってもよい。
 好ましい化合物(11)のさらに他の例としては、R111、R121及びR141が水素原子であり;R131が炭素数1~6のアルコキシ基であり;R211が水素原子、炭素数1~6のアルキル基、又は炭素数1~6のヒドロキシアルキル基である化合物(11)(本明細書においては、「化合物(11)-3」と称することがある)が挙げられる。
 化合物(11)-3は、上述の化合物(1)-3の中の好ましいものである。
 好ましい化合物(11)のさらに他の例としては、R111、R141及びR211が水素原子であり;R121が炭素数1~6のアルコキシ基であり;R131が水酸基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(11)(本明細書においては、「化合物(11)-4」と称することがある)が挙げられる。
 化合物(11)-4は、上述の化合物(1)-4の中の好ましいものである。
 好ましい化合物(11)のさらに他の例としては、R111が水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;R121が水素原子又は水酸基であり;R131、R141及びR211が水素原子である化合物(11)(本明細書においては、「化合物(11)-5」と称することがある)が挙げられる。
 化合物(11)-5は、上述の化合物(1)-5の中の好ましいものである。
 化合物(1)(化合物(11))は、下記一般式(111)で表される化合物(本明細書においては、「化合物(111)」と称することがある)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000032
 (式中、R112は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R122は水素原子、水酸基、メトキシ基又はtert-ブチルジメチルシリルオキシ基であり;
 R132は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又はtert-ブチルジメチルシリルオキシ基であり;
 R142は水素原子又はメトキシ基であり;
 R212は水素原子、臭素原子、メチル基、トリメチルシリル基、アセチル基、又はヒドロキシメチル基である。)
 好ましい化合物(111)の一例としては、R112が水素原子又は水酸基であり;R122及びR132が、それぞれ独立に、メトキシ基又はtert-ブチルジメチルシリルオキシ基であり;R142が水素原子であり;R212が水素原子、臭素原子、メチル基、トリメチルシリル基又はアセチル基である化合物(111)(本明細書においては、「化合物(111)-1」と称することがある)が挙げられる。
 化合物(111)-1は、上述の化合物(11)-1の中の好ましいものである。
 好ましい化合物(111)の他の例としては、R112及びR212が水素原子であり;R122、R132及びR142がメトキシ基である化合物(111)(本明細書においては、「化合物(111)-2」と称することがある)が挙げられる。
 化合物(111)-2は、上述の化合物(11)-2の中の好ましいものである。
 好ましい化合物(111)のさらに他の例としては、R112、R122及びR142が水素原子であり;R132がメトキシ基であり;R212が水素原子、メチル基、又はヒドロキシメチル基である化合物(111)(本明細書においては、「化合物(111)-3」と称することがある)が挙げられる。
 化合物(111)-3は、上述の化合物(11)-3の中の好ましいものである。
 好ましい化合物(111)のさらに他の例としては、R112、R142及びR212が水素原子であり;R122がメトキシ基であり;R132が水酸基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(111)(本明細書においては、「化合物(111)-4」と称することがある)が挙げられる。
 化合物(111)-4は、上述の化合物(11)-4の中の好ましいものである。
 好ましい化合物(111)のさらに他の例としては、R112が水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;R122が水素原子又は水酸基であり;R132、R142及びR212が水素原子である化合物(111)(本明細書においては、「化合物(111)-5」と称することがある)が挙げられる。
 化合物(111)-5は、上述の化合物(11)-5の中の好ましいものである。
 好ましい化合物(1)を以下に例示する。ただし、化合物(1)はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
<化合物(2)>
 化合物(2)は、化合物(1)の一方の製造原料であり、前記一般式(2)で表される。
 一般式(2)中、Xは脱離基である。
 Xにおける前記脱離基は、当該分野で公知のものでよい。
 Xにおける前記脱離基としては、例えば、塩素原子(-Cl)、アシルオキシ基(-O-C(=O)-X101(式中、X101は炭化水素基である。))、アルキルチオ基(-S-X102(式中、X102はアルキル基である。))、ベンゾトリアゾリル基等が挙げられる。
 前記反応工程(i)で用いる化合物(2)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。前記製造方法においては、化合物(2)を2種以上併用しても、同一種の化合物(1)が得られる。
 化合物(2)は公知の方法によって製造できる。
 例えば、化合物(2)の前駆体である、下記式で表される2,3,4,5,6-ペンタメトキシ安息香酸を用いて、化合物(2)を製造できる。Xが塩素原子である場合の化合物(2)は、2,3,4,5,6-ペンタメトキシ安息香酸を酸クロライド化することによって製造できる。
Figure JPOXMLDOC01-appb-C000041
(式中、Xは前記と同じである。)
 2,3,4,5,6-ペンタメトキシ安息香酸の酸クロライド化は、カルボン酸を酸クロライド化する公知の方法で行うことができる。
 酸クロライド化は、例えば、クロロ化剤として、塩化オキサリル((COCl))、塩化チオニル(CSCl)、塩化スルフリル(SOCl)、三塩化リン(PCl)、五塩化リン(PCl)又はオキシ塩化リン(POCl)等を用いて、行うことができる。
 酸クロライド化は、例えば、N,N-ジメチルホルムアミド(DMF)の共存下で行ってもよい。DMFは、触媒量用いてもよいし、溶媒を兼ねて用いてもよい。
 2,3,4,5,6-ペンタメトキシ安息香酸は、文献「Bioorg. Med. Chem. Lett., 21,4540(2011)」に記載の方法等、公知の方法で得られる。
<化合物(3)>
 化合物(3)は、化合物(1)の他方の製造原料であり、前記一般式(3)で表される。
 一般式(3)中のR11、R12、R13、R14及びR21は、それぞれ、一般式(1)中のR11、R12、R13、R14及びR21と同じである。
 一般式(3)中のR11、R12、R13、R14及びR21は、目的とする化合物(1)の構造に対応して決定され、例えば、一般式(3)中のR11、R12、R13、R14及びR21において、好ましいものは、一般式(1)中のR11、R12、R13、R14及びR21において、好ましいものと同じである。好ましい化合物(3)としては、先に説明した好ましい化合物(1)に対応するものが挙げられる。
 化合物(3)は、下記一般式(31)で表される化合物(本明細書においては、「化合物(31)」と称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 (式中、R111、R121、R131、R141及びR211は、前記と同じである。)
 一般式(31)中のR111、R121、R131、R141及びR211は、それぞれ、一般式(11)中のR111、R121、R131、R141及びR211と同じである。
 一般式(31)中のR111、R121、R131、R141及びR211は、目的とする化合物(11)の構造に対応して決定され、例えば、一般式(31)中のR111、R121、R131、R141及びR211において、好ましいものは、一般式(11)中のR111、R121、R131、R141及びR211において、好ましいものと同じである。好ましい化合物(31)としては、先に説明した好ましい化合物(11)に対応するものが挙げられる。
 化合物(3)(化合物(31))は、下記一般式(311)で表される化合物(本明細書においては、「化合物(311)」と称することがある)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000043
 (式中、R112、R122、R132、R142及びR212は、前記と同じである。)
 一般式(311)中のR112、R122、R132、R142及びR212は、それぞれ、一般式(111)中のR112、R122、R132、R142及びR212と同じである。
 一般式(311)中のR112、R122、R132、R142及びR212は、目的とする化合物(111)の構造に対応して決定され、例えば、一般式(311)中のR112、R122、R132、R142及びR212において、好ましいものは、一般式(111)中のR112、R122、R132、R142及びR212において、好ましいものと同じである。好ましい化合物(311)としては、先に説明した好ましい化合物(111)に対応するものが挙げられる。
 前記反応工程(i)で用いる化合物(3)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。化合物(3)を2種以上併用した場合には、2種以上の化合物(1)が同時に得られる。
 前記反応工程(i)において、化合物(3)の使用量は、化合物(2)の使用量に対して、1~3倍モル量であることが好ましく、1~2.5倍モル量であることがより好ましく、1~1.5倍モル量であることがさらに好ましい。化合物(3)の使用量が前記下限値以上であることで、化合物(1)の収率がより高くなる。化合物(3)の使用量が前記上限値以下であることで、化合物(3)の過剰使用が抑制される。
 化合物(3)は公知の方法によって製造できる。
 例えば、R21が水素原子である場合の化合物(3)である、下記一般式(3A)で表される化合物(本明細書においては、「化合物(3A)」と称することがある)は、下記一般式(3Ab)で表される化合物から、下記一般式(3Aa)で表される化合物を経由させて、合成することにより製造できる。この反応は、コーリー・フックス・アルキン合成(Corey-Fuchs Alkyne Synthesis)として知られている。
Figure JPOXMLDOC01-appb-C000044
 (式中、R11、R12、R13及びR14は、前記と同じである。)
 例えば、R21が水素原子以外の基(すなわち、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基)である場合の化合物(3)である、下記一般式(3B)で表される化合物(本明細書においては、「化合物(3B)」と称することがある)は、前記化合物(3A)を用いて、公知の方法で製造できる。より具体的には、例えば、n-ブチルリチウム、ナトリウムアミド等の強塩基を用いて、化合物(3A)中のアセチレン部位の水素原子(水素原子である場合のR21)を引き抜き、これにより生じたアルキニルアニオンに対して、水素原子以外の基である場合のR21を導入するための各種化合物(例えば、N-ハロコハク酸イミド、N-ハロフタル酸イミド、ハロゲン化アルキル、アルキルスルホナート、ハロゲン化アルコキシアルキル、ハロゲン化トリアルキルシリル等)を反応させることにより、化合物(3B)を製造できる。
Figure JPOXMLDOC01-appb-C000045
 (式中、R11、R12、R13及びR14は、前記と同じであり;R21Bはハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
 これまでに説明した化合物(2)及び化合物(3)の製造方法を選択し、さらに、本実施形態の化合物(1)の製造方法を適用することで、従来よりも少ない工程数で効率的に、ノビレチン又はその誘導体が得られる。
<ルイス酸>
 前記ルイス酸は、化合物(2)と化合物(3)との反応を促進する。
 好ましいルイス酸としては、例えば、金属ハロゲン化物、トリフルオロメタンスルホン酸金属塩等の金属塩;半金属ハロゲン化物等の半金属塩等が挙げられる。
 前記金属ハロゲン化物としては、例えば、金属フッ化物、金属塩化物、金属臭化物、金属ヨウ化物等が挙げられる。
 前記金属塩(金属ハロゲン化物、トリフルオロメタンスルホン酸金属塩等)を構成する金属種としては、例えば、スズ(Sn)、チタン(Ti)、鉄(Fe)、アルミニウム(Al)、ジルコニウム(Zr)、ニオブ(Nb)、スカンジウム(Sc)、インジウム(In)、ガリウム(Ga)、イッテルビウム(Yb)、カドミウム(Cd)等が挙げられる。
 前記半金属ハロゲン化物としては、例えば、半金属フッ化物、半金属塩化物、半金属臭化物、半金属ヨウ化物等が挙げられる。
 前記半金属塩を構成する半金属(metalloid、semimetal)種としては、例えば、ホウ素(B)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)等が挙げられる。ホウ素フッ化物で好ましいものとしては、例えば、三フッ化ホウ素ジエチルエーテル錯体(BF・O(C)、三フッ化ホウ素フェノール錯体(BF・2COH)等が挙げられる。
 前記反応工程(i)で用いるルイス酸は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
 好ましいルイス酸としては、例えば、金属ハロゲン化物が挙げられ、より好ましいルイス酸としては、例えば、金属塩化物が挙げられる。
 なかでも、ルイス酸は、塩化スズ(IV)(SnCl)、塩化チタン(IV)(TiCl)、塩化鉄(III)(FeCl)又は塩化アルミニウム(AlCl)であることがさらに好ましい。
 前記反応工程(i)において、ルイス酸の使用量は、化合物(2)の使用量に対して、1~5倍モル量であることが好ましく、1~4倍モル量であることがより好ましく、1~3倍モル量であることがさらに好ましい。ルイス酸の使用量が前記下限値以上であることで、化合物(2)と化合物(3)の反応率(化合物(1)の生成率)がより高くなり、化合物(1)の収率がより高くなる。ルイス酸の使用量が前記上限値以下であることで、ルイス酸の過剰使用が抑制される。
<溶媒>
 前記反応工程(i)においては溶媒を用いること、すなわち、化合物(2)と化合物(3)との反応は、溶媒を用いて行うことが好ましい。溶媒を用いることで、目的とする反応をより円滑に行うことができる。
 前記溶媒は、常温で液状であり、化合物(2)と化合物(3)との反応を妨げないものであれば、特に限定されず、化合物(2)と化合物(3)とのいずれか一方又は両方を溶解可能なものが好ましい。
 本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
 溶媒は、有機溶媒であることが好ましい。
 好ましい溶媒として、より具体的には、例えば、塩化メチレン(CHCl)、クロロホルム(CHCl)、四塩化炭素(CCl)等のハロゲン化炭化水素;トルエン、o-キシレン、m-キシレン、p-キシレン((C(CH)等の芳香族炭化水素;アセトニトリル(CHCN)、プロピオニトリル(CCN)等のニトリル等が挙げられる。
 前記反応工程(i)で用いる溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
 前記反応工程(i)において、化合物(2)、化合物(3)及びルイス酸の合計使用量1モルあたりの、溶媒の使用量([溶媒の使用量(L)]/([化合物(2)の使用量(mol)]+[化合物(3)の使用量(mol)]+[ルイス酸の使用量(mol)]))は、0.6~3Lであることが好ましく、0.8~2.5Lであることがより好ましく、1~2Lであることがさらに好ましい。前記溶媒の使用量がこのような範囲であることで、溶媒を用いたことにより得られる効果がより高くなる。さらに、前記溶媒の使用量が前記上限値以下であることで、溶媒の過剰使用が抑制される。
<他の成分>
 前記反応工程(i)においては、本発明の効果を妨げない範囲で、化合物(2)と、化合物(3)と、ルイス酸と、溶媒と、のいずれにも該当しない他の成分を用いてもよい。
 前記他の成分は、目的に応じて任意に選択でき、特に限定されない。
 前記反応工程(i)で用いる前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
<反応条件>
 前記反応工程(i)においては、化合物(2)と、化合物(3)と、ルイス酸と、を混合し、得られた混合物を撹拌することで、化合物(2)と化合物(3)を反応させ、化合物(1)を生成させることができる。
 前記反応工程(i)を行うことで、1ステップの反応によって、ノビレチン又はその誘導体が得られる。
 各成分の混合順序は、特に限定されない。
 各成分の好ましい混合方法の一例としては、化合物(2)と化合物(3)を混合し、得られた第1混合物に、さらにルイス酸を混合することで第2混合物を調製する混合方法が挙げられる。
 溶媒を用いる場合の各成分の好ましい混合方法の一例としては、化合物(2)と、化合物(3)と、溶媒と、を混合し、得られた第1混合物に、ルイス酸を溶媒に溶解させて得られたルイス酸溶液を加えることで、第2混合物を調製する混合方法が挙げられる。
 溶媒を用いる場合、前記第1混合物においては、化合物(2)と化合物(3)が溶解している(換言すると、第1混合物が化合物(2)と化合物(3)の溶液である)ことが好ましい。
 前記ルイス酸溶液は、第1混合物に対して、滴下することが好ましい。ルイス酸溶液を滴下することで、反応液の過度の発熱が避けられ、副生成物の生成量を低減できる。
 前記反応工程(i)において、化合物(2)と化合物(3)との反応は、常温以下の温度で行うことが好ましく、少なくとも反応の初期段階において、冷却条件下(換言すると、常温未満の温度条件下)で行うことがより好ましい。このようにすることで、副生成物の生成量を低減できる。
 化合物(2)と化合物(3)との反応を、少なくとも反応の初期段階において、冷却条件下で行う方法としては、例えば、冷却条件下で、前記ルイス酸溶液を、前記第1混合物に対して滴下し、得られた第2混合物をそのまま冷却条件下で撹拌することにより、反応を行う方法;冷却条件下で、前記ルイス酸溶液を、前記第1混合物に対して滴下し、得られた第2混合物をそのまま一定時間、冷却条件下で撹拌し、次いで、第2混合物を冷却せずに常温下で撹拌することにより、反応を行う方法;冷却条件下で、前記ルイス酸溶液を、前記第1混合物に対して滴下し、得られた第2混合物を冷却せずに常温下で撹拌することにより、反応を行う方法等が挙げられる。
 前記反応工程(i)において、前記冷却条件下での反応温度は、15℃以下であることが好ましく、10℃以下であることがより好ましく、5℃以下であることがさらに好ましい。
 前記冷却条件下での反応温度の下限値は、化合物(2)と化合物(3)との反応が可能である限り、特に限定されない。例えば、反応の進行がより速くなる点では、前記反応温度は、-5℃以上であることが好ましい。
 前記反応工程(i)において、化合物(2)と化合物(3)を反応させるときの反応時間は、他の反応条件を考慮して適宜調節できる。
 前記反応時間は、1~36時間であることが好ましく、例えば、1~24時間、1~8時間、及び1~4時間のいずれかであってもよい。前記反応時間が前記下限値以上であることで、化合物(1)の収率がより高くなる。前記反応時間が前記上限値以下であることで、反応時間が過剰な長さとなることが避けられる。
 前記ルイス酸溶液を前記第1混合物に対して滴下する場合には、ルイス酸溶液の滴下時間は、反応液の過度の発熱が抑制されるように適宜調節すればよく、例えば、3~60分であってもよい。前記ルイス酸溶液の滴下時間は、化合物(2)と化合物(3)を反応させるときの反応時間に含まれる。
 本明細書において、「反応液」とは、特に断りのない限り、化合物(2)と化合物(3)を混合して得られ、化合物(2)と化合物(3)の反応が進行しているか又は終了している液状物を意味する。例えば、前記第1混合物に、ルイス酸を混合しているものの、一部のルイス酸をまだ混合しておらず、化合物(2)と化合物(3)の反応が進行している状態の液状物は、前記反応液であり、化合物(2)と化合物(3)の反応が進行していない状態の液状物は、前記反応液ではない。
 一方、「第2混合物」とは、化合物(2)の全量と、化合物(3)の全量と、ルイス酸の全量と、を混合して得られた液状物を意味する。例えば、化合物(2)と化合物(3)の反応が進行していない状態の前記液状物は、第2混合物であるが、前記反応液ではない。そして、化合物(2)と化合物(3)の反応が進行しているか又は終了している状態の前記液状物は、第2混合物であり、前記反応液でもある。
 前記反応工程(i)において、ルイス酸の共存下での化合物(2)と化合物(3)との反応は、アルゴンガス、ヘリウムガス、窒素ガス等の不活性ガスの雰囲気下で行うことで好ましい。このようにすることで、化合物(2)と化合物(3)の反応率(化合物(1)の生成率)がより高くなり、化合物(1)の収率がより高くなる。
 前記反応工程(i)において、化合物(2)と化合物(3)の反応は、反応液中に水を添加することで、停止させることができる。
 前記製造方法においては、前記反応工程(i)の終了後、公知の手法によって、必要に応じて反応液に対して後処理を行い、化合物(1)を取り出すことができる。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、蒸留、昇華、カラムクロマトグラフィー等により、化合物(1)を取り出すことができる。また、取り出した化合物(1)は、さらに必要に応じて、結晶化、再沈殿、蒸留、昇華、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて1回以上行うことで、精製してもよい。あるいは、前記反応工程(i)の終了後、必要に応じて反応液に対して後処理を行った後、化合物(1)を取り出すことなく、目的とする用途で用いてもよい。例えば、化合物(1)を取り出さずに、次の目的とする反応に供してもよい。
 例えば、前記後処理として、好ましくは、無機酸又は有機酸の水溶液による洗浄を行うことで、ルイス酸を反応液から分離できる。前記水溶液は、緩衝液であってもよい。前記無機酸としては、例えば、塩酸、リン酸等が挙げられる。前記有機酸としては、例えば、カルボン酸等が挙げられ、多価カルボン酸を用いることで、ルイス酸をより効率的に反応液から分離できる。
 例えば、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)は、パラジウム炭素(Pd/C)又は水酸化パラジウム-活性炭素(Pd(OH)/C)を用いた接触水素化による還元反応を行うことで、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基を水酸基に変換できる。これは、水酸基の脱保護反応として周知の反応である。このように脱保護されてR13が水酸基となった化合物も、化合物(1)に包含される。
 例えば、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(3)を用いた場合には、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)とともに、同時に、R11又はR13が水酸基である化合物(1)も得られることがある。これは、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)が生成した後、反応液中で引き続き、一部の化合物(1)において、R11又はR13が水酸基に変換される(脱保護される)ためであると推測される。
 反応液中での、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)と、R11又はR13が水酸基である化合物(1)と、の比率は、反応条件を調節することで、調節可能な場合がある。そして、R11又はR13がベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である化合物(1)と、R11又はR13が水酸基である化合物(1)は、これらの混合物として反応液から取り出してから、又は反応液から取り出さずに、精製を行うことによって、互いに分離することが可能である。
 化合物(1)は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法によって、その構造を確認できる。
 本実施形態の好ましい化合物の製造方法の一例としては、下記一般式(2)
Figure JPOXMLDOC01-appb-C000046
 (式中、Xは脱離基である。)
で表される化合物と、下記一般式(31)
Figure JPOXMLDOC01-appb-C000047
 (式中、R111は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R121は水素原子、水酸基、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R131は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R141は水素原子又は炭素数1~6のアルコキシ基であり;
 R211は水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、炭素数2~7のアシル基、又は炭素数1~6のヒドロキシアルキル基である。)で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(11)
Figure JPOXMLDOC01-appb-C000048
 (式中、R111、R121、R131、R141及びR211は、前記と同じである。)で表される化合物を得る工程を有する、化合物の製造方法が挙げられる。
 本実施形態のより好ましい化合物の製造方法の一例としては、下記一般式(2)
Figure JPOXMLDOC01-appb-C000049
 (式中、Xは脱離基である。)
で表される化合物と、下記一般式(311)
Figure JPOXMLDOC01-appb-C000050
 (式中、R112は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R122は水素原子、水酸基、メトキシ基又はt-ブチルジメチルシリルオキシ基であり;
 R132は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又はt-ブチルジメチルシリルオキシ基であり;
 R142は水素原子又はメトキシ基であり;
 R212は水素原子、臭素原子、メチル基、トリメチルシリル基、アセチル基、又はヒドロキシメチル基である。)で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(111)
Figure JPOXMLDOC01-appb-C000051
 (式中、R112、R122、R132、R142及びR212は、前記と同じである。)で表される化合物を得る工程を有する、化合物の製造方法が挙げられる。
<<化合物の製造方法(製造方法(ii))>>
 本発明の一実施形態に係る化合物の製造方法は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000052
 (式中、Xは脱離基である。)
で表される化合物(化合物(2))と、下記一般式(3C)
Figure JPOXMLDOC01-appb-C000053
 (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 R12Cは水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R13Cは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはなく、
 R14は水素原子又はアルコキシ基であり;
 R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
で表される化合物(本明細書においては、「化合物(3C)」と称することがある)とを、ルイス酸の共存下で反応させることにより、下記一般式(1C)
Figure JPOXMLDOC01-appb-C000054
 (式中、R11、R12C、R13C、R14及びR21は、前記と同じであり、ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)で表される化合物(本明細書においては、「化合物(1C)」と称することがある)を得る工程(本明細書においては、「反応工程(ii)」と称することがある)と、
 前記一般式(1C)で表される化合物中の、前記一般式-OSi(R31(R32で表される基又は前記一般式-OSi(R41(R42で表される基を、水酸基に変換することにより、下記一般式(1D)
Figure JPOXMLDOC01-appb-C000055
 (式中、R11、R14及びR21は、前記と同じであり;
 R12Dは水素原子、水酸基又はアルコキシ基であり;
 R13Dは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
 ただし、R12Dが水素原子又はアルコキシ基であり、かつ、R13Dが水素原子、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)
で表される化合物(本明細書においては、「化合物(1D)」と称することがある)を得る工程(本明細書においては、「脱保護工程」と称することがある)と、を有する。
 本明細書においては、前記反応工程(ii)及び脱保護工程を有し、化合物(1D)を得る化合物の製造方法を「製造方法(ii)」と称することがある。
 本実施形態の製造方法(製造方法(ii))の反応工程(ii)で得られる化合物(1C)中の、前記一般式-OSi(R31(R32で表されるケイ素原子含有基と、前記一般式-OSi(R41(R42で表されるケイ素原子含有基は、シリル系保護基で保護された水酸基と見做せる。これらケイ素原子含有基は、公知の方法で脱保護(脱シリル化)することにより、水酸基へ変換できる。
 製造方法(ii)は、上述の製造方法(i)によって、化合物(1)として、前記一般式-OSi(R31(R32で表されるケイ素原子含有基と、前記一般式-OSi(R41(R42で表されるケイ素原子含有基と、のいずれか一方又は両方を有する、特定範囲の化合物(1C)を得たのち、この化合物(1C)中の前記ケイ素原子含有基を脱保護することによって、化合物(1C)(化合物(1))とは異なる種類のノビレチン誘導体である化合物(1D)を製造する方法である。
 前記一般式(3C)において、R12Cが水素原子、水酸基又はアルコキシ基である場合には、R13Cは前記一般式-OSi(R41(R42で表される基であり、R12Cが前記一般式-OSi(R31(R32で表される基である場合には、R13Cは前記一般式-OSi(R41(R42で表される基と、それ以外の基と、のいずれであってもよい。
 前記一般式(3C)において、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である場合には、R12Cは前記一般式-OSi(R31(R32で表される基であり、R13Cが前記一般式-OSi(R41(R42で表される基である場合には、R12Cは前記一般式-OSi(R31(R32で表される基と、それ以外の基と、のいずれであってもよい。
 これらの点を除けば、一般式(3C)中のR12C及びR13Cは、それぞれ、一般式(3)中のR12及びR13と同じである。
 すなわち、化合物(3C)及び化合物(1C)は、前記一般式-OSi(R31(R32で表される基と、前記一般式-OSi(R41(R42で表される基と、のいずれか一方又は両方を必ず有する点を除けば、それぞれ、化合物(3)及び化合物(1)と同じである。
 好ましい化合物(1C)の一例としては、R11が水素原子又は水酸基であり;R12Cがアルコキシ基又は前記一般式-OSi(R31(R32で表される基であり;R13Cがアルコキシ基又は前記一般式-OSi(R41(R42で表される基であり;R12C及びR13Cにおける前記アルコキシ基は、互いに同一であっても異なっていてもよく、R12Cにおける前記-OSi(R31(R32で表される基、及びR13Cにおける前記一般式-OSi(R41(R42で表される基は、互いに同一であっても異なっていてもよく;ただし、R12C及びR13Cがともにアルコキシ基であることはなく、R14が水素原子であり;R21が水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基である化合物(1C)(本明細書においては、「化合物(1C)-1」と称することがある)が挙げられる。
 R12Cは、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であることが好ましい。
 R13Cは、炭素数1~6のアルコキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であることが好ましい。
 R141は水素原子であることが好ましい。
 R211は、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、又は炭素数2~7のアシル基であることが好ましい。
 好ましい化合物(1C)として、より具体的には、例えば、上記の化合物(1)-106~131が挙げられる。ただし、化合物(1C)はこれらに限定されない。
 前記反応工程(ii)は、化合物(3)に代えて化合物(3C)を用いる点以外は、前記反応工程(i)と同じである。
 製造方法(ii)においては、前記反応工程(ii)の終了後、公知の手法によって、製造方法(i)における前記反応工程(i)の場合と同様に、必要に応じて反応液に対して後処理を行い、化合物(1C)を取り出すことができる。また、取り出した化合物(1C)は、さらに必要に応じて、製造方法(i)における化合物(1)の場合と同様に精製してもよい。あるいは、前記反応工程(ii)の終了後、必要に応じて反応液に対して後処理を行った後、化合物(1C)を取り出すことなく、次工程(例えば、前記脱保護工程)を行ってもよい。
 製造方法(ii)の前記脱保護工程においては、化合物(1C)がR12Cとして一般式-OSi(R31(R32で表されるケイ素原子含有基を有する場合には、このケイ素原子含有基を脱保護し、化合物(1C)がR13Cとして一般式-OSi(R41(R42で表されるケイ素原子含有基を有する場合には、このケイ素原子含有基を脱保護する。
 これらケイ素原子含有基の脱保護は、公知の方法で、脱保護剤を用いて行うことができる。
 前記脱保護剤としては、例えば、テトラブチルアンモニウムフルオライド(TBAF)、ジフルオロトリメチルケイ酸トリス(ジメチルアミノ)スルホニウム(TASF)、フッ化アンモニウム等のフッ素原子含有化合物;酸;塩基等が挙げられる。
 前記脱保護工程における脱保護剤の使用量は、脱保護剤の種類応じて、任意に選択できる。
 例えば、脱保護剤が前記フッ素原子含有化合物である場合には、脱保護剤の使用量は、化合物(1C)の使用量に対して、2~5倍モル量であることが好ましく、例えば、2~4倍モル量であってもよい。脱保護剤の使用量が前記下限値以上であることで、化合物(1C)の収率がより高くなる。脱保護剤の使用量が前記上限値以下であることで、脱保護剤の過剰使用が抑制される。
 前記脱保護工程における、脱保護反応の反応温度及び反応時間も、脱保護剤の種類に応じて、任意に選択できる。
 例えば、脱保護剤が前記フッ素原子含有化合物である場合には、反応温度は、15~35℃であることが好ましく、室温であってもよく、反応時間は、0.5~5時間であることが好ましい。
 前記脱保護工程において、脱保護反応は、溶媒を用いて行うことが好ましい。溶媒を用いる場合には、例えば、化合物(1C)及び脱保護剤のいずれか一方又は両方を、溶液として混合してもよい。
 前記脱保護工程で用いる溶媒は、化合物(1C)及び脱保護剤の種類に応じて、適宜選択できる。例えば、脱保護剤が前記フッ素原子含有化合物である場合には、溶媒は有機溶媒であることが好ましく、化合物(1C)及び脱保護剤を溶解可能な溶媒であることがより好ましい。この場合の好ましい溶媒として、より具体的には、例えば、テトラヒドロフラン(THF)等のエーテル等が挙げられる。
 脱保護反応時の溶媒の使用量は、化合物(1C)及び脱保護剤の種類に応じて適宜調節でき、特に限定されない。
 前記脱保護工程で用いる脱保護剤及び溶媒は、それぞれ、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
 前記一般式(1D)において、R12Dは水素原子、水酸基又はアルコキシ基であり、前記アルコキシ基は、R12Cにおけるアルコキシ基と同じである。
 前記一般式(1D)において、R13Dは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり、前記アルコキシ基は、R13Cにおけるアルコキシ基と同じである。
 ただし、一般式(1D)において、R12Dが水素原子又はアルコキシ基である場合には、R13Dは水酸基であり、R12Dが水酸基である場合には、R13Dは水酸基と、それ以外の基と、のいずれであってもよい。
 一般式(1D)において、R13Dが水素原子、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である場合には、R12Dは水酸基であり、R13Dが水酸基である場合には、R12Dは水酸基と、それ以外の基と、のいずれであってもよい。
 これらの点を除けば、一般式(1D)中のR12D及びR13Dは、それぞれ、一般式(1)中のR12及びR13と同じである。
 すなわち、化合物(1D)は、R12Dとしての水酸基と、R13Dとしての水酸基と、のいずれか一方又は両方を必ず有する点を除けば、化合物(1)と同じである。化合物(1D)は、分子構造の点では、化合物(1)に包含される。
 好ましい化合物(1D)の一例としては、R11が水素原子又は水酸基であり;R12D及びR13Dが、それぞれ独立に、水酸基又はアルコキシ基であり;ただし、R12D及びR13Dがともにアルコキシ基であることはなく、R14が水素原子であり;R21が水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基である化合物(1D)(本明細書においては、「化合物(1D)-1」と称することがある)が挙げられる。
 好ましい化合物(1D)として、より具体的には、例えば、上記の化合物(1)-402と、さらに、以下に例示するものが挙げられる。ただし、化合物(1D)はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
 製造方法(ii)においては、前記脱保護工程の終了後、公知の手法によって、製造方法(i)における前記反応工程(i)の場合と同様に、必要に応じて反応液に対して後処理を行い、化合物(1D)を取り出すことができる。また、取り出した化合物(1D)は、さらに必要に応じて、製造方法(i)における化合物(1)の場合と同様に精製してもよい。あるいは、前記脱保護工程の終了後、必要に応じて反応液に対して後処理を行った後、化合物(1D)を取り出すことなく、目的とする用途で用いてもよい。例えば、化合物(1D)を取り出さずに、次の目的とする反応に供してもよい。
 化合物(1C)及び化合物(1D)は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法によって、その構造を確認できる。
<<化合物>>
 本発明の一実施形態に係る化合物は、下記一般式(01)
Figure JPOXMLDOC01-appb-C000058
 (式中、R012は、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R013は、アルコキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 R021は、水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基であり;
 ただし、R021が水素原子である場合には、R012がアルコキシ基であり、かつ、R013がアルコキシ基である、ことはない。)で表される(本明細書においては、この化合物を「化合物(01)」と称することがある)。
 前記化合物(01)は、上述の化合物(1)に包含される新規化合物である。
 一般式(01)中、R012は、アルコキシ基又は一般式-OSi(R31(R32で表される基であり、R013は、アルコキシ基又は一般式-OSi(R41(R42で表される基である。
 一般式(01)中のR012における前記アルコキシ基と、R013における前記アルコキシ基は、一般式(1)中のR11及びR12における前記アルコキシ基と同じである。
 一般式(01)中の一般式-OSi(R31(R32で表される基は、一般式(1)中の一般式-OSi(R31(R32で表される基と同じであり、一般式(01)中の一般式-OSi(R41(R42で表される基は、一般式(1)中の一般式-OSi(R41(R42で表される基と同じである。
 R012における前記アルコキシ基と、R013における前記アルコキシ基は、互いに同一であっても異なっていてもよい。
 R012における前記一般式-OSi(R31(R32で表される基と、R013における前記一般式-OSi(R41(R42で表される基は、互いに同一であっても異なっていてもよい。
 一般式(01)中のR021における前記ハロゲン原子、アルキル基、トリアルキルシリル基及びアシル基は、それぞれ、一般式(1)中のR21における前記ハロゲン原子、アルキル基、トリアルキルシリル基及びアシル基と同じである。
 すなわち、化合物(01)は、一般式(1)中のR11及びR14が水素原子に限定され、R12がアルコキシ基又は一般式-OSi(R31(R32で表される基に限定され、R13がアルコキシ基又は一般式-OSi(R41(R42で表される基に限定され、R21が水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基に限定され、さらに、R21が水素原子である場合には、前記一般式-OSi(R31(R32で表される基と、前記一般式-OSi(R41(R42で表される基と、のいずれか一方又は両方を必ず有する、と限定された化合物(1)と同じである。
 R012及びR013における前記アルコキシ基の炭素数は、1~10であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアルコキシ基の炭素数は、1~10であることが好ましく、環状(単環状又は多環状)のアルコキシ基の炭素数は、3~10であることが好ましい。
 R012及びR013における前記アルコキシ基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 一般式-OSi(R31(R32で表される基と、一般式-OSi(R41(R42で表される基で、好ましいものとしては、トリメチルシリルオキシ基(-OTMS)、トリエチルシリルオキシ基(-OTES)、トリイソプロピルシリルオキシ基(-OTIPS)等のトリプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基(-OTBDMS)等のトリアルキルシリルオキシ基;ジメチルフェニルシリルオキシ基(-ODMPS)等のジアルキルモノアリールシリルオキシ基;メチルジフェニルシリルオキシ基(-OMDPS)、tert-ブチルジフェニルシリルオキシ基(-OTBDPS)等のモノアルキルジアリールシリルオキシ基;トリフェニルシリルオキシ基(-OTPS)等のトリアリールシリルオキシ基が挙げられる。
 R021における前記アルキル基の炭素数は、1~10であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアルキル基の炭素数は、1~10であることが好ましく、環状(単環状又は多環状)のアルキル基の炭素数は、3~10であることが好ましい。
 R021における前記アルキル基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R021における前記トリアルキルシリル基の炭素数(すなわち、3個のアルキル基の炭素数の合計値)は、3~12であることが好ましく、3~9であることがより好ましく、例えば、3~6であってもよい。
 R021における前記アシル基の炭素数は、2~11であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアシル基の炭素数は、2~11であることが好ましく、環状(単環状又は多環状)のアシル基の炭素数は、4~11であることが好ましい。
 R021における前記アシル基の炭素数は、2~9であることがより好ましく、2~7であることがさらに好ましく、例えば、2~5、及び2~3のいずれかであってもよい。
◎化合物(1A)
 前記化合物(01)のうち、好ましい化合物の一例としては、下記一般式(1A)
Figure JPOXMLDOC01-appb-C000059
 (式中、R12A及びR13Aは、それぞれ独立にアルコキシ基であり;R21Aはハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基である。)
で表される(本明細書においては、この化合物を「化合物(1A)」と称することがある)が挙げられる。
 前記化合物(1A)は、上述の化合物(1)に包含される新規化合物である。
 一般式(1A)中、R12A及びR13Aは、それぞれ独立にアルコキシ基である。すなわち、R12A及びR13Aは、互いに同一であってもよいし、異なっていてもよい。
 一般式(1A)中のR12A及びR13Aにおける前記アルコキシ基は、一般式(1)中のR11及びR12における前記アルコキシ基と同じである。
 一般式(1A)中のR21Aにおける前記ハロゲン原子、アルキル基、トリアルキルシリル基及びアシル基は、それぞれ、一般式(1)中のR21における前記ハロゲン原子、アルキル基、トリアルキルシリル基及びアシル基と同じである。
 すなわち、化合物(1A)は、一般式(1)中のR11及びR14が水素原子に限定され、R12及びR13がアルコキシ基に限定され、R21がハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基に限定された化合物(1)と同じである。
 R12A及びR13Aにおける前記アルコキシ基の炭素数は、1~10であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアルコキシ基の炭素数は、1~10であることが好ましく、環状(単環状又は多環状)のアルコキシ基の炭素数は、3~10であることが好ましい。
 R12A及びR13Aにおける前記アルコキシ基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R21Aにおける前記アルキル基の炭素数は、1~10であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアルキル基の炭素数は、1~10であることが好ましく、環状(単環状又は多環状)のアルキル基の炭素数は、3~10であることが好ましい。
 R21Aにおける前記アルキル基の炭素数は、1~8であることがより好ましく、1~6であることがさらに好ましく、例えば、1~4、及び1~2のいずれかであってもよい。
 R21Aにおける前記トリアルキルシリル基の炭素数(すなわち、3個のアルキル基の炭素数の合計値)は、3~12であることが好ましく、3~9であることがより好ましく、例えば、3~6であってもよい。
 R21Aにおける前記アシル基の炭素数は、2~11であることが好ましく、鎖状(直鎖状又は分岐鎖状)のアシル基の炭素数は、2~11であることが好ましく、環状(単環状又は多環状)のアシル基の炭素数は、4~11であることが好ましい。
 R21Aにおける前記アシル基の炭素数は、2~9であることがより好ましく、2~7であることがさらに好ましく、例えば、2~5、及び2~3のいずれかであってもよい。
 化合物(1A)は、下記一般式(11A)で表される化合物(本明細書においては、「化合物(11A)」と称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000060
 (式中、R121A及びR131Aは、それぞれ独立に炭素数1~6のアルコキシ基であり;R211Aはハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、又は炭素数2~7のアシル基である。)
 一般式(11A)中、R121A及びR131Aは、それぞれ炭素数1~6のアルコキシ基であり、互いに同一であってもよいし、異なっていてもよい。
 R121A及びR131Aにおける前記炭素数1~6のアルコキシ基は、R12における前記アルコキシ基のうち、炭素数が1~6であるものと同じである。
 一般式(11A)中、R211Aはハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、又は炭素数2~7のアシル基である。
 R211Aにおける前記ハロゲン原子は、R21における前記ハロゲン原子と同じである。
 R211Aにおける前記炭素数1~6のアルキル基は、R21における前記アルキル基のうち、炭素数が1~6であるものと同じである。
 R211Aにおける前記炭素数3~9のトリアルキルシリル基は、R21における前記トリアルキルシリル基のうち、炭素数が3~9であるものと同じである。
 R211Aにおける前記炭素数2~7のアシル基は、R21における前記アシル基のうち、炭素数が2~7であるものと同じである。
 化合物(1A)(化合物(11A))は、下記一般式(111A)で表される化合物(本明細書においては、「化合物(111A)」と称することがある)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000061
 (式中、R212Aは臭素原子、メチル基、トリメチルシリル基又はアセチル基である。)
 好ましい化合物(1A)を以下に例示する。ただし、化合物(1A)はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000062
◎化合物(1E)
 前記化合物(01)のうち、好ましい化合物の他の例としては、下記一般式(1E)
Figure JPOXMLDOC01-appb-C000063
 (式中、R12Eは、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
 R13Eは、アルコキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
 ただし、R12E及びR13Eがともにアルコキシ基である、ことはない。(本明細書においては、この化合物を「化合物(1E)」と称することがある)が挙げられる。
 前記化合物(1E)は、上述の化合物(1)に包含される新規化合物である。
 一般式(1E)中のR12Eにおける前記アルコキシ基と、R13Eにおける前記アルコキシ基は、一般式(1)中のR11及びR12における前記アルコキシ基と同じである。
 一般式(1E)中の一般式-OSi(R31(R32で表される基は、一般式(1)中の一般式-OSi(R31(R32で表される基と同じである。
 一般式(1E)中の一般式-OSi(R41(R42で表される基は、一般式(1)中の一般式-OSi(R41(R42で表される基と同じである。
 R12Eにおける前記アルコキシ基と、R13Eにおける前記アルコキシ基は、互いに同一であっても異なっていてもよい。
 R12Eにおける前記一般式-OSi(R31(R32で表される基と、R13Eにおける前記一般式-OSi(R41(R42で表される基は、互いに同一であっても異なっていてもよい。
 すなわち、化合物(1E)は、一般式(1)中のR11、R14及びR21が水素原子に限定され、R12Eが、アルコキシ基又は前記一般式-OSi(R31(R32で表される基に限定され、R13Eが、アルコキシ基又は前記一般式-OSi(R41(R42で表される基に限定され、さらに、前記一般式-OSi(R31(R32で表される基と、前記一般式-OSi(R41(R42で表される基と、のいずれか一方又は両方を必ず有する、と限定された化合物(1)と同じである。
 R12E及びR13Eにおける前記アルコキシ基は、R12A及びR13Aにおける前記アルコキシ基と同様であることが好ましい。
 R12Eにおける前記一般式-OSi(R31(R32で表される基は、R012における前記一般式-OSi(R31(R32で表される基と同様であることが好ましい。
 R13Eにおける前記一般式-OSi(R41(R42で表される基は、R013における前記一般式-OSi(R41(R42で表される基と同様であることが好ましい。
 化合物(1E)は、下記一般式(11E)で表される化合物(本明細書においては、「化合物(11E)」と称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000064
 (式中、R121E及びR131Eは、それぞれ独立に、炭素数1~6のアルコキシ基、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、ジメチルフェニルシリルオキシ基、メチルジフェニルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基又はトリフェニルシリルオキシ基であり;
 ただし、R121E及びR131Eがともに、前記炭素数1~6のアルコキシ基である、ことはない。)
 R121E及びR131Eにおける前記炭素数1~6のアルコキシ基は、R121A及びR131Aにおける前記炭素数1~6のアルコキシ基と同様であることが好ましい。
 R121Eにおける前記炭素数1~6のアルコキシ基と、R131Eにおける前記炭素数1~6のアルコキシ基は、互いに同一であっても異なっていてもよい。
 前記一般式(11E)において、R121E及びR131Eのいずれか一方又は両方は、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、ジメチルフェニルシリルオキシ基、メチルジフェニルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基又はトリフェニルシリルオキシ基である。
 化合物(1E)(化合物(11E))は、下記一般式(111E)で表される化合物(本明細書においては、「化合物(111E)」と称することがある)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000065
 (式中、R122E及びR132Eは、それぞれ独立に、メトキシ基、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、ジメチルフェニルシリルオキシ基、メチルジフェニルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基又はトリフェニルシリルオキシ基であり;
 ただし、R122E及びR132Eがともにメトキシ基である、ことはない。)
 前記一般式(111E)において、R122E及びR132Eは、互いに同一であっても異なっていてもよい。
 化合物(111E)は、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、トリブチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、ジメチルフェニルシリルオキシ基、メチルジフェニルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基又はトリフェニルシリルオキシ基を必ず有する。
 好ましい化合物(1E)を以下に例示する。ただし、化合物(1E)はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
 以降の各実施例で示す化合物(1)の収率は、いずれも、化合物(2)の使用量を基準とした単離収率である。
 以下の各実施例で用いている化合物(2)の製造原料である2,3,4,5,6-ペンタメトキシ安息香酸は、文献「Bioorg. Med. Chem. Lett., 21,4540(2011)」に記載の方法に従って、先に説明した合成ルートによって製造した。
 そして、各実施例において、常法に従って、溶媒として塩化メチレンを用い、触媒量のN,N-ジメチルホルムアミド(DMF)の共存下で、2,3,4,5,6-ペンタメトキシ安息香酸に、塩化オキサリル((COCl))を作用させることで、化合物(2)として化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)を製造した。化合物(2)-1は、いずれの場合も定量的に得られ(収率約100%)、目的とする2,3,4,5,6-ペンタメトキシベンゾイルクロライドであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。
<<化合物(1)の製造>>
<ノビレチンの製造>
[実施例1]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.84mmol)と、化合物(3)-1(3,4-ジメトキシフェニルアセチレン)(360mg、2.21mmol)を、ジクロロメタン(8mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(4.6mL、塩化スズ(IV)として4.6mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で2時間撹拌し、得られた反応液中に、水(10mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(5mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/2(体積比))により精製することで、ノビレチン(化合物(1)-101)を黄色固体として得た(収量690mg(1.71mmol)、収率92.9%)。結果を表1に示す。
 得られたものがノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.55 (1H, dd, J = 8.7, 2.3 Hz, H-6'), 7.41 (1H, d, J = 2.3 Hz, H-2'), 6.98 (1H, d, J = 8.7 Hz, H-5'), 6.62 (1H, s, H-3), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.97 (3H, s, -OCH3), 3.96 (3H, s, -OCH3), 3.95 (6H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.49, 161.18, 152.07, 151.57, 149.44, 148.58, 147.86, 144.23, 138.16, 124.17, 119.77, 115.01, 111.38, 108.71, 107.03, 62.41, 62.11, 61.97, 61.82, 56.24, 56.12.
 HRMS calcd. for [M+H+] of C21H22O8: 403.1387, found: 403.1389.
[実施例2]
 塩化スズ(IV)(4.6mmol)に代えて、塩化チタン(IV)(4.6mmol)を用いた点以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量521mg(1.29mmol)、収率70.2%)。塩化チタン(IV)は、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
[実施例3]
 塩化スズ(IV)(4.6mmol)に代えて、塩化鉄(III)(1.84mmol)を用いた点以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量403mg(1mmol)、収率54.3%)。塩化鉄(III)は、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
[実施例4]
 塩化スズ(IV)(4.6mmol)に代えて、塩化アルミニウム(4.6mmol)を用いた点と、0℃で2時間反応させるのに代えて、0℃~室温で20時間反応させた点、以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量204mg(0.5mmol)、収率27.4%)。塩化アルミニウムは、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
[実施例5]
 塩化スズ(IV)の使用量を、4.6mmolに代えて3.68mmolとした点以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量588mg(1.46mmol)、収率79.1%)。塩化スズ(IV)は、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
[実施例6]
 塩化スズ(IV)の使用量を、4.6mmolに代えて1.84mmolとした点以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量566mg(1.4mmol)、収率76.2%)。塩化スズ(IV)は、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
[実施例7]
 塩化スズ(IV)(4.6mmol)に代えて、塩化チタン(IV)(4.6mmol)を用いた点と、0℃で2時間反応させるのに代えて、0℃で3時間、次いで室温で1時間反応させた点、以外は、実施例1の場合と同じ方法で、ノビレチンを黄色固体として得た(収量384mg(0.95mmol)、収率51.7%)。塩化チタン(IV)は、濃度が1Mのジクロロメタン溶液として用いた。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-T000071
<ノビレチンの製造(スケールアップ)>
[実施例8]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(3.67mmol)と、化合物(3)-1(3,4-ジメトキシフェニルアセチレン)(714mg、4.4mmol)を、ジクロロメタン(16mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(9.18mL、塩化スズ(IV)として9.18mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で2時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/2(体積比))により精製することで、ノビレチンを黄色固体として得た(収量1.32g(3.28mmol)、収率89%)。得られたものをH NMR、13C NMR、HRMSにより分析した結果、実施例1の場合と同様の結果が得られ、得られたものがノビレチンであることを確認した。
<タンゲレチンの製造>
[実施例9]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.84mmol)と、化合物(3)-2(4-メトキシフェニルアセチレン)(292mg、2.21mmol)を、ジクロロメタン(8mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(4.6mL、塩化スズ(IV)として4.6mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で2時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/1(体積比))により精製することで、色味がオフホワイトで固体のタンゲレチン(Tangeretin、化合物(1)-301)を得た(収量630mg(1.69mmol)、収率92%)。
 得られたものがタンゲレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.86 (2H, d, J = 9.0 Hz, H-2'and 6'), 7.00 (2H, d,  J = 9.0 Hz, H-3'and 5'), 6.60 (1H, s, H-3), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.94 (6H, s, -OCH3), 3.89 (3H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.50, 162.41, 161.32, 151.51, 148.52, 147.87, 144.20, 138.22, 127.85, 123.97, 115.02, 114.65, 106.83, 62.40, 62.17, 61.97, 61.79, 55.64.
 HRMS calcd. for [M+H+] of C20H20O7: 373.1282, found: 373.1277.
Figure JPOXMLDOC01-appb-C000072
<ガルデニンAモノメチルエーテルの製造>
[実施例10]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.84mmol)と、化合物(3)-3(3,4,5-トリメトキシフェニルアセチレン)(425mg、2.21mmol)を、ジクロロメタン(8mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(4.6mL、塩化スズ(IV)として4.6mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で2時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/2(体積比))により精製することで、ガルデニンAモノメチルエーテル(化合物(1)-201)を白色固体として得た(収量621mg(1.44mmol)、収率78%)。
 得られたものがガルデニンAモノメチルエーテルであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.17 (2H, s, H-2' and H-6'), 6.64 (1H, s, H-3), 4.10(3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.95 (12H, m, -OCH3), 3.93 (3H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.50, 160.96, 153.74, 151.71, 148.60, 147.86, 144.32, 141.19, 138.12, 126.85, 114.97, 107.79, 103.49, 62.42, 62.05, 61.97, 61.84, 61.20, 56.38.
 HRMS calcd. for [M+H+] of C22H24O9: 433.1493, found: 433.1491.
Figure JPOXMLDOC01-appb-C000073
<4’-ベンジルオキシ-3’,5,6,7,8-ペンタメトキシフラボン及び4’-デメチルノビレチンの製造>
[実施例11]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.47mmol)と、化合物(3)-4(1-エチニル-4-ベンジルオキシ-3-メトキシベンゼン)(419mg、1.76mmol)を、ジクロロメタン(6.4mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(3.7mL、塩化スズ(IV)として3.7mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で1時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/2(体積比))により精製することで、色味がオフホワイトで固体の4’-ベンジルオキシ-3’,5,6,7,8-ペンタメトキシフラボン(化合物(1)-401)(収量112mg(0.23mmol)、収率16%)及び4’-デメチルノビレチン(化合物(1)-402)(収量387mg(1.03mmol)、収率68%)を得た。
 得られたものが4’-ベンジルオキシ-3’,5,6,7,8-ペンタメトキシフラボン及び4’-デメチルノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
・4’-ベンジルオキシ-3’,5,6,7,8-ペンタメトキシフラボン
 1H NMR (CDCl3) δ: 7.50-7.33 (7H, m, Ph), 7.00 (1H, d, J=8.2 Hz, Ph), 6.60 (1H, s, H-3), 5.24 (2H, s, -CH2), 4.10 (3H, s, -OCH3), 4.01 (3H, s, -OCH3), 3.98 (3H, s, -OCH3), 3.95 (6H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.48, 161.15, 151.57, 151.19, 148.96, 148.56, 147.85, 144.23, 138.16, 136.50, 128.85, 128.28, 127.48, 124.48, 119.62, 115.00, 113.64, 109.19, 107.07, 71.05, 62.41, 62.11, 61.97, 61.81, 56.22.
 HRMS calcd. for [M+H+] of C27H26O8: 479.1703, found: 479.1705.
・4’-デメチルノビレチン
 1H NMR (CDCl3) δ: 7.51 (1H, dd, J=1.8, 8.3 Hz, H-6'), 7.40 (1H, d, J=1.8 Hz, H-2'), 7.03 (1H, d, J=8.3 Hz, H-5'), 6.60 (1H, s, H-3), 6.02 (1H, brs, -OH), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.99 (3H, s, -OCH3), 3.95 (6H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.53, 161.30, 151.57, 149.06, 148.56, 147.85, 147.02, 144.23, 138.16, 123.71, 120.41, 115.16, 114.98, 108.28, 106.85, 62.41, 62.12, 61.97, 61.82, 56.18.
 HRMS calcd. for [M+H+] of C20H20O8: 389.1231, found: 389.1235.
Figure JPOXMLDOC01-appb-C000074
<3-ブロモノビレチンの製造>
[実施例12]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.84mmol)と、化合物(3)-5(1-(2-ブロモエチニル)-3,4-ジメトキシベンゼン)(533mg、2.21mmol)を、ジクロロメタン(8mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(4.6mL、塩化スズ(IV)として4.6mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で1時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/4(体積比))により精製することで、3-ブロモノビレチン(化合物(1)-102)を黄色固体として得た(収量613mg(0.63mmol)、収率69%)。結果を表1に示す。
 得られたものが3-ブロモノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.59 (1H, dd, J = 7.8, 1.8 Hz, H-6'), 7.50 (1H, d, J = 1.8 Hz, H-2'), 6.99 (1H, d, J = 7.8 Hz, H-5'), 4.10(3H, s, -OCH3), 3.98(3H, s, -OCH3), 3.97(3H, s, -OCH3), 3.96(3H, s, -OCH3) , 3.95(3H, s, -OCH3), 3.94(3H, s, -OCH3). 
 13C NMR (CDCl3) δ: 171.6, 159.7, 151.9, 151.5, 148.6, 148.4, 147.2, 144.7, 137.7, 125.1, 123.3, 113.0, 112.6, 110.7, 109.3, 62.5, 62.1, 60.2, 61.8, 56.3, 56.2. 
 HRMS calcd. for [M+H+] of C21H21O8Br: 481.0493, found: 481.0489.
Figure JPOXMLDOC01-appb-C000075
<3-トリメチルシリルノビレチンの製造>
[実施例13]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1.84mmol)と、化合物(3)-6(1,2-ジメトキシ-4-[2-(トリメチルシリル)エチニル]-ベンゼン)(518mg、2.21mmol)を、ジクロロメタン(8mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(4.6mL、塩化スズ(IV)として4.6mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で1時間撹拌し、得られた反応液中に、水(20mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/n-ヘキサン=1/6(体積比))により精製することで、3-トリメチルシリルノビレチン(化合物(1)-103)を黄色固体として得た(収量813mg(1.71mmol)、収率93%)。
 得られたものが3-トリメチルシリルノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.11 (1H, dd, J = 12.4, 2.8 Hz, H-6’), 7.06 (1H, d, J = 2.8 Hz, H-2‘), 6.93 (1H, d, J = 12.4 Hz, H-5’), 4.05(3H, s, -OCH3), 3.97(3H, s, -OCH3), 3.93 (9H, s, -OCH3), 3.91(3H, s, -OCH3), 0.08 (9H, s, TMS). 
 13C NMR (CDCl3) δ: 181.8, 166.8, 151.1, 148.7, 148.2, 147.9, 143.8, 137.7, 128.1, 130.0, 118.5, 114.1, 112.5, 110.6, 62.2, 62.0, 61.9, 61.8, 56.2, 0.84. 
 HRMS calcd. for [M+H+] of C24H30O8Si: 475.1783, found: 475.1783.
Figure JPOXMLDOC01-appb-C000076
<3-アセチルノビレチンの製造>
[実施例14]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(1mmol)と、化合物(3)-7(4-(3,4-ジメトキシフェニル)-3-ブチン-2-オン)(245mg、1.2mmol)を、ジクロロメタン(5mL)中に溶解させた。得られたジクロロメタン溶液を-20℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(1.5mL、塩化スズ(IV)として1.5mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま-20℃で1時間撹拌し、得られた反応液中に、水(10mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/3(体積比))により精製することで、3-アセチルノビレチン(化合物(1)-104)を黄色固体として得た(収量144mg(0.32mmol)、収率32%)。
 得られたものが3-アセチルノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ 7.29 (1H, dd, J = 8.4, 2.4 Hz, H-6'), 7.24 (1H, d, J = 2.4 Hz, H-2'), 6.94 (1H, d, J = 8.4 Hz, H-5'), 4.10(3H, s, -OCH3), 3.97(3H, s, -OCH3), 3.94-3.95 (9H, m, -OCH3), 3.92(3H, s, -OCH3), 2.43(3H, s, -COCH3). 
 13C NMR (CDCl3) δ: 201.7, 175.2, 152.1, 152.0, 149.2, 148.7, 147.4, 144.5, 124.5, 123.9, 122.3, 114.3, 111.3, 111.2, 62.4, 62.2, 62.0, 61.8, 56.2, 56.1, 32.5. 
 HRMS calcd. for [M+H+] of C23H24O9: 445.1493, found: 445.1496.
Figure JPOXMLDOC01-appb-C000077
<3’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}タンゲレチンの製造>
[実施例15]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(0.83mmol)と、化合物(3)-8(2-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-4-エチニル-1-メトキシベンゼン(262mg、1mmol)を、ジクロロメタン(5mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(2.1mL、塩化スズ(IV)として2.1mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で1時間撹拌し、得られた反応液中に、水(10mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/4(体積比))により精製することで、3’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}タンゲレチン(3’-{[(1,1-Dimethylethyl)dimethylsilyl]oxy}tangeretin,化合物(1)-106)を黄色固体として得た(収量348mg(0.69mmol)、収率83%)。
 得られたものが3’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}タンゲレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ: 7.52 (1H, dd, J=2.4, 8.4 Hz, H-6'), 7.44 (1H, d, J=2.4 Hz, H-2'), 6.95 (1H, d, J=8.4 Hz, H-5'), 6.58 (1H, s, H-3), 4.10 (3H, s, -OCH3), 4.01 (3H, s, -OCH3), 3.95 (3H, s, -OCH3), 3.94 (3H, s, -OCH3), 3.89 (3H, s, -OCH3), 1.03 (9H, s, -(CH3)3), 0.21 (6H, s, -Si(CH3)2).
 13C NMR (CDCl3) δ: 177.52, 161.18, 154.14, 151.50, 148.53, 147.87, 145.53, 144.17, 138.19, 124.16, 120.42, 118.58, 115.03, 112.06, 106.88, 62.41, 62.13, 61.98, 61.81, 55.72, 25.83, 18.62, -4.47.
 HRMS calcd. for [M+H+] of C26H34O8Si: 503.2096, found: 503.2097.
Figure JPOXMLDOC01-appb-C000078
<4’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-3’,5,6,7,8-ペンタメトキシフラボンの製造>
[実施例16]
 アルゴン雰囲気下で、化合物(2)-1(2,3,4,5,6-ペンタメトキシベンゾイルクロライド)(0.83mmol)と、化合物(3)-9(1-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-4-エチニル-2-メトキシベンゼン(262mg、1mmol)を、ジクロロメタン(5mL)中に溶解させた。得られたジクロロメタン溶液を0℃に冷却し、撹拌している状態のこのジクロロメタン溶液中に、濃度が1Mの塩化スズ(IV)のジクロロメタン溶液(2.1mL、塩化スズ(IV)として2.1mmol)を5分間かけて滴下した。次いで、得られた混合液をそのまま0℃で1時間撹拌し、得られた反応液中に、水(10mL)を添加することで、反応を停止させた。この水添加後の反応液に、ジクロロメタン(10mL)を添加して有機層を抽出し、このジクロロメタンの添加と有機層の抽出をさらに2回繰り返し行うことで、合計で3回の抽出を行った。抽出した有機層をひとまとめにして、これを酒石酸の飽和水溶液で洗浄した後、無水硫酸マグネシウムで乾燥させ、減圧濃縮を行った。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/4(体積比))により精製することで、4’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-3’,5,6,7,8-ペンタメトキシフラボン(4’-{[(1,1-Dimethylethyl)dimethylsilyl]oxy}-3’,5,6,7,8-pentamethoxyflavone,化合物(1)-119)を黄色固体として得た(収量358mg(0.71mmol)、収率86%)。
 得られたものが4’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-3’,5,6,7,8-ペンタメトキシフラボンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ: 7.45 (1H, dd, J=2.4, 8.4 Hz, H-6'), 7.40 (1H, d, J=2.4 Hz, H-2'), 6.95 (1H, d, J=8.4 Hz, H-5'), 6.61 (1H, s, H-3), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.95 (6H, s, -OCH3), 3.90 (3H, s, -OCH3), 1.01 (9H, s, - (CH3)3), 0.20 (6H, s, -Si(CH3)2).
 13C NMR (CDCl3) δ: 177.53, 161.32, 151.54, 151.47, 148.67, 148.55, 147.87, 144.20, 138.17, 125.00, 121.44, 119.64, 115.00, 109.59, 107.06, 62.41, 62.12, 61.97, 61.82, 55.66, 25.79, 18.65, -4.41.
 HRMS calcd. for [M+H+] of C26H34O8Si: 503.2096, found: 503.2097.
Figure JPOXMLDOC01-appb-C000079
<3’-デメチルノビレチンの製造>
[実施例17]
 実施例15の場合と同様の方法で得られた、単離前の化合物(1)-106(3’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}タンゲレチン)の粗生成物(化合物(1)-106として160mg、0.32mmol)のテトラヒドロフラン溶液(5mL)に対して、室温下で、テトラブチルアンモニウムフルオライド(TBAF)のテトラヒドロフラン溶液(TBAFとして0.64mL、0.64mmol)を滴下し、滴下終了後からさらに、室温下で1時間撹拌した。得られた混合液を減圧濃縮し、 得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/1(体積比))により精製することで、3’-デメチルノビレチン(化合物(1)-601)を黄色固体として得た(収量112mg(0.29mmol)、収率90%)。
 得られたものが3’-デメチルノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ:7.50 (1H, d, J=2.4 Hz, H-2'), 7.46 (1H, dd, J=2.4, 8.4 Hz, H-6'), 6.96 (1H, d, J=8.4 Hz, H-5'), 6.59 (1H, s, H-3), 5.86 (1H, brs, OH-3'), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.97 (3H, s, -OCH3), 3.95 (6H, s, -OCH3).
13C NMR (CDCl3) δ: 177.51, 161.21, 151.53, 149.46, 148.48, 147.89, 146.16, 144.20, 138.24, 124.88, 118.95, 115.02, 112.30, 110.88, 107.22, 62.40, 62.20, 61.97, 61.79, 56.25.
 HRMS calcd. for [M+H+] of C20H20O8: 389.1231, found: 389.1233.
Figure JPOXMLDOC01-appb-C000080
<4’-デメチルノビレチンの製造>
[実施例18]
 実施例16の場合と同様の方法で得られた、単離前の化合物(1)-119(4’-{[(1,1-ジメチルエチル)ジメチルシリル]オキシ}-3’,5,6,7,8-ペンタメトキシフラボン)の粗生成物(化合物(1)-111として160mg、0.32mmol)のテトラヒドロフラン溶液(5mL)に対して、室温下で、テトラブチルアンモニウムフルオライド(TBAF)のテトラヒドロフラン溶液(TBAFとして0.64mL、0.64mmol)を滴下し、滴下終了後からさらに、室温下で1時間撹拌した。得られた混合液を減圧濃縮し、得られた濃縮物をシリカゲルカラムクロマトグラフィー(移動相:酢酸エチル/トルエン=1/1(体積比))により精製することで、4’-デメチルノビレチン(化合物(1)-402)を黄色固体として得た(収量114mg(0.29mmol)、収率91%)。
 得られたものが4’-デメチルノビレチンであることは、H NMR、13C NMR、高分解能質量分析(HRMS)により、確認した。このとき取得した分析データを、以下に示す。
 1H NMR (CDCl3) δ: 7.51 (1H, dd, J=1.8, 8.3 Hz, H-6'), 7.40 (1H, d, J=1.8 Hz, H-2'), 7.04 (1H, d, J=8.3 Hz, H-5'), 6.60 (1H, s, H-3), 6.08 (1H, brs, OH-4'), 4.10 (3H, s, -OCH3), 4.02 (3H, s, -OCH3), 3.99 (3H, s, -OCH3), 3.95 (6H, s, -OCH3).
 13C NMR (CDCl3) δ: 177.53, 161.30, 151.57, 149.06, 148.56, 147.85, 147.02, 144.23, 138.16, 123.71, 120.41, 115.16, 114.98, 108.28, 106.85, 62.41, 62.12, 61.97, 61.82, 56.18.
 HRMS calcd. for [M+H+] of C20H20O8: 389.1231, found: 389.1235.
Figure JPOXMLDOC01-appb-C000081
 本発明は、ノビレチン及びその誘導体の製造に利用可能であり、ノビレチン及びその誘導体が配合された医薬品又はサプリメントの製造に利用可能である。

Claims (6)

  1.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
     (式中、Xは脱離基である。)
    で表される化合物と、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000002
     (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
     R12は水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
     R13は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
     R14は水素原子又はアルコキシ基であり;
     R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
    で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
     (式中、R11、R12、R13、R14及びR21は、前記と同じである。)で表される化合物を得る工程を有する、化合物の製造方法。
  2.  前記一般式(3)で表される化合物が、下記一般式(31)
    Figure JPOXMLDOC01-appb-C000004
     (式中、R111は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
     R121は水素原子、水酸基、炭素数1~6のアルコキシ基、又は一般式-OSi(R311(R321(式中、R311は炭素数1~6のアルキル基であり;R321は炭素数6~15のアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR311は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR321は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
     R131は水素原子、水酸基、炭素数1~6のアルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基、又は一般式-OSi(R411(R421(式中、R411は炭素数1~6のアルキル基であり;R421は炭素数6~15のアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR411は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR421は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
     R141は水素原子又は炭素数1~6のアルコキシ基であり;
     R211は水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~9のトリアルキルシリル基、炭素数2~7のアシル基、又は炭素数1~6のヒドロキシアルキル基である。)で表される化合物であり、
     前記一般式(1)で表される化合物が、下記一般式(11)
    Figure JPOXMLDOC01-appb-C000005
     (式中、R111、R121、R131、R141及びR211は、前記と同じである。)で表される化合物である、請求項1に記載の化合物の製造方法。
  3.  前記一般式(3)で表される化合物が、下記一般式(311)
    Figure JPOXMLDOC01-appb-C000006
     (式中、R112は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
     R122は水素原子、水酸基、メトキシ基又はtert-ブチルジメチルシリルオキシ基であり;
     R132は水素原子、水酸基、メトキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又はtert-ブチルジメチルシリルオキシ基であり;
     R142は水素原子又はメトキシ基であり;
     R212は水素原子、臭素原子、メチル基、トリメチルシリル基、アセチル基、又はヒドロキシメチル基である。)で表される化合物であり、
     前記一般式(1)で表される化合物が、下記一般式(111)
    Figure JPOXMLDOC01-appb-C000007
     (式中、R112、R122、R132、R142及びR212は、前記と同じである。)で表される化合物である、請求項1に記載の化合物の製造方法。
  4.  前記ルイス酸が、塩化スズ(IV)、塩化チタン(IV)、塩化鉄(III)又は塩化アルミニウムである、請求項1~3のいずれか一項に記載の化合物の製造方法。
  5.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000008
     (式中、Xは脱離基である。)
    で表される化合物と、下記一般式(3C)
    Figure JPOXMLDOC01-appb-C000009
     (式中、R11は水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
     R12Cは水素原子、水酸基、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
     R13Cは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基、ジメトキシベンジルオキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
     ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはなく、
     R14は水素原子又はアルコキシ基であり;
     R21は水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基、アシル基又はヒドロキシアルキル基である。)
    で表される化合物とを、ルイス酸の共存下で反応させることにより、下記一般式(1C)
    Figure JPOXMLDOC01-appb-C000010
     (式中、R11、R12C、R13C、R14及びR21は、前記と同じであり、ただし、R12Cが水素原子、水酸基又はアルコキシ基であり、かつ、R13Cが水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)で表される化合物を得る工程と、
     前記一般式(1C)で表される化合物中の、前記一般式-OSi(R31(R32で表される基又は前記一般式-OSi(R41(R42で表される基を、水酸基に変換することにより、下記一般式(1D)
    Figure JPOXMLDOC01-appb-C000011
     (式中、R11、R14及びR21は、前記と同じであり;
     R12Dは水素原子、水酸基又はアルコキシ基であり;
     R13Dは水素原子、水酸基、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基であり;
     ただし、R12Dが水素原子又はアルコキシ基であり、かつ、R13Dが水素原子、アルコキシ基、ベンジルオキシ基、メトキシベンジルオキシ基又はジメトキシベンジルオキシ基である、ことはない。)
    で表される化合物を得る工程と、を有する、化合物の製造方法。
  6.  下記一般式(01)
    Figure JPOXMLDOC01-appb-C000012
     (式中、R012は、アルコキシ基又は一般式-OSi(R31(R32(式中、R31はアルキル基であり;R32はアリール基であり;p及びqは、それぞれ独立に、0~3の整数であり、pが2又は3である場合には、p個のR31は互いに同一であっても異なっていてもよく、qが2又は3である場合には、q個のR32は互いに同一であっても異なっていてもよく、ただし、p+qは3である。)で表される基であり;
     R013は、アルコキシ基又は一般式-OSi(R41(R42(式中、R41はアルキル基であり;R42はアリール基であり;r及びsは、それぞれ独立に、0~3の整数であり、rが2又は3である場合には、r個のR41は互いに同一であっても異なっていてもよく、sが2又は3である場合には、s個のR42は互いに同一であっても異なっていてもよく、ただし、r+sは3である。)で表される基であり;
     R021は、水素原子、ハロゲン原子、アルキル基、トリアルキルシリル基又はアシル基であり;
     ただし、R021が水素原子である場合には、R012がアルコキシ基であり、かつ、R013がアルコキシ基である、ことはない。)で表される化合物。
PCT/JP2023/039868 2022-11-22 2023-11-06 化合物及びその製造方法 WO2024111390A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-186458 2022-11-22
JP2022186458 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111390A1 true WO2024111390A1 (ja) 2024-05-30

Family

ID=91195524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039868 WO2024111390A1 (ja) 2022-11-22 2023-11-06 化合物及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024111390A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116696A (ja) * 2009-12-03 2011-06-16 Ushio Chemix Kk ノビレチンの製造方法
JP2012527420A (ja) * 2009-05-20 2012-11-08 エフ.ホフマン−ラ ロシュ アーゲー 抗ウイルス性複素環化合物
US20150196529A1 (en) * 2012-06-13 2015-07-16 Yongri Jin Use of flavone and flavanone derivatives in preparation of sedative and hypnotic drugs
CN108976248A (zh) * 2018-06-04 2018-12-11 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种含杂环的高价碘化合物及其制备方法和应用
KR20190090122A (ko) * 2018-01-24 2019-08-01 전남대학교산학협력단 호모아이소플라보노이드 및 플라본 유도체의 단일 단계 합성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527420A (ja) * 2009-05-20 2012-11-08 エフ.ホフマン−ラ ロシュ アーゲー 抗ウイルス性複素環化合物
JP2011116696A (ja) * 2009-12-03 2011-06-16 Ushio Chemix Kk ノビレチンの製造方法
US20150196529A1 (en) * 2012-06-13 2015-07-16 Yongri Jin Use of flavone and flavanone derivatives in preparation of sedative and hypnotic drugs
KR20190090122A (ko) * 2018-01-24 2019-08-01 전남대학교산학협력단 호모아이소플라보노이드 및 플라본 유도체의 단일 단계 합성방법
CN108976248A (zh) * 2018-06-04 2018-12-11 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种含杂环的高价碘化合物及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FAN XIAODONG, HE CHAOYIN; JI MENGMENG; SUN XINHUI; LUO HUAN; LI CHAO; TONG HUIXIN; ZHANG WEIYA; SUN ZHIZHONG; CHU WENYI: "Visible light-induced deoxygenation/cyclization of salicylic acid derivatives and aryl acetylene for the synthesis of flavonoids", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 58, no. 43, 26 May 2022 (2022-05-26), UK , pages 6348 - 6351, XP093174223, ISSN: 1359-7345, DOI: 10.1039/D2CC01538B *
KIM HUN YOUNG, SONG EUNSUN; OH KYUNGSOO: "Unified Approach to (Thio)chromenones via One-Pot Friedel–Crafts Acylation/Cyclization: Distinctive Mechanistic Pathways of β-Chlorovinyl Ketones", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 19, no. 2, 20 January 2017 (2017-01-20), US , pages 312 - 315, XP093174224, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.6b03348 *
KINOSHITA KONO, SETSUKO MURASE: "Studies on the Constituents of Orange Oil of Citrus Natsudaidai HAYATA. I. : Structure of Natsudaidain : 3-Hydroxy-5, 6, 7, 8, 3', 4'-hexamethoxyflavone", JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 91, no. 10, 1 January 1971 (1971-01-01), pages 1105 - 1108, XP093174200 *
TAYLOR CASSANDRA; BOLSHAN YURI: "Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 56, no. 29, 1 January 1900 (1900-01-01), Amsterdam , NL , pages 4392 - 4396, XP029175358, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2015.05.097 *
高橋由佳,他. 1,3-双極子環化付加反応を用いたapigeninの合成研究. 第47回反応と合成の進歩シンポジウム講演要旨集. 13 September 2021, p. 120, non-official translation (TAKAHASHI, Yuka et al. Study of apigenin Synthesis Using 1,3-Dipolar Cycloaddition Reaction. Proceedings of the 47th Symposium on Progress in Organic Reactions and Syntheses.) *

Similar Documents

Publication Publication Date Title
CN112638869A (zh) 6-(2,4-二氯苯基)-5-[4-[(3s)-1-(3-氟丙基)吡咯烷-3-基]氧基苯基]-8,9-二氢-7h-苯并[7]轮烯-2-甲酸甲酯的盐及其制备方法
EP2116521B1 (en) Process for producing fullerene derivative
CN1582272A (zh) 制备5-(3-氰基苯基)-3-甲酰基苯甲酸化合物的方法
CN111620903A (zh) C-核苷类似物以及用于合成瑞德西韦合成的含腈c-核苷类化合物的制备方法及其应用
WO2022012630A1 (zh) C-核苷化合物的合成方法
JP5091760B2 (ja) フラーレン誘導体及びその製造方法
JP4934823B2 (ja) 含ケイ素クロスカップリング反応剤およびこれを用いる有機化合物の製造方法
WO2024111390A1 (ja) 化合物及びその製造方法
CN102459287A (zh) 用于生产氨基有机硅烷的方法
CN101805339B (zh) 一种制备恩替卡韦化合物的方法
JP4120925B2 (ja) 銅錯体およびこれを用いた銅含有薄膜の製造方法
JPH08157410A (ja) スチレン誘導体の製造方法
JP2004256497A (ja) 多置換多環芳香族化合物およびその製造方法
JP2009249355A (ja) フッ素化されたフルオレン誘導体およびその製造方法
JP4362683B2 (ja) 非対称ジヒドロフェナジン誘導体及びその製造方法
JP2022172690A (ja) 化合物及びその製造方法
CN115557983A (zh) 一种含s-s键的有机硅醇化合物及其制备方法
JP2007197347A (ja) 有機シラン化合物の製造方法
JP7168161B2 (ja) ヘテロール多量体の製造方法
Lermontov et al. 1-Fluorosilatrane synthesis from SiF4 complexes and its properties
JP3564530B2 (ja) テトラキス(ジアリールシリル)ベンゼンの製造方法
JP3997461B2 (ja) エチニルナフタレン誘導体
US20230151030A1 (en) Process for producing a biphenyl metallocene complex
JP2507942B2 (ja) 新規なシクロブテンジオン誘導体
JP4701185B2 (ja) カンプトテシン誘導体の製造方法