WO2024109427A1 - 雾化组件、雾化器、电子雾化装置以及制造方法 - Google Patents

雾化组件、雾化器、电子雾化装置以及制造方法 Download PDF

Info

Publication number
WO2024109427A1
WO2024109427A1 PCT/CN2023/126490 CN2023126490W WO2024109427A1 WO 2024109427 A1 WO2024109427 A1 WO 2024109427A1 CN 2023126490 W CN2023126490 W CN 2023126490W WO 2024109427 A1 WO2024109427 A1 WO 2024109427A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heating
mold
substrate
counter
Prior art date
Application number
PCT/CN2023/126490
Other languages
English (en)
French (fr)
Inventor
王建国
赵月阳
张盈
黄容基
王晓斌
蒋金峰
唐俊杰
李润达
蒋大跃
Original Assignee
思摩尔国际控股有限公司
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211494452.0A external-priority patent/CN115708598A/zh
Priority claimed from CN202211494471.3A external-priority patent/CN115844061A/zh
Priority claimed from CN202211493593.0A external-priority patent/CN115736374A/zh
Priority claimed from CN202211570359.3A external-priority patent/CN115721058A/zh
Priority claimed from CN202211571416.XA external-priority patent/CN115769917A/zh
Priority claimed from CN202310037883.2A external-priority patent/CN118319068A/zh
Application filed by 思摩尔国际控股有限公司, 深圳麦克韦尔科技有限公司 filed Critical 思摩尔国际控股有限公司
Publication of WO2024109427A1 publication Critical patent/WO2024109427A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the present application relates to the field of electronic atomization technology, and in particular to an atomization assembly, an atomizer, an electronic atomization device, and a manufacturing method.
  • the electronic atomization device includes a liquid reservoir and an atomization assembly.
  • the liquid reservoir is used to store the liquid matrix to be atomized, and the atomization assembly is used to heat the liquid matrix and atomize it into an aerosol.
  • the atomization efficiency of the atomization assembly directly depends on the thermal conductivity of the atomization assembly.
  • the atomization assembly with a low thermal conductivity will greatly reduce the dissipation of electric heat and thus improve the atomization efficiency.
  • the present application hopes to provide an atomization assembly, an atomizer, an electronic atomization device and a manufacturing method with low thermal conductivity.
  • an atomization assembly including:
  • the base comprises a liquid inlet surface, a heating surface and a liquid guide hole, wherein the liquid guide hole connects the liquid inlet surface and The heating surface;
  • a liquid-blocking layer at least a portion of the peripheral side surface of the liquid-conducting hole is covered with the liquid-blocking layer.
  • the liquid-blocking layer is a dense ceramic material.
  • the liquid-blocking layer comprises at least one of silicon dioxide and aluminum oxide.
  • the thickness of the liquid-blocking layer is between 0.1 ⁇ m and 20 ⁇ m.
  • part of the liquid inlet surface is covered with the liquid blocking layer; and/or,
  • Part of the heat generating surface is covered with the liquid blocking layer.
  • the equivalent diameter of the liquid-conducting hole is between 1 ⁇ m and 100 ⁇ m.
  • the atomization assembly includes a hollow body embedded in the substrate, and the interior of the hollow body is filled with a poor thermal conductor.
  • the poor thermal conductor is air or an inert gas.
  • the hollow body has a spherical structure, and the outer diameter of the hollow body is between 0.1 ⁇ m and 10 ⁇ m.
  • part of the peripheral side surface of the liquid-conducting hole is covered with the liquid-blocking layer; or,
  • the entire circumferential side surface of the liquid guiding hole is covered with the liquid blocking layer.
  • part of the liquid inlet surface and part of the heating surface are both covered with the liquid blocking layer, and the liquid blocking layer on the liquid guide hole, the liquid blocking layer on the liquid inlet surface and the liquid blocking layer on the heating surface are an integrally formed structure.
  • the atomization assembly includes a heating film, and the heating film is disposed on the heating surface.
  • the atomization assembly includes a heat-generating layer, and the heat-generating layer is disposed on a circumferential surface of the liquid-conducting hole.
  • the heat-generating layer covers a portion of the wall surface of the liquid-conducting hole; or,
  • the heat-generating layer covers the entire wall surface of the liquid-conducting hole.
  • the atomization assembly includes a heating film, which is disposed on the heating surface and is electrically connected to the heating layer.
  • the heat-generating layer is not in contact with the liquid inlet surface.
  • the heating layer extends from the connection between the liquid guiding hole and the heating surface to a preset position of the liquid guiding hole, and the distance between the preset position and the liquid inlet surface is not less than one quarter of the depth of the liquid guiding hole.
  • the thickness of the heating layer is between 0.1 ⁇ m and 20 ⁇ m.
  • the atomization assembly includes a heating film
  • the substrate has a first surface and a second surface that are relatively arranged, at least a portion of the first surface forms the liquid inlet surface, and at least a portion of the second surface forms a heating area, the heating area includes the heating surfaces facing different directions
  • the liquid guide hole is arranged on the substrate, and is used to guide the aerosol generating matrix from the liquid inlet surface to the heating surface, and the heating film is arranged on the heating surface.
  • the heating surface is parallel to the corresponding liquid inlet surface.
  • At least a portion of the first surface forms a groove, and the liquid inlet surface is arranged on a groove wall surface of the groove; and/or,
  • At least a portion of the second surface is convex to form the heat generating area.
  • the outline shape of the heating area is a triangular prism, and at least two side surfaces of the triangular prism are the heating surfaces.
  • the contour shape of the heating area is cylindrical, and at least part of the outer side surface of the cylinder is the heating surface.
  • the contour shape of the heating area is spherical, and the heating surface at least constitutes a part of the spherical surface.
  • the diameter of the liquid-conducting hole is 20 ⁇ m-100 ⁇ m; and/or,
  • the porosity of the heating surface is 20%-50%; and/or,
  • the length of the liquid guiding hole is 0.1mm-10mm.
  • the contour of the heating area is a parabola, a hyperbola, or an ellipsoid.
  • the substrate comprises:
  • a first substrate is formed with a middle channel
  • the second substrate is formed with a accommodating channel, the first substrate is accommodated in the accommodating channel, there is a spacing space between the outer peripheral surface of the first substrate and the wall surface of the accommodating channel, the spacing space is empty or filled with porous parts, one of the wall surface of the intermediate channel and the outer peripheral surface of the second substrate is the heating surface, and the other of the wall surface of the intermediate channel and the outer peripheral surface of the second substrate is the liquid inlet surface.
  • the first substrate is formed with a plurality of flow holes
  • the second substrate is formed with a plurality of connecting holes
  • the flow holes connect the intermediate channel and the interval space
  • the connecting holes connect the interval space and the outer peripheral surface of the second substrate
  • the liquid guiding hole includes the flow holes and the connecting holes.
  • the area of the flow cross section of the flow hole is not equal to the area of the flow cross section of the connecting hole.
  • the aperture of the flow hole is not equal to the aperture of the connecting hole.
  • the wall surface of the intermediate channel is the heat-generating surface
  • the outer peripheral surface of the second substrate is the liquid inlet surface
  • the aperture of the flow hole is smaller than the aperture of the connecting hole
  • the wall surface of the intermediate channel is the liquid inlet surface, and the outer peripheral surface of the second substrate is the heat-generating surface.
  • the aperture of the flow hole is larger than the aperture of the connecting hole.
  • the porosity of the first matrix is not equal to the porosity of the second matrix.
  • the wall surface of the intermediate channel is the heating surface
  • the outer peripheral surface of the second substrate is the liquid inlet surface
  • the porosity of the first substrate is smaller than the porosity of the second substrate. rate
  • the wall surface of the intermediate channel is the liquid inlet surface, and the outer peripheral surface of the second substrate is the heat-generating surface.
  • the porosity of the first substrate is greater than the porosity of the second substrate.
  • the opening of the flow hole penetrating the outer circumferential surface of the first substrate is the flow opening
  • the opening of the connecting hole penetrating the wall of the accommodating channel is the connecting opening
  • the projection of the connecting opening on the first substrate at most partially overlaps with the flow opening
  • a distance between an upper end of the outer circumference of the first substrate and an upper end of the wall of the accommodating channel is greater than a distance between a lower end of the outer circumference of the first substrate and a lower end of the wall of the accommodating channel.
  • the distance between the outer peripheral surface of the first substrate and the wall surface of the accommodating channel gradually increases from top to bottom.
  • the first substrate has a cylindrical or truncated cone profile.
  • the second substrate has a cylindrical or truncated cone shape.
  • the atomization assembly includes a plurality of heating films, and the plurality of heating films are arranged on the heating surface at intervals.
  • the porous member is a ceramic porous structure.
  • the substrate includes at least one liquid inlet surface and at least two heat-generating surfaces, and the heat-generating surface has a plurality of orderly arranged liquid-conducting holes.
  • the atomization assembly includes a heating film, each heating surface is provided with at least one heating film, and each heating film is independently powered.
  • the heating temperatures or heating powers of the heating films of at least some of the heating surfaces are different.
  • the power of the heating films of each heating surface is adjusted according to the angle between the central axis of the substrate and the horizontal plane.
  • the substrate includes a plurality of liquid inlet surfaces, each of which corresponds to A heating surface, wherein the liquid guide holes on the heating surface are connected to the corresponding liquid inlet surface.
  • the substrate includes a plurality of interconnected sub-units, each of the sub-units includes a heat-generating surface, and the directions of the heat-generating surfaces are different.
  • the base is an integrally formed structure.
  • the base is formed with a liquid inlet groove and a liquid inlet port connected to the liquid inlet groove, the liquid inlet surface is formed on the groove wall surface of the liquid inlet groove, and the heating surface is formed on the outer surface of the base.
  • the liquid inlet groove is divided into a plurality of mutually isolated sub-grooves, and each of the sub-grooves corresponds to one of the heating surfaces.
  • At least some of the liquid-conducting holes of the heating surface have different apertures; and/or,
  • At least some of the liquid guide holes of the heating surface have different cross-sectional shapes; and/or,
  • At least some of the heat generating surfaces have different porosities.
  • the outline shape of the substrate is a polyhedron or a solid of revolution.
  • the outline shape of the base is a triangular pyramid, and at least two outer side surfaces of the base are the heat-generating surfaces.
  • the outline shape of the substrate is a hexahedron, and at least two outer side surfaces of the substrate are the heat-generating surfaces.
  • the outline shape of the substrate is a regular polyhedron, a pyramid, a prism or a prism.
  • the atomization assembly includes a heating element, and the heating element is disposed on the heating surface; the heating element includes a bending portion and a non-bending portion;
  • the area where the bent portion covers the substrate is the first area, and the area where the non-bent portion covers the substrate is the second area; the aperture of the liquid conducting hole in the first area is larger than the aperture of the liquid conducting hole in the second area; and/or, the porosity of the liquid conducting hole in the first area is larger than the porosity of the liquid conducting hole in the second area; and/or, the length of the liquid conducting hole in the first area is smaller than the length of the liquid conducting hole in the second area.
  • the diameter of the liquid-conducting holes in the first region is 20 ⁇ m-50 ⁇ m; and/or the diameter of the liquid-conducting holes in the second region is 10 ⁇ m-30 ⁇ m.
  • the porosity of the liquid conducting holes in the first region is 30%-60%; and/or the porosity of the liquid conducting holes in the second region is 10%-40%.
  • the length of the liquid-conducting hole in the first region is 0.4 mm-0.8 mm; and/or the length of the liquid-conducting hole in the second region is 0.6 mm-1.2 mm.
  • the non-bending portion includes a first non-bending portion and a second non-bending portion, the first non-bending portion connects the second non-bending portion and the bending portion; the area of the substrate covered by the first non-bending portion is a first sub-area, the area of the substrate covered by the second non-bending portion is a second sub-area, and the first sub-area and the second sub-area together constitute the second area;
  • the pore diameter of the liquid conducting hole in the first sub-region is larger than the pore diameter of the liquid conducting hole in the second sub-region; and/or, the porosity of the liquid conducting hole in the first sub-region is larger than the porosity of the liquid conducting hole in the second sub-region; and/or, the length of the liquid conducting hole in the first sub-region is smaller than the length of the liquid conducting hole in the second sub-region.
  • the diameter of the liquid-conducting holes in the first region is 20 ⁇ m-50 ⁇ m; and/or the porosity of the liquid-conducting holes in the first region is 30%-60%; and/or the length of the liquid-conducting holes in the first region is 0.4 mm-0.8 mm;
  • the pore size of the liquid-conducting hole in the first sub-region is 10 ⁇ m-30 ⁇ m, and/or the porosity of the liquid-conducting hole in the first sub-region is 10%-40%, and/or the length of the liquid-conducting hole in the first sub-region is 0.6 mm-1.2 mm;
  • the pore size of the liquid conducting holes in the second sub-region is 5 ⁇ m-15 ⁇ m, and/or the porosity of the liquid conducting holes in the second sub-region is 10%-20%, and/or the length of the liquid conducting holes in the second sub-region is 0.6 mm-1.2 mm.
  • the bending portion is in the form of a fold line or an arc line.
  • the heating element includes a first heating portion, a second heating portion, and a third heating portion that are parallel to each other, and a first connecting portion connecting the first heating portion and the second heating portion, and a second connecting portion connecting the second heating portion and the third heating portion; the first heating portion, the second heating portion, and the third heating portion extend in straight lines respectively, the second heating portion is located between the first heating portion and the third heating portion, the first connecting portion and the second connecting portion extend in an arc, and the heating element as a whole extends in an S-shape;
  • the first connecting part and the second connecting part are respectively the bending parts;
  • the pore size and/or porosity and/or length of the liquid conducting holes in the area of the substrate covered by the second heating part are the same as the pore size and/or porosity and/or length of the liquid conducting holes in the first area;
  • the first heating part and the third heating part are respectively the non-bending parts.
  • the first heating portion includes a first part and a second part, the first part is located at a side of the second part away from the first connecting part;
  • the third heating portion includes a third part and a fourth part, the third part is located at a side of the fourth part away from the second connecting part;
  • the second portion and the fourth portion are respectively a first non-bending portion, and the first portion and the third portion are respectively a second non-bending portion.
  • the heating element has a plurality of through holes.
  • the heating element is a heating film, and the plurality of through holes are disordered through holes.
  • the diameter of the through hole is 5 ⁇ m-50 ⁇ m, and/or the porosity of the heating element is 20%-60%.
  • the heating element is a heating film, and the thickness of the heating film is 5 ⁇ m-100 ⁇ m.
  • the heating element is a heating film
  • the heating film is in a strip structure
  • the width of the heating film is 0.2 cm-0.6 cm.
  • the material of the heating element includes nickel-chromium alloy, stainless steel alloy, aluminum At least one of the alloys.
  • the pore size of the liquid conducting hole is 5 ⁇ m-60 ⁇ m, and/or the porosity of the liquid conducting hole is 5%-60%.
  • the cross-sectional shape of the liquid guiding hole is circular or hexagonal.
  • the material of the substrate is a porous material, and the liquid-conducting holes are disordered through holes of the porous material itself.
  • the material of the substrate is a dense material
  • the liquid guide hole is a through hole that penetrates the liquid inlet surface and the heat-generating surface.
  • the thickness of the substrate is 2 mm-5 mm.
  • an atomizer comprising:
  • a liquid reservoir used for storing a liquid matrix to be atomized
  • the liquid matrix in the liquid reservoir can flow to the liquid inlet surface.
  • the present application also provides an electronic atomization device, including:
  • a power supply is used to supply power to the atomization assembly.
  • the present application also provides a manufacturing method for manufacturing an atomizer assembly, wherein the atomizer assembly includes a substrate and a liquid-blocking layer, wherein the substrate includes a liquid inlet surface, a heating surface, and a liquid guide hole, wherein the liquid guide hole communicates with the liquid inlet surface and the heating surface, and at least a portion of the peripheral side surface of the liquid guide hole is covered with the liquid-blocking layer.
  • the manufacturing method includes:
  • the counter-mold comprises a connecting plate and a column connected to the connecting plate, and the column corresponds to the liquid guide hole;
  • the slurry fills the mold cavity to form a green embryo
  • the green body is processed to form the matrix.
  • the method before the step of fitting the mold frame adapted to the contour shape of the counter mold and the counter mold gap to jointly define the mold cavity, the method further includes:
  • the liquid-blocking layer is covered on the surface of the counter mold, wherein at least a portion of the circumferential surface of the pillar is covered with the liquid-blocking layer.
  • the method further includes: separating the counter mold from the green embryo, so that the liquid-blocking layer is attached to the green embryo.
  • the step of processing the green mold to form the matrix specifically includes: processing the green mold to form the matrix and the liquid blocking layer.
  • covering the surface of the counter mold with the liquid blocking layer includes:
  • At least a portion of the surface of the connecting plate facing the pillar is covered with the liquid-blocking layer.
  • the liquid barrier layer is deposited by chemical vapor deposition.
  • the slurry contains hollow bodies, wherein the interior of the hollow bodies is filled with a poor thermal conductor.
  • the manufacturing method includes:
  • a master mold having the same structure as the base is manufactured, and the negative mold is manufactured based on the master mold.
  • the manufacturing method includes:
  • the heating surface is plated or brushed to form a heating film.
  • the counter mold is made of a soft material and/or the counter mold is a disposable sacrificial mold.
  • the atomization assembly includes a heat-generating layer, and the heat-generating layer is disposed on a circumferential surface of the liquid-conducting hole;
  • the step further includes:
  • the heat generating layer is covered on the circumferential surface of the column.
  • the method further comprises:
  • the counter mold is separated from the green embryo so that the heat generating layer is attached to the green embryo.
  • the step of processing the green embryo to form the substrate specifically includes: processing the green embryo to form the substrate and the heat generating layer.
  • the manufacturing method includes:
  • the heating surface is coated or brushed to form a heating film.
  • the manufacturing method includes: while the circumferential surface of the column is covered with the heat-generating layer, at least a portion of the surface of the connecting plate facing the column is covered with a heat-generating film.
  • the heat generating layer is formed by chemical vapor deposition.
  • a reverse mold is provided that is nested with the structure of the substrate, comprising:
  • a flexible template is formed by integral injection molding, wherein the flexible template comprises a bearing plate and a plurality of columns arranged on the bearing plate;
  • the carrier sheet is folded or bent to form the counter-mould.
  • the contour of the counter mold is cylindrical or spherical, and the side surfaces of the counter mold corresponding to the heating surface each have a plurality of the columns.
  • the substrate includes a first substrate and a second substrate, the first substrate is formed with an intermediate channel; the second substrate is formed with a receiving channel, the first substrate is received in the receiving channel, a spacing space is provided between the outer peripheral surface of the first substrate and the wall surface of the receiving channel, the spacing space is vacant or filled with a porous member, one of the wall surface of the intermediate channel and the outer peripheral surface of the second substrate is the heat-generating surface, and the other of the wall surface of the intermediate channel and the outer peripheral surface of the second substrate is the liquid inlet surface; wherein, the reverse mold provided to be nested with the structure of the substrate includes:
  • the mold frame adapted to the contour shape of the counter mold and the counter mold gap are set to jointly define a mold cavity, including:
  • the first counter mold is sleeved in the second counter mold, and a partition mold is placed between the first counter mold and the second counter mold.
  • the first counter mold, the second counter mold and the partition mold are all placed in the outer mold to jointly define a mold cavity.
  • the manufacturing method includes:
  • a first master mold having the same structure as the first substrate and a second master mold having the same structure as the second substrate are manufactured, the first reverse mold is manufactured based on the first master mold, and the second reverse mold is manufactured based on the second master mold.
  • the first substrate is formed with a plurality of flow holes
  • the second substrate is formed with a plurality of connecting holes, the flow holes connecting the intermediate channel and the interval space, the connecting holes connecting the interval space and the outer peripheral surface of the second substrate
  • the first counter mold has a first column nested with the flow holes
  • the second counter mold has a second column nested with the connecting holes
  • the columns include the first column and the second column.
  • manufacturing a first reverse mold nested with the structure of the first substrate and a second reverse mold nested with the structure of the second substrate comprises:
  • first flexible template comprises a first plate and a plurality of the first columns located on the first plate
  • second flexible template comprises a second plate and a plurality of the second columns located on the second plate
  • the first flat plate is rolled into a hollow ring structure to form the first counter mold
  • the second flat plate is rolled into a hollow ring structure to form the second counter mold, wherein the first column faces outward and the second column faces inward.
  • a reverse mold is provided that is nested with the structure of the substrate, comprising:
  • a flexible template is formed by integral injection molding, wherein the flexible template includes a plurality of sequentially connected A flat plate, at least two of which have a plurality of the columns;
  • a plurality of the flat plates are folded to form the counter-mold.
  • a reverse mold is provided that is nested with the structure of the substrate, comprising:
  • a plurality of sub-molds are formed, wherein the sub-molds include a carrying plate and a plurality of pillars disposed on the carrying plate;
  • a plurality of the sub-molds are spliced together to form the counter-mold.
  • a mold frame adapted to the contour shape of the counter mold and the counter mold gap are assembled to jointly define a mold cavity, including:
  • the mold frame is formed with a receiving groove, and the counter-mold gap is sleeved in the receiving groove.
  • a mold frame adapted to the contour shape of the counter mold and the counter mold gap are assembled to jointly define a mold cavity, including:
  • the reverse mold is formed with a receiving groove, and the mold frame gap is sleeved in the receiving groove.
  • the outline of the base is in the shape of a triangular pyramid, and at least two outer side surfaces of the base are heating surfaces;
  • the contour shape of the counter-mold is a triangular pyramid, and the side surfaces of the counter-mold corresponding to the heating surface are each provided with a plurality of the columns.
  • the outline shape of the base is a hexahedron, and at least two outer side surfaces of the base are the heat-generating surfaces;
  • the contour shape of the counter-mold is hexahedral, and the side surfaces of the counter-mold corresponding to the heating surface are each provided with a plurality of the columns.
  • the atomizer assembly provided in the embodiment of the present application is covered with a liquid-blocking layer on at least part of the peripheral side of the liquid-conducting hole, and the liquid-blocking layer can prevent the liquid matrix flowing in the liquid-conducting hole from penetrating into the matrix. In this way, the liquid matrix can be prevented from entering the matrix, thereby increasing the thermal conductivity of the matrix.
  • the liquid-blocking layer can also increase the mechanical strength of the matrix, so that the atomizer assembly has better structural strength and improves the compressive performance.
  • FIG1 is a schematic structural diagram of a first atomization assembly in one embodiment of the present application.
  • FIG2 is a schematic structural diagram of a second atomization assembly in one embodiment of the present application.
  • FIG3 is a schematic structural diagram of the atomization assembly shown in FIG2 from another perspective
  • FIG4 is a flowchart of a manufacturing method in a second embodiment of the present application.
  • FIG5 is a schematic structural diagram of a first inverse mold in an embodiment of the present application.
  • FIG6 is a schematic diagram of the first reverse mold covering the liquid blocking layer and the heating film in FIG5 ;
  • FIG7 is a schematic structural diagram of the first counter mold, liquid barrier layer, heating film and green embryo in FIG5 ;
  • FIG8 is a schematic structural diagram of a third atomization assembly in one embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a master mold and a second counter mold in one embodiment of the present application.
  • FIG10 is a schematic structural diagram of a fourth atomization assembly in an embodiment of the present application.
  • FIG11 is a flowchart of a manufacturing method in the first embodiment of the present application.
  • FIG12 is a flowchart of a manufacturing method in a third embodiment of the present application.
  • FIG13 is a schematic structural diagram of a fourth atomization assembly in an embodiment of the present application.
  • FIG14 is a schematic structural diagram of the atomization assembly shown in FIG13 from another perspective
  • FIG15 is a schematic structural diagram of the atomization assembly shown in FIG13 from another viewing angle
  • FIG16 is a half-section view of the atomizing assembly shown in FIG15 ;
  • FIG17 is a schematic structural diagram of a first electronic atomization device in one embodiment of the present application.
  • FIG18 is a scanning electron microscope image of a reverse mold in one embodiment of the present application.
  • FIG19 is a scanning electron microscope image of a reverse mold in another embodiment of the present application.
  • FIG20 is a scanning electron microscope image of a reverse mold in another embodiment of the present application.
  • FIG21 is a schematic diagram of a manufacturing process of a substrate in an embodiment of the present application.
  • FIG22 is a schematic structural diagram of a fifth atomization assembly in an embodiment of the present application.
  • FIG23 is a schematic structural diagram of the atomization assembly shown in FIG22 from another perspective;
  • FIG24 is a schematic structural diagram of the atomization assembly shown in FIG22 from another perspective
  • Fig. 25 is a cross-sectional view taken along the A-A direction in Fig. 24;
  • Fig. 26 is a cross-sectional view taken along the B-B direction in Fig. 24;
  • FIG27 is a schematic structural diagram of a second electronic atomization device in one embodiment of the present application.
  • FIG28 is a flowchart of a manufacturing method in a fourth embodiment of the present application.
  • FIG29 is a schematic structural diagram of a sixth atomization assembly in an embodiment of the present application.
  • FIG30 is a schematic structural diagram of the atomization assembly shown in FIG29 from another perspective
  • FIG31 is a structural schematic diagram of the atomization assembly shown in FIG29 from another viewing angle
  • FIG32 is a half-section view of the atomizing assembly shown in FIG31 ;
  • FIG33 is a schematic structural diagram of a third electronic atomization device in an embodiment of the present application.
  • FIG34 is a schematic structural diagram of a seventh atomization assembly in an embodiment of the present application.
  • FIG35 is a schematic structural diagram of the atomization assembly shown in FIG34 from another perspective
  • FIG36 is a schematic structural diagram of a fourth electronic atomization device in an embodiment of the present application.
  • FIG37 is a schematic diagram of the structure of an atomizer provided in one embodiment of the present application.
  • FIG38 is a schematic structural diagram of an eighth atomization assembly in an embodiment of the present application.
  • FIG39 is a schematic structural diagram of the atomization assembly shown in FIG37 ;
  • FIG40 is a schematic diagram of the temperature field distribution of the atomization assembly shown in FIG39;
  • FIG41 is a schematic structural diagram of the substrate shown in FIG38 .
  • an embodiment of the present application provides an atomization assembly, and the atomization assembly includes a substrate 1 and a liquid-blocking layer 2.
  • the substrate 1 includes a liquid inlet surface 1a, a heating surface 1b and a liquid guide hole 1c, wherein the liquid guide hole 1c connects the liquid inlet surface 1a and the heating surface 1b.
  • the liquid guide hole 1c can guide the liquid matrix from the liquid inlet surface 1a to the heating surface 1b.
  • At least part of the peripheral side of the liquid-conducting hole 1c is covered with a liquid-blocking layer 2.
  • part of the peripheral side of the liquid-conducting hole 1c is covered with a liquid-blocking layer 2.
  • all of the peripheral side of the liquid-conducting hole 1c is covered with a liquid-blocking layer 2.
  • the atomizer assembly provided in the embodiment of the present application is covered with a liquid-blocking layer 2 on at least part of the peripheral side of the liquid-conducting hole 1c, and the liquid-blocking layer 2 can prevent the liquid matrix flowing in the liquid-conducting hole 1c from penetrating into the substrate 1. In this way, the liquid matrix can be prevented from entering the substrate 1, thereby increasing the thermal conductivity of the substrate 1.
  • the liquid-blocking layer 2 can also increase the mechanical strength of the substrate 1, so that the atomizer assembly has better structural strength and improved pressure resistance.
  • the atomization assembly includes a heating film 4, which is disposed on the heating surface 1 b.
  • the heating film 4 is used to generate heat when powered on to heat the liquid matrix.
  • the liquid matrix can be heated and atomized into an aerosol by the heating film 4.
  • the heating film 4 can generate heat by resistive heating after being energized.
  • the heating film 4 includes but is not limited to metals and/or alloys, etc.
  • the heating film 4 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the atomizing assembly provided in the embodiment of the present application can be used in an atomizer, and the atomizer includes a liquid reservoir and the atomizing assembly in any embodiment of the present application, and the liquid reservoir is used to store the liquid matrix to be atomized.
  • the liquid matrix in the liquid reservoir can flow to the liquid inlet surface 1a.
  • the atomizer provided in the embodiment of the present application can be used in an electronic atomization device, the electronic atomization device comprising
  • the atomizer of any embodiment of the present application includes a liquid reservoir, an atomizer and a power supply.
  • the power supply is used to supply power to the atomization assembly.
  • the power supply can be electrically connected to the heating film to supply power to the heating film 4.
  • the electronic atomization device includes but is not limited to medical atomization equipment, an air humidifier, or an electronic cigarette.
  • liquid matrix includes solvents and additives, etc.
  • Solvents include but are not limited to propylene glycol (boiling point is 187° C.) and/or glycerol (boiling point is 290° C.).
  • Additives may include nicotine salts, plant extracts and/or flavor additives, etc.
  • the flavor additives may be flavors and fragrances.
  • the outline of the electronic atomization device may be roughly in the shape of a long strip, so that it is convenient for the user to hold the electronic atomization device with his fingers.
  • the power supply includes but is not limited to a battery.
  • the battery can be a disposable battery or a rechargeable battery.
  • the electronic atomization device may further include a housing and a controller, and the power supply unit and the heating film 4 may be electrically connected to the controller.
  • the liquid reservoir, the atomization assembly, the power supply unit and the controller may all be located in the housing.
  • the housing may form a nozzle that is in communication with the outside, and the nozzle is used to deliver the aerosol generated by the atomization assembly. For example, a user may inhale the aerosol through the nozzle.
  • the liquid guiding hole 1c may be a straight hole. That is, a single liquid guiding hole 1c extends along a straight line. In this way, on the one hand, the liquid guiding hole 1c is easy to form and has low manufacturing difficulty, and on the other hand, it is convenient to quickly guide the liquid matrix on the liquid inlet surface 1a to the heating surface 1b.
  • the liquid conducting holes 1c may be holes of equal diameter, that is, the equivalent diameters of the single liquid conducting holes 1c at any position are equal.
  • the equivalent diameter refers to the ratio of four times the flow cross-sectional area to the circumference.
  • the flow cross-sectional area refers to the cross-sectional area taken by the streamline cluster perpendicular to the fluid.
  • the cross-sectional shape of the liquid conducting hole 1c includes but is not limited to a circle, an ellipse or a polygon, etc.
  • the equivalent diameter is the diameter of the circular liquid conducting hole 1c.
  • the number of liquid guide holes 1c is multiple, and the multiple liquid guide holes 1c are arranged in an orderly manner.
  • Orderly arrangement means arranging according to set rules. Such set rules can be artificially designed and controlled.
  • Orderly arrangement includes but is not limited to array arrangement.
  • the array arrangement can be a one-dimensional array arrangement of multiple liquid guide holes 1c, that is, multiple liquid guide holes 1c are arranged at intervals in one direction.
  • the array arrangement can be a two-dimensional array arrangement of multiple liquid guide holes 1c, that is, multiple liquid guide holes 1c are arranged at intervals in two or more intersecting directions.
  • liquid guide holes 1c can be arranged in a rectangular array or a circular array, etc.
  • the number of orderly arranged liquid guide holes 1c can be designed and calculated, and the flow diversion effect of the substrate 1 on the liquid matrix is more controllable, which can improve the production consistency of the product.
  • the liquid guide holes 1c of different substrates 1 are basically the same, so that the heating effect of the heating film shipped from the same batch tends to be consistent.
  • the thermal conductivity of the material of the substrate 1 is between 0.2w/(m ⁇ k) and 1.5w/(m ⁇ k).
  • the thermal conductivity of the material of the substrate 1 is 0.2w/(m ⁇ k), 0.3w/(m ⁇ k), 0.4w/(m ⁇ k), 0.5w/(m ⁇ k), 0.6w/(m ⁇ k), 0.7w/(m ⁇ k), 0.9w/(m ⁇ k), 1.0w/(m ⁇ k), 1.15w/(m ⁇ k), 1.2w/(m ⁇ k), 1.25w/(m ⁇ k), 1.3w/(m ⁇ k), 1.4w/(m ⁇ k) or 1.5w/(m ⁇ k), etc.
  • the thermal conductivity of the material of the substrate 1 is low, which can reduce the heat loss caused by the heat conduction of the substrate 1, so as to improve the temperature field of the heating surface 1b, so as to be more suitable for atomizing a liquid matrix with a high boiling point.
  • the material of the substrate 1 includes glass, quartz and/or ceramic.
  • the ceramic can be a silicon dioxide ceramic, that is, the main component of the ceramic is silicon dioxide.
  • the substrate 1 has both a low thermal conductivity and good structural strength.
  • the substrate 1 is a porous structure.
  • a porous structure is a structure with randomly arranged holes. Random arrangement means that the holes are randomly generated without set rules.
  • the holes in the porous structure are usually connected or partially connected to each other. In this way, the weight of the substrate 1 is light, and the air in the holes in the porous structure can further reduce the thermal conductivity.
  • the thermal conductivity of the porous substrate 1 can be less than 0.8 w/(m ⁇ k).
  • the substrate 1 can be a porous ceramic.
  • the liquid-blocking layer 2 is a dense ceramic material.
  • dense ceramic materials do not have pores that are interconnected. Dense ceramic materials have a good effect of isolating liquids. Therefore, the use of dense ceramic materials to prepare the liquid-blocking layer 2 can effectively prevent the liquid matrix from entering the substrate 1.
  • the liquid barrier layer 2 comprises at least one of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ).
  • the liquid barrier layer 2 comprises silicon dioxide or aluminum oxide.
  • the liquid barrier layer 2 comprises silicon dioxide and aluminum oxide.
  • the thickness h of the liquid-blocking layer 2 is between 0.1 ⁇ m and 20 ⁇ m.
  • the thickness h of the liquid-blocking layer 2 is 0.1 ⁇ m, 0.15 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 6.0 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m or 20 ⁇ m, etc.
  • the thickness of the liquid-blocking layer 2 is moderate, which can effectively block the liquid matrix and enhance the structural strength of the substrate 1, and is also convenient for the manufacture and molding of the liquid-blocking layer 2, which can effectively control the manufacturing cost.
  • part of the liquid inlet surface 1a is covered with a liquid blocking layer 2.
  • the liquid inlet surface 1a is covered with a liquid blocking layer 2 at a portion avoiding the liquid guide hole 1c.
  • the liquid blocking layer 2 does not interfere with the liquid substrate.
  • it can prevent the liquid matrix from penetrating into the substrate 1 from the liquid inlet surface 1a, which can not only further prevent the liquid matrix from being retained in the substrate 1, such as in the holes inside the substrate 1, and increase the thermal conductivity of the substrate 1, but also enable the liquid matrix from the liquid inlet surface 1a to basically flow to the heating surface 1b through the liquid guide holes 1c, so that the liquid guide effect is better and the controllability is good.
  • part of the heating surface 1b is covered with a liquid-blocking layer 2.
  • the portion of the heating surface 1b that avoids the liquid-conducting hole 1c is covered with the liquid-blocking layer 2.
  • the liquid-blocking layer 2 will not interfere with the flow of the liquid matrix through the liquid-conducting hole 1c, and on the other hand, it can prevent the aerosol generated by the heating surface 1b from entering the substrate 1, such as the pores of the substrate 1, resulting in an increase in the thermal conductivity of the substrate 1.
  • a portion of the liquid inlet surface and a portion of the heating surface are both covered with a liquid blocking layer, and the liquid blocking layer on the liquid guide hole, the liquid blocking layer on the liquid inlet surface, and the liquid blocking layer on the heating surface are an integrally formed structure.
  • the liquid blocking layer on the liquid guide hole, the liquid blocking layer on the liquid inlet surface, and the liquid blocking layer on the heating surface are formed by the same step. In this way, the liquid blocking layers at different positions can be prepared and formed at one time, saving manufacturing steps.
  • the liquid-blocking layer 2 and the heating film 4 on the heating surface 1b may not overlap. In other words, the liquid-blocking layer 2 and the heating film 4 on the heating surface 1b are misaligned. In other embodiments, the liquid-blocking layer 2 and the heating film 4 on the heating surface 1b may partially overlap. In other embodiments, the liquid-blocking layer 2 and the heating film 4 on the heating surface 1b may be partially superimposed. In still other embodiments, the liquid-blocking layer 2 and the heating film 4 on the heating surface 1b may completely overlap. For example, the liquid-blocking layer 2 on the heating surface 1b may be located between the heating surface 1b and the heating film 4.
  • the equivalent diameter d of the liquid guide hole 1c is between 1 ⁇ m and 100 ⁇ m.
  • the equivalent diameter d of the liquid guide hole 1c is 1 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 5.0 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m or 100 ⁇ m, etc.
  • the atomization assembly includes a hollow body 3 embedded in the substrate 1, and the interior of the hollow body 3 is filled with a poor thermal conductor.
  • the hollow body 3 is embedded in the substrate 1, so that the substrate 1 is in direct contact with the hollow body 3.
  • the hollow body 3 is a closed structure with a hollow interior.
  • the poor thermal conductor inside the hollow body 3 cannot leak out of the hollow body 3.
  • a poor thermal conductor is a substance that is not good at transferring heat.
  • the thermal conductivity of the poor thermal conductor is less than or equal to 0.1W/(m ⁇ k). In this way, further reducing the thermal conductivity of the substrate 1 can block the heat from the heating film 4 from being conducted on the substrate 1, thereby further reducing the heat dissipation and achieving a better energy-saving effect.
  • the multiple hollow bodies 3 are dispersed in the substrate 1.
  • the multiple hollow bodies 3 are distributed in the substrate 1 at intervals.
  • the multiple hollow bodies 3 are evenly dispersed in the substrate 1. In this way, the thermal conductivity of the substrate 1 can be effectively reduced by the hollow bodies 3, so that the thermal conductivity of each part of the substrate 1 tends to be consistent.
  • the poor conductor of heat is gas, so that the weight of the heating film can be further reduced.
  • the poor conductor of heat is air or an inert gas.
  • the thermal conductivity of air is 0.023 W/(m ⁇ k).
  • the inert gas includes helium, neon, argon, krypton, xenon or radon.
  • the thermal conductivity of the inert gas is less than 0.1 W/(m ⁇ k).
  • the hollow body 3 is spherical, and the outer diameter of the hollow body 3 is between 0.1 ⁇ m and 10 ⁇ m.
  • the outer diameter of the hollow body 3 is 0.1 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.55 ⁇ m, 0.6 ⁇ m, 0.65 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 6.0 ⁇ m, 6.5 ⁇ m, 7.0 ⁇ m, 8.0 ⁇ m, 9.0 ⁇ m or 10 ⁇ m, etc.
  • the overall size of the hollow body 3 is moderate, which, on the one hand, facilitates the hollow body 3 to be firmly embedded in the substrate 1, and facilitates the hollow body 3 to be more evenly distributed in the substrate 1.
  • the manufacturing difficulty of the hollow body 3 is moderate, and the manufacturing cost is low.
  • the hollow body 3 may be made of dense ceramic material or glass, etc.
  • the main component of the hollow body 3 is silicon dioxide. In this way, during the process of sintering the green embryo 20 to form the matrix 1, the hollow body 3 will not be deformed or chemically changed.
  • the atomization assembly includes a heating layer 5 disposed on the peripheral side of the liquid guide hole 1c, and the heating layer 5 can generate heat by being energized. In this way, the heating layer 5 can be used to heat the liquid matrix in the liquid guide hole 1c. Exemplarily, the heating layer 5 can heat the liquid matrix until it is atomized into an aerosol.
  • the heating film In the related art, only a heating film is provided on the heating surface, and the heating film generates heat to heat the liquid matrix on the heating surface. Since the contact area between the heating surface and the heating film is limited, this leads to different temperatures in different areas of the heating surface.
  • the temperature of some areas of the heating surface may be lower than the boiling point of the liquid matrix.
  • the liquid matrix from the liquid guide hole may flow to the area of the heating surface where the temperature is lower than the boiling point, causing the area of the heating surface where the temperature is lower than the boiling point to be unable to atomize the liquid matrix, resulting in low atomization efficiency.
  • a heating layer 5 is provided on the surrounding side of the liquid guide hole 1c, and the heating film 4 combined with the heating layer 5 can increase the heating area and the heat exchange area of the liquid matrix, and the liquid matrix needs to flow through the liquid guide hole 1c to the heating surface 1b, so that the liquid matrix flowing through the liquid guide hole 1c can be heated to the boiling point, thereby improving the atomization efficiency.
  • a heating layer 5 is provided on the surrounding side of the liquid guide hole 1c, and the heating layer 5 can prevent the liquid matrix in the liquid guide hole 1c from penetrating into the substrate 1. In this way, the liquid matrix can be prevented from entering the substrate 1, so that the thermal conductivity of the substrate 1 is increased.
  • the heating layer 5 can also increase the mechanical strength of the substrate 1, so that the atomization component has better structural strength and improves the pressure resistance.
  • the heating layer 5 can generate heat by resistive heating after being energized.
  • the heating layer 5 includes but is not limited to metals and/or alloys, etc.
  • the heating layer 5 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the heating layer 5 can be electrically connected to the heating film 4.
  • the heating film 4 is electrically connected to the heating layer 5, and the heating film 4 can be electrically connected to an external electrical structure such as an electrical wiring or an electrical terminal.
  • the electrical connection between the heating film 4 and the external electrical structure is simpler and more convenient. In this way, it can not only reduce the connection with each heating element, but also reduce the time and effort of the heating film 4 to connect the heating element to the heating layer 5.
  • the external power connection structure of layer 5 can also simplify the wiring.
  • the heating layer 5 covers part of the wall surface of the liquid guiding hole 1c. In this way, the liquid supply rate and the atomization rate of the liquid guiding hole 1c can be taken into account.
  • the shape of the heating layer 5 is not limited.
  • the heating layer 5 may be an annular structure surrounding the circumferential surface of the liquid guiding hole 1c.
  • the heating layer 5 may also be an elongated strip structure arranged along the axial direction of the liquid guiding hole 1c.
  • the heating layer 5 covers the entire wall surface of the liquid guide hole 1c, so that the heating area can be large enough to maximize the atomization rate.
  • the liquid-blocking layer 2 and the heating layer 5 may not overlap. In other words, the liquid-blocking layer 2 and the heating layer 5 are misaligned. In other embodiments, the liquid-blocking layer 2 and the heating layer 5 may partially overlap. In other words, the liquid-blocking layer 2 and the heating layer 5 may be partially superimposed. In still other embodiments, the liquid-blocking layer 2 and the heating layer 5 may completely overlap. For example, the liquid-blocking layer 2 may be located between the circumferential surface of the liquid-conducting hole 1c and the heating layer 5.
  • the heating layer 5 and the heating film 4 may be made of the same material. In this way, the manufacturing steps can be simplified. For example, the heating layer 5 and the heating film 4 can be prepared simultaneously. It is understood that in other embodiments, the heating layer 5 and the heating film 4 may be made of different materials.
  • the heating layer 5 does not contact the liquid inlet surface 1a.
  • the connection between the liquid inlet surface 1a and the liquid guide hole 1c does not contact the heating layer 5. This can prevent the heating layer 5 from contacting the liquid matrix on the liquid inlet surface 1a, thereby preventing the heating layer 5 from affecting the liquid inlet surface 1a and the liquid matrix in the oil storage container.
  • the heating layer 5 extends from the connection between the liquid guide hole 1c and the heating surface 1b to the preset position of the liquid guide hole 1c, and the distance between the preset position and the liquid inlet surface 1a is not less than one quarter of the depth of the liquid guide hole 1c. In other words, the distance between the preset position and the liquid inlet surface 1a is greater than or equal to one quarter of the depth of the liquid guide hole 1c.
  • the distance between the heating layer 5 and the liquid inlet surface 1a is moderate, which can not only effectively prevent the heating layer 5 from contacting the liquid matrix on the liquid inlet surface 1a, but also prevent the heat from the heating layer 5 from being transferred to the liquid inlet surface 1a through heat conduction.
  • the heating layer 5 and the heating surface 1b The contact not only facilitates the heat transfer of the heating layer 5 to the heating surface 1b around the liquid guide hole 1c, but also facilitates the direct contact between the heating layer 5 and the heating film 4 to achieve electrical connection.
  • the thickness of the heating layer 5 is between 0.1 ⁇ m and 20 ⁇ m.
  • the thickness of the heating layer 5 is 0.1 ⁇ m, 0.15 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 6.0 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m or 20 ⁇ m, etc. With such a design, the thickness of the heating layer 5 is moderate.
  • the sealing layer can effectively block the liquid matrix and enhance the structural strength of the substrate 1, and it is also convenient for the sealing layer to be manufactured and formed, which can effectively control the manufacturing cost.
  • the heating layer 5 it is also convenient for the heating layer 5 to reach a large heat in a shorter time.
  • the liquid matrix is usually a mixture, the volatility characteristics of various components in the liquid matrix are not the same. If various components are atomized indiscriminately, the atomization of some components will be affected, affecting the taste. In addition, the temperature of the heating surface 1b of the atomization assembly in the related art is fixed, and there are problems of single and unadjustable atomization taste. In response to the above problems, in one embodiment of the present application, the number of liquid guide holes 1c is multiple, and the equivalent diameters of at least some of the multiple liquid guide holes 1c are not equal.
  • a part of the multiple liquid guide holes 1c may be the first equivalent diameter, and the rest of the multiple liquid guide holes 1c may be the second equivalent diameter, and the first equivalent diameter and the second equivalent diameter are not equal.
  • a part of the multiple liquid guide holes 1c may be the first equivalent diameter
  • a part of the multiple liquid guide holes 1c may be the second equivalent diameter
  • the rest of the multiple liquid guide holes 1c may be the third equivalent diameter, and the first equivalent diameter, the second equivalent diameter and the third equivalent diameter are not equal.
  • the liquid guide holes 1c with different equivalent diameters have different temperature fields.
  • the atomization component can adapt to different types of liquid matrices.
  • liquid matrices with different flavors and/or different boiling points can all produce better atomization effects, meet the user's needs for various flavors, and facilitate the use of the same atomization component to atomize liquid matrices with different components, solving the problem of The temperature of the heating surface 1b of the atomizer assembly in the related art is fixed, and the atomized flavor is single and unadjustable.
  • the liquid guide holes 1c with different equivalent diameters can produce aerosols of different particle sizes, thereby improving the taste and making the aerosol taste denser or more layered.
  • the first embodiment of the present application further provides a manufacturing method for manufacturing an atomizer assembly.
  • the atomizer assembly includes a substrate 1 and a liquid-blocking layer 2.
  • the substrate 1 includes a liquid inlet surface 1a, a heating surface 1b, and a liquid guide hole 1c.
  • the liquid guide hole 1c connects the liquid inlet surface 1a and the heating surface 1b. At least part of the peripheral side surface of the liquid guide hole 1c is covered with the liquid-blocking layer 2.
  • the manufacturing method includes:
  • the method before the step of fitting a mold frame that matches the contour shape of the counter mold and the counter mold gap to jointly define a mold cavity, the method further includes:
  • the surface of the counter mold is covered with a liquid-blocking layer, wherein at least a portion of the circumferential surface of the pillar is covered with the liquid-blocking layer.
  • the method further comprises:
  • the counter mold is separated from the green mold, so that the liquid-blocking layer is attached to the green mold.
  • the step of processing the green embryo to form a matrix specifically includes: processing the green embryo to form a matrix and a liquid-blocking layer.
  • the second embodiment of the present application provides a manufacturing method:
  • the structure of the counter mold 10 is nested with the structure of the base 1 , that is, the connecting plate 11 can overlap with at least a portion of the outer surface of the base 1 , and the column 12 can be inserted into the liquid guide hole 1 c of the base 1 .
  • the number of connecting plates 11 can be one, and there are multiple columns 12 on one surface of the connecting plate 11 in the thickness direction, and the columns 12 can correspond one-to-one to the liquid guide holes 1c.
  • the columns 12 can be arranged in order, so that they can correspond one-to-one with the orderly arranged liquid guide holes 1c.
  • the liquid-blocking layer 2 can be covered at the corresponding position of the column 12 according to the design requirement of covering the liquid-blocking layer 2 at the set position of the liquid-conducting hole 1 c.
  • the portion of the circumferential surface of the liquid-blocking layer 2 covered by the pillar 12 can be determined according to the requirements of the liquid-blocking layer 2 in the liquid-conducting hole 1c.
  • at least part of the circumferential surface of the column 12 covers the liquid-blocking layer 2.
  • the portion of the column 12 covering the liquid-blocking layer 2 corresponds to the portion of the liquid-conducting hole 1c covering the liquid-blocking layer 2, that is, the portion of the column 12 covering the liquid-blocking layer 2 and the portion of the liquid-conducting hole 1c covering the liquid-blocking layer 2 can overlap.
  • the liquid-blocking layer 2 covers the entire wall surface of the liquid-conducting hole 1c.
  • the entire circumferential surface of the column 12 covers the liquid-blocking layer 2.
  • the portion of the column 12 covering the liquid-blocking layer 2 and the portion of the liquid-conducting hole 1c covering the liquid-blocking layer 2 can overlap.
  • a mask may be provided on the circumferential surface of the column 12.
  • the pattern of the mask is the same as the pattern of the heating layer 5 to be formed on the circumferential surface of the column 12, so that the heating layer 5 is conveniently covered on part of the circumferential surface of the column 12.
  • the mold frame can be a hollow closed structure, and the counter mold 10 is placed in the mold frame, and the gap between the inner wall surface of the mold frame and the counter mold 10 is the mold cavity.
  • the contour shape of the mold frame can be adapted to the contour shape of the counter mold 10, so that the mold frame can be spaced apart from the counter mold 10.
  • the inner wall surface of the mold frame and the counter mold 10 together form a mold cavity.
  • gap fitting means that the contour shape of the mold frame is consistent with the contour shape of the counter mold 10, but the size of the mold frame is larger than the size of the counter mold 10, so that the mold frame can be gap-matched with the counter mold 10. Specifically, there is a gap between all surfaces of the mold frame facing the counter mold 10 and the counter mold 10, so that the slurry can flow in the mold cavity and fill the mold cavity.
  • the counter mold 10 and the mold frame are both polyhedrons, and the number of faces of the substrate 1, the number of faces of the counter mold 10, and the number of faces of the mold frame are equal.
  • the shape of the surface of the substrate 1, the shape of the surface of the counter mold 10, and the shape of the surface of the mold frame correspond to each other and are the same, but the volume of the substrate 1, the volume of the counter mold 10, and the volume of the mold frame are different.
  • the counter mold 10 and the mold frame are both hexahedrons.
  • the slurry is a constituent material of the matrix 1, for example, the slurry may be a ceramic material.
  • the slurry has a certain temperature so that the slurry is in a flowing liquid state. When the temperature of the slurry drops below the solidification point, the slurry becomes solid. After the slurry solidifies into a solid state, a green embryo 20 is formed.
  • the circumferential surface of the hole of the green embryo 20 can be conveniently covered with the liquid blocking layer 2 , and the hole of the green embryo 20 is the liquid guiding hole 1 c .
  • the base 1 and the liquid-blocking layer 2 are formed by processing the green embryo 20 according to its condition.
  • the manufacturing method of the embodiment of the present application first manufactures a counter mold 10 that is nested with the structure of the substrate 1, covers the liquid-blocking layer 2 on the surface of the counter mold 10, and then forms a green embryo 20 by grouting in the mold cavity, so that the substrate 1 and the liquid-blocking layer 2 can be formed after the counter mold 10 is removed.
  • the green embryo 20 is manufactured by using the counter mold 10, and the mold is relatively simple, and there is no need to use a laser or corrosion hole-forming process to make holes, the production equipment cost is low, and the manufacturing process is simpler.
  • the liquid-blocking layer 2 is first covered on the surface of the counter mold 10, and the liquid-blocking layer 2 can be attached to the green embryo 20 after demoulding, without the need for coating in the hole, the manufacturing process is simple, and the production difficulty is low.
  • the manufacturing method of the present application can be adapted to mass production of atomization components, which can greatly improve product yield, reduce material loss, and have high production efficiency.
  • filling the mold cavity with slurry to form a green embryo may include: curing the slurry in the mold cavity to form the green embryo by photocuring.
  • the slurry in the mold cavity can cure quickly, saving curing time.
  • the slurry can be cured by ultraviolet light.
  • S500 processing the green embryo to form the substrate and the liquid-blocking layer, comprises:
  • the green body after removing the reverse mold is sintered.
  • the liquid-blocking layer 2 will adhere to the wall surface of the hole of the green embryo 20; then the green embryo 20 is sintered so that the green embryo 20 forms a spatial three-dimensional skeleton structure of a porous ceramic to become a matrix 1, and at the same time, the liquid-blocking layer 2 will fit more closely on the circumferential surface of the liquid guide hole 1c of the matrix 1.
  • S200 covering the surface of the counter mold with the liquid blocking layer comprises:
  • At least a portion of the surface of the connecting plate facing the pillar is covered with the liquid-blocking layer.
  • the surface of the green embryo 20 facing the connecting plate 11 is the liquid inlet surface 1a of the substrate 1 or the heating surface 1b of the substrate 1. Part of the liquid inlet surface 1a is covered with a liquid blocking layer 2, or part of the heating surface 1b is covered with a liquid blocking layer 2.
  • the liquid-blocking layer 2 can be covered at the corresponding position of the surface where the connecting plate 11 is connected to the column 12. In this way, after the counter mold 10 is separated from the green embryo 20, the liquid-blocking layer 2 will adhere to the surface where the green embryo 20 contacts the connecting plate 11. When the green embryo 20 is sintered, the liquid-blocking layer 2 will fit more closely on the liquid inlet surface 1a or the heating surface 1b of the substrate 1.
  • liquid-blocking layer 2 can be simultaneously covered on at least part of the surface of the connecting plate 11 facing the pillar 12 and at least part of the circumferential surface of the pillar 12. In this way, the process steps can be reduced and the production efficiency can be improved.
  • the liquid-blocking layer 2 will not block the opening of one end of the hole after the green embryo 20 is removed from the counter-mold 10 .
  • the liquid-blocking layer 2 on the end surface of the green embryo 20 away from the connecting plate 11 can be removed by grinding, polishing or other methods. This ensures that the hole of the green embryo 20 used to form the liquid-conducting hole 1c is a through hole.
  • a mask and sequential coating method can also be used to achieve the deposition of both the liquid-blocking layer 2 and the heating film 4 on the heating surface 1 b .
  • the liquid barrier layer 2 is deposited by chemical vapor deposition.
  • the surface of the mold 10 is covered with a liquid barrier layer 2.
  • Chemical vapor deposition (CVD) is a process in which a gaseous or vaporous substance reacts in a gas phase or at a gas-solid interface to generate a solid deposit. In this way, the surface of the counter mold 10 is evenly covered with a liquid barrier layer 2.
  • the chemical vapor deposition can be plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the slurry is mixed with a hollow body 3, wherein the interior of the hollow body 3 is filled with a poor thermal conductor.
  • a green body 20 with the hollow body 3 embedded therein is formed, so that the hollow body 3 can be quickly embedded in the matrix 1 to form an integral structure with the matrix 1.
  • the hollow body 3 is in direct contact with the matrix 1. In this way, not only can the assembly steps of the hollow body 3 be greatly reduced, but also the hollow body 3 can be easily dispersed in the matrix 1.
  • the hollow body 3 here is the same as the hollow body 3 of the aforementioned atomization assembly, and will not be described in detail here.
  • the hollow bodies 3 and the slurry may be mixed first and then injected into the mold cavity, so that the hollow bodies 3 are evenly distributed in the matrix 1.
  • the temperature tolerance of the hollow body 3 is not less than the sintering temperature of the slurry. That is, at the sintering temperature of the slurry, the hollow body 3 will not deform or chemically react.
  • the material of the hollow body 3 can be a dense ceramic material.
  • the manufacturing method comprises:
  • a large number of counter molds 10 can be produced in batches by one or a small number of master molds 30.
  • the production method of the master mold 30 is not limited.
  • the master mold 30 can be produced by drilling or punching.
  • the demand for the master mold 30 is small, and the processing and molding methods can be diverse, which can effectively control the production cost.
  • the counter mold 10 is nested with the master mold 30.
  • the mother mold 30 can be made of materials such as stainless steel. In this way, it is convenient to form the mother mold 30 by drilling or punching.
  • the mother mold 30 is formed into a hole identical to the liquid guide hole 1c, and is easy to manufacture with low cost.
  • the manufacturing method includes:
  • the heating surface 1 b is plated or brushed to form a heating film 4 .
  • the heating film 4 can be deposited on the heating surface 1b by physical vapor deposition (PVD) or chemical vapor deposition. In this way, the heating film 4 is formed by coating the heating surface 1b. In this way, on the one hand, the heating film 4 can be closely combined with the heating surface 1b to reduce the assembly steps, and on the other hand, the thickness of the heating film 4 can be within the micrometer or nanometer thickness range, which can not only meet the overall miniaturization requirements of the atomization component, but also save the material of the heating film 4.
  • PVD physical vapor deposition
  • chemical vapor deposition chemical vapor deposition
  • a film is brushed on the heating surface 1b to form the heating film 4.
  • the heating film 4 is prepared by scraping the conductive paste to prepare a thick film.
  • the counter mold 10 is made of a soft material.
  • the soft material is a structure that can be deformed under a small force. In this way, on the one hand, the cost of the counter mold 10 is low; on the other hand, the counter mold 10 is easy to be separated from the mother mold 30, and the counter mold 10 is also easy to be separated from the green embryo 20 and the liquid barrier layer 2, and it is not easy to damage the mother mold 30, nor is it easy to damage the green embryo 20 and the liquid barrier layer 2.
  • the soft material includes but is not limited to soft polymer materials, such as soft silicone or soft resin.
  • the counter-mold 10 is a disposable sacrificial mold.
  • a disposable sacrificial mold refers to a mold that is discarded after completing the production of a single substrate 1. In this way, when the counter-mold 10 is separated from the green embryo 20, the counter-mold 10 can be destroyed, so that the counter-mold 10 can be quickly separated from the green embryo 20, which is convenient for operation.
  • the counter mold 10 can be integrally injection molded.
  • the mother mold 30 is used as a mold core, and a melt is injected into the mold core to form the counter mold 10.
  • a hot pressing process can be used to press a melt formed by a high-temperature molten polymer material into the mother mold 30, and after cooling, the mother mold 30 is removed to obtain the counter mold 10.
  • the counter mold 10 is an integral injection molding structure, which has a simple process and low cost.
  • the atomization assembly includes a heating layer 5, and at least a portion of the peripheral side of the liquid guide hole is covered with the heating layer 5.
  • the manufacturing method includes:
  • the heating layer 5 can be covered at the corresponding position of the column 12 according to the design requirement of covering the heating layer 5 at the set position of the liquid guide hole 1c.
  • the portion of the circumferential surface of the column 12 covering the heating layer 5 can be determined according to the requirements of the heating layer 5 in the liquid guide hole 1c.
  • the heating layer 5 covers part of the wall surface of the liquid guide hole 1c.
  • part of the circumferential surface of the column 12 covers the heating layer 5.
  • the portion of the column 12 covering the heating layer 5 corresponds to the portion of the liquid guide hole 1c covering the heating layer 5, that is, the portion of the column 12 covering the heating layer 5 can overlap with the portion of the liquid guide hole 1c covering the heating layer 5.
  • the heating layer 5 covers the entire wall surface of the liquid guide hole 1c. In terms of the manufacturing method, the entire circumferential surface of the column 12 covers the heating layer 5. The portion where the column 12 covers the heating layer 5 can overlap with the portion where the liquid guide hole 1c covers the heating layer 5.
  • a mask may be provided on the circumferential surface of the column 12.
  • the pattern of the mask is the same as the pattern of the heating layer 5 to be formed on the circumferential surface of the column 12, so that the heating layer 5 is conveniently covered on part of the circumferential surface of the column 12.
  • the heat generating layer 5 will be attached to the green embryo 20.
  • the heat generating layer 5 can be conveniently covered on the circumferential surface of the hole of the green embryo 20.
  • the liquid-blocking layer 2 and the heating layer 5 may not overlap. That is, the liquid-blocking layer 2 and the heating layer 5 are misaligned. In this way, the deposition of the liquid-blocking layer 2 and the heating layer 5 can be achieved through one mask or multiple masks. For example, the liquid-blocking layer 2 and the heating layer 5 can be deposited at set positions of the pillars 12 respectively through masks.
  • the liquid-blocking layer 2 and the heat-generating layer 5 may partially overlap.
  • the layer 2 and the heat generating layer 5 may be partially overlapped.
  • the liquid blocking layer 2 and the heat generating layer 5 may be deposited in sequence at the set position of the pillar 12 through a mask.
  • the liquid blocking layer 2 and the heating layer 5 may completely overlap.
  • the liquid blocking layer 2 may be located between the circumferential surface of the liquid guiding hole 1c and the heating layer 5. Taking this as an example, the liquid blocking layer 2 may be deposited first, and then the heating layer 5 may be deposited.
  • the manufacturing method comprises:
  • the surface of the green body 20 facing the connecting plate 11 is the heat generating surface 1 b of the base 1 , and the heat generating film 4 is disposed on the heat generating surface 1 b .
  • the corresponding position of the surface of the connecting plate 11 facing the column 12 can be covered with the heating film 4.
  • the heating film 4 will be attached to the surface of the green embryo 20 in contact with the connecting plate 11, that is, the heating surface 1b.
  • the heating film 4 will fit more closely on the heating surface 1b.
  • the heating film 4 can be covered on at least part of the surface of the connecting plate 11 facing the pillar 12 and the heating layer 5 can be simultaneously covered on at least part of the circumferential surface of the pillar 12. In this way, the process steps can be reduced and the production efficiency can be improved.
  • the heating film 4 will not block the opening of one end of the hole after the green embryo 20 is removed from the counter mold 10 .
  • the heating film 4 on the end surface of the green embryo 20 away from the connecting plate 11 can be removed by grinding, polishing or other methods.
  • the end surface of the green embryo 20 away from the connecting plate 11 can also be shielded by a mask to prevent the material of the heating film 4 from being deposited on the end surface of the green embryo 20 away from the connecting plate 11.
  • an embodiment of the present application provides an atomization assembly on one hand
  • the atomization assembly includes a substrate 1 and a heating layer 5
  • the substrate 1 includes a liquid inlet surface 1 a , a heating surface 1 b and a liquid guide hole 1 c
  • the liquid guiding hole 1c connects the liquid inlet surface 1a and the heating surface 1b.
  • the liquid guiding hole 1c can guide the liquid matrix from the liquid inlet surface 1a to the heating surface 1b.
  • the heating layer 5 is disposed on the circumferential surface of the liquid guiding hole 1c.
  • the heating layer 5 can generate heat when powered. In this way, the heating layer 5 can be used to heat the liquid matrix in the liquid guiding hole 1c. Exemplarily, the heating layer 5 can heat the liquid matrix until it is atomized into an aerosol.
  • the heating film In the related art, only a heating film is provided on the heating surface, and the heating film generates heat to heat the liquid matrix on the heating surface. Since the contact area between the heating surface and the heating film is limited, this leads to different temperatures in different areas of the heating surface.
  • the temperature of some areas of the heating surface may be lower than the boiling point of the liquid matrix.
  • the liquid matrix from the liquid guide hole may flow to the area of the heating surface where the temperature is lower than the boiling point, causing the area of the heating surface where the temperature is lower than the boiling point to be unable to atomize the liquid matrix, resulting in low atomization efficiency.
  • the atomizer assembly provided in the embodiment of the present application is provided with a heating layer 5 on the circumferential surface of the liquid guide hole 1c, and the liquid matrix needs to flow to the heating surface 1b through the liquid guide hole 1c, so that the liquid matrix flowing through the liquid guide hole 1c can be heated to the boiling point, thereby improving the atomization efficiency.
  • the circumferential surface of the liquid guide hole 1c is provided with a heating layer 5, and the heating layer 5 can prevent the liquid matrix in the liquid guide hole 1c from penetrating into the substrate 1. In this way, the liquid matrix can be prevented from entering the substrate 1, so that the thermal conductivity of the substrate 1 is increased.
  • the heating layer 5 can also increase the mechanical strength of the substrate 1, so that the atomizer assembly has better structural strength and improves the pressure resistance.
  • the heating layer 5 can generate heat by resistive heating after being energized.
  • the material of the heating layer 5 includes but is not limited to metal and/or alloy, etc.
  • the heating layer 5 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • liquid matrix includes solvents and additives, etc.
  • Solvents include but are not limited to propylene glycol (boiling point is 187° C.) and/or glycerol (boiling point is 290° C.).
  • Additives may include nicotine salts, plant extracts and/or flavor additives, etc.
  • the flavor additives may be flavors and fragrances.
  • the heating layer 5 covers part of the wall surface of the liquid guiding hole 1c. In this way, the liquid supply rate and the atomization rate of the liquid guiding hole 1c can be taken into consideration.
  • the shape of the heating layer 5 is not limited.
  • the heating layer 5 may be an annular structure surrounding the circumferential surface of the liquid guiding hole 1c.
  • the heating layer 5 may also be an elongated strip structure arranged along the axial direction of the liquid guiding hole 1c.
  • the heating layer 5 covers the entire wall surface of the liquid guide hole 1c. In this way, the heating area can be large enough to maximize the atomization rate.
  • the atomization component includes a heating film 4, the heating film 4 is arranged on the heating surface 1b, and the heating film 4 is electrically connected to the heating layer 5.
  • the heating film 4 can heat the liquid matrix flowing to the heating surface 1b.
  • the liquid matrix can be heated and atomized into an aerosol by the heating film 4.
  • the heating layer 5 and the heating film 4 are combined to increase the heating area, increase the heat exchange area of the liquid matrix, and ensure the atomization efficiency.
  • the heating film 4 is electrically connected to the heating layer 5, and the heating film 4 can be electrically connected to an external power connection structure such as an electrical wiring or a power connection terminal.
  • the electrical connection between the heating film 4 and the external power connection structure is simpler and more convenient. In this way, not only can the external power connection structure electrically connected to each heating layer 5 be reduced, but also the wiring can be simplified.
  • the heating film 4 can generate heat by resistive heating after being energized.
  • the heating film 4 includes but is not limited to metals and/or alloys, etc.
  • the heating film 4 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the heating layer 5 and the heating film 4 may be made of the same material. In this way, the manufacturing steps can be simplified. For example, the heating layer 5 and the heating film 4 can be prepared simultaneously. It is understood that in other embodiments, the heating layer 5 and the heating film 4 may be made of different materials.
  • the heating layer 5 does not contact the liquid inlet surface 1a.
  • the connection between the liquid inlet surface 1a and the liquid guide hole 1c does not contact the heating layer 5. This can prevent the heating layer 5 from contacting the liquid matrix on the liquid inlet surface 1a, thereby preventing the heating layer 5 from affecting the liquid inlet surface 1a and the liquid matrix in the liquid reservoir.
  • the heating layer 5 extends from the connection between the liquid guiding hole 1c and the heating surface 1b to the preset position of the liquid guiding hole 1c, and the distance between the preset position and the liquid inlet surface 1a is not less than one quarter of the depth of the liquid guiding hole 1c. In other words, the distance between the preset position and the liquid inlet surface 1a is greater than or equal to the depth of the liquid guiding hole 1c.
  • the distance between the heating layer 5 and the liquid inlet surface 1a is moderate, which can not only effectively prevent the heating layer 5 from contacting the liquid matrix on the liquid inlet surface 1a, but also to a certain extent prevent the heat from the heating layer 5 from being transferred to the liquid inlet surface 1a through heat conduction.
  • the heating layer 5 is in contact with the heating surface 1b, which not only facilitates the heat transfer of the heating layer 5 to the part of the heating surface 1b located around the liquid guide hole 1c, but also facilitates the direct contact between the heating layer 5 and the heating film 4 to achieve electrical connection.
  • the thickness h of the heating layer 5 is between 0.1 ⁇ m and 20 ⁇ m.
  • the thickness h of the heating layer 5 is 0.1 ⁇ m, 0.15 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 6.0 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m or 20 ⁇ m, etc. With such a design, the thickness of the heating layer 5 is moderate.
  • the heating layer 5 is large, which is convenient for the heating layer 5 to reach a large heat in a short time.
  • the cross-sectional shape of the liquid conducting hole 1c includes but is not limited to a circle, an ellipse or a polygon, etc.
  • the equivalent diameter is the diameter of the circular liquid conducting hole 1c.
  • the cross-sectional shape of the liquid guiding hole 1c is a cross section taken along a plane perpendicular to the depth direction of the liquid guiding hole 1c.
  • the liquid guiding hole 1c may be a straight hole. That is, a single liquid guiding hole 1c extends along a straight line. In this way, on the one hand, the liquid guiding hole 1c is easy to form and has low manufacturing difficulty, and on the other hand, it is convenient to quickly guide the liquid matrix on the liquid inlet surface 1a to the heating surface 1b.
  • the liquid conducting holes 1c are equal diameter holes, that is, the equivalent diameters of the single liquid conducting holes 1c at any position are equal.
  • the number of the liquid-conducting holes 1c is multiple, and the multiple liquid-conducting holes 1c are arranged in an orderly manner.
  • Orderly arrangement means that they are arranged according to set rules. Such set rules can be designed and controlled manually.
  • Orderly arrangement includes but is not limited to array arrangement.
  • the array arrangement may be a one-dimensional array arrangement of multiple liquid conducting holes 1c, that is, multiple liquid conducting holes 1c are arranged at intervals in one direction.
  • the array arrangement may be a two-dimensional array arrangement of multiple liquid conducting holes 1c, that is, multiple liquid conducting holes 1c are arranged at intervals in two or more intersecting directions.
  • liquid conducting holes 1c may be arranged in a rectangular array or a circular array, etc.
  • the number of orderly arranged liquid conducting holes 1c can be designed and calculated, and the flow conduction effect of the substrate 1 on the liquid matrix is more controllable, which can improve the production consistency of the product.
  • the liquid conducting holes 1c of different substrates 1 are basically the same, so that the heating effect of the heating film produced in the same batch tends to be consistent.
  • the liquid matrix is usually a mixture, the volatility characteristics of various components in the liquid matrix are not the same. If various components are atomized indiscriminately, the atomization of some components will be affected, affecting the taste. In addition, the temperature of the heating surface of the atomization component in the related art is fixed, and there are problems of single and unadjustable atomization taste.
  • the number of liquid guide holes 1c is multiple, and the equivalent diameters of at least some of the multiple liquid guide holes 1c are not equal.
  • a part of the multiple liquid guide holes 1c may be the first equivalent diameter, and the rest of the multiple liquid guide holes 1c may be the second equivalent diameter, and the first equivalent diameter and the second equivalent diameter are not equal.
  • a part of the multiple liquid guide holes 1c may be the first equivalent diameter
  • a part of the multiple liquid guide holes 1c may be the second equivalent diameter
  • the rest of the multiple liquid guide holes 1c may be the third equivalent diameter, and the first equivalent diameter, the second equivalent diameter and the third equivalent diameter are not equal.
  • liquid-conducting holes 1c Different equivalent diameters of the liquid-conducting holes 1c result in different temperatures in the corresponding liquid-conducting holes 1c, and different surface energies generated by the heating layer 5. In this way, liquid-conducting holes 1c with different equivalent diameters have different temperature fields. With such a design, on the one hand, the atomization component can adapt to different types of liquid matrices.
  • liquid matrices with different flavors and/or different boiling points can all produce better atomization effects, satisfying the user's needs for various flavors, and facilitating the use of the same atomization component to atomize liquid matrices of different components, thereby solving the problem in the related art that the temperature of the heating surface of the atomization component is fixed, and the atomization flavor is single and unadjustable.
  • different equivalent diameters of the same type of liquid matrix can be used for different components.
  • the liquid guide hole 1c with a large diameter can produce aerosols of different particle sizes, thereby improving the mouthfeel and making the mouthfeel of the aerosol denser or more layered.
  • the hollow body 3 is spherical, and the outer diameter of the hollow body 3 is between 0.1 ⁇ m and 25 ⁇ m.
  • the outer diameter of the hollow body 3 is between 0.1 ⁇ m and 10 ⁇ m.
  • the outer diameter of the hollow body 3 is 0.1 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 5.0 ⁇ m, 7.0 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 20.5 ⁇ m, 21 ⁇ m, 22 ⁇ m, 24 ⁇ m or 25 ⁇ m, etc.
  • the three-dimensional outer contour of the hollow body 3 is spherical.
  • the overall size of the hollow body 3 is moderate, which is convenient for the hollow body 3 to be firmly embedded in the matrix 1 and for the hollow body 3 to be more evenly distributed in the matrix 1.
  • the hollow body 3 has a moderate manufacturing difficulty and a low manufacturing cost.
  • the atomization assembly includes a liquid-blocking layer, and at least a portion of the circumferential surface of the liquid-conducting hole 1c is covered with the liquid-blocking layer.
  • the liquid-blocking layer covers at least a portion of the circumferential surface of the liquid-conducting hole 1c.
  • a portion of the circumferential surface of the liquid-conducting hole 1c is covered with the liquid-blocking layer.
  • the entire circumferential surface of the liquid-conducting hole 1c is covered with the liquid-blocking layer.
  • liquid-blocking layer which can prevent the liquid matrix flowing in the liquid-conducting hole 1c from penetrating into the substrate 1. In this way, the liquid matrix can be prevented from entering the substrate 1, thereby increasing the thermal conductivity of the substrate 1.
  • the liquid-blocking layer can also increase the mechanical strength of the substrate 1, so that the atomizing assembly has better structural strength and improved pressure resistance.
  • the liquid-blocking layer and the heating layer 5 may not overlap. That is, the liquid-blocking layer and the heating layer 5 are misaligned. In other embodiments, the liquid-blocking layer and the heating layer 5 may partially overlap. That is, the liquid-blocking layer and the heating layer 5 may be partially overlapped. In still other embodiments, the liquid-blocking layer and the heating layer 5 may completely overlap. For example, the liquid-blocking layer may be located between the circumferential surface of the liquid-conducting hole 1c and the heating layer 5.
  • the atomizing assembly includes a heating layer, which is disposed on the circumferential surface of the liquid guide hole; a mold frame adapted to the contour shape of the reverse mold and the reverse mold gap are assembled to form a heat-generating layer.
  • the method also includes: covering the circumferential surface of the column with a heating layer.
  • the method further includes: separating the counter mold from the green embryo so that the heat-generating layer is attached to the green embryo.
  • the step of processing the green embryo to form a substrate specifically includes: processing the green embryo to form a substrate and a heat-generating layer.
  • the third embodiment of the present application further provides a manufacturing method for manufacturing an atomizer assembly.
  • the atomizer assembly includes a substrate 1 and a heating layer 5.
  • the substrate 1 includes a liquid inlet surface 1a, a heating surface 1b, and a liquid guide hole 1c.
  • the liquid guide hole 1c connects the liquid inlet surface 1a and the heating surface 1b.
  • the heating layer 5 is disposed on the circumferential surface of the liquid guide hole 1c.
  • the manufacturing method includes:
  • the structure of the counter mold 10 is nested with the structure of the base 1 , that is, the connecting plate 11 can overlap with at least a portion of the outer surface of the base 1 , and the column 12 can be inserted into the liquid guide hole 1 c of the base 1 .
  • the number of connecting plates 11 can be one, and there are multiple columns 12 on one surface of the connecting plate 11 in the thickness direction, and the columns 12 can correspond one-to-one to the liquid guide holes 1c.
  • the columns 12 can be arranged in order, so that they can correspond one-to-one with the orderly arranged liquid guide holes 1c.
  • the portion of the circumferential surface of the heating layer 5 covered by the pillar 12 can be determined according to the requirements of the heating layer 5 in the liquid guide hole 1c.
  • part of the circumferential surface of the column 12 covers the heating layer 5.
  • the portion where the column 12 covers the heating layer 5 corresponds to the portion where the liquid guide hole 1c covers the heating layer 5, that is, the portion where the column 12 covers the heating layer 5 and the portion where the liquid guide hole 1c covers the heating layer 5 can overlap.
  • the heating layer 5 covers the entire wall surface of the liquid guide hole 1c. In terms of the manufacturing method, the entire circumferential surface of the column 12 covers the heating layer 5. The portion where the column 12 covers the heating layer 5 can overlap with the portion where the liquid guide hole 1c covers the heating layer 5.
  • a mask may be provided on the circumferential surface of the column 12.
  • the pattern of the mask is the same as the pattern of the heating layer 5 to be formed on the circumferential surface of the column 12, so that the heating layer 5 is conveniently covered on part of the circumferential surface of the column 12.
  • the mold frame can be a hollow closed structure, and the counter mold 10 is placed in the mold frame, and the gap between the inner wall surface of the mold frame and the counter mold 10 is the mold cavity.
  • the contour shape of the mold frame can be adapted to the contour shape of the counter mold 10, so that the mold frame can be spaced apart from the counter mold 10.
  • the inner wall surface of the mold frame and the counter mold 10 together form a mold cavity.
  • gap fitting means that the contour shape of the mold frame is consistent with the contour shape of the counter mold 10, but the size of the mold frame is larger than the size of the counter mold 10, so that the mold frame can be gap-matched with the counter mold 10. Specifically, there is a gap between all surfaces of the mold frame facing the counter mold 10 and the counter mold 10, so that the slurry can flow in the mold cavity and fill the mold cavity.
  • the counter mold 10 and the mold frame are both polyhedrons, and the number of faces of the substrate 1, the number of faces of the counter mold 10, and the number of faces of the mold frame are equal.
  • the shape of the surface of the substrate 1, the shape of the surface of the counter mold 10, and the shape of the surface of the mold frame correspond to each other and are the same, but the volume of the substrate 1, the volume of the counter mold 10, and the volume of the mold frame may be different.
  • the counter mold 10 and the mold frame are both hexahedrons.
  • the slurry is a constituent material of the substrate 1 , for example, the slurry may be a ceramic material.
  • the slurry has a certain temperature so that the slurry is in a flowing liquid state. When the temperature of the slurry drops below the solidification point, the slurry becomes solid. After the slurry solidifies into a solid state, a green embryo 30 is formed.
  • the circumferential surface of the hole of the green embryo 30 can be conveniently covered with the heat-generating layer 5 , and the hole of the green embryo 30 is the liquid guide hole 1 c .
  • the base 1 and the heat generating layer 5 are formed by processing the green embryo 30 according to its condition.
  • the manufacturing method of the embodiment of the present application first manufactures a counter mold 10 that is nested with the structure of the substrate 1, covers the heating layer 5 on the circumferential surface of the column 12, and then uses the mold cavity grouting to form the green embryo 30. In this way, the substrate 1 and the heating layer 5 can be formed after removing the counter mold 10.
  • the green embryo 30 is manufactured by using the counter mold 10.
  • the mold is relatively simple, and there is no need to use laser or corrosion to make holes. The production equipment cost is low and the manufacturing process is simpler.
  • the heating layer 5 is first covered on the circumferential surface of the column 12. After demolding, the heating layer 5 can be attached to the green embryo 30. There is no need to coat the hole.
  • the manufacturing process is simple, the coating steps can be reduced, and the production difficulty is low.
  • the manufacturing method of the present application can be adapted to mass production of atomization components, which can greatly improve the product yield, reduce material loss, and have high production efficiency.
  • filling the mold cavity with slurry to form a green embryo may include: curing the slurry in the mold cavity to form the green embryo by photocuring.
  • the slurry in the mold cavity can cure quickly, saving curing time.
  • the slurry can be cured by ultraviolet light.
  • S50 processing the green embryo to form the substrate and the heat generating layer, comprises:
  • the green body after removing the reverse mold is sintered.
  • the reverse mold 10 is separated from the green embryo 30.
  • the heat layer 5 will adhere to the wall surface of the hole of the green embryo 30; then the green embryo 30 is sintered so that the green embryo 30 forms a spatial three-dimensional skeleton structure of porous ceramics to become the substrate 1.
  • the heat layer 5 will fit more closely on the circumferential surface of the liquid guide hole 1c of the substrate 1.
  • the manufacturing method includes:
  • the surface of the green embryo 30 facing the connecting plate 11 is the heating surface 1 b of the base 1 , and the heating film 4 is disposed on the heating surface 1 b .
  • the corresponding position of the surface of the connecting plate 11 facing the column 12 can be covered with the heating film 4.
  • the heating film 4 will adhere to the surface of the green embryo 30 in contact with the connecting plate 11, that is, the heating surface 1b.
  • the heating layer 5 will fit more closely on the heating surface 1b.
  • the heating film 4 can be covered on at least part of the surface of the connecting plate 11 facing the pillar 12 and the heating layer 5 can be simultaneously covered on at least part of the circumferential surface of the pillar 12. In this way, the process steps can be reduced and the production efficiency can be improved.
  • the heating film 4 will not block the opening of one end of the hole after the green embryo 30 is removed from the counter mold 10 .
  • the heating film 4 on the end surface of the green embryo 30 away from the connecting plate 11 can be removed by grinding, polishing or other methods.
  • the end surface of the green embryo 30 away from the connecting plate 11 can also be shielded by a mask to prevent the material of the heating film 4 from being deposited on the end surface of the green embryo 30 away from the connecting plate 11.
  • the manufacturing method includes:
  • the heating surface is plated or brushed to form a heating film.
  • the heating film 4 can be prepared on the heating surface 1 b of the substrate 1 .
  • the heating film 4 can be deposited on the heating surface 1b by physical vapor deposition (PVD) or chemical vapor deposition (CVD). In this way, the heating film 4 is formed by coating the heating surface 1b. In this way, on the one hand, the heating film 4 can be closely combined with the heating surface 1b to reduce the assembly steps, and on the other hand, the thickness of the heating film 4 can be within the micrometer or nanometer thickness range, which can not only meet the overall miniaturization requirements of the atomization component, but also save the material of the heating film 4.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a film is brushed on the heating surface 1b to form the heating film 4.
  • the heating film 4 is prepared by scraping the conductive paste to prepare a thick film.
  • the heating layer 5 is formed by chemical vapor deposition.
  • Chemical vapor deposition is a process in which a gaseous or vaporous substance reacts in a gas phase or at a gas-solid interface to generate a solid deposit. In this way, the heating layer 5 is evenly covered on the circumferential surface of the column 12.
  • the chemical vapor deposition can be plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the heating layer 5 and the heating film 4 can be made of the same material and can be synchronously prepared by chemical vapor deposition.
  • the slurry is mixed with a hollow body 3, wherein the interior of the hollow body 3 is filled with a poor thermal conductor.
  • a green body 30 with the hollow body 3 embedded therein is formed, so that the hollow body 3 can be quickly embedded in the matrix 1 to form an integral structure with the matrix 1.
  • the hollow body 3 is in direct contact with the matrix 1. In this way, not only can the assembly steps of the hollow body 3 be greatly reduced, but also the hollow body 3 can be easily dispersed in the matrix 1.
  • the hollow body 3 here has the same structure as the hollow body 3 of the aforementioned atomizing assembly, and will not be described in detail here.
  • the hollow bodies 3 and the slurry may be mixed first and then injected into the mold cavity, so that the hollow bodies 3 are evenly distributed in the matrix 1.
  • the tolerance temperature of the hollow body 3 is not less than the sintering temperature of the slurry. At the sintering temperature of the slurry, the hollow body 3 will not deform or react chemically.
  • the hollow body 3 may be made of a dense ceramic material.
  • the manufacturing method includes:
  • a large number of counter molds 10 can be produced in batches by one or a small number of master molds 300.
  • the production method of the master mold 300 is not limited.
  • the master mold 300 can be produced by drilling or punching.
  • the demand for the master mold 300 is small, and the processing and molding methods can be diverse, which can effectively control the production cost.
  • the counter mold 10 is nested with the master mold 300.
  • the master mold 300 can be made of stainless steel or other materials. In this way, it is convenient to form a hole identical to the liquid guide hole 1c by drilling or punching, and the master mold 300 is easy to manufacture and has low cost.
  • the counter mold 10 is made of a soft material.
  • the soft material is a structure that can be deformed under a small force. In this way, on the one hand, the cost of the counter mold 10 is low; on the other hand, the counter mold 10 is easy to be separated from the mother mold 300, and the counter mold 10 is also easy to be separated from the green embryo 30 and the heating layer 5, which is not easy to damage the mother mold 300, nor the green embryo 30 and the heating layer 5.
  • the soft material includes but is not limited to soft polymer materials, such as soft silicone or soft resin.
  • the counter mold 10 is a disposable sacrificial mold.
  • a disposable sacrificial mold is a mold that is discarded after completing the production of a single substrate 1. In this way, when the counter mold 10 is separated from the green embryo 30, the counter mold 10 can be destroyed, so that the counter mold 10 can be quickly separated from the green embryo 30, which is convenient for operation.
  • the counter mold 10 can be integrally injection molded.
  • the mother mold 300 is used as a mold core, and a melt is injected into the mold core to form the counter mold 10.
  • a hot pressing process can be used to press a melt formed by a high-temperature molten polymer material into the mother mold 300, and after cooling, the mother mold 300 is removed to obtain the counter mold 10.
  • the counter mold 10 is an integral injection molding structure, which is simple in process and low in cost.
  • the atomization assembly includes a liquid-blocking layer, and at least a portion of the circumferential surface of the liquid-conducting hole 1c is covered with the liquid-blocking layer.
  • the manufacturing method includes:
  • the liquid-blocking layer can be covered at the corresponding position of the column 12 according to the design requirement of covering the liquid-blocking layer at the set position of the liquid guide hole 1c.
  • the portion of the circumferential surface of the column 12 covering the liquid-blocking layer can be determined according to the requirements of the liquid-blocking layer in the liquid-conducting hole 1c.
  • the liquid-blocking layer covers part of the wall surface of the liquid-conducting hole 1c.
  • at least part of the circumferential surface of the column 12 covers the liquid-blocking layer.
  • the portion of the column 12 covering the liquid-blocking layer corresponds to the portion of the liquid-conducting hole 1c covering the liquid-blocking layer, that is, the portion of the column 12 covering the liquid-blocking layer can overlap with the portion of the liquid-conducting hole 1c covering the liquid-blocking layer.
  • the liquid-blocking layer covers the entire wall surface of the liquid-conducting hole 1c.
  • the entire circumferential surface of the column 12 covers the liquid-blocking layer.
  • the portion of the column 12 covering the liquid-blocking layer can overlap with the portion of the liquid-conducting hole 1c covering the liquid-blocking layer.
  • a mask may be provided on the circumferential surface of the column 12.
  • the pattern of the mask is the same as the pattern of the liquid blocking layer to be formed on the circumferential surface of the column 12, so that the liquid blocking layer is conveniently covered on part of the circumferential surface of the column 12.
  • the liquid barrier layer will adhere to the green embryo 30.
  • the circumferential surface of the hole of the green embryo 30 can be conveniently covered with the liquid barrier layer.
  • the liquid-blocking layer and the heating layer 5 may not overlap. That is, the liquid-blocking layer and the heating layer 5 are misaligned. In this way, the deposition of the liquid-blocking layer and the heating layer 5 can be achieved through one mask or multiple masks. For example, the liquid-blocking layer and the heating layer 5 can be deposited at set positions of the pillars 12 respectively through masks.
  • the liquid-blocking layer and the heating layer 5 may partially overlap. In other words, the liquid-blocking layer and the heating layer 5 may partially overlap.
  • the liquid-blocking layer and the heating layer 5 may be deposited in sequence at the set position of the pillar 12 through a mask.
  • the liquid blocking layer and the heating layer 5 may completely overlap.
  • the liquid blocking layer may be located between the circumferential surface of the liquid guiding hole 1c and the heating layer 5. Taking this as an example, the liquid blocking layer may be deposited first, and then the heating layer 5 may be deposited.
  • a mask and sequential coating method can also be used to achieve the deposition of both the liquid barrier layer and the heating film 4 on the heating surface 1 b .
  • S70 covering the surface of the counter mold with the liquid blocking layer, comprises:
  • At least a portion of the surface of the connecting plate facing the pillar is covered with the liquid-blocking layer.
  • the surface of the green embryo 30 facing the connecting plate 11 may be the liquid inlet surface 1a of the substrate 1 or the heating surface 1b of the substrate 1 , and the liquid inlet surface 1a is partially covered with a liquid blocking layer, or the heating surface 1b is partially covered with a liquid blocking layer.
  • the liquid-blocking layer will not block the opening of one end of the hole after the green embryo 30 is removed from the counter-mold 10 .
  • part of the liquid-blocking layer on the end surface of the green embryo 30 away from the connecting plate 11 can be removed by grinding, polishing or other methods. This ensures that the hole of the green embryo 30 used to form the liquid-conducting hole 1c is a through hole.
  • the liquid barrier layer and the heating film 4 on the heating surface 1b may not overlap.
  • the liquid barrier layer and the heating film 4 are misaligned.
  • the deposition of the liquid barrier layer and the heating film 4 can be achieved through one mask or multiple masks.
  • the liquid barrier layer and the heating film 4 can be deposited separately at set positions on the heating surface 1b through a mask.
  • the liquid-blocking layer and the heating film 4 on the heating surface 1b may partially overlap.
  • the liquid-blocking layer and the heating film 4 may partially overlap.
  • the liquid-blocking layer and the heating film 4 may be deposited in sequence at a set position of the heating surface 1b through a mask.
  • the liquid barrier layer on the heating surface 1b and the heating film 4 may completely overlap.
  • the liquid barrier layer may be located between the heating surface 1b and the heating film 4. Taking this as an example, the liquid barrier layer may be deposited first, and then the heating film 4 may be deposited.
  • the liquid blocking layer is coated on the surface of the counter mold 10 by chemical vapor deposition. In this way, the surface of the counter mold 10 is easily evenly coated with the liquid blocking layer.
  • the atomizer 100 includes a liquid storage chamber 100a and an atomizer assembly provided in any embodiment of the present application, the liquid storage chamber 100a is used to store an aerosol-generating substrate, and the first surface 1d of the atomizer assembly is in fluid communication with the liquid storage chamber 100a.
  • the atomizer assembly is in fluid communication with the liquid storage chamber 100a, that is, the aerosol-generating substrate can be guided to the atomizer assembly through the liquid storage chamber 100a, and the atomizer assembly is used to absorb and heat the atomized aerosol-generating substrate.
  • FIG. 17 An embodiment of the present application provides an atomizer, please refer to FIG. 17 , which includes a housing 110 and an atomizer seat 120 .
  • the shell 110 is provided with a receiving cavity and an air outlet channel 110a.
  • the aerosol generated by the aerosol generating matrix is provided for the user to inhale through the air outlet channel 110a.
  • the specific method of using the atomizer 100 is not limited here.
  • the user can inhale the aerosol through the shell 110, or can inhale the aerosol through an additional nozzle in conjunction with the shell 110.
  • a liquid storage cavity 100a for storing an aerosol generating substrate is defined between the top wall of the atomizer seat 120 and the housing 110.
  • the atomizer seat 120 is formed with an atomizing cavity 120a and at least one liquid inlet channel.
  • the liquid inlet channel is connected between the liquid storage cavity 100a and the atomizing assembly arranged in the atomizing cavity 120a.
  • the atomizing cavity 120a is connected to the outside world through the air outlet channel 110a.
  • the aerosol generating substrate stored in the liquid storage cavity 100a can enter the atomizing cavity 120a through the liquid inlet channel for heating and atomization, and the aerosol generated by heating and atomization flows out through the air outlet channel 110a.
  • the structure of the atomizer seat 120 is disposed in the receiving chamber, which means that part of the structure of the atomizer seat 120 may be disposed in the receiving chamber, or the entire structure of the atomizer seat 120 may be disposed in the receiving chamber.
  • the aerosol-generating matrix in the liquid storage chamber 100a is guided to the atomizing chamber 120a through the liquid inlet channel for heating and atomization to generate an aerosol. After the aerosol-generating matrix in the liquid storage chamber 100a is consumed, the outside The air enters the liquid storage chamber 100a through the ventilation channel to balance the pressure in the liquid storage chamber 100a.
  • the embodiment of the present application provides an atomization assembly, please refer to Figures 13 to 16, including a substrate 1 and a heating film 4.
  • the substrate 1 has a liquid guide hole 1c and a first surface 1d and a second surface 1e arranged opposite to each other. At least a part of the first surface 1d forms a liquid inlet surface 1a, and at least a part of the second surface 1e forms a heating area 1g.
  • the heating area 1g includes heating surfaces 1b facing different directions.
  • the liquid guide hole 1c is arranged on the substrate 1, and is used to guide the aerosol generating matrix from the liquid inlet surface 1a to the heating surface 1b.
  • the heating film 4 is arranged on the heating surface 1b. That is, the liquid guide hole 1c connects the liquid inlet surface 1a and the heating surface 1b, and by arranging the heating film 4 on the heating surface 1b, it is used to heat and atomize the aerosol generating matrix distributed on the heating surface 1b.
  • the atomization component provided in the embodiment of the present application has a heating area 1g including heating surfaces 1b facing different directions, that is, the liquid guide holes 1c on each heating surface 1b face different directions.
  • the atomization component has atomization angles with different directions, which can realize atomization injection in all directions, that is, the atomized aerosol is injected in different angles, thereby reducing the collision between the aerosol and the airflow flowing in from the outside to a certain extent, and is more conducive to the airflow flowing in from the outside to bring out the aerosol atomized from different atomization angles, thereby increasing the amount of smoke.
  • At least a portion of the second surface 1e is convexed to form a heating area 1g.
  • the heating area 1g is formed by convexing at least a portion of the second surface 1e, and the heating area 1g includes heating surfaces 1b facing different directions.
  • the liquid guide hole 1c is set on the substrate 1. In this way, when the projection area of the heating surface 1b on the second surface 1e is constant, the heating area 1g is formed by convexing at least a portion of the second surface 1e, and the heating area 1g includes heating surfaces 1b facing different directions.
  • the total area of the heating surface 1b is increased, and the distribution area of the aerosol generating matrix on the heating surface 1b is larger, which can increase the heat exchange area of the aerosol generating matrix, which can not only increase the atomization amount, but also heat the atomized aerosol generating matrix more evenly, reduce the content of harmful substances in the aerosol generating matrix generated by local high temperature, and effectively improve the user experience.
  • the heating surface 1b is parallel to the corresponding liquid inlet surface 1a, so that the liquid inlet surface 1a can be kept The uniformity and stability of the liquid can enable the atomization component to heat the atomized aerosol generation matrix more evenly.
  • the heating surface 1b is parallel to the corresponding liquid inlet surface 1a, which means that the distances from all points on the heating surface 1b to the corresponding liquid inlet surface 1a are equal, wherein the heating surface 1b and the corresponding liquid inlet surface 1a can be flat or curved.
  • the heating surface 1b is parallel to the corresponding liquid inlet surface 1a, and the liquid guide hole 1c is arranged substantially perpendicular to the heating surface 1b and the liquid inlet surface 1a.
  • the liquid conducting holes 1c are arranged in order.
  • the number of orderly arranged liquid conducting holes 1c can be designed and calculated, and the flow conduction effect of the substrate 1 on the aerosol generating matrix is more controllable, which can improve the production consistency of the product.
  • the liquid conducting holes 1c of different substrates 1 are basically the same, so that the heating effect of the heating film 4 produced in the same batch tends to be consistent.
  • An unordered arrangement means that the holes are randomly generated without set rules.
  • An ordered arrangement means that a plurality of liquid-conducting holes 1c are arranged according to set rules.
  • An ordered arrangement includes but is not limited to an array arrangement.
  • the array arrangement may be a one-dimensional array arrangement of a plurality of liquid-conducting holes 1c, that is, a plurality of liquid-conducting holes 1c are arranged at intervals in one direction.
  • the array arrangement may be a two-dimensional array arrangement of a plurality of liquid-conducting holes 1c, that is, a plurality of liquid-conducting holes 1c are arranged at intervals in two intersecting directions.
  • a plurality of liquid-conducting holes 1c may be arranged in a rectangular array or a circular array, etc.
  • the substrate 1 may be made of ceramic material, which has the characteristics of good thermal conductivity and uniformity.
  • the heating film 4 is a heating film arranged on the substrate 1 .
  • the material of the heating film is not limited, and illustratively, the heating film includes but is not limited to metal and/or alloy, etc.
  • the heating film is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the resistance value of the heating film can be set according to the requirements.
  • the resistance value of the heating film is between 0.2 ⁇ (ohm) and 0.8 ⁇ . In this way, the heating film can heat up quickly and Better matching of power components.
  • the heating surfaces 1b are symmetrically arranged along the center of the substrate 1. In this way, the atomizing assembly can heat the atomized aerosol generating matrix more evenly. In addition, the heating surfaces 1b are symmetrically arranged along the center of the substrate 1, which is conducive to setting each heating surface 1b and the liquid inlet surface 1a of the atomizing assembly to be equidistant, thereby maintaining uniform and stable liquid inlet.
  • the first surface 1d forms a groove 1n
  • the liquid inlet surface 1a is arranged on the groove wall surface of the groove 1n.
  • the groove 1n can temporarily store the aerosol generating substrate, which can not only reduce the direct impact of a large amount of aerosol generating substrate from the liquid storage chamber 100a on the atomizing component and play a slow flow role, but also can pre-store the aerosol generating substrate and increase the flow guide area so as to replenish it to the heating surface 1b in time.
  • the contour shape of the heating area is a triangular prism, and at least two sides of the triangular prism are heating surfaces 1b. That is, the liquid guide holes 1c on at least two heating surfaces 1b face different directions, that is, the atomization component has atomization angles with different directions, which can realize atomization in all directions, that is, the atomized aerosol is sprayed in different angles, thereby reducing the collision between the aerosol and the airflow flowing in from the outside to a certain extent.
  • the heating area 1g includes two heating surfaces 1b, and the distance between the two heating surfaces 1b gradually decreases as they move away from the second surface 1e. That is, the two heating surfaces 1b gradually approach each other as they move away from the second surface 1e. This is conducive to the liquid guide hole 1c being set in a direction approximately perpendicular to the heating surface 1b.
  • the two atomization angles of the atomization component are both facing both sides, which is conducive to reducing the direct downward spraying of the atomized aerosol, thereby reducing the collision between the aerosol and the airflow flowing in from the outside to a certain extent, and is more conducive to the airflow flowing in from the outside to bring out the aerosol atomized at different atomization angles, thereby increasing the amount of smoke.
  • the two heating surfaces 1b intersect at one end away from the second surface 1e. That is, the heating area 1g is a triangular prism, and at least two sides of the triangular prism are Heating surface 1b, the atomizing assembly increases the total heating area and can reduce the impact of aerosol and airflow flowing in from the outside to a certain extent.
  • the contour shape of the heating area 1g is cylindrical, and at least part of the outer side surface of the cylinder is the heating surface 1b.
  • the cylinder includes but is not limited to a cuboid, a cube, a cylinder, etc.
  • the embodiment of the present application takes a cuboid as an example for illustration.
  • the heating area 1g of the cuboid has four outer side surfaces, a bottom surface and a top surface.
  • the contour shape of the heating area 1g refers to the outer contour shape of the heating area 1g in a multi-dimensional space.
  • top surface of the cuboid can be chamfered, or designed as a curved surface and smoothly connected to the side surface, so as to further increase the total area of the heating surface 1b.
  • the heating surface 1b is a curved surface, and the curvature of the curved surface is not zero.
  • the ratio of the curved heating surface 1b to the heat dissipation surface is relatively large, which improves the heat utilization rate.
  • the heat dissipation surface here is equivalent to the liquid inlet surface 1a.
  • the atomization angle of the curved heating surface 1b is relatively wide.
  • the heating area 1g when the heating area 1g is facing downward, it is helpful to reduce the direct downward spraying of the atomized aerosol, thereby reducing the collision between the aerosol and the airflow flowing in from the outside to a certain extent, and is more conducive to the airflow flowing in from the outside to bring out the aerosol atomized at different atomization angles, further increasing the amount of smoke.
  • the contour of the heating area 1g is spherical, and the heating surface 1b at least constitutes a part of the spherical surface.
  • the ratio of the heating surface 1b to the heat dissipation surface can be relatively large, thereby improving the heat utilization rate and increasing the atomization amount.
  • the contour of the heating area 1g is a parabola, a hyperboloid or an ellipsoid.
  • the heating area 1g of these shapes can be set as a curved heating surface 1b on the outer side, so that the ratio of the curved heating surface 1b to the heat dissipation surface is relatively large, which improves the heat utilization rate, increases the amount of smoke, and has a better atomization effect.
  • the pore size of the liquid-conducting hole 1c is 20 ⁇ m-100 ⁇ m, that is, the pore size of the liquid-conducting hole 1c is between 20 ⁇ m-100 ⁇ m.
  • the pore size of the liquid-conducting hole 1c is 20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 97 ⁇ m or 100 ⁇ m, etc. In this way, the pore size of the liquid-conducting hole 1c is moderate, which can not only ensure a high liquid supply efficiency, but also avoid the risk of leakage.
  • the porosity of the heating surface 1b is 20%-50%, that is, the porosity of the heating surface 1b is between 20%-50%.
  • the porosity of the heating surface 1b is 20%, 20.5%, 21%, 22%, 25%, 30%, 35%, 40%, 45% or 50%, etc. In this way, the porosity of the heating surface 1b is moderate, which can not only ensure a large liquid supply, but also ensure a large structural strength of the substrate 1.
  • the length of the liquid guide hole 1c is between 0.1mm-10mm.
  • the length of the liquid guide hole 1c is 0.1mm, 0.15mm, 0.2mm, 0.5mm, 1.0mm, 3.0mm, 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 8.5mm, 8.7mm, 9.0mm or 10.0mm, etc.
  • the length of the liquid guide hole 1c is moderate, which can not only ensure that the liquid matrix from the liquid inlet surface 1a can flow to the heating surface 1b in time, but also avoid the risk of leakage.
  • the air outlet channel 110a and the heating surface 1b are arranged at an angle, that is, the air outlet channel 110a and the heating surface 1b are not perpendicular to each other. In this way, the airflow from the outside is conducive to carrying out the aerosol atomized at different atomization angles, further increasing the amount of smoke.
  • the electronic atomization device includes an air inlet channel connected to the outside 110b, the external airflow can enter the atomization chamber 120a through the air inlet channel 110b, and the air inlet channel 110b is inclined with the heating surface 1b, that is, the air inlet channel 110b is not perpendicular to the heating surface 1b.
  • the air inlet channel 110b for example, extends along the axial direction of the electronic atomization device, that is, the external airflow flows into the atomization chamber 120a along the axial direction.
  • the liquid guide holes 1c with different directions on the heating surface 1b will not spray toward the air inlet channel 110b, but toward the side of the air inlet channel 110b, which is conducive to reducing the direct downward spraying of the atomized aerosol, thereby reducing the collision between the aerosol and the airflow flowing in from the outside to a certain extent, and is more conducive to the airflow flowing in from the outside to bring out the aerosol atomized from different atomization angles, further increasing the amount of smoke.
  • the atomizer seat 120 is provided with an air guide channel 120b and an air vent 120e
  • the air guide channel 120b includes an open end 120c (i.e., the upper end of the air guide channel 120b shown in Figure 5, and the upper end has an opening) and a closed end 120d opposite to the open end 120c (i.e., the lower end of the air guide channel 120b shown in Figure 5)
  • the air vent 120e is separated along a first direction on both sides of the central axis of the air guide channel 120b
  • the air guide channel 120b is connected to the atomization chamber 120a through the air vent 120e, and is connected to the air outlet channel 110a through the open end 120c; wherein, the first direction is perpendicular to the central axis of the air guide channel 120b.
  • the aerosol in the atomizing chamber 120a enters the air guide channel 120b through the air vent 120e, and then enters the air outlet channel 110a through the open end 120c of the atomizing chamber 120a, which not only effectively utilizes the space but also facilitates the use of the user.
  • the housing 110 and the atomizer seat 120 jointly form an air inlet channel 110b, the air outlet channel 110a is connected to the top of the atomizing chamber 120a, and the air inlet channel 110b is connected to the bottom of the atomizing chamber 120a.
  • the air inlet channel 110b is located at the bottom side of the atomizing chamber 120a, and the air outlet channel 110a is located at the top side of the atomizing chamber 120a.
  • one end of the air outlet channel 110a is connected to the open end 120c of the air guide channel 120b shown in some of the aforementioned embodiments, and the other end of the air outlet channel 110a is connected to the suction nozzle to achieve the inhalation process.
  • the number of the liquid inlet channels is multiple.
  • the number of the liquid inlet channels is 2.
  • the provision of multiple liquid inlet channels not only facilitates the aerosol generation matrix in the liquid storage chamber 100a, but also facilitates the aerosol generation matrix in the liquid storage chamber 100a.
  • the liquid is transmitted to the atomizing assembly through the liquid inlet channel for heating and atomization, so as to improve the atomization efficiency. It can also avoid the blockage of any liquid inlet channel causing the atomizing assembly to be blocked from absorbing liquid, thereby causing the atomizing assembly to burn dry.
  • the liquid inlet channels are symmetrically distributed along the central axis of the air outlet channel 110a, so that interference of liquid flow between the liquid inlet channels can be avoided, thereby improving the smoothness of liquid flow.
  • FIG. 11 Another aspect of the embodiment of the present application provides a method for manufacturing an atomizer assembly, an atomizer assembly substrate 1 and a heating film 4.
  • the substrate 1 has a liquid guide hole 1c and a first surface 1d and a second surface 1e that are arranged opposite to each other. At least a portion of the first surface 1d forms a liquid inlet surface 1a, and at least a portion of the second surface 1e forms a heating area 1g.
  • the heating area 1g includes heating surfaces 1b facing different directions.
  • the liquid guide hole 1c is arranged on the substrate 1 to guide the aerosol generating matrix from the liquid inlet surface 1a to the heating surface 1b.
  • the heating film 4 is arranged on the heating surface 1b.
  • the manufacturing method includes:
  • the structure of the counter mold 10 is nested with the structure of the base 1. That is, all surfaces of the counter mold 10 can overlap with all surfaces of the base 1, and the columns of the counter mold 10 can be embedded in the liquid guide holes 1c of the base 1.
  • the length of the column can be determined according to the length of the liquid conducting hole 1c of the substrate 1. In some embodiments, the length of the column is not less than the length of the liquid conducting hole 1c of the substrate 1. In this way, the liquid conducting hole 1c of the substrate 1 formed finally is ensured to be a through hole.
  • the contour shape of the mold frame 40 is adapted to the contour shape of the counter mold 10, so that the mold frame 40 can be spaced apart from the counter mold 10.
  • the surface of the mold frame 40 facing the counter mold 10 and the counter mold 10 together form a mold cavity.
  • gap fitting means that the contour shape of the mold frame 40 is consistent with the contour shape of the counter mold 10, but there is a difference in size between the two, so that the frame can be gap-fitted with the counter mold 10.
  • the cross section of the outline shape of the base 1 is a triangular prism
  • the cross sections of the counter mold 10 and the mold frame 40 are both triangular.
  • the shapes of the surface of the base 1, the surface of the counter mold 10, and the surface of the mold frame 40 correspond to each other and are the same, but the volumes of the base 1, the volume of the counter mold 10, and the volume of the mold frame 40 are different.
  • the slurry is a constituent material of the matrix 1, for example, the slurry can be a ceramic material.
  • the slurry has a certain temperature so that the slurry is in a flowing liquid state. When the temperature of the slurry drops below the solidification point, it becomes solid. After the slurry solidifies into a solid state, a green embryo is formed.
  • the base body 1 is formed by processing the embryo according to the condition of the embryo.
  • the manufacturing method provided in the present application can be used to manufacture the atomization assembly in any embodiment of the present application.
  • the manufacturing method of the embodiment of the present application first manufactures a counter mold 10 that is nested with the structure of the base 1, and then uses the counter mold 10 to form the base 1 by grouting.
  • the mold is relatively simple, the production equipment cost is low, and the manufacturing process is relatively simple, which can adapt to mass production, can greatly improve the product yield, reduce material loss, and have high production efficiency.
  • the slurry fills the mold cavity to form a green embryo, and may also include:
  • the slurry in the mold cavity is solidified by light curing to form a green embryo.
  • the ceramic slurry in the mold cavity can cure quickly, thereby saving curing time.
  • the ceramic slurry can be cured by ultraviolet light.
  • the slurry in the mold cavity may also be cured to form a green embryo by means of heat curing and/or gel curing.
  • the green embryo may be subjected to a through-hole treatment.
  • S401 processing the green embryo to form the matrix, comprises:
  • the green body is subjected to high-temperature debinding and/or sintering to form a matrix 1 .
  • the manufacturing method includes:
  • a large number of negative molds 10 can be produced in batches by one or a small number of master molds 30.
  • the production method of the master mold 30 is not limited.
  • the master mold 30 can be produced by drilling or the like.
  • the demand for the master mold 30 is small, and the processing and molding methods can be diverse, which can effectively control the production cost.
  • the manufacturing method includes:
  • a heating film can be deposited on the heating surface 1b of the substrate 1 by physical vapor deposition or chemical vapor deposition.
  • the heating film is formed by coating the heating surface 1b of the substrate 1.
  • the heating film can be tightly combined with the heating surface 1b to reduce the assembly steps, and on the other hand, the thickness of the heating film can be within the micrometer or nanometer range, which can not only meet the overall miniaturization requirements of the atomizer component, but also save the material of the heating film.
  • a heating film is formed by brushing a film on the heating surface 1b of the substrate 1.
  • the heating film is prepared by scraping a conductive paste to prepare a thick film.
  • the counter mold 10 is made of a soft material.
  • the cost of the counter mold 10 is relatively low.
  • the counter-mold 10 is easy to be separated from the mother mold 30, and the counter-mold 10 is also easy to be separated from the embryo, which is not easy to damage the mother mold 30 or the embryo.
  • the counter-mold 10 is made of soft material, which is conducive to folding or bending the counter-mold 10 to form the counter-mold 10 of a desired shape.
  • the soft material includes but is not limited to soft polymer materials, such as soft silicone or soft resin.
  • the counter mold 10 is a disposable sacrificial mold.
  • a disposable sacrificial mold refers to a mold that is discarded after producing a complete single substrate 1. In this way, the counter mold 10 can be quickly separated from the green embryo, which is easy to operate.
  • the disposable sacrificial mold does not have the problem of damaging the pillars due to repeated use, which in turn causes the quality of the manufactured substrate 1 to be substandard.
  • manufacturing the reverse mold 10 that is structured to be nested with the substrate 1 includes:
  • the flexible template is formed by one-piece injection molding.
  • the mother mold 30 is used as a mold core, and melt is injected into the mold core to form a flexible template.
  • the flexible template refers to a material that can be deformed under a small force.
  • the flexible template is an one-piece injection molding structure, which can reduce assembly steps and thus simplify the manufacturing process.
  • a hot pressing process can be used to press a melt formed by a high-temperature molten polymer material into the master mold 30, and after cooling, the master mold 30 is removed to obtain a soft template.
  • the deformation capability of the flexible template is utilized to fold or bend the carrier plate to form the three-dimensional shape of the counter-mold 10 .
  • the female mold 30 can be made of a hard material such as metal or steel, so that the female mold 30 can be used repeatedly.
  • the soft template is easy to be separated from the female mold 30, and the female mold 30 is not easy to be damaged.
  • a mold frame 40 adapted to the contour shape of the counter mold 10 and the counter mold 10 gap sets, to define together the mold cavity including:
  • the mold frame is formed with a receiving groove, and the counter-mold gap is sleeved in the receiving groove.
  • the counter mold 10 is used as the inner mold
  • the mold frame 40 is used as the outer mold
  • the mold frame 40 is spaced outside the counter mold 10.
  • the column faces outward
  • the groove wall of the receiving groove faces the column and surrounds the outside of the column.
  • a mold frame 40 adapted to the contour shape of the counter mold 10 and the counter mold 10 are spaced together to define a mold cavity, including:
  • the counter mold 10 is formed with a receiving groove, and the mold frame 40 is loosely inserted into the receiving groove.
  • the mold frame 40 is used as an inner mold
  • the counter mold 10 is used as an outer mold
  • the counter mold 10 is spaced outside the mold frame 40.
  • the pillars face inward
  • the wall surface of the receiving groove faces the pillars and is surrounded by the pillars.
  • the contour of the heating area 1g is in the shape of a triangular prism, and at least two sides of the triangular prism are heating surfaces 1b; the cross-sectional shape of the contour of the counter-mold 10 is in the shape of a triangular prism, and the sides of the counter-mold 10 corresponding to the heating surface 1b have multiple columns.
  • the contour of the substrate 1 is consistent with the contour of the counter-mold 10, so that the structure of the substrate 1 and the counter-mold 10 are nested.
  • the cross-sectional shape of the contour of the mold frame 40 is in the shape of a triangular prism, so that the mold frame 40 can be spaced with the counter-mold 10. It can be understood that when the counter-mold 10 is an inner mold, the direction of the column faces outward. When the counter-mold 10 is an outer mold, the direction of the column faces inward.
  • the cross-sectional shape of the counter mold 10 contour refers to the cross-sectional shape of the counter mold 10 contour cut along a plane perpendicular to the axial direction of the counter mold 10 ;
  • the cross-sectional shape of the mold frame 40 contour refers to the cross-sectional shape of the mold frame 40 contour cut along a plane perpendicular to the axial direction of the mold frame 40 .
  • the contour of the heating area 1g is cylindrical, and at least part of the outer side of the cylinder is the heating surface 1b; the contour of the counter mold 10 is cylindrical, and the side of the counter mold 10 corresponding to the heating surface 1b has a plurality of columns.
  • the contour of the base 1 is consistent with the contour of the counter mold 10, so that the structure of the base 1 and the counter mold 10 are nested. It is columnar so that the mold frame 40 can be spaced with the counter mold 10. It is understood that when the counter mold 10 is an inner mold, the column is facing outwards. When the counter mold 10 is an outer mold, the column is facing inwards.
  • the contour shape of the heating area 1g is spherical, and the heating surface 1b at least constitutes a part of the spherical surface; the contour shape of the counter mold 10 is spherical, and the side of the counter mold 10 corresponding to the heating surface 1b has a plurality of columns.
  • the contour shape of the substrate 1 is consistent with the contour shape of the counter mold 10, so that the structure of the substrate 1 and the counter mold 10 are nested.
  • the contour shape of the mold frame 40 is also spherical, so that the mold frame 40 can be spaced with the counter mold 10. It can be understood that when the counter mold 10 is an inner mold, the direction of the column faces outward. When the counter mold 10 is an outer mold, the direction of the column faces inward.
  • the contour of the heating area 1g is a hexahedron, and at least part of the outer side of the hexahedron is the heating surface 1b.
  • the contour of the counter-mold 10 is a hexahedron, and the side of the counter-mold 10 corresponding to the heating surface 1b has a plurality of the columns.
  • the contour of the substrate 1 is consistent with the contour of the counter-mold 10, so that the structure of the substrate 1 and the counter-mold 10 are nested.
  • the contour of the mold frame 40 is also a hexahedron, so that the mold frame 40 can be fitted with the counter-mold 10.
  • an embodiment of the present application provides an atomization assembly, and the atomization assembly includes a first substrate 21 and a second substrate 22.
  • the first base body 21 is formed with a middle passage 21 a. Specifically, the middle passage 21 a extends along the height direction of the first base body 21.
  • the second base 22 is formed with a receiving channel 22a. Specifically, the receiving channel 22a extends along the height direction of the second base 22. It should be noted that the height direction of the first base 21 is consistent with the height direction of the second base 22.
  • the first substrate 21 is accommodated in the accommodating channel 22a, and there is a spacing space 22a' between the outer peripheral surface of the first substrate 21 and the wall surface of the accommodating channel 22a.
  • the spacing space 22a' is empty or filled with a porous member. Please refer to Figure 5. Empty means that no solid structure is placed in the spacing space 22a', that is, the spacing space 22a' contains air.
  • a porous member refers to a structure having a plurality of holes connected to each other and to the surface of a material. In other words, the space 22a' may not contain a solid structure or be filled with a porous member. In this way, the space 22a' may be empty or the holes in the porous member may be convenient for temporarily storing the liquid matrix and for the circulation of the liquid matrix.
  • One of the wall surface of the intermediate channel 21a and the outer peripheral surface of the second substrate 22 is a heating surface
  • the other of the wall surface of the intermediate channel 21a and the outer peripheral surface of the second substrate 22 is a liquid inlet surface.
  • the wall surface of the intermediate channel 21a is a heating surface
  • the outer peripheral surface of the second substrate 22 is a liquid inlet surface.
  • the wall surface of the intermediate channel 21a is a liquid inlet surface.
  • the liquid inlet surface is a surface that receives the liquid matrix
  • the heating surface is a surface that heats the liquid matrix. The liquid matrix from the liquid inlet surface is guided to the heating surface through the first substrate 21, the spacing space 22a' and the second substrate 22.
  • the liquid matrix from the liquid inlet surface is guided to the heating surface through the spacing space 22a', and the spacing space 22a' can play the role of guiding and temporarily storing the liquid matrix.
  • the spacing space 22a' is empty or filled with a porous member so that the liquid matrix can be introduced from the liquid inlet surface to the heating surface.
  • the spacing space 22a' is empty, which can greatly increase the liquid storage capacity.
  • the porous member can improve the liquid locking ability and play a role of slow release, further balancing the flow rate of the liquid matrix, so that the liquid matrix is released to the heating surface more evenly.
  • the spacing space 22a' can store a certain amount of liquid matrix. As the liquid matrix on the heating surface gradually evaporates, the liquid matrix in the spacing space 22a' can be replenished to the heating surface in time, avoiding the phenomenon of dry burning of the heating surface to a certain extent.
  • the first substrate 21 and the second substrate 22 can both flow liquid matrix. Please refer to Figure 26.
  • the first substrate 21 is formed with a plurality of flow holes 21b
  • the second substrate 22 is formed with a plurality of connecting holes 22b.
  • the flow holes 21b connect the intermediate channel 21a and the spacing space 22a'.
  • the connecting holes 22b connect the spacing space 22a' and the outer peripheral surface of the second substrate 22.
  • the liquid matrix can flow between the intermediate channel 21a and the outer peripheral surface of the second substrate 22 through the flow holes 21b, the spacing space 22a' and the connecting holes 22b.
  • the flow holes 21b penetrate the first substrate 21 along the thickness direction of the first substrate 21. That is, the flow holes 21b connect the intermediate channel 21a and the outer peripheral surface of the first substrate 21.
  • the connecting holes 22b are connected to the outer peripheral surface of the second substrate 22 along the thickness direction of the second substrate 22.
  • the connecting hole 22b is connected to the accommodating channel 22a and the outer peripheral surface of the second substrate 22.
  • the liquid matrix from the liquid inlet surface is guided to the heating surface through the flow hole 21b, the spacing space 22a' and the connecting hole 22b.
  • the liquid matrix from the liquid inlet surface is guided to the heating surface through the flow hole 21b, the spacing space 22a' and the connecting hole 22b.
  • the flow hole 21b, the spacing space 22a' and the connecting hole 22b can all play the role of guiding and temporarily storing the liquid matrix.
  • the flow hole 21b, the spacing space 22a' and the connecting hole 22b can all store a certain amount of liquid matrix. As the liquid matrix on the heating surface gradually evaporates, the liquid matrix in the flow hole 21b, the spacing space 22a' and the connecting hole 22b can be replenished to the heating surface in time.
  • the “multiple” in the embodiments of the present application refers to a number including two and more than two.
  • the spacing space 22a' is empty or filled with a porous member so that the liquid matrix can be introduced from the liquid inlet surface to the heating surface.
  • the spacing space 22a' being empty can greatly increase the liquid storage capacity, and the porous member can improve the liquid locking ability, play a role of slow release, further balance the flow rate of the liquid matrix, and make the liquid matrix more evenly released to the heating surface.
  • the flow holes 21b, the spacing space 22a' and the connecting holes 22b can all store a certain amount of liquid matrix.
  • the liquid matrix on the heating surface gradually evaporates, the liquid matrix in the flow holes 21b, the spacing space 22a' and the connecting holes 22b can be replenished to the heating surface in time, which can avoid the phenomenon of dry burning of the heating surface to a certain extent, and can effectively improve the user experience.
  • the plurality of holes in the porous member may be arranged in a disordered manner, that is, the holes in the porous member are randomly generated.
  • the material of the porous member is not limited, and the porous member can be a polymer material.
  • the porous member is a ceramic porous structure.
  • the porous member is a ceramic porous structure.
  • the porous member can be formed by high-temperature sintering of components such as aggregate, binder and pore former, etc. During the sintering process of the porous member, the pore former generates randomly arranged pores in the porous member.
  • the middle channel 21 a penetrates two end surfaces of the first substrate 21 in the height direction.
  • the accommodating channel 22 a penetrates two end surfaces of the second base body 22 in the height direction.
  • the multiple flow holes 21b of the first substrate 21 are arranged in an orderly manner. That is, the multiple flow holes 21b are arranged according to set rules. In other words, the setting rules of the multiple flow holes 21b can be artificially designed or controlled. Orderly arrangement includes but is not limited to array arrangement. Exemplarily, in one embodiment, the multiple flow holes 21b can be arranged in a one-dimensional array, that is, the multiple flow holes 21b are arranged at intervals in one direction. In one embodiment, the multiple flow holes 21b can be arranged in a two-dimensional array, that is, the multiple flow holes 21b are arranged at intervals in two or more intersecting directions.
  • the plurality of connecting holes 22b of the second substrate 22 are arranged in an orderly manner. That is, the plurality of connecting holes 22b are arranged according to a set rule. In other words, the setting rule of the plurality of connecting holes 22b can be artificially designed or controlled. Orderly arrangement includes but is not limited to array arrangement. Exemplarily, in one embodiment, the plurality of connecting holes 22b can be arranged in a one-dimensional array, that is, the plurality of connecting holes 22b are arranged at intervals in one direction. In one embodiment, the plurality of connecting holes 22b can be arranged in a two-dimensional array, that is, the plurality of connecting holes 22b are arranged at intervals in two intersecting directions.
  • the first substrate 21 and the second substrate 22 may also be porous structures with a plurality of holes connected to each other and to the material surface.
  • the holes in the first substrate 21 and the holes in the second substrate 22 may be arranged in a disordered manner.
  • the holes in the first substrate 21 and the holes in the second substrate 22 have a capillary effect, so that the liquid matrix from the liquid inlet surface flows through the holes in the first substrate 21, the spacing space 22a' and the holes in the second substrate 22 to be directed to the heating surface.
  • the materials of the first substrate 21 and the second substrate 22 are not limited.
  • the first substrate 21 and the second substrate 22 can both be made of dense ceramic material or porous ceramic material.
  • the area of the flow cross section of the flow hole 21b is not equal to the area of the flow cross section of the connecting hole 22b.
  • the flow cross section is a cross section orthogonal to all streamlines of the elemental flow or the total flow, i.e., the liquid matrix, that is, a surface perpendicular to the flow velocity cluster.
  • the size of the flow cross section is positively correlated with the flow velocity of the liquid matrix.
  • the area of the flow cross section of the flow hole 21b is not equal to the area of the flow cross section of the connecting hole 22b.
  • the flow rate of the liquid matrix flowing through the flow hole 21b is not equal to the flow rate of the liquid matrix flowing through the connecting hole 22b, so that the liquid supply capacity can be improved and the back gas can be reduced.
  • Back gas refers to the aerosol formed by the liquid matrix after atomization and flowing back to the atomization component, for example, impacting the flow hole 21b and/or the connecting hole 22b, etc.
  • the cross-sectional shape of the flow hole 21b is not limited.
  • the cross-sectional shape of the flow hole 21b includes but is not limited to a circle, an ellipse or a polygon, etc.
  • the polygon may be a quadrilateral, a pentagon or a special shape.
  • the cross-sectional shape of the communication hole 22b is not limited.
  • the cross-sectional shape of the communication hole 22b includes but is not limited to a circle, an ellipse or a polygon, etc.
  • the polygon may be a quadrilateral, a pentagon or an irregular shape.
  • the flow hole 21b may be a straight hole, that is, a single flow hole 21b extends along a straight line, so that the flow hole 21b is easy to form and has low manufacturing difficulty.
  • the flow holes 21b are equal-diameter holes, that is, the diameters of the single flow holes 21b at any position are equal.
  • the connecting hole 22b may be a straight hole, that is, a single connecting hole 22b extends along a straight line, so that the connecting hole 22b is easy to form and has low manufacturing difficulty.
  • the communicating holes 22b are holes of equal diameter, that is, the hole diameters of the communicating holes 22b at any positions are equal.
  • the aperture of the flow hole 21b is not equal to the aperture of the communicating hole 22b.
  • the cross-sectional shape of the flow hole 21b and the cross-sectional shape of the communicating hole 22b are both circular.
  • the size of the aperture is positively correlated with the flow cross section, and the aperture of the flow hole 21b is not equal to the aperture of the communicating hole 22b, so that the flow velocity of the liquid matrix flowing through the flow hole 21b is not equal to the flow velocity of the liquid matrix flowing through the communicating hole 22b, so that not only the liquid supply capacity can be improved, but also the back gas can be reduced.
  • the wall surface of the intermediate channel 21a is the heating surface
  • the outer peripheral surface of the second substrate 22 is the liquid inlet surface
  • the aperture of the flow hole 21b is smaller than the aperture of the connecting hole 22b.
  • the liquid matrix on the outer peripheral surface of the second substrate 22 flows through the connecting hole 22b, the spacing space 22a' and the flow hole 21b in sequence, and is introduced into the wall surface of the intermediate channel 21a, and is atomized into an aerosol on the wall surface of the intermediate channel 21a.
  • the aperture of the connecting hole 22b is relatively large, so that the liquid matrix on the outer peripheral surface of the second substrate 22 can quickly enter the connecting hole 22b.
  • the aperture of the flow hole 21b is relatively small, which increases the difficulty of the aerosol in the intermediate channel 21a to rush back to the flow hole 21b, increases the resistance, and reduces the back gas.
  • the wall surface of the intermediate channel 21a is the liquid inlet surface
  • the outer peripheral surface of the second substrate 22 is the heating surface
  • the aperture of the flow hole 21b is larger than the aperture of the connecting hole 22b. That is to say, the liquid matrix from the wall surface of the intermediate channel 21a flows through the flow hole 21b, the spacing space 22a' and the connecting hole 22b in sequence, and is introduced into the outer peripheral surface of the second substrate 22, and is atomized into an aerosol on the outer peripheral surface of the second substrate 22.
  • the aperture of the flow hole 21b is relatively large, so that the liquid matrix on the wall surface of the intermediate channel 21a can quickly enter the flow hole 21b.
  • the aperture of the connecting hole 22b is relatively small, which increases the difficulty of the aerosol on the outer peripheral surface of the second substrate 22 to rush back to the connecting hole 22b, increases resistance, and reduces back gas.
  • the porosity of the first substrate 21 is not equal to the porosity of the second substrate 22.
  • the porosity is positively correlated with the flow rate of the liquid matrix.
  • the porosity of the first substrate 21 is not equal to the porosity of the second substrate 22, so that the flow rate of the liquid matrix flowing through the first substrate 21 is not equal to the flow rate of the liquid matrix flowing through the second substrate 22. In this way, not only can the liquid supply effect be improved and balanced liquid supply be achieved, but also backgassing can be reduced.
  • the wall surface of the intermediate channel 21a is a heating surface
  • the outer peripheral surface of the second substrate 22 is a liquid inlet surface
  • the porosity of the first substrate 21 is less than the porosity of the second substrate 22. That is to say, the liquid matrix from the outer peripheral surface of the second substrate 22 flows through the connecting hole 22b, the spacing space 22a' and the flow hole 21b in sequence, and is introduced into the wall surface of the intermediate channel 21a, and is atomized into an aerosol on the wall surface of the intermediate channel 21a.
  • the porosity of the second substrate 22 is relatively large, which facilitates the rapid replenishment of the liquid matrix to the spacing space 22a'.
  • the porosity of the first substrate 21 is relatively small, which reduces the probability of the aerosol in the intermediate channel 21a rushing back to the spacing space 22a', increases resistance, and reduces back gas.
  • the wall surface of the intermediate channel 21a is the liquid inlet surface
  • the outer peripheral surface of the second substrate 22 is the heating surface
  • the porosity of the first substrate 21 is greater than the porosity of the second substrate 22. That is to say, the liquid matrix on the wall surface of the intermediate channel 21a flows through the flow hole 21b, the spacing space 22a' and the connecting hole 22b in sequence, and is introduced into the outer peripheral surface of the second substrate 22, and is atomized into an aerosol on the outer peripheral surface of the second substrate 22.
  • the porosity of the first substrate 21 is relatively large, which facilitates the rapid replenishment of the liquid matrix to the spacing space 22a'.
  • the porosity of the second substrate 22 is relatively small, which reduces the probability of the aerosol on the outer peripheral surface of the second substrate 22 rushing back to the spacing space 22a', increases resistance, and reduces back gas.
  • the orifice of the flow hole 21b penetrating the outer peripheral surface of the first substrate 21 is the flow port
  • the orifice of the connecting hole 22b penetrating the wall surface of the accommodating channel 22a is the connecting port 22b'
  • the projection of the connecting port 22b' on the first substrate 21 overlaps with the flow port at most.
  • the projection of the connecting port 22b' on the first substrate 21 may overlap with the flow port.
  • the projection of the connecting port 22b' on the first substrate 21 does not overlap with the flow port, that is, the projection of the connecting port 22b' on the first substrate 21 is completely staggered with the flow port.
  • the distance between the upper end of the outer circumference of the first substrate 21 and the upper end of the wall of the receiving channel 22a is greater than the distance between the lower end of the outer circumference of the first substrate 21 and the lower end of the wall of the receiving channel 22a. That is, the height direction of the first substrate 21 can be set in the up-down direction.
  • the volume of the upper part of the spacing space 22a' is larger, and more liquid matrix can be accommodated; if the distance between the lower end of the outer circumference of the first substrate 21 and the lower end of the wall of the receiving channel 22a is smaller, the volume of the lower part of the spacing space 22a' is smaller, and the liquid matrix accommodated is relatively less.
  • the capillary force of the upper part of the spacing space 22a' is greater than the capillary force of the lower part of the spacing space 22a', resisting the effect of gravity.
  • the distance between the outer peripheral surface of the first substrate 21 and the wall surface of the accommodating channel 22a gradually increases from top to bottom.
  • the smaller the distance the stronger the capillary effect.
  • the capillary effect generated by the distance gradually decreases from top to bottom.
  • the capillary force in the spacing space 22a' gradually decreases from top to bottom, and the effect of resisting gravity is better, so that the liquid matrix can be more evenly distributed in the spacing space 22a', and the atomization effect is better.
  • the contour shape of the first substrate 21 can be a rotating body structure.
  • the contour shape of the first substrate 21 is cylindrical or truncated cone.
  • the contour shape of the first substrate 21 refers to the outer contour shape of the first substrate 21 in multi-dimensional space.
  • the contour shape of the second base 22 can be a rotating body structure.
  • the contour shape of the second base 22 is cylindrical or truncated cone.
  • the contour shape of the second base 22 refers to the outer contour shape of the second base 22 in multi-dimensional space.
  • the first substrate 21 and the second substrate 22 may both be cylindrical.
  • the first substrate 21 and the second substrate 22 may both be truncated cones.
  • one of the first substrate 21 and the second substrate 22 may be cylindrical, and the other of the first substrate 21 and the second substrate 22 may be truncated cones.
  • the outer contour of the first substrate 21 may also be in the shape of a prism.
  • the outer contour of the second substrate 22 may also be in the shape of a prism.
  • the atomization component may be provided with a heating film 4 on the heating surface.
  • the structure is simple, and it is easy to realize the electrical connection between the power supply unit and the heating film 4.
  • the heating film 4 is used to heat the liquid matrix on the heating surface after power is supplied.
  • the heating film 4 can heat the liquid matrix and atomize it into an aerosol.
  • the heating film 4 includes a positive electrode, a negative electrode and a resistor portion, the positive electrode and the negative electrode are arranged at intervals, and the resistor portion is electrically connected to the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are respectively used to connect to the positive terminal and the negative terminal of the power supply.
  • the positive electrode and the negative electrode are arranged at intervals along the circumferential direction, the resistor portion has a continuous curved structure, one end of the resistor portion is electrically connected to the positive electrode, and the other end of the resistor portion is electrically connected to the negative electrode.
  • the resistor portion may also be a straight line or other shaped structures.
  • the atomizing assembly includes a plurality of heating films 4, and the plurality of heating films 4 are arranged at intervals on the heating surface.
  • the plurality of heating films 4 are electrically isolated from each other. In this way, different areas of the heating surface can be heated independently, thereby improving the heating effect.
  • each heating film 4 can be powered independently. If each heating film 4 is powered independently, each heating film 4 can be independently controlled, so that the heating temperature and power of each heating film 4 can be adjusted individually. For example, in the process of atomizing a liquid substrate, the number and power of the heating films 4 can be controlled to achieve energy saving or rapid atomization.
  • the material of the heating film 4 is not limited, and illustratively, the heating film 4 includes but is not limited to metal and/or alloy, etc.
  • the heating film 4 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the resistance value of the heating film 4 can be set according to the requirements.
  • the resistance value of the heating film 4 is between 0.2 ⁇ (ohm) and 0.8 ⁇ . In this way, the heating film 4 can heat up quickly and match the power supply well.
  • the electronic atomization device includes an air inlet channel 110b and an air outlet channel 110a both connected to the outside world, the atomization component is located between the air inlet channel 110b and the air outlet channel 110a, and the intermediate channel 21a connects the air inlet channel 110b and the air outlet channel 110a.
  • the air inlet channel 110b is used to introduce external air into the electronic atomization device, and the air outlet channel 110a is used to guide the aerosol after the liquid matrix is atomized to the user's mouth.
  • the intermediate channel 21a connects the air inlet channel 110b and the air outlet channel 110a, which is conducive to the flow of air and aerosol, reduces the obstruction of the atomization component to the air flow, and the user inhales the electronic atomization device more smoothly.
  • the wall surface of the middle channel 21a is the heating surface
  • the outer peripheral surface of the second substrate 22 is the liquid inlet surface
  • the middle channel 21a connects the air inlet channel 110b and the air outlet channel 110a, which is beneficial for the external air introduced by the air inlet channel 110b to carry the aerosol in the middle channel 21a to flow smoothly to the air outlet channel 110a, and the user experience is good.
  • the electronic atomization device includes a housing having a receiving cavity, The shell forms an air inlet channel and an air outlet channel, and the atomizer assembly is located in the accommodating cavity.
  • the outer peripheral surface of the second substrate is part of the wall surface of the airflow channel of the electronic atomization device, and the airflow channel connects the air inlet channel and the air outlet channel.
  • the electronic atomization device includes an airflow channel, and the outer peripheral surface of the second substrate can define the airflow channel together with the cavity wall surface of the accommodating cavity. In this way, it is convenient to flexibly design the airflow channel, and the volume of the airflow channel can be larger.
  • the outer peripheral surface of the second substrate is a heating surface
  • the wall surface of the intermediate channel 21a is a liquid inlet surface
  • the outer peripheral surface of the second substrate is a partial wall surface of the airflow channel
  • the airflow channel connects the air inlet channel 110b and the air outlet channel 110a.
  • the volume of the airflow channel is large, and the aerosol generated by the outer peripheral surface of the second substrate can flow to the air outlet channel 110a in larger quantities and more smoothly.
  • the embodiment of the present application further provides a manufacturing method for manufacturing an atomizer assembly, wherein the atomizer assembly includes a first substrate 21 and a second substrate 22.
  • the first substrate 21 is formed with an intermediate channel 21a; the second substrate 22 is formed with an accommodating channel 22a.
  • the first substrate 21 is accommodated in the accommodating channel 22a.
  • a spacing space 22a′ is provided between the outer peripheral surface of the first substrate 21 and the wall surface of the accommodating channel 22a.
  • the spacing space 22a′ is vacant or filled with a porous member.
  • One of the wall surface of the intermediate channel 21a and the outer peripheral surface of the second substrate 22 is a heating surface, and the other of the wall surface of the intermediate channel 21a and the outer peripheral surface of the second substrate 22 is a liquid inlet surface.
  • a reverse mold nested with the structure of the substrate is provided, including:
  • a first counter-mold is fabricated to be nested with the structure of the first substrate, and a second counter-mold is fabricated to be nested with the structure of the second substrate.
  • a mold frame and a counter mold gap that are adapted to the contour shape of the counter mold are assembled to jointly define a mold cavity, including:
  • the first counter mold is sleeved in the second counter mold, and a partition mold is placed between the first counter mold and the second counter mold.
  • the first counter mold, the second counter mold and the partition mold are all placed in the outer mold to define a mold cavity together.
  • the fourth embodiment of the present application further provides a manufacturing method, including:
  • the contour shape of the outer mold can be adapted to the contour shape of the second substrate 22 , and the surface of the outer mold facing the second counter mold together with the second counter mold forms a mold cavity.
  • the outer mold is also in the same solid of revolution, and the number of faces of the second counter mold is equal to the number of faces of the outer mold.
  • the shape of the face of the second counter mold corresponds to and is the same as the shape of the face of the outer mold, but the volume of the second counter mold and the volume of the outer mold may be different.
  • the partition mold may also be a disposable sacrificial mold, so as to facilitate forming a partition space between the first substrate and the second substrate.
  • the partition mold can be a dense entity. In this way, an empty partition space is formed after the partition mold is removed.
  • the partition mold may also be a porous structure, so that a porous part is formed after the slurry is filled and the partition mold is removed.
  • the material of the partition mold is not limited, and the partition mold can be a polymer material.
  • the slurry fills the mold cavity to form a green embryo.
  • the slurry is a constituent material of the first substrate 21 and the second substrate 22.
  • the slurry may be a ceramic material.
  • the slurry has a certain temperature so that the slurry is in a flowing liquid state. When the temperature of the slurry drops below the solidification point, the slurry becomes solid. After the slurry solidifies into a solid state, a green embryo is formed.
  • the first substrate 21 and the second substrate 22 are formed by secondary processing according to the condition of the green embryo.
  • the manufacturing method provided in the present application can be used to manufacture the atomization assembly in any embodiment of the present application.
  • the manufacturing method of the embodiment of the present application first manufactures a first counter-mold that is nested with the structure of the first substrate 21, and a second counter-mold that is nested with the structure of the second substrate 22, and then uses the first counter-mold and the second counter-mold to form the first substrate 21 and the second substrate 22 by grouting.
  • the mold is relatively simple, the production equipment cost is low, and the manufacturing process is relatively simple, which can adapt to mass production, can greatly improve product yield, reduce material loss, and have high production efficiency.
  • a first flexible template and a second flexible template may be manufactured separately, wherein the first flexible template includes a first flat plate, and the second flexible template includes a second flat plate;
  • the first flat plate is rolled into a hollow ring structure to form the first counter mold
  • the second flat plate is rolled into a hollow ring structure to form the second counter mold.
  • the first substrate 21 is formed with a plurality of flow holes 21b
  • the second substrate 22 is formed with a plurality of connecting holes 22b
  • the flow holes 21b connect the intermediate channel 21a and the spacing space 22a'
  • the connecting holes 22b connect the spacing space 22a' and the outer peripheral surface of the second substrate 22
  • the first counter mold has a first column nested with the flow holes 21b
  • the second counter mold has a second column nested with the connecting holes 22b.
  • the structure of the first reverse mold is nested with the structure of the first substrate 21. That is, all surfaces of the first reverse mold can overlap with all surfaces of the first substrate 21, and the first column of the first reverse mold can be embedded in the flow hole 21b of the first substrate 21.
  • the structure of the second reverse mold 2 is nested with the structure of the second substrate 22. That is, all surfaces of the second reverse mold can overlap with the second substrate 21. All surfaces of the second substrate 22 overlap, and the second pillars of the second counter-mold can be embedded in the communicating holes 22 b of the second substrate 22 .
  • the length of the first column can be determined according to the length of the flow hole 21b. In some embodiments, the length of the first column is not less than the length of the flow hole 21b, so as to ensure that the flow hole 21b finally formed is a through hole.
  • the length of the second column can be determined according to the length of the connecting hole 22b. In some embodiments, the length of the second column is not less than the length of the connecting hole 22b, so as to ensure that the connecting hole 22b finally formed is a through hole.
  • S3000 filling the mold cavity with the slurry to form a green embryo, may include:
  • the ceramic slurry in the mold cavity can cure quickly, thereby saving curing time.
  • the ceramic slurry can be cured by ultraviolet light.
  • S4000 processing the green embryo to form the first matrix and the second matrix, comprises:
  • the green body is subjected to high-temperature debinding and sintering to form a first substrate 21 and a second substrate 22 .
  • the green embryo may be subjected to a through-hole treatment.
  • the manufacturing method includes:
  • first inverse molds and second inverse molds can be generated in batches by using one or a small number of first master molds and second master molds.
  • the production methods of the first master mold and the second master mold are not limited.
  • the first master mold and the second master mold It can be produced by drilling, etc.
  • the demand for the first master mold and the second master mold is small, and the processing and molding methods can be diverse, which can effectively control the production cost.
  • first counter mold is nested with the first mother mold
  • second counter mold is nested with the second mother mold
  • the manufacturing method comprises:
  • the heating surface is plated or brushed to form a heating film.
  • the heating film 4 can be deposited on the heating surface by physical vapor deposition or chemical vapor deposition. In this way, the heating film 4 is formed by coating the heating surface. In this way, on the one hand, the heating film 4 can be closely combined with the heating surface to reduce the assembly steps, and on the other hand, the thickness of the heating film 4 can be within the micrometer or nanometer thickness range, which can not only meet the overall miniaturization requirements of the atomization component, but also save the material of the heating film 4.
  • a film is brushed on the heating surface to form the heating film 4.
  • the heating film 4 is prepared by scraping the conductive slurry and preparing a thick film.
  • the first reverse mold is made of a soft material.
  • the cost of the first reverse mold is low; on the other hand, the first reverse mold is easy to be separated from the first mother mold and the first reverse mold is also easy to be separated from the embryo, which is not easy to damage the first mother mold or the embryo.
  • the soft material includes but is not limited to soft polymer materials, such as soft silicone or soft resin.
  • the first counter-mold is a disposable sacrificial mold.
  • a disposable sacrificial mold is a mold that is discarded after completing the production of a single first substrate 21. In this way, when the first counter-mold is separated from the green embryo, the first counter-mold can be destroyed, so that the first counter-mold can be quickly separated from the green embryo for easy operation.
  • the second reverse mold is made of a soft material.
  • the cost of the second reverse mold is low; on the other hand, the second reverse mold is easy to be separated from the second mother mold and the green embryo, which is not easy to damage the second mother mold or the green embryo.
  • Soft materials include but are not limited to soft polymer materials. For example, soft silicone or soft resin etc.
  • the second counter mold is a disposable sacrificial mold.
  • a disposable sacrificial mold is a mold that is discarded after completing the production of a single first substrate 21. In this way, when the second counter mold is separated from the green embryo, the second counter mold can be destroyed, so that the second counter mold can be quickly separated from the green embryo for easy operation.
  • manufacturing a first counter mold nested with the structure of the first substrate and a second counter mold nested with the structure of the second substrate includes:
  • first flexible template comprises a first flat plate and a plurality of first columns located on the first flat plate
  • second flexible template comprises a second flat plate and a plurality of second columns located on the second flat plate
  • the first flexible template is a structure that can be deformed under a relatively small force.
  • the first flexible template is an integrally formed structure, which can reduce assembly steps and thus simplify the manufacturing process.
  • the second flexible template is a structure that can be deformed under a relatively small force.
  • the second flexible template is an integrally formed structure, which can reduce assembly steps and thus simplify the manufacturing process.
  • both the first master mold and the second master mold can be made of hard materials such as metal or steel, so that the first master mold and the second master mold can be used repeatedly.
  • the first plate can be easily separated from the first master mold, and the second plate can be easily separated from the second master mold, which reduces the difficulty of manufacturing the first counter mold and the second counter mold.
  • the first flat plate is rolled into a hollow ring structure by using the deformation ability of the first flexible template to form the three-dimensional shape of the first reverse mold
  • the second flat plate is rolled into a hollow ring structure by using the deformation ability of the second flexible template to form the three-dimensional shape of the second reverse mold.
  • the first soft template is formed by integral injection molding.
  • a hot pressing process can be used to press a melt formed by a high-temperature molten polymer material into the first mother mold, and after cooling, The first soft template can be obtained by removing the first master mold.
  • the second soft template is formed by integral injection molding.
  • a hot pressing process can be used to press a melt formed by a high-temperature molten polymer material into the second master mold, and after cooling, the second master mold is removed to obtain the second soft template.
  • the first substrate 21 and the first counter-mold are both cylindrical in shape
  • the first flexible template includes a rectangular first flat plate
  • two sides of the first flat plate are connected by winding to form a three-dimensional cylindrical first counter-mold
  • the two axial sides of the cylindrical first counter-mold are open. It can be understood that when the second substrate 22 and the second counter-mold are both cylindrical in shape, the second counter-mold is formed in the same manner as described above, and will not be repeated here.
  • the first counter-mold has a profile shape of a truncated cone
  • the first flexible template includes a first flat plate in an isosceles trapezoidal shape, and two waists of the first flat plate are connected by winding to form a three-dimensional truncated cone first counter-mold, and the axial sides of the truncated cone first counter-mold are open.
  • an embodiment of the present application provides an atomizer assembly, which includes a base 1, the base 1 includes at least one liquid inlet surface 1a and at least two heating surfaces 1b, and the heating surface 1b has a plurality of orderly arranged liquid guide holes 1c, and the liquid guide holes 1c connect the liquid inlet surface 1a and the heating surface 1b. Specifically, the liquid guide holes 1c guide the liquid matrix from the liquid inlet surface 1a to the heating surface 1b.
  • the atomization assembly provided in the embodiment of the present application, on the one hand, compared with the disorderly arranged holes, the number of orderly arranged liquid-conducting holes 1c can be designed and calculated, and the flow-conducting effect of the base 1 on the liquid matrix is more controllable, which can improve the production consistency of the product.
  • the liquid-conducting holes 1c of different bases 1 are basically the same, so that the heating effect of the heating elements produced in the same batch tends to be consistent.
  • the total area of the heating surface 1b is increased, and the distribution area of the liquid matrix on the heating surface 1b is larger, which can increase the heat exchange area of the liquid matrix, which can not only increase the atomization amount, but also heat the liquid matrix more evenly, reducing the liquid matrix caused by local high
  • the content of harmful substances produced by temperature can effectively improve the user experience.
  • An unordered arrangement means that the holes are randomly generated without set rules.
  • An ordered arrangement means that a plurality of liquid-conducting holes 1c are arranged according to set rules.
  • An ordered arrangement includes, but is not limited to, an array arrangement.
  • the array arrangement may be a one-dimensional array arrangement of a plurality of liquid-conducting holes 1c, that is, a plurality of liquid-conducting holes 1c are arranged at intervals in one direction.
  • the array arrangement may be a two-dimensional array arrangement of a plurality of liquid-conducting holes 1c, that is, a plurality of liquid-conducting holes 1c are arranged at intervals in two or more intersecting directions.
  • a plurality of liquid-conducting holes 1c may be arranged in a rectangular array or a circular array, etc.
  • the substrate 1 may be made of ceramic material. Ceramic material has the characteristics of good thermal conductivity and uniformity. Exemplarily, the substrate 1 may be made of dense ceramic material.
  • the atomizer assembly provided in the embodiment of the present application can be used in an atomizer, and the atomizer includes a liquid storage container and the atomizer assembly in any embodiment of the present application, and the liquid storage container is used to store the liquid matrix to be atomized.
  • the liquid matrix in the liquid storage container can flow to the liquid inlet surface 1a.
  • the atomization assembly provided in the embodiment of the present application can be used in an electronic atomization device.
  • the electronic atomization device provided in the embodiment of the present application includes the atomizer and the power supply unit in any embodiment of the present application.
  • the power supply unit is electrically connected to the atomization assembly.
  • the power supply unit can supply power to the atomization assembly so that the atomization assembly heats the liquid matrix.
  • the electronic atomization device may be an electronic cigarette, that is, the liquid matrix may be e-liquid.
  • the outline shape of the electronic atomization device may be roughly in the shape of a long strip, so that it is convenient for the user to hold the electronic atomization device with his fingers.
  • the atomization component includes a heating film 4, and each heating surface 1b is provided with at least one heating film 4, and each heating film 4 is independently powered.
  • the heating film 4 is used to heat the liquid matrix on the heating surface 1b after power is turned on.
  • the heating film 4 can heat the liquid matrix and atomize it into an aerosol.
  • Each heating film 4 is independently powered, so that each heating film 4 can be independently controlled, so that the heating temperature and power of each heating film 4 can be adjusted individually.
  • energy saving or rapid atomization can be achieved by controlling the start-up number and power of the heating film 4. Effect.
  • the material of the heating film 4 is not limited, and illustratively, the heating film 4 includes but is not limited to metal and/or alloy, etc.
  • the heating film 4 is aluminum, gold, silver, copper, nickel-chromium alloy, nickel-chromium-iron alloy, iron-chromium-aluminum alloy, nickel, platinum or titanium, etc.
  • the resistance value of the heating film 4 can be set according to the requirements.
  • the resistance value of the heating film 4 is between 0.2 ⁇ (ohm) and 0.8 ⁇ . In this way, the heating film 4 can heat up quickly and match the power supply well.
  • the liquid matrices may have different boiling points.
  • the liquid matrix may contain various flavors and/or additives, and the boiling points of the liquid matrices mixed with these flavors and additives are different. Therefore, in one embodiment, the heating temperature or heating power of the heating film 4 of at least part of the heating surface 1b is different.
  • the heating film 4 of at least part of the heating surface 1b of the atomization component can atomize liquid matrices with different boiling points. In this way, the same atomization component can adapt to liquid matrices with different boiling points, so that the same atomization component can atomize different liquid matrices. In this way, the liquid storage container of the electronic atomization device can store different liquid matrices without replacing the atomization component, and the atomization component has high versatility.
  • the heating temperature of the heating film 4 on each heating surface 1b is different. In other words, the heating temperature of the heating film 4 on each heating surface 1b is different, which provides more options to adapt to more types of liquid substrates.
  • the power of the heating film 4 of each heating surface 1b is adjusted according to the angle between the central axis of the substrate 1 and the horizontal plane.
  • the electronic atomization device is in an inclined state.
  • the angle between the central axis of the substrate 1 and the horizontal plane is not equal to 90°.
  • the liquid matrix around the heating surface 1b away from the suction nozzle 130 of the electronic atomization device is more than the liquid matrix around the heating surface 1b close to the suction nozzle 130.
  • the power of the heating film 4 on the heating surface 1b away from the suction nozzle 130 can be increased to improve the atomization efficiency.
  • the base 1 includes a plurality of liquid inlet surfaces 1a, each of which corresponds to a heating surface 1b, and the liquid guide hole 1c on the heating surface 1b is connected to the corresponding liquid inlet surface 1a.
  • each heating surface 1b has a corresponding liquid inlet surface 1a for liquid supply, so that not only can differentiated liquid supply be achieved according to each heating surface 1b, so as to adapt to the consumption of the liquid matrix of each heating surface 1b, but also the problem of dry burning or excessive liquid supply of a single heating surface 1b can be reduced or even eliminated.
  • the base 1 includes a plurality of interconnected subunits 23, each subunit 23 includes a heating surface 1b, and the orientations of the heating surfaces 1b are different.
  • the electronic atomization device may present different degrees of inclination, that is, the angle between the central axis of the base 1 and the horizontal plane is different, so that the liquid matrix contacts different subunits 23, and the liquid amount of the liquid matrix contacted by different subunits 23 is also different, and the orientations of the heating surfaces 1b are different, so that the liquid matrix in each orientation can contact at least one heating surface 1b.
  • each subunit 23 includes a liquid inlet surface 1a corresponding to the heating surface 1b, the liquid inlet surface 1a and the heating surface 1b are two opposite surfaces in the thickness direction of the subunit 23, and the liquid guide hole 1c penetrates the subunit 23 along the thickness direction of the subunit 23 to connect the liquid inlet surface 1a and the heating surface 1b. In this way, each subunit 23 can realize liquid supply and heating respectively.
  • each subunit 23 may be an independent structure, and the substrate 1 may be assembled from each independent subunit 23.
  • Each subunit 23 being an independent structure means that each subunit 23 is manufactured independently.
  • Each independent subunit 23 may be assembled together by gluing or the like.
  • the base 1 is an integrally formed structure. That is, each subunit 23 is an integrally formed structure. In this way, the assembly process of assembling each subunit 23 is reduced, the assembly can be simplified, the heating element structure is more compact, the structure is highly flexible, and more design space for the heating element is provided.
  • the base 1 is formed with a liquid inlet groove 1f and a liquid inlet port 1m connected to the liquid inlet groove 1f, the liquid inlet surface 1a is formed on the groove wall surface of the liquid inlet groove 1f, and the heating surface 1b is formed on the wall surface of the liquid inlet groove 1f.
  • the liquid inlet groove 1f can temporarily store the liquid matrix, which can not only reduce the direct impact of a large amount of liquid matrix from the liquid storage container on the atomization component, but also play a role in slowing down the flow, and can also pre-store the liquid matrix and increase the flow guide area, so as to replenish the liquid matrix to the heating surface 1b in time.
  • the liquid inlet tank 1f is divided into a plurality of mutually isolated sub-tanks, each of which corresponds to a heating surface 1b.
  • the sub-tanks are not interconnected, and the liquid matrix does not flow between the sub-tanks.
  • the sub-tanks of different volumes can be matched according to the consumption rate of the liquid matrix of different heating surfaces 1b, and the liquid supply rate can be controlled to a certain extent, so that the liquid supply flow rate can adapt to the consumption rate of the corresponding heating surface 1b, avoiding insufficient or excessive liquid supply.
  • the heating surfaces 1b have different orientations. For example, some of the heating surfaces 1b may have the same orientation, while other parts of the heating surfaces 1b may have different orientations. For another example, all of the heating surfaces 1b may have different orientations. In this way, not only can the liquid matrix at multiple locations be heated, but aerosols can also be emitted in multiple directions.
  • the liquid conducting hole 1c may be a straight hole, that is, a single liquid conducting hole 1c extends along a straight line, so that the liquid conducting hole 1c is easy to form and has low manufacturing difficulty.
  • the liquid conducting holes 1c are holes of equal diameter, that is, the hole diameters of the single liquid conducting holes 1c at any position are equal.
  • the apertures of the liquid conducting holes 1c of at least some of the heating surfaces 1b are different.
  • the apertures of the liquid conducting holes 1c of some of the heating surfaces 1b may be the same, and the apertures of the liquid conducting holes 1c of other parts of the heating surfaces 1b may be different.
  • the apertures of the liquid conducting holes 1c of all the heating surfaces 1b may be different.
  • the different apertures of the liquid conducting holes 1c result in different flow rates of the liquid matrix flowing through the liquid conducting holes 1c.
  • the apertures of the liquid conducting holes 1c of at least some of the heating surfaces 1b are different, so that the liquid supply efficiency of at least some of the heating surfaces 1b is different, thereby achieving differentiated liquid supply to adapt to the power of the heating membrane 4 on the heating surface 1b.
  • the aperture of the liquid conducting holes 1c of the heating surface 1b may be larger to quickly supply liquid and avoid dry burning.
  • the power of the heating membrane 4 of one of the heating surfaces 1b is lower than that of the heating membrane 4 of the heating surface 1b.
  • the diameter of the liquid guide hole 1c of the heating surface 1b can be smaller, so as to evenly supply the liquid and avoid excessive liquid and uneven heating.
  • different diameters of the liquid guide hole 1c can also produce aerosols of different particle sizes, thereby improving the taste and making the aerosol taste denser or richer in layers.
  • the apertures of the liquid guide holes 1c of each heating surface 1b are different. In other words, the apertures of the liquid guide holes 1c of all heating surfaces 1b are different. In this way, the flow rate of the liquid matrix in the liquid guide holes 1c of each heating surface 1b can be different and/or the particle size of the generated aerosol is different. With this design, the flow rate of the liquid matrix can have a larger adjustment range and/or the particle size distribution range of the aerosol is wider.
  • the cross-sectional shapes of the liquid conducting holes 1c of at least some of the heating surfaces 1b are different.
  • the cross-sectional shapes of the liquid conducting holes 1c of some of the heating surfaces 1b may be the same, and the cross-sectional shapes of the liquid conducting holes 1c of other parts of the heating surfaces 1b may be different.
  • the cross-sectional shapes of the liquid conducting holes 1c of all the heating surfaces 1b may be different.
  • the different cross-sectional shapes of the liquid conducting holes 1c can also bring about changes in the flow rate of the liquid matrix, so that the liquid supply efficiency of at least some of the heating surfaces 1b is different, thereby achieving differentiated liquid supply to adapt to the power of the heating film 4 on the heating surface 1b.
  • the different cross-sectional shapes of the liquid conducting holes 1c can also produce aerosols of different particle sizes, thereby improving the taste, making the taste of the aerosol denser or more layered.
  • the cross-sectional shape of the liquid-conducting hole 1c includes, but is not limited to, a circle, an ellipse or a polygon, etc.
  • the polygon is, for example, a square or a hexagon, etc.
  • the cross-sectional shapes of the liquid guide holes 1c of each heating surface 1b are different. In other words, the cross-sectional shapes of the liquid guide holes 1c of all heating surfaces 1b are different. In this way, the flow rate of the liquid matrix in the liquid guide holes 1c of each heating surface 1b can be different and/or the particle size of the generated aerosol is different. With this design, the flow rate of the liquid matrix can have a larger adjustment range and/or the particle size distribution range of the aerosol is wider.
  • At least some of the heating surfaces 1b have different porosities.
  • some of the heating surfaces 1b may have the same porosity, while other parts of the heating surfaces 1b may have different porosities.
  • the porosity of all heating surfaces 1b is different.
  • the different porosities of the heating surfaces 1b result in different flow rates of the liquid matrix on the heating surfaces 1b.
  • the porosity of at least some of the heating surfaces 1b is different, so that the liquid supply of at least some of the heating surfaces 1b is different, thereby achieving differentiated liquid supply to adapt to the power of the heating membrane 4 on the heating surface 1b.
  • the porosity of the heating surface 1b can be larger to facilitate rapid liquid supply and avoid dry burning.
  • the porosity of the heating surface 1b can be smaller to ensure balanced liquid supply and avoid excessive liquid and uneven heating.
  • the porosity of each heating surface 1b is different. That is, the porosity of all heating surfaces 1b is different. In this way, the amount of liquid matrix supplied to each heating surface 1b can be different. With this design, the amount of liquid matrix supplied to each heating surface 1b can have a larger range and better adaptability.
  • the liquid conducting hole 1c is a micropore.
  • the micropore has a capillary effect.
  • the micropore can conduct liquid and temporarily store liquid through the capillary effect, so that the liquid matrix is continuously replenished to the heating surface 1b.
  • the pore size of the liquid-conducting hole 1c is between 20 ⁇ m and 100 ⁇ m.
  • the pore size of the liquid-conducting hole 1c is 20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 97 ⁇ m or 100 ⁇ m, etc. In this way, the pore size of the liquid-conducting hole 1c is moderate, which can not only ensure a high liquid supply efficiency, but also avoid the risk of leakage.
  • the porosity of the heating surface 1b is between 20% and 50%.
  • the porosity of the heating surface 1b is 20%, 20.5%, 21%, 22%, 25%, 30%, 35%, 40%, 45% or 50%, etc. In this way, the porosity of the heating surface 1b is moderate, which can not only ensure a large amount of liquid supply, but also ensure a large structural strength of the substrate 1.
  • the length of the liquid guide hole 1c is between 0.1mm and 10mm.
  • the length of the liquid guide hole 1c is 0.1mm, 0.15mm, 0.2mm, 0.5mm, 1.0mm, 3.0mm, 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 8.5mm, 8.7mm, 9.0mm or 10.0mm, etc. In this way, the length of the liquid guide hole 1c is moderate, which can not only ensure that the liquid matrix from the liquid inlet surface 1a can flow to the heating surface 1b in time, but also avoid the risk of leakage.
  • the contour shape of the substrate 1 is a polyhedron or a solid of revolution.
  • the contour shape of the substrate 1 may be a three-dimensional structure surrounded by a plurality of polygons.
  • the contour shape of the substrate 1 may be a three-dimensional structure surrounded by a rotation plane formed by a plane curve rotating around a fixed straight line in the plane where the plane is located.
  • the contour shape of the substrate 1 refers to the outer contour shape of the substrate 1 in a multi-dimensional space.
  • the outline of the base 1 is in the shape of a triangular pyramid, and at least two outer sides of the base 1 are heating surfaces 1b.
  • the triangular pyramid-shaped base 1 can have two or three surfaces as heating surfaces 1b, and the total area of the heating surfaces 1b can be larger to increase the amount of atomization.
  • the heating surfaces 1b are not perpendicular or parallel to each other, so as to adapt to the user's inhalation of the electronic atomization device. When the electronic atomization device is in an inclined state, the liquid supply of at least one heating surface 1b can be larger, thereby ensuring that the amount of atomization can be larger.
  • the triangular pyramid-shaped base 1 is formed with a liquid inlet groove 1f and a liquid inlet port 1m connected to the liquid inlet groove 1f, and the liquid inlet port 1m is located on the bottom surface of the triangular pyramid-shaped base 1.
  • the shape of the liquid inlet groove 1f can also be a triangular pyramid that matches the outer contour shape of the base 1.
  • the triangular pyramid-shaped base 1 can be surrounded by three subunits 23 to form a three-dimensional structure with a liquid inlet port 1m.
  • the three surfaces of the liquid inlet groove 1f are all liquid inlet surfaces 1a, and the three outer side surfaces of the triangular pyramid-shaped base 1 are all heating surfaces 1b.
  • the outline of the base 1 is a quadrangular pyramid. At least two outer sides of 1 are heating surfaces 1b.
  • the four-sided pyramid-shaped base 1 can have two, three or four surfaces as heating surfaces 1b, and the total area of the heating surfaces 1b can be larger to increase the amount of atomization.
  • the heating surfaces 1b are not perpendicular or parallel to each other, so as to adapt to the user when the electronic atomization device is in an inclined state, and the liquid supply of at least one heating surface 1b can be larger, thereby ensuring that the amount of atomization can be larger.
  • the quadrangular pyramid-shaped base 1 is formed with a liquid inlet groove 1f and a liquid inlet port 1m connected to the liquid inlet groove 1f, and the liquid inlet port 1m is located on the bottom surface of the quadrangular pyramid-shaped base 1.
  • the shape of the liquid inlet groove 1f can also be a quadrangular pyramid that matches the outer contour shape of the base 1.
  • the quadrangular pyramid-shaped base 1 can be surrounded by three subunits 23 to form a three-dimensional structure with a liquid inlet port 1m.
  • the three faces of the liquid inlet groove 1f are all liquid inlet surfaces 1a, and the three outer side faces of the quadrangular pyramid-shaped base 1 are all heating surfaces 1b.
  • the outline of the base 1 is a hexahedron, and at least two outer sides of the base 1 are heating surfaces 1b.
  • the hexahedron-shaped base 1 has six outer sides, and for example, any two or more of the six outer sides can be selected as the heating surfaces 1b, which can not only reduce the design difficulty of the heating surface 1b, but also significantly increase the total area of the heating surface 1b, and significantly improve the atomization amount.
  • the hexahedral base 1 is formed with a liquid inlet groove 1f and a liquid inlet port 1m connected to the liquid inlet groove 1f, and the liquid inlet port 1m is located on an outer side surface of the hexahedral base 1.
  • the shape of the liquid inlet groove 1f can also be a hexahedron that matches the outer contour shape of the base 1. In this way, the hexahedral base 1 can be surrounded by five subunits 23 to form a three-dimensional structure with a liquid inlet port 1m.
  • the five parts of the liquid inlet groove 1f are all liquid inlet surfaces 1a, and the five outer side surfaces of the hexahedral base 1 are all heating surfaces 1b. In this way, the total area of the liquid inlet surface 1a and the total area of the heating surface 1b are significantly increased, so that the amount of mist output can be significantly increased and the user experience is improved.
  • the outline shape of the substrate 1 is a regular polyhedron, a pyramid, a prism or a prism.
  • the outline shape of the substrate 1 is a regular octahedron, a tetrahedron, a pentagonal pyramid, a pentagonal pyramid or a pentagonal prism.
  • the outline shape of the substrate 1 can be matched according to the size of the space in the electronic atomization device, and it can also be Selecting three-dimensional shapes with more heating surfaces 1b according to the atomization amount requirements or selecting three-dimensional shapes with fewer heating surfaces 1b according to the space saving requirements can not only reduce the design difficulty of the heating surface 1b, but also significantly increase the total area of the heating surface 1b and significantly improve the atomization amount.
  • another aspect of the present application embodiment provides a method for manufacturing an atomizer assembly, wherein the atomizer assembly includes a substrate 1, wherein the substrate 1 includes at least one liquid inlet surface 1a and at least two heating surfaces 1b, wherein the heating surface 1b has a plurality of orderly arranged liquid guide holes 1c, wherein the liquid guide holes 1c connect the liquid inlet surface 1a and the heating surface 1b.
  • the manufacturing method includes:
  • the structure of the counter mold 10 is nested with the structure of the base 1. That is, all surfaces of the counter mold 10 can overlap with all surfaces of the base 1, and the columns of the counter mold 10 can be embedded in the liquid guide holes 1c of the base 1.
  • the length of the column can be determined according to the length of the liquid conducting hole 1c of the substrate 1. In some embodiments, the length of the column is not less than the length of the liquid conducting hole 1c of the substrate 1. In this way, the liquid conducting hole 1c of the substrate 1 formed finally is ensured to be a through hole.
  • the contour shape of the mold frame 40 is adapted to the contour shape of the counter mold 10, so that the mold frame 40 can be spaced apart from the counter mold 10.
  • the surface of the mold frame 40 facing the counter mold 10 and the counter mold 10 together form a mold cavity.
  • gap fitting means that the contour shape of the mold frame 40 is consistent with the contour shape of the counter mold 10, but there is a difference in size between the mold frame 40 and the counter mold 10, so that the mold frame 40 can be gap-matched with the counter mold 10. Specifically, there is a gap between all surfaces of the mold frame 40 facing the counter mold 10 and the counter mold 10, so that the slurry can flow in the mold cavity and fill the mold cavity.
  • the outline of the base 1 is a polyhedron, and the counter mold 10 and the mold frame 40 are both polyhedrons.
  • the substrate 1 is a faceted body, and the number of faces of the substrate 1, the number of faces of the counter mold 10, and the number of faces of the mold frame 40 are equal.
  • the shapes of the faces of the substrate 1, the shapes of the faces of the counter mold 10, and the shapes of the faces of the mold frame 40 correspond to each other and are the same, but the volumes of the substrate 1, the volumes of the counter mold 10, and the volumes of the mold frame 40 are different.
  • the counter mold 10 and the mold frame 40 are both rotating bodies. Other situations are similar to the above embodiment and will not be described in detail here.
  • the slurry fills the mold cavity to form a green embryo.
  • the slurry is a constituent material of the matrix 1, for example, the slurry can be a ceramic material.
  • the slurry has a certain temperature so that the slurry is in a flowing liquid state. When the temperature of the slurry drops below the solidification point, it becomes solid. After the slurry solidifies into a solid state, a green embryo is formed.
  • the base body 1 is formed after secondary processing according to the condition of the embryo.
  • the manufacturing method provided in the present application can be used to manufacture the atomization assembly in any embodiment of the present application.
  • the manufacturing method of the embodiment of the present application first manufactures a counter mold 10 that is nested with the structure of the base 1, and then uses the counter mold 10 to form the base 1 by grouting.
  • the mold is relatively simple, the production equipment cost is low, and the manufacturing process is relatively simple, which can adapt to mass production, can greatly improve the product yield, reduce material loss, and have high production efficiency.
  • S3 filling the mold cavity with the slurry to form a green embryo, may include:
  • the ceramic slurry in the mold cavity can cure quickly, thereby saving curing time.
  • the ceramic slurry can be cured by ultraviolet light.
  • S4 processing the green embryo to form a matrix comprises:
  • the green body is subjected to high-temperature debinding and sintering to form a matrix 1 .
  • the manufacturing method comprises:
  • a large number of counter molds 10 can be produced in batches by one or a small number of master molds 30.
  • the production method of the master mold 30 is not limited.
  • the master mold 30 can be produced by drilling or the like.
  • the demand for the master mold 30 is small, and the processing and molding methods can be diverse, which can effectively control the production cost.
  • the counter mold 10 is nested with the master mold 30.
  • the manufacturing method includes:
  • the heating film 4 can be deposited on the heating surface 1b of the substrate 1 by physical vapor deposition or chemical vapor deposition. In this way, the heating film 4 is formed by coating the heating surface 1b of the substrate 1. In this way, on the one hand, the heating film 4 can be tightly combined with the heating surface 1b to reduce the assembly steps, and on the other hand, the thickness of the heating film 4 can be within the micrometer or nanometer thickness range, which can not only meet the overall miniaturization requirements of the atomizer component, but also save the material of the heating film 4.
  • a film is brushed on the heating surface 1b of the substrate 1 to form the heating film 4.
  • the heating film 4 is prepared by scraping the conductive slurry to prepare a thick film.
  • the counter mold 10 is made of a soft material.
  • the cost of the counter mold 10 is low; on the other hand, the counter mold 10 is easy to be separated from the mother mold 30 and the green embryo, and it is not easy to damage the mother mold 30 or the green embryo.
  • the soft material includes but is not limited to soft polymer materials, such as soft silicone or soft resin.
  • the reverse mold 10 is a disposable sacrificial mold.
  • a disposable sacrificial mold is a mold that completes a single base.
  • manufacturing a reverse mold that is nested with a structure of a substrate includes:
  • S11 first integrally forming a soft template by injection molding, wherein the soft template comprises a plurality of flat plates connected in sequence, and at least two of the flat plates have a plurality of the columns.
  • the flexible template is formed by one-piece injection molding.
  • the mother mold 30 is used as a mold core, and melt is injected into the mold core to form the flexible template.
  • the flexible template is a structure that can be deformed under a small force.
  • the flexible template is an one-piece injection molding structure, which can reduce assembly steps and thus simplify the manufacturing process.
  • a hot pressing process may be used to press a melt formed by a high-temperature molten polymer material into the master mold 30 , and after cooling, the master mold 30 is removed to obtain a soft template.
  • the deformation ability of the flexible template is utilized to fold a plurality of flat plates into the three-dimensional shape of the counter-mold 10 .
  • the female mold 30 can be made of a hard material such as metal or steel, so that the female mold 30 can be used repeatedly.
  • the soft template is easy to be separated from the female mold 30, and the female mold 30 is not easy to be damaged.
  • manufacturing a reverse mold that is nested with the structure of the substrate includes:
  • the structure of the sub-mold is simple and easy to design.
  • the mother mold 30 is used as a mold core, and melt is injected into the mold core to form a plurality of sub-molds.
  • the sub-molds may also be made of soft materials.
  • a hot pressing process may be used to press a melt formed by a high-temperature molten polymer material into the mother mold 30, and after cooling, the mother mold 30 is removed to obtain a plurality of sub-molds.
  • multiple sub-molds need to be spliced together to form the counter-mold 10.
  • multiple sub-molds can be connected by gluing or welding to form the three-dimensional shape of the counter-mold 10.
  • a mold frame adapted to the contour shape of the counter mold 10 and the counter mold 10 are spaced together to define a mold cavity, including:
  • the mold frame is formed with a receiving groove, and the counter-mold gap is sleeved in the receiving groove.
  • the counter mold 10 is used as the inner mold
  • the mold frame 40 is used as the outer mold
  • the mold frame 40 is spaced outside the counter mold 10.
  • the column faces outward
  • the wall surface of the receiving groove faces the column and surrounds the outside of the column.
  • a mold frame 40 and a counter mold gap that are adapted to the contour shape of the counter mold are assembled to define a mold cavity together, including:
  • the reverse mold is formed with a receiving groove, and the mold frame gap is sleeved in the receiving groove.
  • the mold frame 40 is used as an inner mold
  • the counter mold 10 is used as an outer mold
  • the counter mold 10 is spaced outside the mold frame 40.
  • the pillars face inward
  • the wall surface of the receiving groove faces the pillars and is surrounded by the pillars.
  • the outline of the base 1 is in the shape of a triangular pyramid, and at least two outer sides of the base 1 are heating surfaces 1b.
  • the outline of the counter mold 10 is in the shape of a triangular pyramid, and the sides of the counter mold 10 corresponding to the heating surfaces 1b are provided with a plurality of the columns.
  • the outline of the base 1 is consistent with the outline of the counter mold 10, so that the structure of the base 1 and the counter mold 10 are nested.
  • the outline of the mold frame 40 is also in the shape of a triangular pyramid, so that the mold frame 40 can be fitted with the counter mold 10.
  • the contour shape of the counter mold 10 is a triangular pyramid
  • the soft template includes three triangular flat plates connected in sequence, the sides of the three triangular flat plates are connected in sequence to form a pentagonal plane figure, and the sides of the two triangular flat plates located on the side are connected by folding to form a three-dimensional triangular pyramid counter mold 10, one side of the triangular pyramid counter mold 10 is open, and the mold frame 40 is a triangular pyramid with one side open.
  • the counter mold 10 is an inner mold
  • the pillars are oriented outwards.
  • the pillars are oriented inwards.
  • the contour shape of the counter mold 10 is a triangular pyramid.
  • Three independent sub-molds are first formed, and the supporting plate is a triangular plane figure.
  • the sides of the three supporting plates are sequentially spliced to form a three-dimensional triangular pyramid counter mold 10.
  • One side of the triangular pyramid counter mold 10 is open, and the mold frame 40 is a triangular pyramid with one side open. It can be understood that when the counter mold 10 is an inner mold, the column direction faces outward. When the counter mold 10 is an outer mold, the column direction faces inward.
  • the outline of the substrate 1 is a hexahedron, and at least two outer sides of the substrate 1 are the heating surfaces 1b.
  • the outline of the counter-mold 10 is a hexahedron, and the sides of the counter-mold 10 corresponding to the heating surfaces 1b are provided with a plurality of the columns.
  • the outline of the substrate 1 is consistent with the outline of the counter-mold 10, so that the structure of the substrate 1 and the counter-mold 10 are nested.
  • the outline of the mold frame 40 is also a hexahedron, so that the mold frame 40 can be fitted with the counter-mold 10.
  • the contour shape of the counter mold 10 is hexahedral
  • the soft template includes five quadrilateral plates connected in sequence, the sides of the five quadrilateral plates are connected in sequence to form a hexagonal plane figure, and the sides of two quadrilateral plates located on the side are connected by folding to form a three-dimensional hexahedral counter mold 10, and one side of the hexahedral counter mold 10 is open, so the mold frame 40 is a hexahedral shape with one side open.
  • the contour shape of the counter mold 10 is a hexahedron.
  • Five independent sub-molds are first formed, and the supporting plate is a quadrilateral plane figure.
  • the sides of the five supporting plates are sequentially spliced to form a three-dimensional hexahedron counter mold 10.
  • One side of the hexahedron counter mold 10 is open, and the mold frame 40 is a hexahedron with one side open. It can be understood that when the counter mold 10 is an inner mold, the column direction faces outward. When the counter mold 10 is an outer mold, the column direction faces inward.
  • FIG. 36 is a schematic diagram of the structure of a fourth electronic atomization device provided in an embodiment of the present application.
  • an electronic atomization device is provided.
  • the electronic atomization device can be used for atomization of an aerosol-generating substrate.
  • the electronic atomization device includes an atomizer 100 and a host 200 electrically connected to each other.
  • the atomizer 100 is used to store an aerosol-generating matrix and atomize the aerosol-generating matrix to form an aerosol that can be inhaled by a user.
  • the atomizer 100 can be used in different fields, such as medical treatment, beauty, leisure smoking, etc.
  • the atomizer 100 is used for leisure smoking, for atomizing the aerosol-generating matrix and generating an aerosol for the smoker to inhale.
  • the following embodiments all take this leisure smoking as an example.
  • the specific structure and function of the atomizer 100 can refer to the specific structure and function of the atomizer 100 involved in the following embodiments, and the same or similar technical effects can be achieved, which will not be repeated here.
  • the host 200 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electrical energy for the operation of the atomizer 100, so that the atomizer 100 can atomize the aerosol generating matrix to form an aerosol;
  • the controller includes a control circuit for controlling the operation of the atomizer 100, that is, controlling the atomizer 100 to atomize the aerosol generating matrix.
  • the host 200 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 100 and the host 200 may be integrally arranged or detachably connected, and may be designed according to specific needs.
  • Figure 37 is a structural schematic diagram of an atomizer provided in an embodiment of the present application.
  • the atomizer 100 includes a housing 110, an atomizer assembly 11, an atomizer seat 120, and a conductive member 140.
  • the atomizer seat 120 has an installation cavity (not shown in the figure), and the atomizer assembly 11 is arranged in the installation cavity; the atomizer assembly 11 and the atomizer seat 120 are arranged in the housing 110 together.
  • the housing 110 and the top surface of the atomizer seat 120 cooperate to form a liquid storage chamber 100a, and the liquid storage chamber 100a is used to store liquid aerosol generating matrix.
  • the atomizer assembly 11 is in fluid communication with the liquid storage chamber 100a, and is used to atomize the aerosol generating matrix to generate aerosol.
  • the conductive member 140 is electrically connected to the battery of the host 200, and the atomizer assembly 11 is electrically connected to the battery of the host 200 through the conductive member 140, that is, the conductive member 140 is used to electrically connect the atomizer assembly 11 to the host 200, so that the host 200 provides electrical energy for the atomization of the atomizer assembly 11.
  • the conducting member 140 is disposed on the atomizer seat 120.
  • the specific structure and function of the atomizer assembly 11 may refer to the specific structure and function of the atomizer assembly 11 involved in the following embodiments. The same or similar technical effects can be achieved, which will not be described in detail here.
  • the atomizer seat 120 includes an upper seat 121 and a lower seat 122, and the upper seat 121 and the lower seat 122 are detachably connected.
  • the upper seat 121 and the lower seat 122 cooperate to form an installation cavity.
  • a lower liquid channel 1211 is provided on the upper seat 121; the aerosol generating matrix channel lower liquid channel 1211 in the liquid storage cavity 100a flows into the atomizer assembly 11.
  • the surface of the atomizer assembly 11 away from the liquid storage cavity 100a cooperates with the cavity wall of the installation cavity to form the atomizer cavity 120a.
  • the housing 110 is formed with an air outlet channel 110a, and the air outlet channel 110a is connected to the atomizer cavity 120a.
  • An air inlet channel 110b is provided on the lower seat 122, and the air inlet channel 110b is connected to the atomizer cavity 120a. External air enters the atomizing chamber 120a through the air inlet channel 110b, carrying the aerosol atomized by the atomizing assembly 11 to the air outlet channel 110a, and the user inhales the aerosol through the port of the air outlet channel 110a.
  • the conducting member 140 is disposed on the lower seat 122.
  • the atomizer seat 120 may also be a structure that can be detachably connected to the left and right sides, and the specific design is based on actual needs.
  • Figure 38 is a structural schematic diagram of the atomization assembly 11 provided in an embodiment of the present application
  • Figure 39 is a structural schematic diagram of the heating element shown in Figure 37
  • Figure 40 is a temperature field distribution schematic diagram of the heating element shown in Figure 39
  • Figure 41 is a structural schematic diagram of the substrate shown in Figure 38.
  • the atomizing assembly 11 includes a substrate 1 and a heating element 112.
  • the substrate 1 has a liquid inlet surface 1a and a heating surface 1b that are arranged opposite to each other, wherein the heating surface 1b is the surface of the substrate 111 that is away from the liquid storage chamber 100a.
  • the substrate 1 has a plurality of liquid guide holes 1c, which are used to guide the aerosol-generating matrix from the liquid inlet surface 1a to the heating surface 1b.
  • the heating element 112 is arranged on the heating surface 1b.
  • the heating element 112 includes a bending portion 1121 and a non-bending portion 1122.
  • the temperature of the bending portion 1121 during atomization is higher than the vaporization temperature of the aerosol generating substrate.
  • the temperature of the bending portion 1121 during atomization is greater than 300°C, and the vaporization temperature of the aerosol generating substrate is 150°C-200°C.
  • it is easy to cause excess heat, resulting in a semi-dry burning state of the heating element 112 and it is easy to cause the bending portion 1121 of the heating element 112 to break, thereby affecting the life of the heating element 112 and the taste, etc.
  • the temperature of the non-bending portion 1122 during atomization is slightly higher than the vaporization temperature of the aerosol generating substrate.
  • the liquid supply rate of the non-bending portion 1122 is higher than that of the atomization. Efficiency can easily lead to insufficient atomization efficiency and even affect the taste.
  • the present application achieves high taste, high atomization efficiency and high reliability by making the first area 1114 and the second area 1115 of the substrate 1 have different liquid guide hole rates.
  • the area covered by the bending portion 1121 on the substrate 1 is the first area 1114
  • the area covered by the non-bending portion 1122 on the substrate 1 is the second area 1115.
  • the liquid conduction rate of the liquid conduction hole 1c in the first area 1114 is greater than the liquid conduction rate of the liquid conduction hole 1c in the second area 1115.
  • the apertures of the plurality of liquid-conducting holes 1c in the first region 1114 may be the same or different, the lengths of the plurality of liquid-conducting holes 1c in the first region 1114 may be the same or different, the apertures of the plurality of liquid-conducting holes 1c in the second region 1115 may be the same or different, the lengths of the plurality of liquid-conducting holes 1c in the second region 1115 may be the same or different, the porosity of the liquid-conducting holes 1c in the first region 1114 and the porosity of the liquid-conducting holes 1c in the second region 1115 may be the same or different, the lengths of the liquid-conducting holes 1c in the first region 1114 and the lengths of the liquid-conducting holes 1c in the second region 1115 may be the same or different, and the design is specifically made according to needs, and it is only necessary to make the liquid-conducting rate of the liquid-conducting holes 1c in the first region 1114 greater than the liquid
  • the liquid conduction rate of the liquid conduction holes 1c in each region can also be adjusted by other means.
  • the liquid conduction rate of the liquid conduction holes 1c in each region can be adjusted by modifying the wall surface of the liquid conduction holes 1c and changing the wettability of the wall surface of the liquid conduction holes 1c to the aerosol generating substrate.
  • the pore size of the liquid conducting hole 1c is 5 ⁇ m-60 ⁇ m, and/or the porosity of the liquid conducting hole 1113 is 5%-60%.
  • the cross-sectional shape of the liquid guiding hole 1c is circular or hexagonal.
  • the cross-sectional shape of the liquid guiding hole 1c in the present application is not limited to the above-mentioned shape, and can be designed according to specific needs.
  • the cross-sectional shape refers to the cross-sectional shape perpendicular to the axial direction of the liquid guiding hole 1c.
  • the pore sizes of the plurality of liquid-conducting holes 1c in the first region 1114 are based on
  • the apertures of the plurality of liquid guide holes 1c in the second area 1115 are substantially the same, which is convenient for
  • the diameter of the liquid guide hole 1c in the first area 1114 is larger than that in the second area 1115.
  • the pore size of the liquid conducting hole 1c in the first area 1114 is greater than the porosity of the liquid conducting hole 1c in the second area 1115, and/or the length of the liquid conducting hole 1c in the first area 1114 is less than the length of the liquid conducting hole 1c in the second area 1115.
  • the pore size of the liquid conducting hole 1c in the first area 1114 is 20 ⁇ m-50 ⁇ m; and/or, the pore size of the liquid conducting hole 1c in the second area 1115 is 10 ⁇ m-30 ⁇ m.
  • the porosity of the liquid-conducting holes 1c in the first region 1114 is 30%-60%; and/or the porosity of the liquid-conducting holes 1c in the second region 1115 is 10%-40%.
  • the bending portion 1121 can be cooled without too much liquid supply causing leakage.
  • the porosity of the liquid-conducting holes 1c in the second region 1115 is 10%-40%, the side effect of cooling the non-bending portion 1122 can be avoided while ensuring sufficient liquid supply.
  • the length of the liquid guide hole 1c in the first region 1114 is 0.4 mm-0.8 mm; and/or the length of the liquid guide hole in the second region 1115 is 0.6 mm-1.2 mm.
  • the length of the liquid guide hole 1c affects the time required to guide the aerosol-generating substrate from the liquid inlet surface 1a to the heating surface 1b, and the liquid guiding time is negatively correlated with the length of the liquid guide hole 1c.
  • the liquid guide hole 1c in the second region 1115 can be used to guide the aerosol-generating substrate from the liquid inlet surface 1a to the heating surface 1b.
  • the length of the liquid-conducting hole 1c in the second area 1115 makes the liquid-conducting rate of the liquid-conducting hole 1c in the first area 1114 greater than the liquid-conducting rate of the liquid-conducting hole 1c in the second area 1115.
  • the bending portion 1121 can be cooled without too much liquid supply to cause leakage.
  • the side effect of cooling the non-bending portion 1122 can be avoided while ensuring sufficient liquid supply.
  • the non-bending portion 1122 includes a first non-bending portion 1122a and a second non-bending portion 1122b, and the first non-bending portion 1122a connects the second non-bending portion 1122b and the bending portion 1121.
  • the area of the substrate 1 covered by the first non-bending portion 1122a is the first sub-area 1115a
  • the area of the substrate 1 covered by the second non-bending portion 1122b is the second sub-area 1115b
  • the first sub-area 1115a and the second sub-area 1115b together constitute the second area 1115.
  • the liquid conduction rate of the liquid conduction hole 1c in the first sub-area 1115a is greater than the liquid conduction rate of the liquid conduction hole 1c in the second sub-area 1115b.
  • the apertures of the multiple liquid-conducting holes 1c in the first sub-region 1115a may be the same or different, the lengths of the multiple liquid-conducting holes 1c in the first sub-region 1115a may be the same or different, the apertures of the multiple liquid-conducting holes 1c in the second sub-region 1115b may be the same or different, the lengths of the multiple liquid-conducting holes 1c in the second sub-region 1115b may be the same or different, the porosity of the liquid-conducting holes 1c in the first sub-region 1115a and the porosity of the liquid-conducting holes 1c in the second sub-region 1115b may be the same or different, the lengths of the liquid-conducting holes 1c in the first sub-region 1115a and the lengths of the liquid-conducting holes 1c in the second sub-region 1115b may be the same or different, and the design is specifically based on needs, and it is only necessary to make the liquid conduction rate of the liquid-conduct
  • the apertures of the plurality of liquid-conducting holes 1c in the first sub-region 1115a are substantially the same, and the apertures of the plurality of liquid-conducting holes 1c in the second sub-region 1115b are substantially the same, which is convenient for processing.
  • the aperture of the liquid-conducting holes 1c in the first sub-region 1115a is larger than the aperture of the liquid-conducting holes 1c in the second sub-region 1115b; and /or, the porosity of the liquid-conducting holes 1c in the first sub-region 1115a is greater than the porosity of the liquid-conducting holes 1c in the second sub-region 1115b; and/or, the length of the liquid-conducting holes 1c in the first sub-region 1115a is less than the length of the liquid-conducting holes 1c in the second sub-region 1115b.
  • the pore size of the liquid-conducting hole 1c in the first sub-region 1115a is 10 ⁇ m-30 ⁇ m, and/or the porosity of the liquid-conducting hole 1c in the first sub-region 1115a is 10%-40%, and/or the length of the liquid-conducting hole 1c in the first sub-region 1115a is 0.6 mm-1.2 mm, so that the liquid supply will not be too large to cause leakage while cooling the bent portion 1121.
  • the length of the liquid-conducting hole 1c in the first sub-region 1115a is 0.6 mm-1.1 mm.
  • the pore size of the liquid conducting hole 1c in the second sub-region 1115b is 5 ⁇ m-15 ⁇ m, and/or the porosity of the liquid conducting hole 1c in the second sub-region 1115b is 10%-20%, and/or the length of the liquid conducting hole 1c in the second sub-region 1115b is 0.6 mm-1.2 mm, so as to avoid the side effect of cooling the non-bending portion 1122 while ensuring sufficient liquid supply.
  • the length of the liquid conducting hole 1c in the second sub-region 1115b is 0.7 mm-1.2 mm.
  • non-bending portion 1122 of the heating element 112 can be divided into more regions, not limited to the first non-bending portion 1122a and the second non-bending portion 1122b, and the corresponding second region 1115 can also be divided into more regions, not limited to the first sub-region 1115a and the second sub-region 1115b, and it is only necessary to make the liquid conduction rate of the liquid conduction hole 1c of the substrate 1 corresponding to different temperatures conform to the above rule (that is, the higher the temperature of a certain part of the heating element 112, the greater the liquid conduction rate of the liquid conduction hole 1c of the substrate 1 corresponding to the part).
  • the bending portion 1121 of the heating element 112 can be divided into multiple regions, and the corresponding first region 1114 can also be divided into multiple regions, and it is only necessary to make the liquid conduction rate of the liquid conduction hole 1c of the substrate 1 corresponding to different temperatures conform to the above rule (that is, the higher the temperature of a certain part of the heating element 112, the greater the liquid conduction rate of the liquid conduction hole 1c of the substrate 1 corresponding to the part).
  • the bending portion 1121 is a fold line or an arc.
  • the heating element 112 extends in an S-shape as a whole.
  • the heating element 112 includes a first heating portion 112a, a second heating portion 112b, a third heating portion 112c, and a connecting portion 112a and a second heating portion 112b.
  • the first connection portion 112d of the heat generating portion 112b and the second connection portion 112e connecting the second heat generating portion 112b and the third heat generating portion 112c.
  • the first heating portion 112a, the second heating portion 112b and the third heating portion 112c extend in straight lines respectively, the second heating portion 112b is located between the first heating portion 112a and the third heating portion 112c, and the first connecting portion 112d and the second connecting portion 112e extend in an arc.
  • the first connecting portion 112d and the second connecting portion 112e are respectively the above-mentioned bending portions 1121.
  • the first heating portion 112a and the third heating portion 112c are respectively the above-mentioned non-bending portions 1122.
  • the aperture and/or porosity and/or length of the liquid-conducting holes 1c in the area covered by the second heating portion 112b on the substrate 1 are the same as the aperture and/or porosity and/or length of the liquid-conducting holes 1c in the first area 1114.
  • the first heating portion 112a includes a first portion 112a-1 and a second portion 112a-2, wherein the first portion 112a-1 is located on a side of the second portion 112a-2 away from the first connecting portion 112d, the second portion 112a-2 forms a first non-bending portion 1122a, and the first portion 112a-1 forms a second non-bending portion 1122b.
  • the third heating portion 112c includes a third portion 112c-1 and a fourth portion 112c-2, wherein the third portion 112c-1 is located on a side of the fourth portion 112c-2 away from the second connecting portion 112e.
  • the fourth portion 112c-2 forms the first non-bending portion 1122a
  • the third portion 112c-1 forms the second non-bending portion 1122b.
  • the present application also uses infrared detection to analyze the temperature field of the heating element 112 extending in an S shape. As shown in FIG40 , the temperature of the bending portion 1121 of the S-shaped heating element 112 and the portion between the two bending portions 1121 is the highest, and the temperature of the side of the bending portion 1121 away from the other bending portion 1121 is lower. Therefore, it is reasonable to design the parameters of the liquid guide holes 1c in each area on the base 1 of the heating element 112 as above.
  • first connecting portion 112d and the second connecting portion 112e can also have different curvatures, so that the temperatures generated by the first connecting portion 112d and the second connecting portion 112e are different, so that the bending portion 1121 can be further divided into the first bending portion and the second bending portion.
  • the liquid conducting holes 1c in the area of the substrate 1 covered by the first bent portion are different from the liquid conducting holes 1c in the area of the substrate 1 covered by the second bent portion in at least one of the three parameters of pore diameter, porosity and length.
  • the heating element 112 is extended in a W shape as a whole.
  • the heating element 112 includes a first heating element
  • the first connecting part connects the first heating part and the second heating part
  • the second connecting part connects the second heating part and the third heating part
  • the third connecting part connects the third heating part and the fourth heating part.
  • the first heating part, the second heating part, the third heating part and the fourth heating part all extend in a straight line; the extension line of the first heating part forms a first angle with the extension line of the second heating part, the extension line of the second heating part forms a second angle with the extension line of the third heating part, and the extension line of the third heating part forms a third angle with the extension line of the fourth heating part.
  • the first connecting part, the second connecting part and the third connecting part extend in an arc.
  • the first connection part, the second connection part, and the third connection part are each a bending part 1121.
  • the parameters of the liquid guide hole 1c corresponding to the second heating part and the third heating part are the same as those of the liquid guide hole 1c corresponding to the bending part 1121, including pore size, porosity, and length.
  • the first heating part and the fourth heating part are each a non-bending part 1122.
  • the heating element 112 has a plurality of through holes to improve the liquid conducting and supplying capacity, and to a certain extent reduce the dry burning problem of the heating element 112 during the atomization process, thereby having a higher atomization efficiency, ensuring the atomization effect, and improving the taste.
  • the heating element 112 is a heating film, and the plurality of through holes are disordered through holes (as shown in FIG. 38 ); illustratively, the heating film is formed by printing or depositing a porous material.
  • the through hole is a through hole along the thickness direction of the heating element 112; when the liquid guide hole 1113 is a through hole penetrating the liquid inlet surface 1a and the heating surface 1b, the axis of the through hole of the heating element 112 coincides with the axis of the liquid guide hole 1c.
  • the pore diameter of the through hole of the heating element 112 is 5 ⁇ m-50 ⁇ m, and/or the porosity of the heating element 112 is 20%-60%.
  • the heating element 112 is a heating film, and the thickness of the heating film is 5 ⁇ m-100 ⁇ m.
  • the heating element 112 is a heating film, which is in a strip-shaped structure.
  • the width of the heating film is 0.2 cm-0.6 cm.
  • the width of the heating film is 0.35 cm.
  • the wettability of the heating element 112 and the aerosol generating matrix can be improved.
  • Adjusting the power density of the heating element 112 is beneficial to improving the atomization efficiency.
  • the material of the heating element 112 includes at least one of a nickel-chromium alloy, a stainless steel alloy, and an aluminum alloy.
  • the material of the substrate 1 is a porous material, and the liquid-conducting holes 1c are disordered through holes of the porous material itself.
  • the material of the substrate 1 is a dense material
  • the liquid guide hole 1c is a through hole that penetrates the liquid inlet surface 1a and the heating surface 1b.
  • the thickness of the substrate 1 is 2 mm-5 mm.
  • the substrate 1 is a sheet-like structure, as shown in FIG. 38 .
  • the atomizer assembly manufactured by the manufacturing method in the embodiment of the present application may be the same as the atomizer assembly in the embodiment of the present application.
  • the description of the atomizer assembly embodiment in the embodiment of the present application for understanding please refer to the description of the atomizer assembly embodiment in the embodiment of the present application for understanding.

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

一种雾化组件、雾化器(100)、电子雾化装置以及制造方法,雾化组件包括基体(1)和阻液层(2),基体(1)包括进液面(1a)、发热面(1b)和导液孔(1c),导液孔(1c)连通进液面(1a)和发热面(1b),导液孔(1c)的至少部分周侧面覆盖有阻液层(2)。一方面,在导液孔(1c)的至少部分周侧面覆盖有阻液层(2),阻液层(2)能够阻挡导液孔(1c)中流通的液体基质渗入至基体(1)中。这样,能够避免液态基质进入基体(1)使得基体(1)的导热系数增大。另一方面,阻液层(2)还能够增加基体(1)的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。

Description

雾化组件、雾化器、电子雾化装置以及制造方法
本申请基于申请号为202211570359.3、申请日为2022年12月08日,申请号为202211494471.3、申请日为2022年11月25日,申请号为202211493593.0、申请日为2022年11月25日,申请号为202211494452.0、申请日为2022年11月25日,申请号为202211571416.X、申请日为2022年12月08日以及申请号为202310037883.2、申请日为2023年01月10日的中国专利申请提出,并要求上述中国专利申请的优先权,上述专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子雾化技术领域,尤其涉及一种雾化组件、雾化器、电子雾化装置以及制造方法。
背景技术
电子雾化装置包括储液器和雾化组件,储液器用于储存待雾化的液态基质,雾化组件用于将液态基质加热雾化成气溶胶。相关技术中,在雾化组件加热液态基质的过程中,雾化组件的雾化效率直接取决于雾化组件的导热系数,低的导热系数的雾化组件将大大地减少电热的耗散从而提高雾化效率。
发明内容
有鉴于此,本申请期望提供一种低导热系数的雾化组件、雾化器、电子雾化装置以及制造方法。
为达到上述目的,本申请一方面提供一种雾化组件,包括:
基体,包括进液面、发热面和导液孔,所述导液孔连通所述进液面和 所述发热面;
阻液层,所述导液孔的至少部分周侧面覆盖有所述阻液层。
一些实施例中,所述阻液层为致密陶瓷材料。
一些实施例中,所述阻液层的成分包括二氧化硅和三氧化二铝中的至少一个。
一些实施例中,所述阻液层的厚度在0.1μm~20μm之间。
一些实施例中,所述进液面的部分覆盖有所述阻液层;和/或,
所述发热面的部分覆盖有所述阻液层。
一些实施例中,所述导液孔的当量直径在1μm~100μm之间。
一些实施例中,所述雾化组件包括嵌设于所述基体中的空心体,所述空心体的内部填充热的不良导体。
一些实施例中,所述热的不良导体为空气或者惰性气体。
一些实施例中,所述空心体呈球形结构,所述空心体的外径在0.1μm~10μm之间。
一些实施例中,所述导液孔的部分周侧面覆盖有所述阻液层;或,
所述导液孔的全部周侧面覆盖有所述阻液层。
一些实施例中,所述进液面的部分和所述发热面的部分均覆盖有所述阻液层,所述导液孔上的阻液层、所述进液面上的阻液层和所述发热面上的阻液层为一体成型结构。
一些实施例中,所述雾化组件包括发热膜,所述发热膜设置于所述发热面上。
一些实施例中,所述雾化组件包括发热层,所述发热层设置于所述导液孔的周向面上。
一些实施例中,所述发热层覆盖所述导液孔的部分壁面;或,
所述发热层覆盖所述导液孔的全部壁面。
一些实施例中,所述雾化组件包括发热膜,所述发热膜设置于所述发热面上,所述发热膜与所述发热层电连接。
一些实施例中,所述发热层与所述进液面不接触。
一些实施例中,所述发热层从所述导液孔与所述发热面的连接处延伸至所述导液孔的预设位置,所述预设位置与所述进液面之间的距离不小于所述导液孔的深度的四分之一。
一些实施例中,所述发热层的厚度在0.1μm~20μm之间。
一些实施例中,所述导液孔的数量为多个,多个所述导液孔中的至少部分的当量直径不相等。
一些实施例中,所述雾化组件包括发热膜,所述基体具有相对设置的第一表面和第二表面,所述第一表面的至少部分区域形成所述进液面,所述第二表面的至少部分区域形成发热区域,所述发热区域包括朝向不同方向的所述发热面,所述导液孔设置于所述基体,用于将气溶胶生成基质从所述进液面导引至所述发热面,所述发热膜设置于所述发热面上。
一些实施例中,所述发热面与对应的所述进液面平行。
一些实施例中,所述第一表面的至少部分区域形成凹槽,所述进液面设置于所述凹槽的槽壁面上;和/或,
所述第二表面的至少部分区域外凸形成所述发热区域。
一些实施例中,所述发热区域的轮廓形状呈三棱柱形,所述三棱柱的至少两个侧面为所述发热面。
一些实施例中,所述发热区域的轮廓形状呈柱形,所述柱形的至少部分外侧面为所述发热面。
一些实施例中,所述发热区域的轮廓形状呈球面,所述发热面至少构成部分所述球面。
一些实施例中,所述导液孔的孔径为20μm-100μm;和/或,
所述发热面的孔隙率为20%-50%;和/或,
所述导液孔的长度为0.1mm-10mm。
一些实施例中,所述发热区域的轮廓形状呈抛物面、双曲面或椭球面。
一些实施例中,所述基体包括:
第一基体,形成有中间通道;
第二基体,形成有容纳通道,所述第一基体容设于所述容纳通道中,所述第一基体的外周面和所述容纳通道的壁面之间具有间隔空间,所述间隔空间空置或填充有多孔件,所述中间通道的壁面和所述第二基体的外周面其中一个为所述发热面,所述中间通道的壁面和所述第二基体的外周面其中另一个为所述进液面。
一些实施例中,所述第一基体形成有多个过流孔,所述第二基体形成有多个连通孔,所述过流孔连通所述中间通道和所述间隔空间,所述连通孔连通所述间隔空间和所述第二基体的外周面,所述导液孔包括所述过流孔和所述连通孔。
一些实施例中,所述过流孔的过流断面的面积与所述连通孔的过流断面的面积不相等。
一些实施例中,所述过流孔的孔径与所述连通孔的孔径不相等。
一些实施例中,所述中间通道的壁面为所述发热面,且所述第二基体的外周面为所述进液面,所述过流孔的孔径小于所述连通孔的孔径;或者,
所述中间通道的壁面为所述进液面,且所述第二基体的外周面为所述发热面,所述过流孔的孔径大于所述连通孔的孔径。
一些实施例中,所述第一基体的孔隙率与所述第二基体的孔隙率不相等。
一些实施例中,所述中间通道的壁面为所述发热面,且所述第二基体的外周面为所述进液面,所述第一基体的孔隙率小于所述第二基体的孔隙 率;或者,
所述中间通道的壁面为所述进液面,且所述第二基体的外周面为所述发热面,所述第一基体的孔隙率大于所述第二基体的孔隙率。
一些实施例中,所述过流孔贯穿所述第一基体的外周面的孔口为过流口,所述连通孔贯穿所述容纳通道的壁面的孔口为连通口,所述连通口在所述第一基体上的投影与所述过流口至多部分重叠。
一些实施例中,所述第一基体的外周面的上端和所述容纳通道的壁面的上端之间的间距大于所述第一基体的外周面的下端和所述容纳通道的壁面的下端之间的间距。
一些实施例中,所述第一基体的外周面和所述容纳通道的壁面之间的间距从上至下逐渐增大。
一些实施例中,所述第一基体的轮廓形状呈圆柱形或圆锥台。
一些实施例中,所述第二基体的轮廓形状呈圆柱形或圆锥台。
一些实施例中,所述雾化组件包括多个发热膜,多个所述发热膜间隔设置于所述发热面上。
一些实施例中,所述多孔件为陶瓷多孔结构。
一些实施例中,所述基体包括至少一个所述进液面和至少两个所述发热面,所述发热面上具有多个有序排列的所述导液孔。
一些实施例中,所述雾化组件包括发热膜,每个所述发热面设置有至少一个所述发热膜,每个所述发热膜独立供电。
一些实施例中,至少部分所述发热面的发热膜的加热温度或者加热功率不同。
一些实施例中,根据所述基体的中心轴与水平面之间的角度,调节各个所述发热面的发热膜的功率。
一些实施例中,所述基体包括多个所述进液面,每个所述进液面对应 一个所述发热面,所述发热面上的所述导液孔连通对应的所述进液面。
一些实施例中,所述基体包括多个相互连接的子单元,每个所述子单元包括一个所述发热面,各个所述发热面的朝向相异。
一些实施例中,所述基体为一体成型结构。
一些实施例中,所述基体形成有进液槽和与所述进液槽连通的进液口,所述进液面形成于所述进液槽的槽壁面上,所述发热面形成于所述基体的外表面。
一些实施例中,所述进液槽被分隔成多个相互隔离的子槽,每个所述子槽对应一个所述发热面。
一些实施例中,至少部分所述发热面的导液孔的孔径不同;和/或,
至少部分所述发热面的导液孔的横截面形状不同;和/或,
至少部分所述发热面的孔隙率不同。
一些实施例中,所述基体的轮廓形状呈多面体或旋转体。
一些实施例中,所述基体的轮廓形状呈三棱锥形,所述基体的至少两个外侧面为所述发热面。
一些实施例中,所述基体的轮廓形状呈六面体形,所述基体的至少两个外侧面为所述发热面。
一些实施例中,所述基体的轮廓形状呈正多面体、棱锥、棱台或棱柱。
一些实施例中,所述雾化组件包括发热元件,所述发热元件设于所述发热面;所述发热元件包括弯折部和非弯折部;
其中,所述弯折部覆盖所述基体的区域为第一区域,所述非弯折部覆盖所述基体的区域为第二区域;所述第一区域内的所述导液孔的孔径大于所述第二区域内的所述导液孔的孔径;和/或,所述第一区域内的所述导液孔的孔隙率大于所述第二区域内的所述导液孔的孔隙率;和/或,所述第一区域内的所述导液孔的长度小于所述第二区域内的所述导液孔的长度。
一些实施例中,所述第一区域内所述导液孔的孔径为20μm-50μm;和/或,所述第二区域内所述导液孔的孔径为10μm-30μm。
一些实施例中,所述第一区域内所述导液孔的孔隙率为30%-60%;和/或,所述第二区域内所述导液孔的孔隙率为10%-40%。
一些实施例中,所述第一区域内所述导液孔的长度为0.4mm-0.8mm;和/或,所述第二区域内所述导液孔的长度为0.6mm-1.2mm。
一些实施例中,所述非弯折部包括第一非弯折部和第二非弯折部,所述第一非弯折部连接所述第二非弯折部与所述弯折部;所述第一非弯折部覆盖所述基体的区域为第一子区域,所述第二非弯折部覆盖所述基体的区域为第二子区域,所述第一子区域和所述第二子区域共同组成所述第二区域;
所述第一子区域内的所述导液孔的孔径大于所述第二子区域内的所述导液孔的孔径;和/或,所述第一子区域内的所述导液孔的孔隙率大于所述第二子区域内的所述导液孔的孔隙率;和/或,所述第一子区域内的所述导液孔的长度小于所述第二子区域内的所述导液孔的长度。
一些实施例中,所述第一区域内所述导液孔的孔径为20μm-50μm;和/或,所述第一区域内所述导液孔的孔隙率为30%-60%;和/或,所述第一区域内所述导液孔的长度为0.4mm-0.8mm;
所述第一子区域内所述导液孔的孔径为10μm-30μm,和/或,所述第一子区域内所述导液孔的孔隙率为10%-40%,和/或,所述第一子区域内所述导液孔的长度为0.6mm-1.2mm;
所述第二子区域内所述导液孔的孔径为5μm-15μm,和/或,所述第二子区域内所述导液孔的孔隙率为10%-20%,和/或,所述第二子区域内所述导液孔的长度为0.6mm-1.2mm。
一些实施例中,所述弯折部呈折线或呈弧线。
一些实施例中,所述发热元件包括相互平行的第一发热部、第二发热部、第三发热部,以及连接所述第一发热部与所述第二发热部的第一连接部、连接所述第二发热部与所述第三发热部的第二连接部;所述第一发热部、所述第二发热部和所述第三发热部分别呈直线延伸,所述第二发热部位于所述第一发热部与所述第三发热部之间,所述第一连接部和所述第二连接部呈弧线延伸,所述发热元件整体呈S型延伸;
其中,所述第一连接部和所述第二连接部分别为一个所述弯折部;所述第二发热部覆盖所述基体的区域内的导液孔的孔径和/或孔隙率和/或长度与所述第一区域内的所述导液孔的孔径和/或孔隙率和/或长度相同;所述第一发热部和所述第三发热部分别为一个所述非弯折部。
一些实施例中,所述第一发热部包括第一部分和第二部分,所述第一部分位于所述第二部分远离第一连接部的一侧;所述第三发热部包括第三部分和第四部分,所述第三部分位于所述第四部分远离所述第二连接部的一侧;
所述第二部分和所述第四部分分别为一个第一非弯折部,所述第一部分和所述第三部分分别为一个第二非弯折部。
一些实施例中,所述发热元件具有多个通孔。
一些实施例中,所述发热元件为发热膜,多个所述通孔为无序通孔。
一些实施例中,所述通孔的孔径为5μm-50μm,和/或,所述发热元件的孔隙率为20%-60%。
一些实施例中,所述发热元件为发热膜,所述发热膜的厚度为5μm-100μm。
一些实施例中,所述发热元件为发热膜,所述发热膜呈条状结构,所述发热膜的宽度为0.2cm-0.6cm。
一些实施例中,所述发热元件的材料包括镍铬合金、不锈钢合金、铝 合金中的至少一种。
一些实施例中,所述导液孔的孔径为5μm-60μm,和/或,所述导液孔的孔隙率为5%-60%。
一些实施例中,所述导液孔的横截面形状为圆形或六边形。
一些实施例中,所述基体的材料为多孔材料,所述导液孔为所述多孔材料自身具有的无序通孔。
一些实施例中,所述基体的材料为致密材料,所述导液孔为贯穿所述进液面和所述发热面的通孔。
一些实施例中,所述基体的厚度为2mm-5mm。
本申请实施例另一方面提供一种雾化器,包括:
储液器,用于储存待雾化的液态基质;
上述任一项所述的雾化组件,所述储液器中的液态基质能够流动至所述进液面。
本申请实施例还提供一种电子雾化装置,包括:
上述所述的雾化器;
电源件,用于给所述雾化组件供电。
本申请实施例又提供一种制造方法,用于制造雾化组件,所述雾化组件包括基体和阻液层,所述基体包括进液面、发热面和导液孔,所述导液孔连通所述进液面和所述发热面,所述导液孔的至少部分周侧面覆盖有所述阻液层,所述制造方法包括:
提供与所述基体的结构嵌套的反模,其中,所述反模包括连接板和与所述连接板连接的立柱,所述立柱对应所述导液孔;
将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔;
浆料填充所述模腔以形成生胚;
处理所述生胚以形成所述基体。
一些实施例中,在所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔的步骤之前,还包括:
在所述反模的表面覆盖所述阻液层,其中,所述立柱的至少部分周向面覆盖有所述阻液层。
一些实施例中,在所述浆料填充所述模腔以形成生胚的步骤之后,还包括:将所述反模与所述生胚分离,使得所述阻液层附着至所述生胚上。
一些实施例中,所述处理所述生胚以形成所述基体的步骤,具体包括:处理所述生胚以形成所述基体和所述阻液层。一些实施例中,在所述反模的表面覆盖所述阻液层,包括:
所述连接板的朝向所述立柱的至少部分表面覆盖有所述阻液层。
一些实施例中,通过化学气相沉积沉积所述阻液层。
一些实施例中,所述浆料中掺有空心体,其中,所述空心体的内部填充热的不良导体。
一些实施例中,所述制造方法包括:
制造与所述基体的结构相同的母模,根据所述母模制造所述反模。
一些实施例中,处理所述生胚以形成所述基体和所述阻液层之后,所述制造方法包括:
在所述发热面镀膜或刷膜以形成发热膜。
一些实施例中,所述反模为软性材质和/或所述反模为一次性牺牲模。
一些实施例中,所述雾化组件包括发热层,所述发热层设置于所述导液孔的周向面上;
在所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔的步骤之前,还包括:
在所述立柱的周向面覆盖所述发热层。
一些实施例中,在所述浆料填充所述模腔以形成生胚的步骤之后,还包括:
将所述反模与所述生胚分离,使得所述发热层附着至所述生胚上。
一些实施例中,所述处理所述生胚以形成所述基体的步骤,具体包括:处理所述生胚以形成所述基体和所述发热层。
一些实施例中,处理所述生胚以形成所述基体和所述发热层之后,所述制造方法包括:
所述发热面镀膜或刷膜以形成发热膜。
一些实施例中,所述制造方法包括:在所述立柱的周向面覆盖所述发热层的同时,所述连接板的朝向所述立柱的至少部分表面覆盖发热膜。
一些实施例中,通过化学气相沉积形成所述发热层。
一些实施例中,提供与所述基体的结构嵌套的反模,包括:
先一体注塑形成软性模板,其中,所述软性模板包括承载板和设置于所述承载板上多个所述立柱;
将所述承载板折叠或弯曲以形成所述反模。
一些实施例中,所述反模的轮廓呈柱形或者球面,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
一些实施例中,所述基体包括第一基体和第二基体,所述第一基体形成有中间通道;所述第二基体形成有容纳通道,所述第一基体容设于所述容纳通道中,所述第一基体的外周面和所述容纳通道的壁面之间具有间隔空间,所述间隔空间空置或填充有多孔件,所述中间通道的壁面和所述第二基体的外周面其中一个为所述发热面,所述中间通道的壁面和所述第二基体的外周面其中另一个为所述进液面;其中,所述提供与所述基体的结构嵌套的反模,包括:
制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的 结构嵌套的第二反模。
一些实施例中,所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
将所述第一反模套设于所述第二反模中,并在所述第一反模和所述第二反模之间放置隔断模,所述第一反模、所述第二反模和所述隔断模均放置于外模中以共同限定出模腔。
一些实施例中,所述制造方法包括:
制造与所述第一基体的结构相同的第一母模、以及与所述第二基体的结构相同的第二母模,根据所述第一母模制造所述第一反模以及根据所述第二母模制造所述第二反模。
一些实施例中,所述第一基体形成有多个过流孔,所述第二基体形成有多个连通孔,所述过流孔连通所述中间通道和所述间隔空间,所述连通孔连通所述间隔空间和所述第二基体的外周面,所述第一反模具有与所述过流孔嵌套的第一立柱,所述第二反模具有与所述连通孔嵌套的第二立柱,所述立柱包括所述第一立柱和所述第二立柱。
一些实施例中,制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模,包括:
分别制造第一软性模板和第二软性模板,其中,所述第一软性模板包括第一平板和多个位于所述第一平板上的所述第一立柱,所述第二软性模板包括第二平板和多个位于所述第二平板上的所述第二立柱;
将所述第一平板卷绕成中空的圆环结构以形成所述第一反模,并将所述第二平板卷绕成中空的圆环结构以形成所述第二反模,其中,所述第一立柱朝向外侧,所述第二立柱朝向内侧。
一些实施例中,提供与所述基体的结构嵌套的反模,包括:
先一体注塑形成软性模板,其中,所述软性模板包括多个依次连接的 平板,至少两个所述平板上具有多个所述立柱;
将多个所述平板折叠以形成所述反模。
一些实施例中,提供与所述基体的结构嵌套的反模,包括:
先形成多个子模,其中,所述子模包括承载板和设置于所述承载板上多个所述立柱;
将多个所述子模拼接以形成所述反模。
一些实施例中,将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
所述模框形成有容纳槽,所述反模间隙套装于所述容纳槽中。
一些实施例中,将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
所述反模形成有容纳槽,所述模框间隙套装于所述容纳槽中。
一些实施例中,所述基体的轮廓形状呈三棱锥形,所述基体的至少两个外侧面为发热面;
所述反模的轮廓形状呈三棱锥形,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
一些实施例中,所述基体的轮廓形状呈六面体形,所述基体的至少两个外侧面为所述发热面;
所述反模的轮廓形状呈六面体形,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
本申请实施例提供的雾化组件,一方面,在导液孔的至少部分周侧面覆盖有阻液层,阻液层能够阻挡导液孔中流通的液体基质渗入至基体中。这样,能够避免液态基质进入基体使得基体的导热系数增大。另一方面,阻液层还能够增加基体的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。
附图说明
图1为本申请一实施例中的第一种雾化组件的结构示意图;
图2为本申请一实施例中的第二种雾化组件的结构示意图;
图3为图2所示雾化组件的另一个视角的结构示意图;
图4为本申请的第二实施例中的制造方法的流程框图;
图5为本申请一实施例中的第一种反模的结构示意图;
图6为图5中的第一种反模覆盖阻液层和发热膜的示意图;
图7为图5中的第一种反模、阻液层、发热膜和生胚的结构示意图;
图8为本申请一实施例中的第三种雾化组件的结构示意图;
图9为本申请一实施例中母模和第二种反模的结构示意图;
图10为本申请一实施例中的第四种雾化组件的结构示意图;
图11为本申请的第一实施例中的制造方法的流程框图;
图12为本申请的第三实施例中的制造方法的流程框图;
图13为本申请一实施例中的第四种雾化组件的结构示意图;
图14为图13所示雾化组件的另一个视角的结构示意图;
图15为图13所示雾化组件的又一个视角的结构示意图;
图16为图15所示雾化组件的半剖图;
图17为本申请一实施例中的第一种电子雾化装置的结构示意图;
图18为本申请一实施例中的反模的扫描电镜图;
图19为本申请另一实施例中的反模的扫描电镜图;
图20为本申请又一实施例中的反模的扫描电镜图;
图21为本申请一实施例中基体的制造过程的示意图;
图22为本申请一实施例中的第五种雾化组件的结构示意图;
图23为图22所示雾化组件另一个视角的结构示意图;
图24为图22所示雾化组件又一个视角的结构示意图;
图25为图24中A-A方向的剖视图;
图26为图24中B-B方向的剖视图;
图27为本申请一实施例中的第二种电子雾化装置的结构示意图;
图28为本申请的第四实施例中的制造方法的流程框图;
图29为本申请一实施例中的第六种雾化组件的结构示意图;
图30为图29所示雾化组件另一个视角的结构示意图;
图31为图29所示雾化组件的又一个视角的结构示意图;
图32为图31所示雾化组件的半剖图;
图33为本申请一实施例中的第三种电子雾化装置的结构示意图;
图34为本申请一实施例中的第七种雾化组件的结构示意图;
图35为图34中所示雾化组件另一个视角的结构示意图;
图36为本申请一实施例中的第四种电子雾化装置的结构示意图;
图37为本申请一实施例提供的雾化器的结构示意图;
图38为本申请一实施例中的第八种雾化组件的结构示意图;
图39为图37所示的雾化组件的结构示意图;
图40为图39所示的雾化组件的温度场分布示意图;
图41为图38所示的基体的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请实施例中的方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。需要说明的是,多个包括 两个以及两个以上。单位“μm”为微米。单位“W/(m·k)”为瓦每米·开尔文。下面结合附图及具体实施例对本申请再作进一步详细的说明。
请参阅图1、图2、图8以及图10,本申请实施例一方面提供一种雾化组件,雾化组件包括基体1和阻液层2。
基体1包括进液面1a、发热面1b和导液孔1c,导液孔1c连通进液面1a和发热面1b。具体地,导液孔1c可以将来自进液面1a的液态基质导流至发热面1b。
导液孔1c的至少部分周侧面覆盖有阻液层2。示例性的,一实施例中,导液孔1c的部分周侧面覆盖有阻液层2。另一实施例中,导液孔1c的全部周侧面覆盖有阻液层2。
本申请实施例提供的雾化组件,一方面,在导液孔1c的至少部分周侧面覆盖有阻液层2,阻液层2能够阻挡导液孔1c中流通的液体基质渗入至基体1中。这样,能够避免液态基质进入基体1使得基体1的导热系数增大。另一方面,阻液层2还能够增加基体1的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。
一实施例中,请参阅图1和图2,雾化组件包括发热膜4,发热膜4设置于发热面1b上。发热膜4用于通电发热,以加热液态基质。例如,可以通过发热膜4将液态基质加热雾化成气溶胶。
发热膜4可以通电后通过电阻发热的方式发热。示例性的,发热膜4包括但不限于金属和/或合金等等。例如,发热膜4为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
本申请实施例提供的雾化组件可以用于雾化器,雾化器包括储液器和本申请任一项实施例中的雾化组件,储液器用于储存待雾化的液态基质。储液器中的液态基质能够流动至进液面1a。
本申请实施例提供的雾化器可以用于电子雾化装置,电子雾化装置包 括储液器、本申请任一实施例中的雾化器和电源件。电源件用于给雾化组件供电。示例性的,电源件可以与加热膜电连接,以给发热膜4供电。
本申请实施例提供的电子雾化装置的具体类型不限,示例性地,电子雾化装置包括但不限于医用雾化设备、空气加湿器或者电子烟等。
液态基质的类型不限,液态基质包括溶剂和添加剂等等。溶剂包括但不限于丙二醇(沸点为187℃)和/或丙三醇(沸点为290℃)。添加剂可以包括尼古丁盐、植物萃取物和/或口味添加剂等。口味添加剂可以为香精香料。
示例性的,电子雾化装置的轮廓形状可以大致呈长条形。如此,便于用户手指拿取电子雾化装置。
电源件包括但不限于电池。电池可以为一次性电池或者充电电池。
电子雾化装置还可以包括外壳和控制器,电源件和发热膜4均可以与控制器电连接。储液器、雾化组件、电源件和控制器均可以位于外壳中。
一些实施例中,外壳可以形成与外界连通的吸嘴,吸嘴用于输送雾化组件产生的气溶胶。例如,用户可以通过吸嘴吸取气溶胶。
一实施例中,请参阅图1和图2,导液孔1c可以为直孔。也就是说,单个导液孔1c沿直线延伸。如此,一方面,导液孔1c易于成型,制造难度低,另一方面,便于将进液面1a的液态基质快速导流至发热面1b。
一实施例中,请参阅图1和图2,导液孔1c可以为等径孔。也就是说,单个导液孔1c任意位置处的当量直径相等。
需要说明的是,当量直径是指过流断面面积的四倍与周长之比。过流断面是指垂直于流体的流线簇所取的断面。
一些实施例中,导液孔1c的横截面形状包括但不限于圆形、椭圆形或多边形等等。例如,在导液孔1c的横截面形状为圆形的情况下,当量直径即为圆形的导液孔1c的直径。
可以理解的是,导液孔1c的横截面形状是以垂直于导液孔1c的深度方向 的平面为截面。
一实施例中,请参阅图1、图2、图8和图10,导液孔1c的数量为多个,多个导液孔1c有序排列。有序排列是指按照设定规则布置。这种设定规则是可以人为设计并控制的。有序排列包括但不限于阵列布置。示例性的,一实施例中,阵列布置可以是多个导液孔1c一维阵列排列,即多个导液孔1c按照一个方向间隔排列。一实施例中,阵列布置可以是多个导液孔1c二维阵列排列,即多个导液孔1c按照两个或两个以上相交的方向间隔排列,例如,多个导液孔1c可以呈矩形阵列或圆形阵列排布等等。有序排列的导液孔1c的数量等能够进行设计和计算,基体1对液态基质的导流效果更加可控,能够提高产品的生产一致性,换句话说,在批量生产中,不同基体1的导液孔1c基本一致,使得同批次出厂的发热膜的加热效果趋于一致。
一实施例中,基体1的材质的导热系数在0.2w/(m·k)至1.5w/(m·k)。示例性的,基体1的材质的导热系数为0.2w/(m·k)、0.3w/(m·k)、0.4w/(m·k)、0.5w/(m·k)、0.6w/(m·k)、0.7w/(m·k)、0.9w/(m·k)、1.0w/(m·k)、1.15w/(m·k)、1.2w/(m·k)、1.25w/(m·k)、1.3w/(m·k)、1.4w/(m·k)或1.5w/(m·k)等等。基体1的材质的导热系数较低,能够减少基体1的热传导造成的热损耗,以改善发热面1b的温度场,以便能够更加适用于雾化高沸点的液态基质。
示例性的,一实施例中,基体1的材质包括玻璃、石英和/或陶瓷。陶瓷可以为二氧化硅的陶瓷,也就是说,陶瓷的主要成分为二氧化硅。如此,基体1既具有较低的导热系数,又具有较好的结构强度。
示例性的,一实施例中,基体1为多孔结构。多孔结构是具有无序排列孔洞的结构。无序排列是指孔洞随机生成,没有设定规则。多孔结构的孔洞之间通常呈现彼此连通或部分连通的特性。这样,基体1的重量较轻,而且多孔结构中的孔洞中的空气能够进一步降低导热系数。
示例性的,一实施例中,多孔结构的基体1的导热系数能够小于0.8w/(m·k)。例如,基体1可以为多孔陶瓷。
一实施例中,基体1采用多孔结构。例如采用多孔陶瓷,多孔陶瓷具有良好的化学稳定性、热稳定性和低导热率等特性。采用多孔陶瓷材料的基体1,基本不会与液态基质发生化学反应且自重较轻。一方面,在导液孔1c的至少部分周侧面覆盖有阻液层2,阻液层2能够避免导液孔1c中的液态基质通过导液孔1c的周侧面渗入基体1,并滞留于基体1内部的孔洞中,致使基体1的导热系数增高。另一方面,阻液层2可以封闭部分基体1中的孔洞以形成封闭孔洞,这样,封闭孔洞中的空气的导热系数较低,能够进一步降低基体1的导热性。
一实施例中,阻液层2为致密陶瓷材料。致密陶瓷材料与多孔陶瓷材料相反,致密陶瓷材料不具备彼此连通的孔洞。致密陶瓷材料具有良好的隔离液体的作用。因此,利用致密陶瓷材料制备阻液层2,能够有效阻挡液态基质进入基体1中。
一实施例中,阻液层2的成分包括二氧化硅(SiO2)和三氧化二铝(Al2O3)中的至少一个。例如,阻液层2的成分为二氧化硅或者三氧化二铝。又例如,阻液层2的成分包括二氧化硅和三氧化二铝。
一实施例中,请参阅图1,阻液层2的厚度h在0.1μm~20μm之间。示例性的,阻液层2的厚度h为0.1μm、0.15μm、0.2μm、0.3μm、0.5μm、0.8μm、1.0μm、1.5μm、2.0μm、3.0μm、4.0μm、5.0μm、6.0μm、8μm、9μm、10μm、11μm、15μm、17μm、18μm或者20μm等等。如此设计,阻液层2的厚度适中,既能够有效阻挡液态基质,增强基体1的结构强度,还便于阻液层2制造成型,能够有效控制制造成本。
一实施例中,进液面1a的部分覆盖有阻液层2。例如,在进液面1a避让导液孔1c的部位覆盖有阻液层2。这样,一方面,阻液层2不会干涉液态基 质通过导液孔1c流动,另一方面,能够避免液态基质从进液面1a渗入基体1内,不仅能够进一步避免液态基质滞留在基体1内例如基体1内部的孔洞的中,增加基体1的导热系数,还能够使得来自进液面1a的液态基质基本通过导液孔1c流动至发热面1b,导液效果更好,可控性好。
一实施例中,发热面1b的部分覆盖有阻液层2。例如,在发热面1b避让导液孔1c的部位覆盖有阻液层2。如此设计,一方面,阻液层2不会干涉液态基质通过导液孔1c流动,另一方面,可以避免发热面1b产生的气溶胶进入基体1内例如基体1的孔洞中,导致基体1的导热系数增大。
一实施例中,进液面的部分和发热面的部分均覆盖有阻液层,导液孔上的阻液层、进液面上的阻液层和发热面上的阻液层为一体成型结构。也就是说,导液孔上的阻液层、进液面上的阻液层和发热面上的阻液层通过同一步骤生成。如此,可以通过一次制备成型位于不同位置的阻液层,节约制造步骤。
示例性的,一些实施例中,发热面1b上的阻液层2和发热膜4可以不重叠。也就是说,发热面1b上的阻液层2和发热膜4错位。另一些实施例中,发热面1b上的阻液层2和发热膜4可以部分重叠。也就是说,发热面1b上的阻液层2和发热膜4可以部分叠置。又一些实施例中,发热面1b上的阻液层2和发热膜4可以完全重叠。例如,发热面1b上的阻液层2可以位于发热面1b和发热膜4之间。
一实施例中,请参阅图1,导液孔1c的当量直径d在1μm~100μm之间。示例性的,导液孔1c的当量直径d为1μm、1.5μm、2.0μm、3.0μm、5.0μm、10μm、15μm、20μm、25μm、30μm、40μm、50μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm或者100μm等等。如此设计,一方面,便于通过毛细作用均衡供液,流速适中,使得发热面1b的温度上升从而升高雾化温度,产生的气溶胶的粒径分布更广,用户的 口感更加绵密、层次更加丰富,体验更好。另一方面,避免导液孔1c的当量直径过大造成漏液。
一实施例中,请参阅图2和图3,雾化组件包括嵌设于基体1中的空心体3,空心体3的内部填充热的不良导体。空心体3嵌设于基体1中,这样,基体1与空心体3直接接触。空心体3是内部中空的闭合结构。也就是说,空心体3的内部的热的不良导体不能泄漏出空心体3。热的不良导体是不善于传热的物质。示例性的,热的不良导体的导热系数小于或等于0.1W/(m·k)。这样,进一步减小基体1的导热系数,可以阻断来自发热膜4的热量的在基体1上热传导,从而进一步减少热量的耗散,节能效果更好。
一实施例中,请参阅图2和图3,空心体3的数量为多个,多个空心体3分散于基体1中。换句话说,多个空心体3间隔分布于基体1中。优选地,多个空心体3均匀地分散与于基体1中。这样,能够通过空心体3有效降低基体1的导热系数,使得基体1各个部位的导热系数趋于一致。
一实施例中,热的不良导体为气体。这样,能够进一步减小发热膜的重量。
一实施例中,热的不良导体为空气或者惰性气体。空气的导热系数为0.023W/(m·k)。惰性气体包括氦、氖、氩、氪、氙或氡。惰性气体的导热系数均小于0.1W/(m·k)。
一实施例中,空心体3呈球形结构,空心体3的外径在0.1μm~10μm之间。示例性的,空心体3的外径为0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、0.55μm、0.6μm、0.65μm、0.7μm、0.8μm、1.0μm、2.0μm、3.0μm、4.0μm、5.0μm、6.0μm、6.5μm、7.0μm、8.0μm、9.0μm或者10μm等等。空心体3的整体尺寸适中,一方面,既便于空心体3稳固地嵌入基体1中,又便于空心体3在基体1中较为均匀地分布。另一方面,空心体3的制造难度适中,制造成本较低。
一实施例中,空心体3的材质可以为致密陶瓷材料或者玻璃等等。例如,空心体3的主要成分为二氧化硅。这样,在烧结生胚20形成基体1的过程中,空心体3不会发生变形或发生化学变化。
一些实施例中,雾化组件包括设置于导液孔1c的周侧面上的发热层5,发热层5能够通电发热。这样,发热层5可以用于加热导液孔1c中的液态基质。示例性的,发热层5可以将液态基质加热至雾化成气溶胶。
相关技术中,只在发热面上设置发热膜,发热膜发热以加热发热面上的液态基质,由于发热面与发热膜接触的部位有限,这就导致发热面的不同区域的温度存在不同,发热面的部分区域温度可能低于液态基质的沸点,来自导液孔的液态基质可能流动至发热面的温度低于沸点的区域,致使发热面的温度低于沸点的区域无法雾化液态基质,造成雾化效率较低。
本实施例中,一方面,导液孔1c的周侧面设置发热层5,发热膜4结合发热层5可以增加发热面积,增加液态基质的热交换面积,而液态基质需要通过导液孔1c流动至发热面1b,这样,流经导液孔1c的液态基质均能够被加热至沸点,从而提高雾化效率。另一方面,导液孔1c的周侧面设置有发热层5,发热层5能够阻挡导液孔1c中的液体基质渗入至基体1中。这样,能够避免液态基质进入基体1使得基体1的导热系数增大。另一方面,发热层5还能够增加基体1的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。
发热层5可以通电后通过电阻发热的方式发热。示例性的,发热层5包括但不限于金属和/或合金等等。例如,发热层5为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
一实施例中,发热层5可以和发热膜4电连接。发热膜4与发热层5电连接,发热膜4可以与外部接电结构例如电走线或接电端子电连接,发热膜4与外部接电结构电连接更加简单、便捷,这样,不仅可以减少与每个发热 层5电连接的外部接电结构,还能够简化布线。
一实施例中,发热层5覆盖导液孔1c的部分壁面。这样,可以兼顾导液孔1c的供液速率和雾化速率。
发热层5的形状不限,示例性的,一些实施例中,发热层5可以环绕导液孔1c的周向面呈环形结构。另一些实施例中,发热层5也可以沿导液孔1c轴向设置的长条形结构。
另一实施例中,发热层5覆盖导液孔1c的全部壁面。这样,可以使得加热面积足够大,以最大化雾化速率。
示例性的,一些实施例中,阻液层2和发热层5可以不重叠。也就是说,阻液层2和发热层5错位。另一些实施例中,阻液层2和发热层5可以部分重叠。也就是说,阻液层2和发热层5可以部分叠置。又一些实施例中,阻液层2和发热层5可以完全重叠。例如,阻液层2可以位于导液孔1c的周向面和发热层5之间。
一些实施例中,发热层5和发热膜4可以采用相同的材质。这样,可以简化制造步骤,例如,发热层5和发热膜4可以同步制备。可以理解的是,另一些实施例中,发热层5和发热膜4可以采用不同的材质。
一实施例中,发热层5与进液面1a不接触。例如,进液面1a与导液孔1c之间的连接处和发热层5不接触。这样能够避免发热层5接触进液面1a上的液态基质,从而避免发热层5影响进液面1a和储油容器中的液态基质。
一实施例中,发热层5从导液孔1c与发热面1b的连接处延伸至导液孔1c的预设位置,预设位置与进液面1a之间的距离不小于导液孔1c的深度的四分之一。也就是说,预设位置与进液面1a之间的距离大于或等于导液孔1c的深度的四分之一。这样设计,一方面,发热层5与进液面1a之间的距离适中,不仅能够有效避免发热层5接触进液面1a上的液态基质,还能够避免来发热层5的热量通过热传导传递至进液面1a上。另一方面,发热层5与发热面1b 接触,不仅便于发热层5的热量传递至发热面1b位于导液孔1c周围的部位,还便于发热层5与发热膜4直接接触以实现电连接。
一实施例中,发热层5的厚度在0.1μm~20μm之间。发热层5的厚度为0.1μm、0.15μm、0.2μm、0.3μm、0.5μm、0.8μm、1.0μm、1.5μm、2.0μm、3.0μm、4.0μm、5.0μm、6.0μm、8μm、9μm、10μm、11μm、15μm、17μm、18μm或者20μm等等。如此设计,发热层5的厚度适中,一方面,既能够有效阻挡液态基质,增强基体1的结构强度,还便于封闭层制造成型,能够有效控制制造成本,另一方面,还便于发热层5在较短时间达到较大热量。
由于液态基质通常为混合物,液态基质中的各种成分的挥发特性并不相同,如果对各种成分无差别雾化,会影响部分成分的雾化,影响口感,而且相关技术中的雾化组件的发热面1b的温度固定,存在雾化口味单一和不可调的问题。本申请针对上述问题,一实施例中,导液孔1c的数量为多个,多个导液孔1c中的至少部分的当量直径不相等。例如,可以是多个导液孔1c中的一部分为第一当量直径,多个导液孔1c中的其余部分为第二当量直径,第一当量直径和第二当量直径不相等。又例如,可以是多个导液孔1c中的一部分为第一当量直径,多个导液孔1c中的一部分为第二当量直径,多个导液孔1c中的其余部分为第三当量直径,第一当量直径、第二当量直径和第三当量直径不相等。本领域技术人员可以根据上述示例获得其他当量直径不相等的实施例,在此不再一一赘述。
导液孔1c的当量直径不同使得对应的导液孔1c中的温度不同,发热层5产生的面能量不同,这样不同当量直径的导液孔1c具有不同的温度场,这样设计,一方面,雾化组件可以适应不同类型的液态基质,例如针对不同口味和/或不同沸点的液态基质均能产生较好的雾化效果,满足用户对各种不同味道的需求,便于用同一个雾化组件雾化不同成分的液态基质,解决 相关技术中的雾化组件的发热面1b的温度固定,雾化口味单一和不可调的问题。另一方面,如此设计,针对同一类型的液态基质的不同成分,不同当量直径的导液孔1c可以产生不同粒径的气溶胶,从而改善口感,使得气溶胶的口感更加绵密或层次更加丰富。
请参阅图11,本申请的第一实施例还提供一种制造方法,用于制造雾化组件,雾化组件包括基体1和阻液层2,基体1包括进液面1a、发热面1b和导液孔1c,导液孔1c连通进液面1a和发热面1b,导液孔1c的至少部分周侧面覆盖有阻液层2,制造方法包括:
S1、提供与基体的结构嵌套的反模,其中,反模包括连接板和与连接板连接的立柱,立柱对应导液孔;
S2、将与反模的轮廓形状适配的模框和反模间隙套装,以共同限定出模腔;
S3、浆料填充模腔以形成生胚;
S4、处理生胚以形成基体。
一些实施例中,在将与反模的轮廓形状适配的模框和反模间隙套装,以共同限定出模腔的步骤之前,还包括:
在反模的表面覆盖阻液层,其中,立柱的至少部分周向面覆盖有阻液层。
一些实施例中,在浆料填充模腔以形成生胚的步骤之后,还包括:
将反模与生胚分离,使得阻液层附着至生胚上。
一些实施例中,处理生胚以形成基体的步骤,具体包括:处理生胚以形成基体和阻液层。
具体地,请参阅图4,本申请的第二实施例提供一种制造方法:
S100、提供与所述基体的结构嵌套的反模,其中,所述反模包括连接板和与所述连接板连接的立柱,所述立柱对应所述导液孔;
S200、在所述反模的表面覆盖所述阻液层,其中,所述立柱的至少部分周向面覆盖有所述阻液层;
S300、将所述反模装配于模框中以共同限定出模腔,浆料填充所述模腔以形成生胚;
S400、将所述反模与所述生胚分离,使得所述阻液层附着至所述生胚上;
S500、处理所述生胚以形成所述基体和所述阻液层。
以下对本实施例的制造方法进行具体描述:
S100、提供与所述基体的结构嵌套的反模,其中,所述反模包括连接板和与所述连接板连接的立柱,所述立柱对应所述导液孔。
请参阅图5和图8,反模10的结构与基体1的结构嵌套,也就是说,连接板11能够与基体1的至少部分外表面重叠,立柱12能够插入基体1的导液孔1c中。
一些实施例中,请参阅图5和图8,导液孔1c的数量为多个,连接板11的数量可以为一个,连接板11的厚度方向的一个面上有多个立柱12,立柱12可以与导液孔1c一一对应。
可以理解的是,立柱12可以有序排列,这样,可以与有序排列的导液孔1c一一对应。
S200、在所述反模的表面覆盖所述阻液层,其中,所述立柱的至少部分周向面覆盖有所述阻液层。
请参阅图6,由于在反模10的表面覆盖阻液层2的工艺相对简单,工艺要求相对较低,因此,可以根据在导液孔1c的设定位置覆盖阻液层2的设计需求,在立柱12的对应位置覆盖阻液层2。
这里,立柱12覆盖阻液层2的周向面的部位可以根据导液孔1c中的阻液层2的需求来定。示例性的,一些实施例中,阻液层2覆盖导液孔1c 的部分壁面。就制造方法而言,立柱12的至少部分周向面覆盖阻液层2。立柱12覆盖阻液层2的部位与导液孔1c覆盖阻液层2的部位相对应,即立柱12覆盖阻液层2的部位与导液孔1c覆盖阻液层2的部位能够重合。一些实施例中,阻液层2覆盖导液孔1c的全部壁面。就制造方法而言,立柱12的全部周向面覆盖阻液层2。立柱12覆盖阻液层2的部位与导液孔1c覆盖阻液层2的部位能够重合。
可以理解的是,可以在立柱12的周向面设置掩模。掩模的图形与需要在立柱12的周向面上形成的发热层5的图形相同,这样,便于在立柱12的部分周向面覆盖发热层5。
S300、将所述反模装配于模框中以共同限定出模腔,浆料填充所述模腔以形成生胚。
也就是说,模框可以为中空的闭合结构,将反模10放置于模框中,模框的内壁面与反模10之间的间隙即为模腔。
示例性的,模框的轮廓形状可以与反模10的轮廓形状适配,使得模框能够与反模10间隙套装。模框的内壁面与反模10共同构成模腔。
可以理解的是,间隙套装是指模框的轮廓形状与反模10的轮廓形状一致,但模框的尺寸大于反模10的尺寸,以便模框能够与反模10间隙配合。具体地,模框朝向反模10的所有面与反模10之间均存在间隙,以便浆料能够在模腔中流动,从而充满模腔。
示例性的,基体1的轮廓形状呈多面体,则反模10和模框均为多面体,且基体1的面的数量、反模10的面的数量和模框的面的数量相等。另外,基体1的面的形状、反模10的面的形状和模框的面的形状一一对应且相同,但是,基体1的体积、反模10的体积和模框的体积不同。
请参阅图9和图10,以基体1的轮廓形状呈六面体为例,反模10和模框均为六面体。
浆料为基体1的组成材料,例如浆料可以为陶瓷材料。浆料具有一定温度,以便浆料呈流动的液态。浆料的温度下降至凝固点以下则呈固态。浆料凝固成固态后形成生胚20。
S400、将所述反模与所述生胚分离,使得所述阻液层附着至所述生胚上。
通过将生胚20脱除反模10,这样,可以便利地在生胚20的孔的周向面覆盖阻液层2,生胚20的孔即为导液孔1c。
S500、处理所述生胚以形成所述基体和所述阻液层。
根据生胚20的情况进行处理后形成基体1和阻液层2。
相关技术中,需要采用激光诱导、腐蚀成孔等等方式形成导液孔1c,此种生产方式不仅生产设备成本高,对工艺要求也较高。
本申请实施例的制造方法,先制造与基体1的结构嵌套的反模10,在反模10的表面覆盖阻液层2,再利用模腔注浆形成生胚20,这样,脱除反模10后可形成基体1和阻液层2。采用反模10制造生胚20,模具相对简单,无需采用激光或者腐蚀成孔的工艺造孔,生产设备成本较低,制造工艺更为简单。而且将阻液层2先覆盖至反模10的表面,脱模后阻液层2能够附着至生胚20上,无需在孔内镀膜,制造工艺简单,生产难度低。采用本申请的制造方法,能够适应批量生产雾化组件,可以极大地提高产品良率,降低材料损耗,生产效率高。
一实施例中,浆料填充所述模腔以形成生胚,可以包括:通过光固化的方式使得所述模腔中的浆料固化形成所述生胚。
这样可以使得模腔中的浆料快速固化,以节约固化时长。例如可以通过紫外光固化浆料。
一实施例中,S500、处理所述生胚以形成所述基体和所述阻液层,包括:
烧结脱除所述反模后的所述生胚。
以浆料为陶瓷材料为例,反模10与生胚20分离后阻液层2会附着至生胚20的孔的壁面上;再烧结生胚20,以便生胚20形成多孔陶瓷的空间立体骨架结构成为基体1,同时,阻液层2会更紧密地贴合在基体1的导液孔1c的周向面上。
一实施例中,S200、在所述反模的表面覆盖所述阻液层,包括:
所述连接板的朝向所述立柱的至少部分表面覆盖有所述阻液层。
这里,请参阅图6和图7,生胚20朝向连接板11的表面为基体1的进液面1a或者基体1的发热面1b,进液面1a的部分覆盖有阻液层2,或者,发热面1b的部分覆盖有阻液层2。
可以根据在进液面1a的预设位置或发热面1b的预设位置覆盖阻液层2的设计需求,在连接板11与立柱12连接的表面的对应位置覆盖阻液层2,这样,在反模10与生胚20分离后阻液层2会附着至生胚20与连接板11接触的表面上,再烧结生胚20,阻液层2会更紧密地贴合在基体1的进液面1a或发热面1b上。
可以理解的是,可以在连接板11的朝向立柱12的至少部分表面和立柱12的至少部分周向面同步覆盖阻液层2。如此,可以减少工艺步骤,提升生产效率。
需要说明的是,由于立柱12和连接板11连接,因此,阻液层2不会封堵生胚20脱除反模10后的孔的一端开口。
一些实施例中,可以通过研磨、抛光或其他方式去除生胚20远离连接板11的端面上的阻液层2。这样保证生胚20用于形成导液孔1c的孔为通孔。
需要说明的是,发热面1b上有阻液层2时,也可以采用掩模和先后镀膜的方式,实现发热面1b上的阻液层2和发热膜4两者的沉积。
一实施例中,通过化学气相沉积沉积阻液层2。通过化学气相沉积在反 模10的表面覆盖阻液层2。化学气相沉积(Chemical Vapor Deposition,CVD)是利用气态或蒸汽态的物质在气相或气固界面上发生反应生成固态沉积物的过程。这样,便于在反模10的表面均匀覆盖阻液层2。
化学气相沉积可以为等离子体增强化学的气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)。
一实施例中,所述浆料中掺有空心体3,其中,所述空心体3的内部填充热的不良导体。
浆料凝固后即形成嵌设有空心体3的生胚20,这样,空心体3能够快速地嵌入基体1中,以便与基体1成为一体成型结构。空心体3与基体1直接接触。如此,不仅可以极大地减少空心体3的装配步骤,还便于空心体3在基体1中分散分布。
这里的空心体3与前述的雾化组件的空心体3相同,此处不再赘述。
可以理解的是,可以先将空心体3和浆料混合后,再注入模腔中。这样,便于空心体3在基体1中均匀分布。
需要说明的是,空心体3的耐受温度不小于浆料的烧结温度。也就是说,在浆料的烧结温度下,空心体3不会发生形变或化学反应。空心体3的材质可以为致密陶瓷材料。
一实施例中,所述制造方法包括:
S600、制造与所述基体的结构相同的母模,根据所述母模制造所述反模。
请参阅图9,本实施例中,可以通过一个或少量的母模30批量生成大量的反模10。母模30生产方式不限,示例性的,母模30可以通过钻孔或冲孔等方式生产。母模30的需求量小,并且加工成型方式可以多样,能够有效控制生产成本。反模10与母模30嵌套。
母模30可以采用不锈钢等材质。这样,便于通过钻孔或冲孔等方式形 成与导液孔1c相同的孔,母模30制造方便且成本低。
一实施例中,处理所述生胚20以形成所述基体1和所述阻液层2之后,所述制造方法包括:
在所述发热面1b镀膜或刷膜以形成发热膜4。
示例性的,一实施例中,可以通过物理气相沉积(Physical Vapor Deposition,PVD)或化学气相沉积的方式,在发热面1b沉积发热膜4。如此,在发热面1b镀膜形成发热膜4。这种方式,一方面,发热膜4能够与发热面1b紧密结合,减少装配步骤,另一方面,发热膜4的厚度可以在微米或纳米级厚度范围内,这样不仅可以满足雾化组件整体小型化的需求,还可以节省发热膜4的材料。
示例性的,一实施例中,在发热面1b刷膜以形成发热膜4。示例性的,采用刮涂导电浆料、制备厚膜的方式制得发热膜4。
一实施例中,请参阅图5和图9,反模10为软性材质。软性材质是在较小的作用力下能够发生形变的结构。如此,一方面,反模10的成本较低;另一方面,反模10容易从母模30上脱离下来,反模10也容易和生胚20、阻液层2分离,既不易损害母模30,也不易损害生胚20和阻液层2。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂等等。
一实施例中,请参阅图5和图9,反模10为一次性牺牲模。一次性牺牲模是指完成单个基体1生产即废弃的模。如此,在将反模10与生胚20分离时,可以破坏反模10,这样,反模10可以与生胚20快速分离,便于操作。
一些实施例中,反模10可以一体注塑成型。示例性的,将母模30作为模仁,向模仁中注入熔体形成反模10。具体地,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入母模30中,待冷却后,脱除母模30,即可得到反模10。反模10为一体注塑成型结构,工艺简单且成本低。
一实施例中,雾化组件包括发热层5,导液孔的至少部分周侧面覆盖有发热层5,制造方法包括:
S700、在所述立柱的周向面覆盖所述发热层5。
由于在反模10的表面覆盖发热层5的工艺相对简单,工艺要求相对较低,因此,可以根据在导液孔1c的设定位置覆盖发热层5的设计需求,在立柱12的对应位置覆盖发热层5。
这里,立柱12覆盖发热层5的周向面的部位可以根据导液孔1c中的发热层5的需求来定。示例性的,一些实施例中,发热层5覆盖导液孔1c的部分壁面。就制造方法而言,立柱12的部分周向面覆盖发热层5。立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位相对应,即立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位能够重合。
一些实施例中,发热层5覆盖导液孔1c的全部壁面。就制造方法而言,立柱12的全部周向面覆盖发热层5。立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位能够重合。
可以理解的是,可以在立柱12的周向面设置掩模。掩模的图形与需要在立柱12的周向面上形成的发热层5的图形相同,这样,便于在立柱12的部分周向面覆盖发热层5。
需要说明的是,在生胚20脱除反模10后,发热层5会附着至生胚20上。通过将生胚20脱除反模10,这样,可以便利地在生胚20的孔的周向面覆盖发热层5。
示例性的,一些实施例中,阻液层2和发热层5可以不重叠。也就是说,阻液层2和发热层5错位。如此,可以通过一个掩模或多个掩模来实现阻液层2和发热层5的沉积。例如,可以通过掩模在立柱12的设定位置分别沉积阻液层2和发热层5。
另一些实施例中,阻液层2和发热层5可以部分重叠。也就是说,阻液 层2和发热层5可以部分叠置。例如,可以通过掩模在立柱12的设定位置按照先后顺序分别沉积阻液层2和发热层5。
又一些实施例中,阻液层2和发热层5可以完全重叠。例如,阻液层2可以位于导液孔1c的周向面和发热层5之间。以此为例,可以先沉积阻液层2,再沉积发热层5。
一实施例中,所述制造方法包括:
在所述立柱的周向面覆盖所述发热层5的同时,所述连接板的朝向所述立柱的至少部分表面覆盖发热膜。
这里,生胚20朝向连接板11的表面为基体1的发热面1b,发热膜4设置于发热面1b上。
可以根据在发热面1b的预设位置覆盖发热膜4的设计需求,连接板11的朝向立柱12的表面的对应位置覆盖发热膜4,这样,在反模10与生胚20分离后发热膜4会附着至生胚20与连接板11接触的表面上即发热面1b上,再烧结生胚20,发热膜4会更紧密地贴合在发热面1b上。
可以理解的是,可以在连接板11的朝向立柱12的至少部分表面覆盖发热膜4和立柱12的至少部分周向面同步覆盖发热层5。如此,可以减少工艺步骤,提升生产效率。
需要说明的是,由于立柱12和连接板11连接,因此,发热膜4不会封堵生胚20脱除反模10后的孔的一端开口。
一些实施例中,如果生胚20远离连接板11的端面上覆盖有发热膜4,可以通过研磨、抛光或其他方式去除生胚20远离连接板11的端面上的发热膜4。另一些实施例中,也可以通过掩模遮挡生胚20远离连接板11的端面,避免发热膜4的材料沉积至生胚20远离连接板11的端面上。
请参阅图1、图2、图8和图10,本申请实施例一方面提供一种雾化组件,雾化组件包括基体1和发热层5,基体1包括进液面1a、发热面1b和导液孔1c, 导液孔1c连通进液面1a和发热面1b。具体地,导液孔1c可以将来自进液面1a的液态基质导流至发热面1b。
发热层5设置于导液孔1c的周向面上。发热层5能够通电发热。这样,发热层5可以用于加热导液孔1c中的液态基质。示例性的,发热层5可以将液态基质加热至雾化成气溶胶。
相关技术中,只在发热面上设置发热膜,发热膜发热以加热发热面上的液态基质,由于发热面与发热膜接触的部位有限,这就导致发热面的不同区域的温度存在不同,发热面的部分区域温度可能低于液态基质的沸点,来自导液孔的液态基质可能流动至发热面的温度低于沸点的区域,致使发热面的温度低于沸点的区域无法雾化液态基质,造成雾化效率较低。
本申请实施例提供的雾化组件,一方面,导液孔1c的周向面设置发热层5,液态基质需要通过导液孔1c流动至发热面1b,这样,流经导液孔1c的液态基质均能够被加热至沸点,从而提高雾化效率。另一方面,导液孔1c的周向面设置有发热层5,发热层5能够阻挡导液孔1c中的液体基质渗入至基体1中。这样,能够避免液态基质进入基体1使得基体1的导热系数增大。又一方面,发热层5还能够增加基体1的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。
发热层5可以通电后通过电阻发热的方式发热。示例性的,发热层5的材质包括但不限于金属和/或合金等等。例如,发热层5为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
液态基质的类型不限,液态基质包括溶剂和添加剂等等。溶剂包括但不限于丙二醇(沸点为187℃)和/或丙三醇(沸点为290℃)。添加剂可以包括尼古丁盐、植物萃取物和/或口味添加剂等。口味添加剂可以为香精香料。
一实施例中,发热层5覆盖导液孔1c的部分壁面。这样,可以兼顾导液孔1c的供液速率和雾化速率。
发热层5的形状不限,示例性的,一些实施例中,发热层5可以环绕导液孔1c的周向面呈环形结构。另一些实施例中,发热层5也可以沿导液孔1c轴向设置的长条形结构。
另一实施例中,请参阅图1和图2,发热层5覆盖导液孔1c的全部壁面。这样,可以使得加热面积足够大,以最大化提高雾化速率。
一实施例中,请参阅图1和图2,雾化组件包括发热膜4,发热膜4设置于发热面1b上,发热膜4与发热层5电连接。一方面,发热膜4能够加热流动至发热面1b的液态基质,例如可以通过发热膜4将液态基质加热雾化成气溶胶,发热层5和发热膜4相结合,可以增加发热面积,增加液态基质的热交换面积,保证雾化效率。另一方面,发热膜4与发热层5电连接,发热膜4可以与外部接电结构例如电走线或接电端子电连接,发热膜4与外部接电结构电连接更加简单、便捷,这样,不仅可以减少与每个发热层5电连接的外部接电结构,还能够简化布线。
发热膜4可以通电后通过电阻发热的方式发热。示例性的,发热膜4包括但不限于金属和/或合金等等。例如,发热膜4为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
一些实施例中,发热层5和发热膜4可以采用相同的材质。这样,可以简化制造步骤,例如,发热层5和发热膜4可以同步制备。可以理解的是,另一些实施例中,发热层5和发热膜4可以采用不同的材质。
一实施例中,发热层5与进液面1a不接触。例如,进液面1a与导液孔1c之间的连接处和发热层5不接触。这样能够避免发热层5接触进液面1a上的液态基质,从而避免发热层5影响进液面1a和储液器中的液态基质。
一实施例中,发热层5从导液孔1c与发热面1b的连接处延伸至导液孔1c的预设位置,预设位置与进液面1a之间的距离不小于导液孔1c的深度的四分之一。也就是说,预设位置与进液面1a之间的距离大于或等于导液孔1c的深 度的四分之一。这样设计,一方面,发热层5与进液面1a之间的距离适中,不仅能够有效避免发热层5接触进液面1a上的液态基质,还能够在一定程度上避免来发热层5的热量通过热传导传递至进液面1a上。另一方面,发热层5与发热面1b接触,不仅便于发热层5的热量传递至发热面1b位于导液孔1c周围的部位,还便于发热层5与发热膜4直接接触以实现电连接。
一实施例中,请参阅图1,发热层5的厚度h在0.1μm~20μm之间。发热层5的厚度h为0.1μm、0.15μm、0.2μm、0.3μm、0.5μm、0.8μm、1.0μm、1.5μm、2.0μm、3.0μm、4.0μm、5.0μm、6.0μm、8μm、9μm、10μm、11μm、15μm、17μm、18μm或者20μm等等。如此设计,发热层5的厚度适中,一方面,既能够有效阻挡液态基质,增强基体1的结构强度,还便于封闭层制造成型,能够有效控制制造成本,另一方面,发热层5的电阻值较大,便于发热层5在较短时间达到较大热量。
一些实施例中,导液孔1c的横截面形状包括但不限于圆形、椭圆形或多边形等等。例如,请参阅图10,在导液孔1c的横截面形状为圆形的情况下,当量直径即为圆形的导液孔1c的直径。
可以理解的是,导液孔1c的横截面形状是以垂直于导液孔1c的深度方向的平面为截面。
一实施例中,请参阅图1和图2,导液孔1c可以为直孔。也就是说,单个导液孔1c沿直线延伸。如此,一方面,导液孔1c易于成型,制造难度低,另一方面,便于将进液面1a的液态基质快速导流至发热面1b。
一实施例中,请参阅图1和图2,导液孔1c为等径孔。也就是说,单个导液孔1c任意位置处的当量直径相等。
一实施例中,请参阅图8和图10,导液孔1c的数量为多个,多个导液孔1c有序排列。有序排列是指按照设定规则布置。这种设定规则是可以人为设计并控制的。有序排列包括但不限于阵列布置。示例性的,一实施例中, 阵列布置可以是多个导液孔1c一维阵列排列,即多个导液孔1c按照一个方向间隔排列。一实施例中,阵列布置可以是多个导液孔1c二维阵列排列,即多个导液孔1c按照两个或两个以上相交的方向间隔排列,例如,多个导液孔1c可以呈矩形阵列或圆形阵列排布等等。有序排列的导液孔1c的数量等能够进行设计和计算,基体1对液态基质的导流效果更加可控,能够提高产品的生产一致性,换句话说,在批量生产中,不同基体1的导液孔1c基本一致,使得同批次出厂的发热膜的加热效果趋于一致。
由于液态基质通常为混合物,液态基质中的各种成分的挥发特性并不相同,如果对各种成分无差别雾化,会影响部分成分的雾化,影响口感,而且相关技术中的雾化组件的发热面的温度固定,存在雾化口味单一和不可调的问题。本申请针对上述问题,一实施例中,导液孔1c的数量为多个,多个导液孔1c中的至少部分的当量直径不相等。例如,可以是多个导液孔1c中的一部分为第一当量直径,多个导液孔1c中的其余部分为第二当量直径,第一当量直径和第二当量直径不相等。又例如,可以是多个导液孔1c中的一部分为第一当量直径,多个导液孔1c中的一部分为第二当量直径,多个导液孔1c中的其余部分为第三当量直径,第一当量直径、第二当量直径和第三当量直径不相等。本领域技术人员可以根据上述示例获得其他当量直径不相等的实施例,在此不再一一赘述。
导液孔1c的当量直径不同使得对应的导液孔1c中的温度不同,发热层5产生的面能量不同,这样不同当量直径的导液孔1c具有不同的温度场,这样设计,一方面,雾化组件可以适应不同类型的液态基质,例如针对不同口味和/或不同沸点的液态基质均能产生较好的雾化效果,满足用户对各种不同味道的需求,便于用同一个雾化组件雾化不同成分的液态基质,解决相关技术中的雾化组件的发热面的温度固定,雾化口味单一和不可调的问题。另一方面,如此设计,针对同一类型的液态基质的不同成分,不同当 量直径的导液孔1c可以产生不同粒径的气溶胶,从而改善口感,使得气溶胶的口感更加绵密或层次更加丰富。
一实施例中,空心体3呈球形结构,空心体3的外径在0.1μm~25μm之间。优选地,空心体3的外径在0.1μm~10μm之间。示例性的,空心体3的外径为0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、1.0μm、5.0μm、7.0μm、10μm、12μm、15μm、16μm、17μm、18μm、19μm、20μm、20.5μm、21μm、22μm、24μm或者25μm等等。也就是说,空心体3的三维外轮廓形状呈球形。空心体3的整体尺寸适中,一方面,既便于空心体3稳固地嵌入基体1中,又便于空心体3在基体1中较为均匀地分布。另一方面,空心体3的制造难度适中,制造成本较低。
一些实施例中,雾化组件包括阻液层,导液孔1c的至少部分周向面覆盖有阻液层。示例性的,一实施例中,导液孔1c的部分周向面覆盖有阻液层。另一实施例中,导液孔1c的全部周向面覆盖有阻液层。
本实施例中,一方面,在导液孔1c的至少部分周向面覆盖有阻液层,阻液层能够阻挡导液孔1c中流通的液体基质渗入至基体1中。这样,能够避免液态基质进入基体1使得基体1的导热系数增大。另一方面,阻液层还能够增加基体1的机械强度,使得雾化组件具有更好的结构强度,提高抗压性能。
示例性的,一些实施例中,阻液层和发热层5可以不重叠。也就是说,阻液层和发热层5错位。另一些实施例中,阻液层和发热层5可以部分重叠。也就是说,阻液层和发热层5可以一部分叠置。又一些实施例中,阻液层和发热层5可以完全重叠。例如,阻液层可以位于导液孔1c的周向面和发热层5之间。
示例性的,一些实施例中,雾化组件包括发热层,发热层设置于导液孔的周向面上;在将与反模的轮廓形状适配的模框和反模间隙套装,以共 同限定出模腔的步骤之前,还包括:在立柱的周向面覆盖发热层。
示例性的,一些实施例中,在浆料填充模腔以形成生胚的步骤之后,还包括:将反模与生胚分离,使得发热层附着至生胚上。
示例性的,一些实施例中,处理生胚以形成基体的步骤,具体包括:处理生胚以形成基体和发热层。
请参阅图12,本申请实施例的第三实施例还提供一种制造方法,用于制造雾化组件,雾化组件包括基体1和发热层5,基体1包括进液面1a、发热面1b和导液孔1c,导液孔1c连通进液面1a和发热面1b,发热层5设置于导液孔1c的周向面上,制造方法包括:
S10、提供与所述基体的结构嵌套的反模,其中,所述反模包括连接板和与所述连接板连接的立柱,所述立柱对应所述导液孔。
请参阅图5和图8,反模10的结构与基体1的结构嵌套,也就是说,连接板11能够与基体1的至少部分外表面重叠,立柱12能够插入基体1的导液孔1c中。
一些实施例中,请参阅图5和图8,导液孔1c的数量为多个,连接板11的数量可以为一个,连接板11的厚度方向的一个面上有多个立柱12,立柱12可以与导液孔1c一一对应。
可以理解的是,立柱12可以有序排列,这样,可以与有序排列的导液孔1c一一对应。
S20、在所述立柱的周向面覆盖所述发热层。
请参阅图6,由于在反模10的表面覆盖发热层5的工艺相对简单,工艺要求相对较低,因此,可以根据在导液孔1c的设定位置覆盖发热层5的设计需求,在立柱12的对应位置覆盖发热层5。
这里,立柱12覆盖发热层5的周向面的部位可以根据导液孔1c中的发热层5的需求来定。示例性的,一些实施例中,发热层5覆盖导液孔1c 的部分壁面。就制造方法而言,立柱12的部分周向面覆盖发热层5。立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位相对应,即立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位能够重合。
一些实施例中,发热层5覆盖导液孔1c的全部壁面。就制造方法而言,立柱12的全部周向面覆盖发热层5。立柱12覆盖发热层5的部位与导液孔1c覆盖发热层5的部位能够重合。
可以理解的是,可以在立柱12的周向面设置掩模。掩模的图形与需要在立柱12的周向面上形成的发热层5的图形相同,这样,便于在立柱12的部分周向面覆盖发热层5。
S30、将反模装配于模框中以共同限定出模腔,浆料填充所述模腔以形成生胚。
也就是说,模框可以为中空的闭合结构,将反模10放置于模框中,模框的内壁面与反模10之间的间隙即为模腔。
示例性的,模框的轮廓形状可以与反模10的轮廓形状适配,使得模框能够与反模10间隙套装。模框的内壁面与反模10共同构成模腔。
可以理解的是,间隙套装是指模框的轮廓形状与反模10的轮廓形状一致,但模框的尺寸大于反模10的尺寸,以便模框能够与反模10间隙配合。具体地,模框朝向反模10的所有面与反模10之间均存在间隙,以便浆料能够在模腔中流动,从而充满模腔。
示例性的,基体1的轮廓形状呈多面体,则反模10和模框均为多面体,且基体1的面的数量、反模10的面的数量和模框的面的数量相等。另外,基体1的面的形状、反模10的面的形状和模框的面的形状一一对应且相同,但是,基体1的体积、反模10的体积和模框的体积可以不同。
请参阅图9和图10,以基体1的轮廓形状呈六面体为例,反模10和模框均为六面体。
请参阅图7,浆料为基体1的组成材料,例如浆料可以为陶瓷材料。浆料具有一定温度,以便浆料呈流动的液态。浆料的温度下降至凝固点以下则呈固态。浆料凝固成固态后形成生胚30。
S40、将所述反模与所述生胚分离,使得所述发热层附着至所述生胚上。
通过将生胚30脱除反模10,这样,可以便利地在生胚30的孔的周向面覆盖发热层5,生胚30的孔即为导液孔1c。
S50、处理所述生胚以形成所述基体和所述发热层。
根据生胚30的情况进行处理后形成基体1和发热层5。
相关技术中,需要采用激光诱导、腐蚀成孔等等方式形成导液孔1c,此种生产方式不仅生产设备成本高,对工艺要求也较高。
本申请实施例的制造方法,先制造与基体1的结构嵌套的反模10,在立柱12的周向面覆盖发热层5,再利用模腔注浆形成生胚30,这样,脱除反模10后可形成基体1和发热层5。采用反模10制造生胚30,模具相对简单,无需采用激光或者腐蚀成孔的工艺造孔,生产设备成本较低,制造工艺更为简单。而且将发热层5先覆盖至立柱12的周向面,脱模后发热层5能够附着至生胚30上,无需在孔内镀膜,制造工艺简单,可以减少镀膜步骤,生产难度低。采用本申请的制造方法,能够适应批量生产雾化组件,可以极大地提高产品良率,降低材料损耗,生产效率高。
一实施例中,浆料填充所述模腔以形成生胚,可以包括:通过光固化的方式使得所述模腔中的浆料固化形成所述生胚。
这样可以使得模腔中的浆料快速固化,以节约固化时长。例如可以通过紫外光固化浆料。
一实施例中,S50、处理所述生胚以形成所述基体和所述发热层,包括:
烧结脱除所述反模后的所述生胚。
请参阅图7和图8,以浆料为陶瓷材料为例,反模10与生胚30分离后发 热层5会附着至生胚30的孔的壁面上;再烧结生胚30,以便生胚30形成多孔陶瓷的空间立体骨架结构成为基体1,同时,发热层5会更紧密地贴合在基体1的导液孔1c的周向面上。
一实施例中,所述制造方法包括:
在所述立柱的周向面覆盖所述发热层的同时,所述连接板的朝向所述立柱的至少部分表面覆盖发热膜。
这里,请参阅图7和图8,生胚30朝向连接板11的表面为基体1的发热面1b,发热膜4设置于发热面1b上。
可以根据在发热面1b的预设位置覆盖发热膜4的设计需求,连接板11的朝向立柱12的表面的对应位置覆盖发热膜4,这样,在反模10与生胚30分离后发热膜4会附着至生胚30与连接板11接触的表面上即发热面1b上,再烧结生胚30,发热层5会更紧密地贴合在发热面1b上。
可以理解的是,可以在连接板11的朝向立柱12的至少部分表面覆盖发热膜4和立柱12的至少部分周向面同步覆盖发热层5。如此,可以减少工艺步骤,提升生产效率。
需要说明的是,由于立柱12和连接板11连接,因此,发热膜4不会封堵生胚30脱除反模10后的孔的一端开口。
一些实施例中,如果生胚30远离连接板11的端面上覆盖有发热膜4,可以通过研磨、抛光或其他方式去除生胚30远离连接板11的端面上的发热膜4。另一些实施例中,也可以通过掩模遮挡生胚30远离连接板11的端面,避免发热膜4的材料沉积至生胚30远离连接板11的端面上。
一实施例中,处理所述生胚以形成所述基体和所述发热层之后,所述制造方法包括:
在所述发热面镀膜或刷膜以形成发热膜。
也就是说,可以在基体1成型后,再在基体1的发热面1b上制备发热膜4。
示例性的,一实施例中,可以通过物理气相沉积(Physical Vapor Deposition,PVD)或化学气相沉积(Chemical Vapor Deposition,CVD)的方式,在发热面1b沉积发热膜4。如此,在发热面1b镀膜形成发热膜4。这种方式,一方面,发热膜4能够与发热面1b紧密结合,减少装配步骤,另一方面,发热膜4的厚度可以在微米或纳米级厚度范围内,这样不仅可以满足雾化组件整体小型化的需求,还可以节省发热膜4的材料。
示例性的,一实施例中,在发热面1b刷膜以形成发热膜4。示例性的,采用刮涂导电浆料、制备厚膜的方式制得发热膜4。
一实施例中,通过化学气相沉积形成发热层5。化学气相沉积是利用气态或蒸汽态的物质在气相或气固界面上发生反应生成固态沉积物的过程。这样,便于在立柱12的周向面均匀覆盖发热层5。
化学气相沉积可以为等离子体增强化学的气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)。
可以理解的是,在同步制备发热层5和发热膜4的情况下,发热层5和发热膜4可以采用相同材质并均以化学气相沉积的方式同步制备。
一实施例中,浆料中掺有空心体3,其中,空心体3的内部填充热的不良导体。
浆料凝固后即形成嵌设有空心体3的生胚30,这样,空心体3能够快速地嵌入基体1中,以便与基体1成为一体成型结构。空心体3与基体1直接接触。如此,不仅可以极大地减少空心体3的装配步骤,还便于空心体3在基体1中分散分布。
这里的空心体3与前述的雾化组件的空心体3结构相同,此处不再赘述。
可以理解的是,可以先将空心体3和浆料混合后,再注入模腔中。这样,便于空心体3在基体1中均匀分布。
需要说明的是,空心体3的耐受温度不小于浆料的烧结温度。也就是说, 在浆料的烧结温度下,空心体3不会发生形变或化学反应。空心体3的材质可以为致密陶瓷材料。
一实施例中,所述制造方法包括:
S60、制造与所述基体的结构相同的母模,根据所述母模制造所述反模。
请参阅图9,本实施例中,可以通过一个或少量的母模300批量生成大量的反模10。母模300生产方式不限,示例性的,母模300可以通过钻孔或冲孔等方式生产。母模300的需求量小,并且加工成型方式可以多样,能够有效控制生产成本。反模10与母模300嵌套。
母模300可以采用不锈钢等材质。这样,便于通过钻孔或冲孔等方式形成与导液孔1c相同的孔,母模300制造方便且成本低。
一实施例中,请参阅图5和图9,反模10为软性材质。软性材质是在较小的作用力下能够发生形变的结构。如此,一方面,反模10的成本较低;另一方面,反模10容易从母模300上脱离下来,反模10也容易和生胚30、发热层5分离,既不易损害母模300,也不易损害生胚30和发热层5。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂等等。
一实施例中,请参阅图5和图9,反模10为一次性牺牲模。一次性牺牲模是指完成单个基体1生产即废弃的模。如此,在将反模10与生胚30分离时,可以破坏反模10,这样,反模10可以与生胚30快速分离,便于操作。
一些实施例中,反模10可以一体注塑成型。示例性的,将母模300作为模仁,向模仁中注入熔体形成反模10。具体地,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入母模300中,待冷却后,脱除母模300,即可得到反模10。反模10为一体注塑成型结构,工艺简单且成本低。
一些实施例中,雾化组件包括阻液层,导液孔1c的至少部分周向面覆盖有阻液层,制造方法包括:
S70、在所述反模的表面覆盖所述阻液层,其中,所述立柱的至少部分周向面覆盖有所述阻液层。
由于在反模10的表面覆盖阻液层的工艺相对简单,工艺要求相对较低,因此,可以根据在导液孔1c的设定位置覆盖阻液层的设计需求,在立柱12的对应位置覆盖阻液层。
这里,立柱12覆盖阻液层的周向面的部位可以根据导液孔1c中的阻液层的需求来定。示例性的,一些实施例中,阻液层覆盖导液孔1c的部分壁面。就制造方法而言,立柱12的至少部分周向面覆盖阻液层。立柱12覆盖阻液层的部位与导液孔1c覆盖阻液层的部位相对应,即立柱12覆盖阻液层的部位与导液孔1c覆盖阻液层的部位能够重合。一些实施例中,阻液层覆盖导液孔1c的全部壁面。就制造方法而言,立柱12的全部周向面覆盖阻液层。立柱12覆盖阻液层的部位与导液孔1c覆盖阻液层的部位能够重合。
可以理解的是,可以在立柱12的周向面设置掩模。掩模的图形与需要在立柱12的周向面上形成的阻液层的图形相同,这样,便于在立柱12的部分周向面覆盖阻液层。
需要说明的是,在生胚30脱除反模10后,阻液层会附着至生胚30上。通过将生胚30脱除反模10,这样,可以便利地在生胚30的孔的周向面覆盖阻液层。
示例性的,一些实施例中,阻液层和发热层5可以不重叠。也就是说,阻液层和发热层5错位。如此,可以通过一个掩模或多个掩模来实现阻液层和发热层5的沉积。例如,可以通过掩模在立柱12的设定位置分别沉积阻液层和发热层5。
另一些实施例中,阻液层和发热层5可以部分重叠。也就是说,阻液层和发热层5可以部分叠置。例如,可以通过掩模在立柱12的设定位置按照先后顺序分别沉积阻液层和发热层5。
又一些实施例中,阻液层和发热层5可以完全重叠。例如,阻液层可以位于导液孔1c的周向面和发热层5之间。以此为例,可以先沉积阻液层,再沉积发热层5。
需要说明的是,发热面1b上有阻液层时,也可以采用掩模和先后镀膜的方式,实现发热面1b上的阻液层和发热膜4两者的沉积。
一些实施例中,S70、在所述反模的表面覆盖所述阻液层,包括:
所述连接板的朝向所述立柱的至少部分表面覆盖有所述阻液层。
这里,生胚30朝向连接板11的表面可以为基体1的进液面1a或者基体1的发热面1b,进液面1a的部分覆盖有阻液层,或者,发热面1b的部分覆盖有阻液层。
需要说明的是,由于立柱12和连接板11连接,因此,阻液层不会封堵生胚30脱除反模10后的孔的一端开口。
一些实施例中,可以通过研磨、抛光或其他方式去除生胚30远离连接板11的端面上的部分阻液层。这样保证生胚30用于形成导液孔1c的孔为通孔。
示例性的,一些实施例中,发热面1b上的阻液层和发热膜4可以不重叠。也就是说,阻液层和发热膜4错位。如此,可以通过一个掩模或多个掩模来实现阻液层和发热膜4的沉积。例如,可以通过掩模在发热面1b的设定位置分别沉积阻液层和发热膜4。
另一些实施例中,发热面1b上的阻液层和发热膜4可以部分重叠。也就是说,阻液层和发热膜4可以部分叠置。例如,可以通过掩模在发热面1b的设定位置按照先后顺序分别沉积阻液层和发热膜4。
又一些实施例中,发热面1b上的阻液层和发热膜4可以完全重叠。例如,阻液层可以位于发热面1b和发热膜4之间。以此为例,可以先沉积阻液层,再沉积发热膜4。
一实施例中,通过化学气相沉积在反模10的表面覆盖阻液层。这样,便于在反模10的表面均匀覆盖阻液层。
请参阅图13至图17,雾化器100包括储液腔100a以及本申请任一实施例提供的雾化组件,储液腔100a用于存储气溶胶产生基质,雾化组件的第一表面1d与储液腔100a流体连通。雾化组件与储液腔100a流体相通,也就是说,气溶胶产生基质可以经储液腔100a导引至雾化组件,雾化组件用于吸收并加热雾化气溶胶产生基质。
本申请实施例提供了一种雾化器,请参阅图17,包括壳体110以及雾化座120。
请参阅图17,壳体110设置有收容腔以及出气通道110a,气溶胶生成基质产生的气溶胶经出气通道110a供使用者吸食,需要说明的是,使用雾化器100的具体方式在此不做限制,例如使用者可以通过壳体110吸食气溶胶,也可以通过额外的吸嘴与壳体110配合吸食气溶胶。
请继续参阅图17,雾化座120的至少部分结构设置在收容腔中,雾化座120的顶壁与壳体110之间限定出用于存储气溶胶生成基质的储液腔100a,雾化座120形成有雾化腔120a以及至少一个进液通道,进液通道连通于储液腔100a和设置在雾化腔120a的雾化组件之间,雾化腔120a通过出气通道110a与外界连通。也就是说,存储在储液腔100a内的气溶胶生成基质通过进液通道能够进入雾化腔120a进行加热雾化,加热雾化生成的气溶胶经出气通道110a流出。
需要说明的是,所述的雾化座120的至少部分结构设置在收容腔内指的是,可以是雾化座120的部分结构设置在收容腔内,也可以是雾化座120的全部结构设置在收容腔内。
储液腔100a内的气溶胶生成基质经进液通道导流至雾化腔120a内进行加热雾化以产生气溶胶,储液腔100a内的气溶胶生成基质被消耗后,外界 的空气通过换气通道的进入储液腔100a以平衡储液腔100a内的压力。
本申请实施例提供了一种雾化组件,请参阅图13至图16,包括基体1以及发热膜4。基体1具有导液孔1c以及相对设置的第一表面1d和第二表面1e,第一表面1d的至少部分区域形成进液面1a,第二表面1e的至少部分区域形成发热区域1g,发热区域1g包括朝向不同方向的发热面1b,导液孔1c设置于基体1,用于将气溶胶生成基质从进液面1a导引至发热面1b,发热膜4设置于发热面1b。即导液孔1c连通进液面1a和发热面1b,通过在发热面1b上设置发热膜4,用于对分布于发热面1b上的气溶胶生成基质进行加热雾化。
本申请实施例提供的雾化组件,发热区域1g包括朝向不同方向的发热面1b,即各发热面1b上的导液孔1c朝向不同方向,也就是说,该雾化组件具有不同朝向的雾化角度,可以实现雾化各向喷射,即使得雾化的气溶胶朝向不同角度喷射,从而在一定程度上可以减少气溶胶与从外界流入的气流对冲,更有利于从外界流入的气流将从不同雾化角度雾化的气溶胶带出,提高了烟雾量。
一实施例中,第二表面1e的至少部分区域外凸形成发热区域1g,通过将第二表面1e的至少部分区域外凸形成发热区域1g,发热区域1g包括朝向不同方向的发热面1b,导液孔1c设置于基体1,如此,在发热面1b在第二表面1e上的投影面积一定的情况下,通过将第二表面1e的至少部分区域外凸形成发热区域1g,发热区域1g包括朝向不同方向的发热面1b,提高了发热面1b的总面积,发热面1b上的气溶胶生成基质分布面积更大,可以增大气溶胶生成基质的热交换面积,不仅能够提高雾化量,还能够更均衡地加热雾化气溶胶生成基质,降低气溶胶生成基质因局部高温产生的有害物质含量,可以有效改善使用体验。
一实施例中,发热面1b与对应的进液面1a平行,如此,可以保持进 液的均匀稳定,可以使得雾化组件更均衡地加热雾化气溶胶生成基质。
需要说明的是,发热面1b与对应的进液面1a平行指的是,发热面1b上所有点到对应的进液面1a的距离都相等,其中,发热面1b与对应的进液面1a可以是平面,也可以是曲面。
需要说明的是,发热面1b与对应的进液面1a平行,导液孔1c大致垂直于发热面1b和进液面1a设置。
一实施例中,导液孔1c有序排列,一方面,相较于无序排列的孔洞,有序排列的导液孔1c的数量等能够进行设计和计算,基体1对气溶胶生成基质的导流效果更加可控,能够提高产品的生产一致性,换句话说,在批量生产中,不同基体1的导液孔1c基本一致,使得同批次出厂的发热膜4的加热效果趋于一致。
无序排列是指孔洞随机生成,没有设定规则。有序排列是指多个导液孔1c按照设定规则排列。有序排列包括但不限于阵列排列。示例性的,一实施例中,阵列布置可以是多个导液孔1c一维阵列排列,即多个导液孔1c按照一个方向间隔排列。一实施例中,阵列布置可以是多个导液孔1c二维阵列排列,即多个导液孔1c按照两个相交的方向间隔排列,例如,多个导液孔1c可以呈矩形阵列或圆形阵列排布等等。
基体1可以采用陶瓷材质。陶瓷材质具有导热均匀性好等特点。
发热膜4的具体结构形式在此不做限制,示例性地,发热膜4为设置于基体1上的发热膜。
发热膜的材质不限,示例性的,发热膜包括但不限于金属和/或合金等等。例如,发热膜为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
发热膜的电阻值可以根据需求设定,示例性的,本申请中,发热膜的电阻值在0.2Ω(欧姆)-0.8Ω之间。如此,发热膜既能够快速升温,又能够 较好地匹配电源组件。
一实施例中,请参阅图15和图16,发热面1b沿基体1的中心对称设置。如此,可以使得雾化组件更均衡地加热雾化气溶胶生成基质,另外,发热面1b沿基体1的中心对称设置,有利于将各发热面1b与雾化组件的进液面1a设置为等距的,进而保持进液的均匀稳定。
一实施例中,请参阅图13至图16,第一表面1d的至少部分区域形成凹槽1n,进液面1a设置于所述凹槽1n的槽壁面上。一方面,凹槽1n能够暂存气溶胶生成基质,不仅能够减少来自储液腔100a的大量气溶胶生成基质直接冲击雾化组件,起到缓流作用,还能够起到预存气溶胶生成基质,提高导流面积,以便及时补充至发热面1b。
一实施例中,请继续参阅图13至图16,发热区域的轮廓形状呈三棱柱形,三棱柱的至少两个侧面为发热面1b。即至少两个发热面1b上的导液孔1c朝向不同方向,也就是说,该雾化组件具有不同朝向的雾化角度,可以实现雾化各向喷射,即使得雾化的气溶胶朝向不同角度喷射,从而在一定程度上可以减少气溶胶与从外界流入的气流对冲。
一实施例中,请继续参阅图13至图16,发热区域1g包括两个发热面1b,两个发热面1b之间的距离随着远离第二表面1e而逐渐减小。即两个发热面1b随着远离第二表面1e而逐渐靠近,如此,有利于导液孔1c朝向近似垂直于发热面1b的方向设置,也就是说,当基体1水平放置,且发热区域1g朝下时,雾化组件的两个雾化角度均朝向两侧,有利于减少雾化的气溶胶直接向下喷射,从而在一定程度上可以减少气溶胶与从外界流入的气流对冲,更有利于从外界流入的气流将从不同雾化角度雾化的气溶胶带出,提高了烟雾量。
一实施例中,请继续参阅图13至图16,两个发热面1b远离第二表面1e的一端相交。也就是说,发热区域1g呈三棱柱,三棱柱的至少两个侧面为 发热面1b,该雾化组件提高了总的发热面积,且在一定程度上可以减少气溶胶与从外界流入的气流对冲。
一实施例中,发热区域1g的轮廓形状呈柱形,柱形的至少部分外侧面为发热面1b。柱形包括但不限于长方体、正方体、圆柱等,本申请实施例以长方体为例进行举例说明,长方体的发热区域1g具有四个外侧面、一个底面和一个顶面,当底面与第二表面1e重合,长方体的四个外侧面和顶面中的部分或者全部均可作为发热面1b,不仅可以降低发热面1b的设计难度,还可以显著增加发热面1b的总面积,显著提升雾化量。发热区域1g的轮廓形状是指发热区域1g在多维空间中的外轮廓形状。
需要说明的是,长方体的顶面可以进行倒圆角处理,或者设计为弧面并与侧面平滑连接,进一步地增加了发热面1b的总面积。
一实施例中,发热面1b为曲面,且该曲面的曲率不为零,如此,相对于平面发热膜4,曲面发热面1b与散热面的比值相对较大,提高了热利用率,这里的散热面相当于进液面1a。另外,曲面发热面1b的雾化角度较广,如此,当发热区域1g朝下时,有利于减少雾化的气溶胶直接向下喷射,从而在一定程度上可以减少气溶胶与从外界流入的气流对冲,更有利于从外界流入的气流将从不同雾化角度雾化的气溶胶带出,进一步地提高了烟雾量。
示例性地,发热区域1g的轮廓形状呈球面,发热面1b至少构成部分球面。如此,可以使得发热面1b与散热面的比值相对较大,提高了热利用率,提升雾化量。
一实施例中,发热区域1g的轮廓形状呈抛物面、双曲面或椭球面。这些形状的发热区域1g可以在外侧面设置为曲面发热面1b,使得曲面发热面1b与散热面的比值相对较大,提高了热利用率,提高了烟雾量,具有较好的雾化效果。
可以理解的是,导液孔1c的孔径过小虽然能够减小供液速率但会限制供液速率,而导液孔1c的孔径过大虽然会提高供液速率但是又存在漏液风险,因此,一实施例中,导液孔1c的孔径为20μm-100μm,即导液孔1c的孔径在20μm-100μm之间。示例性的,导液孔1c的孔径为20μm、21μm、22μm、25μm、30μm、35μm、40μm、50μm、60μm、70μm、80μm、85μm、90μm、97μm或100μm等等。如此,导液孔1c的孔径适中,不仅能够保证供液效率较高,还能够避免漏液风险。
可以理解的是,发热面1b的孔隙率过大虽然能够提高供液量但基体1的结构强度较差,而发热面1b的孔隙率过小虽然会提高结构强度但是又存在供液量不足的问题,有鉴于此,一实施例中,请参阅图,发热面1b的孔隙率为20%-50%,即发热面1b的孔隙率在20%-50%之间。示例性的,发热面1b的孔隙率为20%、20.5%、21%、22%、25%、30%、35%、40%、45%或50%等等。如此,发热面1b的孔隙率适中,不仅能够保证供液量较大,还能够保证基体1的结构强度较大。
可以理解的是,导液孔1c的长度过长容易导致供液较慢,而导液孔1c的长度过短容易漏液,有鉴于此,一实施例中,请参阅图,导液孔1c的长度在0.1mm-10mm之间。示例性的,导液孔1c的长度为0.1mm、0.15mm、0.2mm、0.5mm、1.0mm、3.0mm、4.0mm、5.0mm、6.0mm、7.0mm、8.0mm、8.5mm、8.7mm、9.0mm或10.0mm等等。如此,导液孔1c的长度适中,不仅能够保证来自进液面1a的液态基质能够及时流动至发热面1b,还能够避免漏液风险。
一实施例中,请参阅图17,出气通道110a与发热面1b倾斜设置,即出气通道110a与发热面1b不垂直。如此,有利于从外界流入的气流将从不同雾化角度雾化的气溶胶带出,进一步地提高了烟雾量。
一实施例中,请参阅图17,电子雾化装置包括与外界连通的进气通道 110b,外界的气流可以经进气通道110b进入雾化腔120a,进气通道110b与发热面1b倾斜设置,即进气通道110b与发热面1b不垂直。进气通道110b例如沿电子雾化装置的轴向延伸,也就是说,外界的气流沿轴向流入雾化腔120a,如此,当发热区域1g朝下时,发热面1b上的不同朝向的导液孔1c不会对着进气通道110b喷射,而是朝着进气通道110b的侧面喷射,有利于减少雾化的气溶胶直接向下喷射,从而在一定程度上可以减少气溶胶与从外界流入的气流对冲,更有利于从外界流入的气流将从不同雾化角度雾化的气溶胶带出,进一步地提高了烟雾量。
一实施例中,请参阅图17,雾化座120开设有导气通道120b以及通气口120e,导气通道120b包括敞口端120c(即是图5示意出的导气通道120b的上端,且上端具有敞口)以及与敞口端120c相对的封闭端120d(即是图5示意出的导气通道120b的下端),通气口120e沿第一方向分居导气通道120b中轴线两侧,导气通道120b通过通气口120e连通雾化腔120a,通过敞口端120c连通出气通道110a;其中,第一方向和导气通道120b的中轴线垂直。如此,雾化腔120a内的气溶胶通过通气口120e进入导气通道120b,再经雾化腔120a的敞口端120c进入出气通道110a,不仅有效利用空间,还便于用户使用。
请参阅图17,壳体110与雾化座120共同形成进气通道110b,出气通道110a连通雾化腔120a的顶端,进气通道110b连通雾化腔120a的底端。也就是说,进气通道110b位于雾化腔120a的底侧,出气通道110a位于雾化腔120a的顶侧。可选地,出气通道110a的一端连通前述一些实施例中所示出的导气通道120b的敞口端120c,出气通道110a的另一端连通吸嘴,以实现吸气过程。
一实施例中,进液通道的数量为多个。示例性地,进液通道的数量为2个。如此,多个进液通道的设置不仅便于储液腔100a中的气溶胶生成基质 通过进液通道传输至雾化组件进行加热雾化,以提高雾化效率,还能够避免任意一个进液通道堵塞导致雾化组件吸液受阻,从而导致雾化组件干烧。
各进液通道沿出气通道110a的中轴线对称分布,如此,可以避免各进液通道之间的下液发生干扰,从而可以提高下液的顺畅性。
请参阅图11和图13,本申请实施例另一方面提供一种雾化组件的制造方法,雾化组件基体1和发热膜4,基体1具有导液孔1c以及相对设置的第一表面1d和第二表面1e,第一表面1d的至少部分区域形成进液面1a,第二表面1e的至少部分区域形成发热区域1g,发热区域1g包括朝向不同方向的发热面1b,导液孔1c设置于基体1,用于将气溶胶生成基质从进液面1a导引至发热面1b,发热膜4设置于发热面1b。制造方法包括:
S101、制造与所述基体的结构嵌套的反模,其中,所述反模具有与所述导液孔嵌套的立柱。
请参阅图18至图21,反模10的结构与基体1的结构嵌套,也就是说,反模10的所有面能够与基体1的所有面重合,反模10的立柱能够嵌入基体1的导液孔1c中。
立柱的长度可根据基体1的导液孔1c长度而确定,一些实施例中,立柱的长度不小于基体1的导液孔1c的长度。如此,以便保证最终形成的基体1的导液孔1c为通孔。
S201、将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔。
请参阅图21,这里,模框40的轮廓形状与反模10的轮廓形状适配,使得模框40能够与反模10间隙套装。模框40朝向反模10的面与反模10共同构成模腔。
可以理解的是,间隙套装是指模框40的轮廓形状与反模10的轮廓形状一致,但是两者的尺寸存在差异,以便框能够与反模10间隙配合。具体 地,模框40朝向反模10的所有面与反模10之间均存在间隙,以便浆料能够在模腔中,从而充满模腔。
示例性的,基体1的轮廓形状的截面呈三棱柱形,则反模10和模框40的截面均为三角形。另外,基体1的面的形状、反模10的面的形状和模框40的面的形状一一对应且相同,但是,基体1的体积、反模10的体积和模框40的体积不同。
S301、浆料填充所述模腔以形成生胚。
浆料为基体1的组成材料,例如浆料可以为陶瓷材料。浆料是具有一定温度,以便浆料呈流动地液态。在浆料的温度下降至凝固点以下则呈固态。浆料凝固成固态后形成生胚。
S401、处理所述生胚以形成所述基体。
根据生胚的情况进行处理后形成基体1。
本申请提供的制造方法可以用于制造本申请任一实施例中的雾化组件。
相关技术中,需要采用激光诱导、腐蚀成孔等等方式形成有序排列的导液孔,此种生产方式不仅生产设备成本高,对工艺要求也较高。
本申请实施例的制造方法,先制造与基体1的结构嵌套的反模10,再利用反模10注浆形成基体1,一方面,模具相对简单,生产设备成本较低,而且制造工艺较为简单,能够适应批量生产,能够极大地提高产品良率,降低材料损耗,生产效率高。
以浆料为陶瓷为例,S301、浆料填充所述模腔以形成生胚,还可以包括:
通过光固化的方式使得模腔中的浆料固化形成生胚。
这样可以使得模腔中的陶瓷浆料快速固化,以节约固化时长。例如可以通过紫外光固化陶瓷浆料。
当然,也可以通过热固化和/或凝胶固化的方式使得模腔中的浆料固化形成生胚。
可以理解的是,在生胚的导液孔1c被残留的浆料堵塞的情况下,可以对生胚进行通孔处理。
一实施例中,S401、处理所述生胚以形成所述基体,包括:
S410、将所述生胚烧结以形成所述基体。
将生胚进行高温排胶和/或烧结后形成基体1。
一实施例中,所述制造方法包括:
S501、制造与所述基体的结构相同的母模,根据所述母模制造所述反模。
请参阅图21,本实施例中,可以通过一个或少量的母模30批量生成大量的反模10。母模30生产方式不限,示例性的,母模30可以通过钻孔等方式生产。母模30的需求量小,并且加工成型方式可以多样,能够有效控制生产成本。
一实施例中,将所述生胚烧结以形成所述基体1之后,所述制造方法包括:
S601、在所述基体的发热面镀膜或刷厚膜以形成发热膜。
示例性的,一实施例中,可以通过物理气相沉积或化学气相沉积的方式,在基体1的发热面1b沉积发热膜。如此,在基体1的发热面1b镀膜形成发热膜。这种方式,一方面,发热膜能够与发热面1b紧密结合,减少装配步骤,另一方面,发热膜的厚度可以在微米或纳米级厚度范围内,这样不仅可以满足雾化组件整体小型化的需求,还可以节省发热膜的材料。
示例性的,一实施例中,在基体1的发热面1b刷膜以形成发热膜。具体地,采用刮涂导电浆料、制备厚膜的方式制得发热膜。
一实施例中,反模10为软性材质。如此,一方面,反模10的成本较低, 且便于加工;另一方面,反模10容易从母模30上脱离下来,反模10也容易和生胚分离,既不易损害母模30,也不易损害生胚。另外,反模10为软性材质,有利于将反模10折叠或弯曲以形成所需形状的反模10。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂等等。
一实施例中,反模10为一次性牺牲模。一次性牺牲模是指完整单个基体1生产即废弃的模。如此,反模10可以与生胚快速分离,便于操作。另外,一次性牺牲模不存在因重复利用而导致立柱损坏,进而导致制造的基体1的质量不达标的问题。
一实施例中,制造与所述基体1的结构嵌套的反模10,包括:
S110、先一体注塑形成软性模板,其中,软性模板包括承载板和设置于承载板上多个立柱。
也就是说,软性模板采用一体注塑成型,示例性的,将母模30作为模仁,向模仁中注入熔体形成软性模板。软性模板是指在较小的作用力下能够发生形变的材质。软性模板为一体注塑成型结构能够减少装配步骤,从而简化制造工艺。
具体地,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入母模30中,待冷却后,脱除母模30,即可得到软性模板。
S120、将所述承载板折叠或弯曲以形成所述反模。
这里,利用软性模板的形变能力将承载板折叠或弯曲以形成反模10的立体形态。
示例性的,母模30可以采用硬性材质例如金属材质或钢材,这样,以便母模30可以多次反复使用。软性模板容易从母模30上脱离下来,不易损害母模30。
一实施例中,将与所述反模10的轮廓形状适配的模框40和所述反模 10间隙套装,以共同限定出模腔,包括:
S210、所述模框形成有容纳槽,所述反模间隙套装于所述容纳槽中。
请参阅图21,也就是说,反模10作为内模,模框40作为外模,模框40间隙套装于反模10外。此种情况下,立柱朝向外侧,容纳槽的槽壁面朝向立柱并环绕于立柱外。
一实施例中,将与所述反模10的轮廓形状适配的模框40和所述反模10间隙套装,以共同限定出模腔,包括:
所述反模10形成有容纳槽,所述模框40间隙套装于所述容纳槽中。
也就是说,模框40作为内模,反模10作为外模,反模10间隙套装于模框40外。此种情况下,立柱朝向内侧,容纳槽的槽壁面朝向立柱并被立柱环绕。
一实施例中,发热区域1g的轮廓形状呈三棱柱形,三棱柱的至少两个侧面为发热面1b;反模10轮廓的截面形状呈三棱柱形,反模10与发热面1b相对应的侧面均具有多个立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40轮廓的截面形状呈三棱柱形,以便模框40能够和反模10间隙套装。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
反模10轮廓的截面形状指沿垂直于反模10的轴向的平面所截得的反模10轮廓的截面形状;模框40轮廓的截面形状指沿垂直于模框40的轴向的平面所截得的模框40轮廓的截面形状。
一实施例中,发热区域1g的轮廓形状呈柱形,柱形的至少部分外侧面为发热面1b;反模10的轮廓形状呈柱形,反模10与发热面1b相对应的侧面均具有多个立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40的轮廓形状也 呈柱形,以便模框40能够和反模10间隙套装。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
一实施例中,发热区域1g的轮廓形状呈球面,发热面1b至少构成部分球面;反模10的轮廓形状呈球面,反模10与发热面1b相对应的侧面均具有多个立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40的轮廓形状也呈球面,以便模框40能够和反模10间隙套装。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
请参阅图21,一实施例中,发热区域1g的轮廓形状呈六面体形,六面体形的至少部分外侧面为发热面1b。所述反模10的轮廓形状呈六面体形,所述反模10与所述发热面1b相对应的侧面均具有多个所述立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40的轮廓形状也呈六面体形,以便模框40能够和反模10间隙套装。
请参阅图22至图26、以及图20,本申请实施例一方面提供一种雾化组件,雾化组件包括第一基体21和第二基体22。
第一基体21形成有中间通道21a。具体地,中间通道21a沿第一基体21的高度方向延伸。
第二基体22形成有容纳通道22a。具体地,容纳通道22a沿第二基体22的高度方向延伸。需要说明的是,第一基体21的高度方向和第二基体22的高度方向一致。
第一基体21容设于容纳通道22a中,第一基体21的外周面和容纳通道22a的壁面之间具有间隔空间22a’,间隔空间22a’空置或填充有多孔件。请参阅图5,空置是指间隔空间22a’中不放置固体结构,也就是说,间隔空间 22a’中为空气。多孔件是指内部具有多个彼此连通并与材料表面连通的孔洞的结构。也就是说,间隔空间22a’可以不放置固体结构或者填充多孔件,这样,间隔空间22a’空置或多孔件中的孔洞都便于暂存液态基质,也方便液态基质流通。
中间通道21a的壁面和第二基体22的外周面其中一个为发热面,中间通道21a的壁面和第二基体22的外周面其中另一个为进液面。例如,中间通道21a的壁面为发热面,则第二基体22的外周面为进液面。又例如,第二基体22的外周面为发热面,则中间通道21a的壁面为进液面。进液面是承接液态基质的表面,发热面是加热液态基质的表面。来自进液面的液体基质经过第一基体21、间隔空间22a’和第二基体22导流至发热面。
本申请实施例提供的雾化组件,来自进液面的液体基质通过间隔空间22a’导流至发热面,间隔空间22a’能够起到导流和暂存液态基质的作用。间隔空间22a’空置或者填充多孔件使得液态基质能够从进液面导入至发热面,间隔空间22a’空置能够较大程度地提高储液量,多孔件能够提高锁液能力,起到缓释的作用,进一步均衡液态基质的流速,使得液态基质更均衡地释放至发热面。间隔空间22a’能够存储一定量的液态基质,随着发热面上的液态基质逐渐蒸发,间隔空间22a’中的液态基质能够及时补充至发热面,在一定程度上避免发热面发生干烧的现象。
第一基体21和第二基体22均可以流通液态基质。请参阅图26,第一基体21形成有多个过流孔21b,第二基体22形成有多个连通孔22b。过流孔21b连通中间通道21a和间隔空间22a’。连通孔22b连通间隔空间22a’和第二基体22的外周面。如此,液态基质能够通过过流孔21b、间隔空间22a’和连通孔22b在中间通道21a和第二基体22的外周面之间流通。示例性的,过流孔21b沿第一基体21的厚度方向贯穿第一基体21。也就是说,过流孔21b连通中间通道21a和第一基体21的外周面。连通孔22b沿第二基体22的厚度方 向贯穿第二基体22。也就是说,连通孔22b连通容纳通道22a和第二基体22的外周面。来自进液面的液体基质通过过流孔21b、间隔空间22a’和连通孔22b导流至发热面。
本实施例中,来自进液面的液体基质通过过流孔21b、间隔空间22a’和连通孔22b导流至发热面,过流孔21b、间隔空间22a’和连通孔22b均能够起到导流和暂存液态基质的作用。过流孔21b、间隔空间22a’和连通孔22b均能够存储一定量的液态基质,随着发热面上的液态基质逐渐蒸发,过流孔21b、间隔空间22a’和连通孔22b中的液态基质能够及时补充至发热面。
需要说明的是,本申请实施例中的多个是指数量包括两个以及两个以上。
本申请实施例提供的电子雾化装置,间隔空间22a’空置或者填充多孔件使得液态基质能够从进液面导入至发热面,间隔空间22a’空置能够较大程度地提高储液量,多孔件能够提高锁液能力,起到缓释的作用,进一步均衡液态基质的流速,使得液态基质更均衡地释放至发热面。过流孔21b、间隔空间22a’和连通孔22b均能够存储一定量的液态基质,随着发热面上的液态基质逐渐蒸发,过流孔21b、间隔空间22a’和连通孔22b中的液态基质能够及时补充至发热面,在一定程度上避免发热面发生干烧的现象,能够有效提升用户体验。
一些实施例中,多孔件的多个孔洞可以为无序排列。也就是说,多孔件中的孔洞随机生成。
多孔件的材质不限,多孔件可以为高分子材质。
示例性的,一实施例中,多孔件为陶瓷多孔结构。也就是说,多孔件为陶瓷材质的多孔结构。
示例性的,多孔件可以由骨料、粘结剂及造孔剂等组分由高温烧结生成。在多孔件烧结过程中,造孔剂在多孔件中产生无序排列的孔洞。
一实施例中,中间通道21a贯穿第一基体21的高度方向的两个端面。
一实施例中,容纳通道22a贯穿第二基体22的高度方向的两个端面。
一些实施例中,第一基体21的多个过流孔21b呈有序排列。也就是说,多个过流孔21b按照设定规则排列。换句话说,多个过流孔21b的设定规则可以人为设计或控制。有序排列包括但不限于阵列排列。示例性的,一实施例中,多个过流孔21b可以一维阵列排列,即多个过流孔21b按照一个方向间隔排列。一实施例中,多个过流孔21b可以二维阵列排列,即多个过流孔21b按照两个或者两个以上相交的方向间隔排列。
一些实施例中,第二基体22的多个连通孔22b呈有序排列。也就是说,多个连通孔22b按照设定规则排列。换句话说,多个连通孔22b的设定规则可以人为设计或控制。有序排列包括但不限于阵列排列。示例性的,一实施例中,多个连通孔22b可以一维阵列排列,即多个连通孔22b按照一个方向间隔排列。一实施例中,多个连通孔22b可以二维阵列排列,即多个连通孔22b按照两个相交的方向间隔排列。
第一基体21和第二基体22也可以为内部具有多个彼此连通并与材料表面连通的孔洞的多孔结构。第一基体21中的孔洞和第二基体22中的孔洞均可以为无序排列。第一基体21中的孔洞和第二基体22中的孔洞具有毛细作用,使得来自进液面的液体基质流经第一基体21中的孔洞、间隔空间22a’和第二基体22中的孔洞导流至发热面。
第一基体21和第二基体22的材质不限,示例性的,第一基体21和第二基体22均可以采用致密陶瓷材质或者多孔陶瓷材质。
一实施例中,过流孔21b的过流断面的面积与连通孔22b的过流断面的面积不相等。过流断面是与元流或总流即液态基质的所有流线正交的横截面,也就是垂直于流速簇的面。过流断面的面积的大小与液态基质的流速正相关,过流孔21b的过流断面的面积与连通孔22b的过流断面的面积不相 等,使得液态基质流经过流孔21b的流速与液态基质流经连通孔22b的流速不相等,这样,不仅可以提高供液能力,还能减少反气。反气是指液体基质雾化后形成气溶胶反冲回雾化组件,例如冲击过流孔21b和/或连通孔22b等等。
过流孔21b的横截面形状不限,示例性的,过流孔21b的横截面形状包括但不限于圆形、椭圆形或多边形等等。多边形可以为四边形、五边形或异形。
连通孔22b的横截面形状不限,示例性的,连通孔22b的横截面形状包括但不限于圆形、椭圆形或多边形等等。多边形可以为四边形、五边形或异形。
一实施例中,过流孔21b可以为直孔。也就是说,单个过流孔21b沿直线延伸。如此,过流孔21b易于成型,制造难度低。
一实施例中,过流孔21b为等径孔。也就是说,单个过流孔21b任意位置处的孔径相等。
一实施例中,连通孔22b可以为直孔。也就是说,单个连通孔22b沿直线延伸。如此,连通孔22b易于成型,制造难度低。
一实施例中,连通孔22b为等径孔。也就是说,单个连通孔22b任意位置处的孔径相等。
一实施例中,请参阅图25和图26,过流孔21b的孔径与连通孔22b的孔径不相等。示例性的,过流孔21b的横截面形状和连通孔22b的横截面形状均为圆形。孔径的大小与过流断面正相关,过流孔21b的孔径和连通孔22b的孔径不相等,使得液态基质流经过流孔21b的流速与液态基质流经连通孔22b的流速不相等,这样,不仅可以提高供液能力,还能减少反气。
一实施例中,中间通道21a的壁面为发热面,且第二基体22的外周面为进液面,过流孔21b的孔径小于连通孔22b的孔径。也就是说,来自第二基 体22的外周面的液态基质依次流经连通孔22b、间隔空间22a’和过流孔21b后,导入至中间通道21a的壁面,在中间通道21a的壁面雾化成气溶胶。连通孔22b的孔径相对较大,这样便于第二基体22的外周面上的液态基质快速进入连通孔22b中。过流孔21b的孔径相对较小,增大中间通道21a中的气溶胶冲回过流孔21b的难度,增加阻力,减少反气。
一实施例中,请参阅图22和图25,中间通道21a的壁面为进液面,且第二基体22的外周面为发热面,过流孔21b的孔径大于连通孔22b的孔径。也就是说,来自中间通道21a的壁面的液态基质依次流经过流孔21b、间隔空间22a’和连通孔22b后,导入至第二基体22的外周面,在第二基体22的外周面雾化成气溶胶。过流孔21b的孔径相对较大,这样便于中间通道21a的壁面上的液态基质快速进入过流孔21b中。连通孔22b的孔径相对较小,增大第二基体22的外周面的气溶胶冲回连通孔22b的难度,增加阻力,减少反气。
一实施例中,请参阅图22,第一基体21的孔隙率与第二基体22的孔隙率不相等。孔隙率与液态基质的流量正相关,第一基体21的孔隙率与第二基体22的孔隙率不相等,使得液态基质流经第一基体21的流量与液态基质流经第二基体22的流量不相等,这样,不仅可以改善供液效果,实现均衡供液,还能减少反气。
一实施例中,中间通道21a的壁面为发热面,且第二基体22的外周面为进液面,第一基体21的孔隙率小于第二基体22的孔隙率。也就是说,来自第二基体22的外周面的液态基质依次流经连通孔22b、间隔空间22a’和过流孔21b后,导入至中间通道21a的壁面,在中间通道21a的壁面雾化成气溶胶。第二基体22的孔隙率相对较大,这样便于液态基质快速补充至间隔空间22a’。第一基体21的孔隙率相对较小,降低中间通道21a中的气溶胶冲回间隔空间22a’的几率,增加阻力,减少反气。
一实施例中,请参阅图22和图25,中间通道21a的壁面为进液面,且第二基体22的外周面为发热面,第一基体21的孔隙率大于第二基体22的孔隙率。也就是说,中间通道21a的壁面的液态基质依次流经过流孔21b、间隔空间22a’和连通孔22b后,导入至第二基体22的外周面,在第二基体22的外周面雾化成气溶胶。第一基体21的孔隙率相对较大,这样便于液态基质快速补充至间隔空间22a’。第二基体22的孔隙率相对较小,降低第二基体22的外周面的气溶胶冲回间隔空间22a’的几率,增加阻力,减少反气。
一实施例中,过流孔21b贯穿第一基体21的外周面的孔口为过流口,连通孔22b贯穿容纳通道22a的壁面的孔口为连通口22b’,连通口22b’在第一基体21上的投影与过流口至多部分重叠。例如,连通口22b’在第一基体21上的投影与过流口可以部分重叠。又例如,连通口22b’在第一基体21上的投影与过流口不重叠,即连通口22b’在第一基体21上的投影与过流口完全错开。这样设计,即使有微量气溶胶进入过流孔21b或连通孔22b,由于连通口22b’在第一基体21上的投影与过流口至多部分重叠,过流孔21b或连通孔22b中微量的气溶胶也难以在连通口22b’和过流口之间直接流通,进一步增加了气溶胶流通难度,减少反气。
一实施例中,第一基体21的外周面的上端和容纳通道22a的壁面的上端之间的间距大于第一基体21的外周面的下端和容纳通道22a的壁面的下端之间的间距。也就是说,第一基体21的高度方向可以沿上下方向设置,第一基体21的外周面的上端和容纳通道22a的壁面的上端之间的间距较大,则间隔空间22a’的上部分的容积较大,能够容纳更多的液态基质;第一基体21的外周面的下端和容纳通道22a的壁面的下端之间的间距较小,则间隔空间22a’的下部分的容积较小,容纳的液态基质相对较少,如此设计,间隔空间22a’的上部分的毛细作用力比间隔空间22a’的下部分的毛细作用力大,抵抗重力的作用。
一实施例中,第一基体21的外周面和容纳通道22a的壁面之间的间距从上至下逐渐增大。间距越小毛细作用越强,间距从上至下逐渐增大,则间距产生的毛细作用从上至下逐渐减小,如此设计,间隔空间22a’中的毛细作用力从上至下逐渐减小,抵抗重力的作用更好,使得液态基质能够在间隔空间22a’中分布更均匀,雾化效果更好。
第一基体21的轮廓形状可以为旋转体结构。一实施例中,请参阅图22,第一基体21的轮廓形状呈圆柱形或圆锥台。第一基体21的轮廓形状是指第一基体21在多维空间中的外轮廓形状。
第二基体22的轮廓形状可以为旋转体结构。一实施例中,请参阅图22,第二基体22的轮廓形状呈圆柱形或圆锥台。第二基体22的轮廓形状是指第二基体22在多维空间中的外轮廓形状。
示例性的,一些实施例中,可以是第一基体21和第二基体22均为圆柱形。另一些实施例中,可以是第一基体21和第二基体22均为圆锥台。又一些实施例中,第一基体21和第二基体22其中一个为圆柱形,第一基体21和第二基体22其中另一个为圆锥台。
一些实施例中,第一基体21的外轮廓形状还可以呈棱台。
一些实施例中,第二基体22的外轮廓形状还可以呈棱台。
一些实施例中,雾化组件可以在发热面上设置一个发热膜4。这样,结构简单,易于实现电源件与发热膜4之间的电连接。发热膜4用于通电后加热发热面上的液态基质。例如,发热膜4可以将液态基质加热雾化成气溶胶。
一些实施例中,发热膜4包括正极、负极和电阻部,正极和负极间隔设置,电阻部电连接正极和负极。正极和负极分别用于与电源件的正极端子和负极端子连接。示例性的,正极和负极沿周向间隔设置,电阻部呈连续弯曲结构,电阻部的一端与正极电连接,电阻部的另一端与负极电连接。
可以理解的是,电阻部也可以呈直线或者其他形状的结构。
一实施例中,请参阅图22和图23,雾化组件包括多个发热膜4,多个发热膜4间隔设置于发热面上。多个发热膜4之间电气隔离。这样,可以对发热面的不同区域分别独立加热,改善加热效果。
示例性的,一实施例中,每个发热膜4可以独立供电。每个发热膜4独立供电,则可以实现每个发热膜4的独立控制,从而可以单独调节每个发热膜4的加热温度和功率。例如,在雾化液态基质的过程中,可以通过控制发热膜4的启动数量和功率等,以实现节能或快速雾化等效果。
发热膜4的材质不限,示例性的,发热膜4包括但不限于金属和/或合金等等。例如,发热膜4为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
发热膜4的电阻值可以根据需求设定,示例性的,本申请中,发热膜4的电阻值在0.2Ω(欧姆)-0.8Ω之间。如此,发热膜4既能够快速升温,又能够较好地匹配电源件。
一实施例中,请参阅图27,电子雾化装置包括均与外界连通的进气通道110b和出气通道110a,雾化组件位于进气通道110b和出气通道110a之间,中间通道21a连通进气通道110b和出气通道110a。进气通道110b用于将外界空气引入电子雾化装置,出气通道110a用于将液态基质雾化后的气溶胶导向用户嘴部。中间通道21a连通进气通道110b和出气通道110a,有利于空气和气溶胶的流动,减少雾化组件对空气流动的阻碍,用户抽吸电子雾化装置更加顺畅。
示例性的,一实施例中,请参阅图27,中间通道21a的壁面为发热面,且第二基体22的外周面为进液面,中间通道21a连通进气通道110b和出气通道110a,有利于进气通道110b引入的外界空气携带中间通道21a中的气溶胶顺畅地流动至出气通道110a,用户体验好。
示例性的,一些实施例中,电子雾化装置包括具有容纳腔的外壳,外 壳形成进气通道和出气通道,雾化组件位于容纳腔中。
一实施例中,第二基体的外周面为电子雾化装置的气流通道的部分壁面,气流通道连通进气通道和出气通道。也就是说,电子雾化装置包括气流通道,第二基体的外周面可以与容纳腔的腔壁面共同限定出气流通道。如此,便于灵活设计气流通道,气流通道的容积可以较大。
示例性的,一实施例中,第二基体的外周面为发热面,且中间通道21a的壁面为进液面,第二基体的外周面为气流通道的部分壁面,气流通道连通进气通道110b和出气通道110a。气流通道的容积较大,第二基体的外周面产生的气溶胶能够更大量且更平缓地流动至出气通道110a。
请参阅图28,本申请实施例还提供一种制造方法,用于制造雾化组件,雾化组件包括第一基体21和第二基体22,第一基体21形成有中间通道21a;第二基体22形成有容纳通道22a,第一基体21容设于容纳通道22a中,第一基体21的外周面和容纳通道22a的壁面之间具有间隔空间22a’,间隔空间22a’空置或填充有多孔件,中间通道21a的壁面和第二基体22的外周面其中一个为发热面,中间通道21a的壁面和第二基体22的外周面其中另一个为进液面,其中,提供与基体的结构嵌套的反模,包括:
制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模。
示例性的,一实施例中,将与反模的轮廓形状适配的模框和反模间隙套装,以共同限定出模腔,包括:
将第一反模套设于第二反模中,并在第一反模和第二反模之间放置隔断模,第一反模、第二反模和隔断模均放置于外模中以共同限定出模腔。
请参阅图28,本申请的第四实施例还提供了一种制造方法,包括:
S1000、制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模。
请参阅图9、图18至图20,第一反模的结构与第一基体21的结构嵌套,也就是说,第一反模的所有面能够与第一基体21的所有面重叠。第二反模的结构与第二基体22的结构嵌套,也就是说,第二反模的所有面能够与第二基体22的所有面重叠。
S2000、将所述第一反模套设于所述第二反模中,并在所述第一反模和所述第二反模之间放置隔断模,所述第一反模、所述第二反模和所述隔断模均放置于外模中以共同限定出模腔。
外模的轮廓形状可以与第二基体22的轮廓形状适配,外模朝向第二反模的面与第二反模共同构成模腔。
示例性的,第二反模的轮廓形状呈旋转体形,则外模也为相同的旋转体形,且第二反模的面的数量和外模的面的数量相等。另外,第二反模的面的形状和外模的面的形状一一对应且相同,但是,第二反模的体积和外模的体积可以不同。
示例性的,隔断模也可以为一次性牺牲模。如此,便于在第一基体和第二基体之间形成间隔空间。
一些实施例中,隔断模可以为致密实体。这样,去除隔断模后即形成空置的间隔空间。
一些实施例中,隔断模也可以为多孔结构。如此,在浆料填充且去除隔断模后即形成多孔件。
隔断模的材质不限,隔断模可以为高分子材料。
S3000、浆料填充所述模腔以形成生胚。
浆料为第一基体21和第二基体22的组成材料,例如浆料可以为陶瓷材料。浆料具有一定温度,以便浆料呈流动的液态。浆料的温度下降至凝固点以下则呈固态。浆料凝固成固态后形成生胚。
S4000、处理所述生胚以形成所述第一基体和所述第二基体。
根据生胚的情况进行二次处理后形成第一基体21和第二基体22。
本申请提供的制造方法可以用于制造本申请任一实施例中的雾化组件。
相关技术中,需要采用激光诱导、腐蚀成孔等等方式形成第一基体的过流孔和第二基体的连通孔,此种生产方式不仅生产设备成本高,对工艺要求也较高。
本申请实施例的制造方法,先制造与第一基体21的结构嵌套的第一反模、以及与第二基体22的结构嵌套的第二反模,再利用第一反模和第二反模注浆形成第一基体21和第二基体22,模具相对简单,生产设备成本较低,而且制造工艺较为简单,能够适应批量生产,能够极大地提高产品良率,降低材料损耗,生产效率高。
示例性的,一些实施例中,可以分别制造第一软性模板和第二软性模板,其中,所述第一软性模板包括第一平板,所述第二软性模板包括第二平板;
将所述第一平板卷绕成中空的圆环结构以形成所述第一反模,并将所述第二平板卷绕成中空的圆环结构以形成所述第二反模。
一些实施例中,请参阅图9、图18至图20,第一基体21形成有多个过流孔21b,第二基体22形成有多个连通孔22b,过流孔21b连通中间通道21a和间隔空间22a’,连通孔22b连通间隔空间22a’和第二基体22的外周面,第一反模具有与过流孔21b嵌套的第一立柱,第二反模具有与连通孔22b嵌套的第二立柱。
请参阅图9、图18至图20,第一反模的结构与第一基体21的结构嵌套,也就是说,第一反模的所有面能够与第一基体21的所有面重叠,第一反模的第一立柱能够嵌入第一基体21的过流孔21b中。第二反模2的结构与第二基体22的结构嵌套,也就是说,第二反模的所有面能够与第二基体 22的所有面重叠,第二反模的第二立柱能够嵌入第二基体22的连通孔22b中。
第一立柱的长度可根据过流孔21b长度而确定,一些实施例中,第一立柱的长度不小于过流孔21b的长度。如此,以便保证最终形成的过流孔21b为通孔。
第二立柱的长度可根据连通孔22b长度而确定,一些实施例中,第二立柱的长度不小于连通孔22b的长度。如此,以便保证最终形成的连通孔22b为通孔。
以浆料为陶瓷为例,S3000、浆料填充所述模腔以形成生胚,可以包括:
S3100、通过光固化的方式使得所述模腔中的浆料固化形成所述生胚。
这样可以使得模腔中的陶瓷浆料快速固化,以节约固化时长。例如可以通过紫外光固化陶瓷浆料。
一实施例中,S4000、处理所述生胚以形成所述第一基体和所述第二基体,包括:
S4100、将所述生胚烧结以形成所述第一基体和所述第二基体。
将生胚进行高温排胶和烧结后形成第一基体21和第二基体22。
可以理解的是,在生胚的过流孔21b和/或连通孔22b被残留的浆料堵塞的情况下,可以对生胚进行通孔处理。
一实施例中,所述制造方法包括:
S5000、制造与所述第一基体的结构相同的第一母模、以及与所述第二基体的结构相同的第二母模,根据所述第一母模制造所述第一反模以及根据所述第二母模制造所述第二反模。
请参阅图18,本实施例中,可以通过一个或少量的第一母模和第二母模,批量生成大量的第一反模和第二反模。
第一母模和第二母模生产方式不限,示例性的,第一母模和第二母模 可以通过钻孔等方式生产。第一母模和第二母模的需求量小,并且加工成型方式可以多样,能够有效控制生产成本。
可以理解的是,第一反模与第一母模嵌套。第二反模与第二母模嵌套。
一实施例中,处理所述生胚以形成所述第一基体和所述第二基体之后,所述制造方法包括:
在所述发热面镀膜或刷膜以形成发热膜。
示例性的,一实施例中,可以通过物理气相沉积或化学气相沉积的方式,在发热面沉积发热膜4。如此,在发热面镀膜形成发热膜4。这种方式,一方面,发热膜4能够与发热面紧密结合,减少装配步骤,另一方面,发热膜4的厚度可以在微米或纳米级厚度范围内,这样不仅可以满足雾化组件整体小型化的需求,还可以节省发热膜4的材料。
示例性的,一实施例中,在发热面刷膜以形成发热膜4。示例性的,采用刮涂导电浆料、制备厚膜的方式制得发热膜4。
一实施例中,第一反模为软性材质。如此,一方面,第一反模的成本较低;另一方面,第一反模容易从第一母模上脱离下来,第一反模也容易和生胚分离,既不易损害第一母模,也不易损害生胚。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂等等。
一实施例中,第一反模为一次性牺牲模。一次性牺牲模是指完成单个第一基体21生产即废弃的模。如此,在将第一反模与生胚分离时,可以破坏第一反模,这样,第一反模可以与生胚快速分离,便于操作。
一实施例中,第二反模为软性材质。如此,一方面,第二反模的成本较低;另一方面,第二反模容易从第二母模上脱离下来,第二反模也容易和生胚分离,既不易损害第二母模,也不易损害生胚。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂 等等。
一实施例中,第二反模为一次性牺牲模。一次性牺牲模是指完成单个第一基体21生产即废弃的模。如此,在将第二反模与生胚分离时,可以破坏第二反模,这样,第二反模可以与生胚快速分离,便于操作。
一实施例中,制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模,包括:
S1100、分别制造第一软性模板和第二软性模板,其中,所述第一软性模板包括第一平板和多个位于所述第一平板上的所述第一立柱,所述第二软性模板包括第二平板和多个位于所述第二平板上的所述第二立柱。
第一软性模板是在较小的作用力下能够发生形变的结构。第一软性模板为一体成型结构,能够减少装配步骤,从而简化制造工艺。
第二软性模板是在较小的作用力下能够发生形变的结构。第二软性模板为一体成型结构,能够减少装配步骤,从而简化制造工艺。
示例性的,第一母模和第二母模均可以采用硬性材质例如金属材质或钢材,这样,以便第一母模和第二母模可以多次反复使用。第一平板容易从第一母模上脱离下来,第二平板容易从第二母模上脱离下来,降低第一反模和第二反模的制造难度。
S1200、将所述第一平板卷绕成中空的圆环结构以形成所述第一反模,并将所述第二平板卷绕成中空的圆环结构以形成所述第二反模,其中,所述第一立柱朝向外侧,所述第二立柱朝向内侧。
这里,利用第一软性模板的形变能力将第一平板卷绕成中空的圆环结构以构成第一反模的立体形态。利用第二软性模板的形变能力将第二平板卷绕成中空的圆环结构以构成第二反模的立体形态。
一实施例中,通过一体注塑形成第一软性模板。示例性的,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入第一母模中,待冷却后, 脱除第一母模,即可得到第一软性模板。
一实施例中,通过一体注塑形成第二软性模板。示例性的,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入第二母模中,待冷却后,脱除第二母模,即可得到第二软性模板。
示例性的,一实施例中,第一基体21和第一反模的轮廓形状均呈圆柱形,第一软性模板包括呈长方形的第一平板,通过卷绕将第一平板的两条侧边连接以形成立体的圆柱形的第一反模,圆柱体形的第一反模的轴向两侧开口。可以理解的是,第二基体22和第二反模的轮廓形状均呈圆柱形的情况下,第二反模的形成方式与上述相同,在此不再赘述。
示例性的,一实施例中,第一反模的轮廓形状呈圆锥台,第一软性模板包括呈等腰梯形的第一平板,通过卷绕将第一平板的两条腰连接以形成立体的圆锥台的第一反模,圆锥台的第一反模的轴向两侧开口。可以理解的是,第二基体22和第二反模的轮廓形状均呈圆锥台的情况下,第二反模的形成方式与上述相同,在此不再赘述。
请参阅图29至图32,本申请实施例一方面提供一种雾化组件,雾化组件包括基体1,基体1包括至少一个进液面1a和至少两个发热面1b,发热面1b上具有多个有序排列的导液孔1c,导液孔1c连通进液面1a和发热面1b。具体地,导液孔1c将来自进液面1a的液态基质导流至发热面1b。
本申请实施例提供的雾化组件,一方面,相较于无序排列的孔洞,有序排列的导液孔1c的数量等能够进行设计和计算,基体1对液态基质的导流效果更加可控,能够提高产品的生产一致性,换句话说,在批量生产中,不同基体1的导液孔1c基本一致,使得同批次出厂的发热体的加热效果趋于一致。另一方面,采用至少两个发热面1b,发热面1b的总面积增多,发热面1b上的液态基质分布面积更大,可以增大液态基质的热交换面积,不仅能够提高雾化量,还能够更均衡地加热液态基质,降低液态基质因局部高 温产生的有害物质含量,可以有效改善使用体验。
无序排列是指孔洞随机生成,没有设定规则。有序排列是指多个导液孔1c按照设定规则排列。有序排列包括但不限于阵列排列。示例性的,一实施例中,阵列布置可以是多个导液孔1c一维阵列排列,即多个导液孔1c按照一个方向间隔排列。一实施例中,阵列布置可以是多个导液孔1c二维阵列排列,即多个导液孔1c按照两个或者两个以上相交的方向间隔排列,例如,多个导液孔1c可以呈矩形阵列或圆形阵列排布等等。
基体1可以采用陶瓷材质。陶瓷材质具有导热均匀性好等特点。示例性的,基体1可以采用致密陶瓷材质。
本申请实施例提供的雾化组件可以用于雾化器,雾化器包括储液容器和本申请任一项实施例中的雾化组件,储液容器用于储存待雾化的液态基质。储液容器中的液态基质能够流动至进液面1a。
请参阅图33,本申请实施例提供的雾化组件可以用于电子雾化装置,本申请实施例提供的电子雾化装置包括本申请任一实施例中的雾化器和电源件。电源件与雾化组件电连接。电源件能够给雾化组件供电,以便雾化组件加热液态基质。
电子雾化装置可以为电子烟。也就是说,液态基质可以为烟油。
示例性的,电子雾化装置的轮廓形状可以大致呈长条形。如此,便于用户手指拿取电子雾化装置。
一实施例中,请参阅图29和图34,雾化组件包括发热膜4,每个发热面1b设置有至少一个发热膜4,每个发热膜4独立供电。发热膜4用于通电后加热发热面1b上的液态基质。例如,发热膜4可以将液态基质加热雾化成气溶胶。每个发热膜4独立供电,则可以实现每个发热膜4的独立控制,从而可以单独调节每个发热膜4的加热温度和功率。例如,在雾化液态基质的过程中,可以通过控制发热膜4的启动数量和功率等,以实现节能或快速雾化等 效果。
发热膜4的材质不限,示例性的,发热膜4包括但不限于金属和/或合金等等。例如,发热膜4为铝、金、银、铜、镍铬合金、镍铬铁合金、铁铬铝合金、镍、铂或钛等等。
发热膜4的电阻值可以根据需求设定,示例性的,本申请中,发热膜4的电阻值在0.2Ω(欧姆)-0.8Ω之间。如此,发热膜4既能够快速升温,又能够较好地匹配电源件。
由于不同类型的液态基质存在不同成分,液态基质可能具有不同的沸点。以液态基质为烟油为例,液态基质可能包含各种香精香料和/或添加剂,而这些香精香料和添加剂混合成的液态基质的沸点不同,因此,一实施例中,至少部分发热面1b的发热膜4的加热温度或者加热功率不同。雾化组件的至少部分发热面1b的发热膜4可以雾化不同沸点的液态基质。如此,同一个雾化组件可以适应不同沸点的液态基质,以便同一个雾化组件可以雾化不同的液态基质,这样,电子雾化装置的储液容器可以存放不同的液态基质,却不需要更换雾化组件,雾化组件的通用性高。
一实施例中,各个发热面1b的发热膜4的加热温度不同。也就是说,每个发热面1b上的发热膜4的加热温度不同,这样提供更多选择,以适应更多类型的液态基质。
一实施例中,根据基体1的中心轴与水平面之间的角度,调节各个发热面1b的发热膜4的功率。示例性的,在基体1的中心轴与水平面之间的角度不等于90°时,电子雾化装置呈倾斜状态,例如,当用户在抽吸电子雾化装置时,基体1的中心轴与水平面之间的角度不等于90°,这种情况下,远离电子雾化装置的抽吸嘴130的发热面1b周围的液态基质比靠近抽吸嘴130的发热面1b周围的液态基质的更多,这时候,可以将远离抽吸嘴130的发热面1b上的发热膜4的功率提高,以提高雾化效率。
一实施例中,请参阅图29至图32,基体1包括多个进液面1a,每个进液面1a对应一个发热面1b,发热面1b上的导液孔1c连通对应的进液面1a。也就是说,每个发热面1b有对应的进液面1a为其供液,如此,不仅能够根据每个发热面1b实现差异化供液,以便适应每个发热面1b的液态基质的消耗量,减少甚至消除单个发热面1b干烧或过量供液的问题。
一实施例中,请参阅图29、图30和图33,基体1包括多个相互连接的子单元23,每个子单元23包括一个发热面1b,各个发热面1b的朝向相异。在电子雾化装置使用过程中,电子雾化装置可能呈现不同程度的倾斜状态,也就是说,基体1的中心轴与水平面之间的角度不同,这样,液态基质与不同的子单元23接触,并且不同的子单元23接触的液态基质的液量也不同,各个发热面1b的朝向相异,以便各个方位的液态基质能够与至少一个发热面1b接触。
一实施例中,请参阅图29至图32,每个子单元23包括一个与发热面1b对应的进液面1a,进液面1a和发热面1b为子单元23的厚度方向相对的两个面,导液孔1c沿子单元23的厚度方向贯穿子单元23,以连通进液面1a和发热面1b。这样,每个子单元23可以实现分别供液和加热。
一些实施例中,各个子单元23可以为独立结构,基体1可以由各个独立的子单元23装配构成。各个子单元23为独立结构是指各个子单元23分别独立制造。各个独立的子单元23可以通过胶粘等方式装配至一起。
一实施例中,请参阅图29,基体1为一体成型结构。也就是说,各个子单元23为一体成型结构。如此,减少组装各个子单元23的装配工艺,能够简化装配,使得发热体结构更紧凑,结构灵活性高,提供更多发热体的设计空间。
一实施例中,请参阅图29和图30,基体1形成有进液槽1f和与进液槽1f连通的进液口1m,进液面1a形成于进液槽1f的槽壁面上,发热面1b形成于 基体1的外表面。一方面,进液槽1f能够暂存液态基质,不仅能够减少来自储液容器的大量液态基质直接冲击雾化组件,进液槽1f起到缓流作用,还能够起到预存液态基质,提高导流面积,以便将液态基质及时补充至发热面1b的作用。
一实施例中,进液槽1f被分隔成多个相互隔离的子槽,每个子槽对应一个发热面1b。也就是说,各个子槽互不连通,液态基质不会在各个子槽之间流动。这样可以根据不同发热面1b的液态基质消耗速率,匹配不同容积的子槽,在一定程度上控制供液速率,以便供液流量适应对应的发热面1b的消耗速率,避免供液不够或者过量供液。
一些实施例中,至少部分发热面1b的朝向相异。例如,可以是部分发热面1b的朝向相同,另外部分发热面1b的朝向相异。又例如,可以是所有发热面1b的朝向均不相同。如此,不仅可以加热多个位置处的液体基质,可以向多个方向发散气溶胶。
一实施例中,导液孔1c可以为直孔。也就是说,单个导液孔1c沿直线延伸。如此,导液孔1c易于成型,制造难度低。
一实施例中,导液孔1c为等径孔。也就是说,单个导液孔1c任意位置处的孔径相等。
一实施例中,至少部分发热面1b的导液孔1c的孔径不同。例如,可以是部分发热面1b的导液孔1c的孔径相同,另外部分发热面1b的导液孔1c的孔径不同。又例如,可以是所有发热面1b的导液孔1c的孔径均不相同。一方面,导液孔1c的孔径不同使得液态基质流经导液孔1c的流速不同。至少部分发热面1b的导液孔1c的孔径不同,以便至少部分发热面1b的供液效率不同,从而实现差异化供液,以适应发热面1b上的发热膜4的功率。例如,其中一个发热面1b的发热膜4的功率较高,则该发热面1b的导液孔1c的孔径可以较大,以便快速供液,避免干烧。又例如,其中一个发热面1b的发热膜4的功 率较低,则该发热面1b的导液孔1c的孔径可以较小,以便均衡供液,避免液量过多,加热不均匀。另一方面,导液孔1c的孔径不同还可以产生不同粒径的气溶胶,从而改善口感,使得气溶胶的口感更加绵密或层次更加丰富。
一实施例中,各个发热面1b的导液孔1c的孔径不同。也就是说,所有发热面1b的导液孔1c的孔径均不相同。如此,液态基质在各个发热面1b的导液孔1c中的流速可以不同和/或产生的气溶胶的粒径均不同。这样设计,液态基质的流速可以有较大地调整范围和/或气溶胶的粒径分布范围更广。
一实施例中,至少部分发热面1b的导液孔1c的横截面形状不同。例如,可以是部分发热面1b的导液孔1c的横截面形状相同,另外部分发热面1b的导液孔1c的横截面形状不同。又例如,可以是所有发热面1b的导液孔1c的横截面形状均不相同。一方面,导液孔1c截面形状不同也能够带来液态基质流速的变化,以便至少部分发热面1b的供液效率不同,从而实现差异化供液,以适应发热面1b上的发热膜4的功率。另一方面,导液孔1c的横截面形状不同还可以产生不同粒径的气溶胶,从而改善口感,使得气溶胶的口感更加绵密或层次更加丰富。
导液孔1c的横截面形状包括但不限于圆形、椭圆形或多边形等等。多边形例如方形或者六边形等等。
一实施例中,各个发热面1b的导液孔1c的横截面形状不同。也就是说,所有发热面1b的导液孔1c的横截面形状均不相同。如此,液态基质在各个发热面1b的导液孔1c中的流速均可以不同和/或产生的气溶胶的粒径均不同。这样设计,液态基质的流速可以有较大地调整范围和/或气溶胶的粒径分布范围更广。
一实施例中,至少部分发热面1b的孔隙率不同。例如,可以是部分发热面1b的孔隙率相同,另外部分发热面1b的孔隙率不同。又例如,可以是 所有发热面1b的孔隙率均不相同。发热面1b的孔隙率不同使得发热面1b上液态基质的流量不同。至少部分发热面1b的孔隙率不同,以便至少部分发热面1b的供液量不同,从而实现差异化供液,以适应发热面1b上的发热膜4的功率。例如,其中一个发热面1b的发热膜4的功率较高,则该发热面1b的孔隙率可以较大,以便快速供液,避免干烧。又例如,其中一个发热面1b的发热膜4的功率较低,则该发热面1b的孔隙率可以较小,以便均衡供液,避免液量过多,加热不均匀。
一实施例中,各个发热面1b的孔隙率不同。也就是说,所有发热面1b的孔隙率均不相同。如此,液态基质在各个发热面1b的供液量均可以不同。这样设计,液态基质在各个发热面1b的供液量可以有较大范围,适应性更好。
一实施例中,请参阅图29,导液孔1c为微孔。微孔具有毛细作用。微孔通过毛细作用能够导液和临时储液,以便液态基质不断地补充至发热面1b。
可以理解的是,导液孔1c的孔径过小虽然能够减小供液速率但会限制供液速率,而导液孔1c的孔径过大虽然会提高供液速率但是又存在漏液风险,因此,一实施例中,导液孔1c的孔径在20μm-100μm之间。示例性的,导液孔1c的孔径为20μm、21μm、22μm、25μm、30μm、35μm、40μm、50μm、60μm、70μm、80μm、85μm、90μm、97μm或100μm等等。如此,导液孔1c的孔径适中,不仅能够保证供液效率较高,还能够避免漏液风险。
可以理解的是,发热面1b的孔隙率过大虽然能够提高供液量但基体1的结构强度较差,而发热面1b的孔隙率过小虽然会提高结构强度但是又存在供液量不足的问题,有鉴于此,一实施例中,发热面1b的孔隙率在20%-50%之间。示例性的,发热面1b的孔隙率为20%、20.5%、21%、22%、25%、 30%、35%、40%、45%或50%等等。如此,发热面1b的孔隙率适中,不仅能够保证供液量较大,还能够保证基体1的结构强度较大。
可以理解的是,导液孔1c的长度过长容易导致供液较慢,而导液孔1c的长度过短容易漏液,有鉴于此,一实施例中,导液孔1c的长度在0.1mm-10mm之间。示例性的,导液孔1c的长度为0.1mm、0.15mm、0.2mm、0.5mm、1.0mm、3.0mm、4.0mm、5.0mm、6.0mm、7.0mm、8.0mm、8.5mm、8.7mm、9.0mm或10.0mm等等。如此,导液孔1c的长度适中,不仅能够保证来自进液面1a的液态基质能够及时流动至发热面1b,还能够避免漏液风险。
一实施例中,请参阅图29,基体1的轮廓形状呈多面体或旋转体。例如基体1的轮廓形状可以为若干个多边形围成的立体结构。又例如,基体1的轮廓形状可以为一条平面曲线绕着它所在的平面内的一条定直线旋转所形成旋转面围成的立体结构。基体1的轮廓形状是指基体1在多维空间中的外轮廓形状。
一实施例中,基体1的轮廓形状呈三棱锥形,基体1的至少两个外侧面为发热面1b。一方面,三棱锥形的基体1可以有两个面或三个面为发热面1b,发热面1b的总面积可以较大,以提高雾化量。另一方面,各个发热面1b之间不会相互垂直或平行,以便适应用户抽吸电子雾化装置时,电子雾化装置呈倾斜状态下,至少一个发热面1b的供液量可以较大,从而保证出雾量可以较大。
示例性的,一实施例中,三棱锥形的基体1形成有进液槽1f和与进液槽1f连通的进液口1m,进液口1m位于三棱锥形的基体1的底面。进液槽1f的形状也可以呈与基体1的外轮廓形状相适配的三棱锥形。如此,三棱锥形的基体1可以由三个子单元23围设形成具有进液口1m的立体结构。进液槽1f的三个面均为进液面1a,三棱锥形的基体1的三个外侧面均为发热面1b。
一实施例中,请参阅图34和图35,基体1的轮廓形状呈四棱锥形,基体 1的至少两个外侧面为发热面1b。一方面,四棱锥形的基体1可以有两个面、三个面或者四个面为发热面1b,发热面1b的总面积可以较大,以提高雾化量。另一方面,各个发热面1b之间不会相互垂直或平行,以便适应用户抽吸电子雾化装置时,电子雾化装置呈倾斜状态下,至少一个发热面1b的供液量可以较大,从而保证出雾量可以较大。
示例性的,一实施例中,四棱锥形的基体1形成有进液槽1f和与进液槽1f连通的进液口1m,进液口1m位于四棱锥形的基体1的底面。进液槽1f的形状也可以呈与基体1的外轮廓形状相适配的四棱锥形。如此,四棱锥形的基体1可以由三个子单元23围设形成具有进液口1m的立体结构。进液槽1f的三个面均为进液面1a,四棱锥形的基体1的三个外侧面均为发热面1b。
一实施例中,请参阅图29和图30,基体1的轮廓形状呈六面体形,基体1的至少两个外侧面为发热面1b。六面体形的基体1具有六个外侧面,例如可以选择六个外侧面中的任意两个或两个以上的外侧面作为发热面1b,不仅可以降低发热面1b的设计难度,还可以显著增加发热面1b的总面积,显著提升雾化量。
一实施例中,请参阅图29和图30,六面体形的基体1形成有进液槽1f和与进液槽1f连通的进液口1m,进液口1m位于六面体形的基体1的一个外侧面。进液槽1f的形状也可以呈与基体1的外轮廓形状相适配的六面体形。如此,六面体形的基体1可以由五个子单元23围设形成具有进液口1m的立体结构。进液槽1f的五个均为进液面1a,六面体形的基体1的五个外侧面均为发热面1b。这样,显著增加了进液面1a的总面积和发热面1b的总面积,从而可以显著增大出雾量,改善用户使用体验。
一实施例中,基体1的轮廓形状呈正多面体、棱锥、棱台或棱柱。例如,基体1的轮廓形状呈正八面体、四棱锥、五棱锥、五棱台或五棱柱等等。如此,可以根据电子雾化装置中的空间大小来匹配基体1的轮廓形状,还可以 根据雾化量需求选择更多发热面1b的立体形状或者根据节约空间需求选择更少发热面1b的立体形状,不仅可以降低发热面1b的设计难度,还可以显著增加发热面1b的总面积,显著提升雾化量。
请参阅图11和图29,本申请实施例另一方面提供一种雾化组件的制造方法,雾化组件包括基体1,基体1包括至少一个进液面1a和至少两个发热面1b,发热面1b上具有多个有序排列的导液孔1c,导液孔1c连通进液面1a和发热面1b。制造方法包括:
S1、提供与基体的结构嵌套的反模,其中,反模包括连接板和与连接板连接的立柱,立柱对应导液孔。
请参阅图18至图21,反模10的结构与基体1的结构嵌套,也就是说,反模10的所有面能够与基体1的所有面重叠,反模10的立柱能够嵌入基体1的导液孔1c中。
立柱的长度可根据基体1的导液孔1c长度而确定,一些实施例中,立柱的长度不小于基体1的导液孔1c的长度。如此,以便保证最终形成的基体1的导液孔1c为通孔。
S2、将与反模的轮廓形状适配的模框和反模间隙套装,以共同限定出模腔。
请参阅图21,这里,模框40的轮廓形状与反模10的轮廓形状适配,使得模框40能够与反模10间隙套装。模框40朝向反模10的面与反模10共同构成模腔。
可以理解的是,间隙套装是指模框40的轮廓形状与反模10的轮廓形状一致,但是两者的尺寸存在差异,以便模框40能够与反模10间隙配合。具体地,模框40朝向反模10的所有面与反模10之间均存在间隙,以便浆料能够在模腔中流动,从而充满模腔。
示例性的,基体1的轮廓形状呈多面体,则反模10和模框40均为多 面体,且基体1的面的数量、反模10的面的数量和模框40的面的数量相等。另外,基体1的面的形状、反模10的面的形状和模框40的面的形状一一对应且相同,但是,基体1的体积、反模10的体积和模框40的体积不同。
在基体1的轮廓形状呈旋转体时,则反模10和模框40均为旋转体,其他情况与上述实施例类似,在此不再赘述。
S3、浆料填充模腔以形成生胚。
浆料为基体1的组成材料,例如浆料可以为陶瓷材料。浆料具有一定温度,以便浆料呈流动的液态。浆料的温度下降至凝固点以下则呈固态。浆料凝固成固态后形成生胚。
S4、处理生胚以形成基体。
根据生胚的情况进行二次处理后形成基体1。
本申请提供的制造方法可以用于制造本申请任一实施例中的雾化组件。
相关技术中,需要采用激光诱导、腐蚀成孔等等方式形成有序排列的导液孔1c,此种生产方式不仅生产设备成本高,对工艺要求也较高。
本申请实施例的制造方法,先制造与基体1的结构嵌套的反模10,再利用反模10注浆形成基体1,模具相对简单,生产设备成本较低,而且制造工艺较为简单,能够适应批量生产,能够极大地提高产品良率,降低材料损耗,生产效率高。
以浆料为陶瓷为例,S3、浆料填充模腔以形成生胚,可以包括:
S31、通过光固化的方式使得模腔中的浆料固化形成生胚。
这样可以使得模腔中的陶瓷浆料快速固化,以节约固化时长。例如可以通过紫外光固化陶瓷浆料。
可以理解的是,在生胚的导液孔1c被残留的浆料堵塞的情况下,可以 对生胚进行通孔处理。
一实施例中,S4、处理生胚以形成基体,包括:
S41、将生胚烧结以形成基体。
将生胚进行高温排胶和烧结后形成基体1。
一实施例中,所述制造方法包括:
S5、制造与基体的结构相同的母模,根据母模制造反模。
请参阅图21,本实施例中,可以通过一个或少量的母模30批量生成大量的反模10。母模30生产方式不限,示例性的,母模30可以通过钻孔等方式生产。母模30的需求量小,并且加工成型方式可以多样,能够有效控制生产成本。反模10与母模30嵌套。
一实施例中,处理生胚以形成基体之后,所述制造方法包括:
S6、在基体的发热面镀膜或刷膜以形成发热膜。
示例性的,一实施例中,可以通过物理气相沉积或化学气相沉积的方式,在基体1的发热面1b沉积发热膜4。如此,在基体1的发热面1b镀膜形成发热膜4。这种方式,一方面,发热膜4能够与发热面1b紧密结合,减少装配步骤,另一方面,发热膜4的厚度可以在微米或纳米级厚度范围内,这样不仅可以满足雾化组件整体小型化的需求,还可以节省发热膜4的材料。
示例性的,一实施例中,在基体1的发热面1b刷膜以形成发热膜4。示例性的,采用刮涂导电浆料、制备厚膜的方式制得发热膜4。
一实施例中,反模10为软性材质。如此,一方面,反模10的成本较低;另一方面,反模10容易从母模30上脱离下来,反模10也容易和生胚分离,既不易损害母模30,也不易损害生胚。
软性材质包括但不限于软性聚合物材料。例如,软性硅胶或软性树脂等等。
一实施例中,反模10为一次性牺牲模。一次性牺牲模是指完成单个基 体1生产即废弃的模。如此,在将反模10与生胚分离时,可以破坏反模10,这样,反模10可以与生胚快速分离,便于操作。
一实施例中,制造与基体的结构嵌套的反模,包括:
S11、先一体注塑形成软性模板,其中,软性模板包括多个依次连接的平板,至少两个平板上具有多个所述立柱。
也就是说,软性模板采用一体注塑成型,示例性的,将母模30作为模仁,向模仁中注入熔体形成软性模板。软性模板是在较小的作用力下能够发生形变的结构。软性模板为一体注塑成型结构,能够减少装配步骤,从而简化制造工艺。
示例性的,可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入母模30中,待冷却后,脱除母模30,即可得到软性模板。
S12、将多个平板折叠以形成反模。
这里,利用软性模板的形变能力将多个平板折叠成反模10的立体形态。
示例性的,母模30可以采用硬性材质例如金属材质或钢材,这样,以便母模30可以多次反复使用。软性模板容易从母模30上脱离下来,不易损害母模30。
一实施例中,制造与所述基体的结构嵌套的反模,包括:
S13、先形成多个子模,其中,子模包括承载板和设置于承载板上多个立柱。
如此,子模的结构简单,易于设计。示例性的,将母模30作为模仁,向模仁中注入熔体形成多个子模。
示例性的,子模也可以为软性材质。可以采用热压工艺将高温熔融的聚合物材料形成的熔体压入母模30中,待冷却后,脱除母模30,即可得到多个子模。
S14、将多个单元拼接以形成反模。
由于子模为独立结构,需要将多个子模拼接以形成反模10。例如,可以采用胶粘或熔接等方式将多个子模连接以形成反模10的立体形态。
一实施例中,将与反模10的轮廓形状适配的模框和反模10间隙套装,以共同限定出模腔,包括:
S21、模框形成有容纳槽,反模间隙套装于容纳槽中。
请参阅图21,也就是说,反模10作为内模,模框40作为外模,模框40间隙套装于反模10外。此种情况下,立柱朝向外侧,容纳槽的槽壁面朝向立柱并环绕于立柱外。
一实施例中,将与反模的轮廓形状适配的模框40和反模间隙套装,以共同限定出模腔,包括:
S22、反模形成有容纳槽,模框间隙套装于容纳槽中。
也就是说,模框40作为内模,反模10作为外模,反模10间隙套装于模框40外。此种情况下,立柱朝向内侧,容纳槽的槽壁面朝向立柱并被立柱环绕。
一实施例中,所述基体1的轮廓形状呈三棱锥形,所述基体1的至少两个外侧面为发热面1b。所述反模10的轮廓形状呈三棱锥形,所述反模10与所述发热面1b相对应的侧面均具有多个所述立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40的轮廓形状也呈三棱锥形,以便模框40能够和反模10间隙套装。
示例性的,一实施例中,反模10的轮廓形状呈三棱锥形,软性模板包括三个依次连接的三角形平板,三个三角形平板的侧边依次连接以共同构成一个五边形的平面图形,通过折叠将位于边侧的两个三角形平板的侧边连接以形成立体的三棱锥形的反模10,三棱锥形的反模10的一侧开口,模框40为一侧开口的三棱锥形。可以理解的是,在反模10为内模的情况下, 柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
一实施例中,反模10的轮廓形状呈三棱锥形,先形成三个相互独立的子模,承载板呈三角形的平面图形,将三个承载板的侧边依次拼接形成立体的三棱锥形的反模10,三棱锥形的反模10的一侧开口,模框40为一侧开口的三棱锥形。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
请参阅图21,一实施例中,所述基体1的轮廓形状呈六面体形,所述基体1的至少两个外侧面为所述发热面1b。所述反模10的轮廓形状呈六面体形,所述反模10与所述发热面1b相对应的侧面均具有多个所述立柱。也就是说,基体1的轮廓形状和反模10的轮廓形状一致,以便基体1的结构和反模10嵌套。示例性的,模框40的轮廓形状也呈六面体形,以便模框40能够和反模10间隙套装。
示例性的,一实施例中,反模10的轮廓形状呈六面体形,软性模板包括五个依次连接的四边形平板,五个四边形平板的侧边依次连接以共同构成一个六边形的平面图形,通过折叠将位于边侧的两个四边形平板的侧边连接以形成立体的六面体形的反模10,六面体形的反模10的一侧开口,则模框40为一侧开口的六面体形。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
一实施例中,反模10的轮廓形状呈六面体形,先形成五个相互独立的子模,承载板呈四边形的平面图形,将五个承载板的侧边依次拼接形成立体的六面体形的反模10,六面体形的反模10的一侧开口,则模框40为一侧开口的六面体形。可以理解的是,在反模10为内模的情况下,柱子方向朝外。在反模10为外模的情况下,柱子方向朝内。
请参阅图36,图36是本申请一实施例提供的第四种电子雾化装置的结构示意图。
在本实施例中,提供一种电子雾化装置。该电子雾化装置可用于气溶胶生成基质的雾化。电子雾化装置包括相互电连接的雾化器100和主机200。
其中,雾化器100用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器100具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实施例中,该雾化器100用于休闲吸食,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化器100的具体结构与功能可参见以下实施例所涉及的雾化器100的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。主机200包括电池(图未示)和控制器(图未示)。电池用于为雾化器100的工作提供电能,以使得雾化器100能够雾化气溶胶生成基质形成气溶胶;控制器包括控制电路,用于控制雾化器100工作,即,控制雾化器100雾化气溶胶生成基质。主机200还包括电池支架、气流传感器等其他元件。
雾化器100与主机200可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图37,图37是本申请一实施例提供的雾化器的结构示意图。
雾化器100包括壳体110、雾化组件11、雾化座120和导通件140。雾化座120具有安装腔(图未标),雾化组件11设于该安装腔内;雾化组件11同雾化座120一起设于壳体110内。壳体110与雾化座120的顶面配合形成储液腔100a,储液腔100a用于存储液态气溶胶生成基质。雾化组件11与储液腔100a流体连通,用于雾化气溶胶生成基质生成气溶胶。导通件140与主机200的电池电连接,雾化组件11通过导通件140与主机200的电池实现电连接,即,导通件140用于使雾化组件11与主机200电连接,以使主机200为雾化组件11的雾化提供电能。导通件140设于雾化座120上。其中,雾化组件11的具体结构与功能可参见以下实施例所涉及的雾化组件11的具体结构与功 能,且可实现相同或相似的技术效果,在此不再赘述。
在一实施方式中,雾化座120包括上座121和下座122,上座121与下座122可拆卸连接。上座121与下座122配合形成安装腔。上座121上设有下液通道1211;储液腔100a内的气溶胶生成基质通道下液通道1211流入雾化组件11。雾化组件11背离储液腔100a的表面与安装腔的腔壁配合形成雾化腔120a。壳体110形成有出气通道110a,出气通道110a与雾化腔120a连通。下座122上设有进气通道110b,进气通道110b与雾化腔120a连通。外界气体经进气通道110b进入雾化腔120a,携带雾化组件11雾化好的气溶胶流至出气通道110a,用户通过出气通道110a的端口吸食气溶胶。导通件140设于下座122。
可以理解,在其他实施例中,雾化座120也可以为左右可拆卸连接的结构,具体根据需要进行设计。
请参阅图38至图41,图38是本申请实施例提供的雾化组件11的结构示意图,图39是图37所示的发热元件的结构示意图,图40是图39所示的发热元件的温度场分布示意图,图41是图38所示的基体的结构示意图。
雾化组件11包括基体1和发热元件112。基体1具有相对设置的进液面1a和发热面1b,其中,发热面1b为基体111背离储液腔100a的表面。基体1具有多个导液孔1c,导液孔1c用于将气溶胶生成基质从进液面1a导引至发热面1b。发热元件112设于发热面1b。
参见图39,发热元件112包括弯折部1121和非弯折部1122。弯折部1121雾化时的温度高于气溶胶生成基质的汽化温度,例如,弯折部1121的雾化时的温度为大于300℃,气溶胶生成基质的汽化温度为150℃-200℃,这时候容易造成热量过剩导致发热元件112发生半干烧状态,易造成发热元件112的弯折部1121部分的断裂,从而影响发热元件112的寿命,同时影响口感等。非弯折部1122雾化时的温度略高于气溶胶生成基质的汽化温度,当非弯折部1122与弯折部1121的供液速度相同时,非弯折部1122的供液速率高于雾化 效率,容易导致雾化效率不足,甚至影响口感。
参见图41,本申请通过使基体1的第一区域1114和第二区域1115具有不同的导液孔速率,实现高口感、高雾化效率和高可靠性。
具体地,弯折部1121覆盖基体1的区域为第一区域1114,非弯折部1122覆盖基体1的区域为第二区域1115,第一区域1114内导液孔1c的导液速率大于第二区域1115内导液孔1c的导液速率,通过使弯折部1121对应的导液速率高于非弯折部1122对应的导液速率,降低弯折部1121的雾化温度,避免了温度过高产生焦糊味,且利于提高雾化效率;同时,通过使非弯折部1122对应的导液速率低于弯折部1121对应的导液速率,避免非弯折部1122供液量太大产生对非弯折部1122降温的副作用,进而提升雾化效率和口感。
第一区域1114内的多个导液孔1c的孔径可以相同也可以不同,第一区域1114内的多个导液孔1c的长度可以相同也可以不同,第二区域1115内的多个导液孔1c的孔径可以相同也可以不同,第二区域1115内的多个导液孔1c的长度可以相同也可以不同,第一区域1114内的导液孔1c的孔隙率与第二区域1115内的导液孔1c的孔隙率可以相同也可以不同,第一区域1114内的导液孔1c的长度与第二区域1115内的导液孔1c的长度可以相同也可以不同,具体根据需要进行设计,只需使第一区域1114内导液孔1c的导液速率大于第二区域1115内导液孔1c的导液速率即可。具体地,第一区域1114内的导液孔1c与第二区域1115内的导液孔1c在孔径、孔隙率和长度三个参数中至少一个参数不同。
可以理解,除了通过导液孔1c的孔径、孔隙率和长度来调节各个区域内导液孔1c的导液速率,也可以通过其他手段来调节各个区域内导液孔1c的导液速率。例如,可以通过对导液孔1c的壁面进行改性,改变导液孔1c的壁面对气溶胶生成基质的浸润性来调节各个区域内导液孔1c的导液速率。
在一实施方式中,导液孔1c的孔径为5μm-60μm,和/或,导液孔1113的孔隙率为5%-60%。
在一实施方式中,导液孔1c的横截面形状为圆形或六边形。
需要说明的是,本申请对导液孔1c的横截面形状并不限于上述形状,具体根据需要进行设计。横截面指的是垂直于导液孔1c轴线方向的截面。
在一实施方式中,第一区域1114内的多个导液孔1c的孔径基
本相同,第二区域1115内的多个导液孔1c的孔径基本相同,便于
加工。第一区域1114内的导液孔1c的孔径大于第二区域1115内
的导液孔1c的孔径,和/或第一区域1114内的导液孔1c的孔隙率大于第二区域1115内的导液孔1c的孔隙率,和/或第一区域1114内的导液孔1c的长度小于第二区域1115内的导液孔1c的长度。可选的,第一区域1114内导液孔1c的孔径为20μm-50μm;和/或,第二区域1115内导液孔1c的孔径为10μm-30μm。通过将第一区域1114内导液孔1c的孔径设为20μm-50μm,在实现对弯折部1121降温的同时不会供液量太大造成漏液。通过将第二区域1115内导液孔1c的孔径设为10μm-30μm,在保证供液充足的前提下避免对非弯折部1122产生降温的副作用。
可选的,第一区域1114内导液孔1c的孔隙率为30%-60%;和/或,第二区域1115内导液孔1c的孔隙率为10%-40%。通过将第一区域1114内导液孔1c的孔隙率设为30%-60%,在实现对弯折部1121降温的同时不会供液量太大造成漏液。通过将第二区域1115内导液孔1c的孔隙率设为10%-40%,在保证供液充足的前提下避免对非弯折部1122产生降温的副作用。
可选的,第一区域1114内导液孔1c的长度为0.4mm-0.8mm;和/或,第二区域1115内导液孔的长度为0.6mm-1.2mm。导液孔1c的长度影响着气溶胶生成基质从进液面1a导引至发热面1b所需的时间,且该导液时间与导液孔1c的长度呈负相关关系。通过将第一区域1114内的导液孔1c的长度设置为小 于第二区域1115内的导液孔1c的长度,使得第一区域1114内导液孔1c的导液速率大于第二区域1115内导液孔1c的导液速率。通过将第一区域1114内导液孔1c的长度设为0.4mm-0.8mm%,在实现对弯折部1121降温的同时不会供液量太大造成漏液。通过将第二区域1115内导液孔1c的长度设为0.6mm-1.2mm,在保证供液充足的前提下避免对非弯折部1122产生降温的副作用。
进一步,非弯折部1122包括第一非弯折部1122a和第二非弯折部1122b,第一非弯折部1122a连接第二非弯折部1122b与弯折部1121。基体1被第一非弯折部1122a覆盖的区域为第一子区域1115a,基体1被第二非弯折部1122b覆盖的区域为第二子区域1115b,第一子区域1115a和第二子区域1115b共同组成第二区域1115。第一子区域1115a内导液孔1c的导液速率大于第二子区域1115b内导液孔1c的导液速率。
第一子区域1115a内的多个导液孔1c的孔径可以相同也可以不同,第一子区域1115a内的多个导液孔1c的长度可以相同也可以不同,第二子区域1115b内的多个导液孔1c的孔径可以相同也可以不同,第二子区域1115b内的多个导液孔1c的长度可以相同也可以不同,第一子区域1115a内的导液孔1c的孔隙率与第二子区域1115b内的导液孔1c的孔隙率可以相同也可以不同,第一子区域1115a内的导液孔1c的长度与第二子区域1115b内的导液孔1c的长度可以相同也可以不同,具体根据需要进行设计,只需使所述第一子区域1115a内导液孔1c的导液速率大于第二区域1115内导液孔1c的导液速率即可。具体地,第一子区域1115a内的导液孔1c与第二子区域1115b内的导液孔1c在孔径、孔隙率和长度三个参数中至少一个参数不同。
在一实施方式中,第一子区域1115a内的多个导液孔1c的孔径基本相同,第二子区域1115b内的多个导液孔1c的孔径基本相同,便于加工。第一子区域1115a内的导液孔1c的孔径大于第二子区域1115b内的导液孔1c的孔径;和 /或,第一子区域1115a内的导液孔1c的孔隙率大于第二子区域1115b内的导液孔1c的孔隙率;和/或,第一子区域1115a内的导液孔1c的长度小于第二子区域1115b内的导液孔1c的长度。
可选的,第一子区域1115a内导液孔1c的孔径为10μm-30μm,和/或,第一子区域1115a内导液孔1c的孔隙率为10%-40%,和/或,第一子区域1115a内导液孔1c的长度为0.6mm-1.2mm,在实现对弯折部1121降温的同时不会供液量太大造成漏液。其中,在一具体实施例中,第一子区域1115a内导液孔1c的长度为0.6mm-1.1mm。
可选的,第二子区域1115b内导液孔1c的孔径为5μm-15μm,和/或,第二子区域1115b内导液孔1c的孔隙率为10%-20%,和/或,第二子区域1115b内导液孔1c的长度为0.6mm-1.2mm,在保证供液充足的前提下避免对非弯折部1122产生降温的副作用。其中,在一具体实施例中,第二子区域1115b内导液孔1c的长度为0.7mm-1.2mm。
需要说明的是,发热元件112的非弯折部1122可以划分为更多的区域,并不限于第一非弯折部1122a和第二非弯折部1122b,对应于第二区域1115也可以划分为更多的区域,并不限于第一子区域1115a和第二子区域1115b,只需使不同温度对应的基体1的导液孔1c的导液速率符合上述规律(即,发热元件112的某一部分的温度越高,该部分对应的基体1的导液孔1c的导液速率越大)即可。同理,发热元件112的弯折部1121可以划分为多个区域,对应的第一区域1114也可以划分为多个区域,只需使不同温度对应的基体1的导液孔1c的导液速率符合上述规律(即,发热元件112的某一部分的温度越高,该部分对应的基体1的导液孔1c的导液速率越大)即可。
在一实施方式中,弯折部1121呈折线或呈弧线。示例性的,如图39所示,发热元件112整体呈S型延伸。发热元件112包括相互平行的第一发热部112a、第二发热部112b、第三发热部112c,以及连接第一发热部112a与第二 发热部112b的第一连接部112d、连接第二发热部112b与第三发热部112c的第二连接部112e。
第一发热部112a、第二发热部112b和第三发热部112c分别呈直线延伸,第二发热部112b位于第一发热部112a与第三发热部112c之间,第一连接部112d和第二连接部112e呈弧线延伸。其中,第一连接部112d和第二连接部112e分别为一个上述的弯折部1121。第一发热部112a和第三发热部112c分别为一个上述的非弯折部1122。第二发热部112b覆盖基体1的区域内的导液孔1c的孔径和/或孔隙率和/或长度与第一区域1114内的导液孔1c的孔径和/或孔隙率和/或长度相同。
第一发热部112a包括第一部分112a-1和第二部分112a-2,第一部分112a-1位于第二部分112a-2远离第一连接部112d的一侧,第二部分112a-2形成第一非弯折部1122a,第一部分112a-1形成第二非弯折部1122b。第三发热部112c包括第三部分112c-1和第四部分112c-2,第三部分112c-1位于第四部分112c-2远离第二连接部112e的一侧。第四部分112c-2形成第一非弯折部1122a,第三部分112c-1形成第二非弯折部1122b。
另外,本申请还对呈S型延伸的发热元件112采用红外探测进行了温度场分析,如图40所示,S型发热元件112的弯折部1121及两个弯折部1121之间的部分温度最高,弯折部1121背离另一个弯折部1121的一侧的温度较低,因此将发热元件112的基体1上的各个区域的导液孔1c的参数做如上设计是合理的。可以理解,第一连接部112d和第二连接部112e也可以具有不同的曲率,使得第一连接部112d和第二连接部112e产生的温度不同,从而可以进一步将弯折部1121也划分为第一弯折部和第二弯折部。
基体1被第一弯折部覆盖的区域的导液孔1c与基体1被第二弯折部覆盖的区域的导液孔1c在孔径、孔隙率和长度三个参数中至少一个参数不同。
再示例性的,发热元件112整体呈W型延伸。发热元件112包括第一发热 部、第二发热部、第三发热部、第四发热部、第一连接部、第二连接部和第三连接部。第一连接部连接第一发热部和第二发热部,第二连接部连接第二发热部和第三发热部,第三连接部连接第三发热部和第四发热部。第一发热部、第二发热部、第三发热部、第四发热部均呈直线延伸;第一发热部的延长线与第二发热部的延长线形成第一夹角,第二发热部的延长线与第三发热部的延长线形成第二夹角,第三发热部的延长线与第四发热部的延长线形成第三夹角。第一连接部、第二连接部、第三连接部呈弧线延伸。
第一连接部、第二连接部、第三连接部分别为一个弯折部1121。第二发热部、第三发热部对应的导液孔1c的参数与弯折部1121对应的导液孔1c的参数相同,参数包括孔径、孔隙率、长度。第一发热部和第四发热部分别为一个非弯折部1122。
在一实施方式中,发热元件112具有多个通孔,提升导液供液能力,在一定程度上降低发热元件112雾化过程中的干烧问题,从而具有较高的雾化效率,保证雾化效果,提升口感。
可选的,发热元件112为发热膜,多个通孔为无序的通孔(如图38所示);示例性的,采用多孔材料印刷或沉积形成发热膜。
可选的,通孔为沿着发热元件112厚度方向的贯穿孔;当导液孔1113位贯穿进液面1a和发热面1b的通孔时,发热元件112的通孔的轴线与导液孔1c的轴线重合。
可选的,发热元件112的通孔的孔径为5μm-50μm,和/或,发热元件112的孔隙率为20%-60%。
在一实施方式中,发热元件112为发热膜,发热膜的厚度为5μm-100μm。
在一实施方式中,发热元件112为发热膜,发热膜呈条状结构,发热膜 的宽度为0.2cm-0.6cm。示例性的,发热膜的宽度为0.35cm。
需要说明的是,通过对发热元件112的孔径、孔隙率、形状及宽度做如上设计,可以改善发热元件112与气溶胶生成基质的浸润性,
调整发热元件112的功率密度,利于提升雾化效率。
在一实施方式中,发热元件112的材料包括镍铬合金、不锈钢合金、铝合金中的至少一种。
在一实施方式中,基体1的材料为多孔材料,导液孔1c为多孔材料自身具有的无序通孔。
在一实施方式中,基体1的材料为致密材料,导液孔1c为贯穿进液面1a和发热面1b的通孔。
在一实施方式中,基体1的厚度为2mm-5mm。
在一实施方式中,基体1为片状结构,如图38所示。
需要说明的是,本申请实施例中制造方法制造的雾化组件可以与本申请实施例中的雾化组件相同,对于本申请实施例中制造方法未披露的技术细节,请参照本申请实施例雾化组件实施例的描述而理解。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不仅限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围后,可轻易想到变化或替换,都应涵盖在本申请的保护范围之后。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (106)

  1. 一种雾化组件,包括:
    基体,包括进液面、发热面和导液孔,所述导液孔连通所述进液面和所述发热面;
    阻液层,所述导液孔的至少部分周侧面覆盖有所述阻液层。
  2. 根据权利要求1所述的雾化组件,所述阻液层为致密陶瓷材料。
  3. 根据权利要求1所述的雾化组件,所述阻液层的成分包括二氧化硅和三氧化二铝中的至少一个。
  4. 根据权利要求1所述的雾化组件,所述阻液层的厚度在0.1μm~20μm之间。
  5. 根据权利要求1所述的雾化组件,所述进液面的部分覆盖有所述阻液层;和/或,
    所述发热面的部分覆盖有所述阻液层。
  6. 根据权利要求1所述的雾化组件,所述导液孔的当量直径在1μm~100μm之间。
  7. 根据权利要求1所述的雾化组件,所述雾化组件包括嵌设于所述基体中的空心体,所述空心体的内部填充热的不良导体。
  8. 根据权利要求7所述的雾化组件,所述热的不良导体为空气或者惰性气体。
  9. 根据权利要求7所述的雾化组件,所述空心体呈球形结构,所述空心体的外径在0.1μm~10μm之间。
  10. 根据权利要求1所述的雾化组件,所述导液孔的部分周侧面覆盖有所述阻液层;或,
    所述导液孔的全部周侧面覆盖有所述阻液层。
  11. 根据权利要求1所述的雾化组件,所述进液面的部分和所述发热面的部分均覆盖有所述阻液层,所述导液孔上的阻液层、所述进液面上的阻液层和所述发热面上的阻液层为一体成型结构。
  12. 根据权利要求1~11任一项所述的雾化组件,所述雾化组件包括发热膜,所述发热膜设置于所述发热面上。
  13. 根据权利要求1所述的雾化组件,所述雾化组件包括发热层,所述发热层设置于所述导液孔的周向面上。
  14. 根据权利要求13所述的雾化组件,所述发热层覆盖所述导液孔的部分壁面;或,
    所述发热层覆盖所述导液孔的全部壁面。
  15. 根据权利要求13所述的雾化组件,所述雾化组件包括发热膜,所述发热膜设置于所述发热面上,所述发热膜与所述发热层电连接。
  16. 根据权利要求13所述的雾化组件,所述发热层与所述进液面不接触。
  17. 根据权利要求16所述的雾化组件,所述发热层从所述导液孔与所述发热面的连接处延伸至所述导液孔的预设位置,所述预设位置与所述进液面之间的距离不小于所述导液孔的深度的四分之一。
  18. 根据权利要求13所述的雾化组件,所述发热层的厚度在0.1μm~20μm之间。
  19. 根据权利要求1所述的雾化组件,所述导液孔的数量为多个,多个所述导液孔中的至少部分的当量直径不相等。
  20. 根据权利要求1所述的雾化组件,所述雾化组件包括发热膜,所述基体具有相对设置的第一表面和第二表面,所述第一表面的至少部分区域形成所述进液面,所述第二表面的至少部分区域形成发热区域,所述发热区域包括朝向不同方向的所述发热面,所述导液孔设置于所述基体,用 于将气溶胶生成基质从所述进液面导引至所述发热面,所述发热膜设置于所述发热面上。
  21. 根据权利要求20所述的雾化组件,所述发热面与对应的所述进液面平行。
  22. 根据权利要求20所述的雾化组件,所述第一表面的至少部分区域形成凹槽,所述进液面设置于所述凹槽的槽壁面上;和/或,
    所述第二表面的至少部分区域外凸形成所述发热区域。
  23. 根据权利要求20所述的雾化组件,所述发热区域的轮廓形状呈三棱柱形,所述三棱柱的至少两个侧面为所述发热面。
  24. 根据权利要求20所述的雾化组件,所述发热区域的轮廓形状呈柱形,所述柱形的至少部分外侧面为所述发热面。
  25. 根据权利要求20所述的雾化组件,所述发热区域的轮廓形状呈球面,所述发热面至少构成部分所述球面。
  26. 根据权利要求20所述的雾化组件,所述导液孔的孔径为20μm-100μm;和/或,
    所述发热面的孔隙率为20%-50%;和/或,
    所述导液孔的长度为0.1mm-10mm。
  27. 根据权利要求20所述的雾化组件,所述发热区域的轮廓形状呈抛物面、双曲面或椭球面。
  28. 根据权利要求1所述的雾化组件,所述基体包括:
    第一基体,形成有中间通道;
    第二基体,形成有容纳通道,所述第一基体容设于所述容纳通道中,所述第一基体的外周面和所述容纳通道的壁面之间具有间隔空间,所述间隔空间空置或填充有多孔件,所述中间通道的壁面和所述第二基体的外周面其中一个为所述发热面,所述中间通道的壁面和所述第二基体的外周面 其中另一个为所述进液面。
  29. 根据权利要求28所述的雾化组件,所述第一基体形成有多个过流孔,所述第二基体形成有多个连通孔,所述过流孔连通所述中间通道和所述间隔空间,所述连通孔连通所述间隔空间和所述第二基体的外周面,所述导液孔包括所述过流孔和所述连通孔。
  30. 根据权利要求29所述的雾化组件,所述过流孔的过流断面的面积与所述连通孔的过流断面的面积不相等。
  31. 根据权利要求29所述的雾化组件,所述过流孔的孔径与所述连通孔的孔径不相等。
  32. 根据权利要求31所述的雾化组件,所述中间通道的壁面为所述发热面,且所述第二基体的外周面为所述进液面,所述过流孔的孔径小于所述连通孔的孔径;或者,
    所述中间通道的壁面为所述进液面,且所述第二基体的外周面为所述发热面,所述过流孔的孔径大于所述连通孔的孔径。
  33. 根据权利要求28所述的雾化组件,所述第一基体的孔隙率与所述第二基体的孔隙率不相等。
  34. 根据权利要求33所述的雾化组件,所述中间通道的壁面为所述发热面,且所述第二基体的外周面为所述进液面,所述第一基体的孔隙率小于所述第二基体的孔隙率;或者,
    所述中间通道的壁面为所述进液面,且所述第二基体的外周面为所述发热面,所述第一基体的孔隙率大于所述第二基体的孔隙率。
  35. 根据权利要求29所述的雾化组件,所述过流孔贯穿所述第一基体的外周面的孔口为过流口,所述连通孔贯穿所述容纳通道的壁面的孔口为连通口,所述连通口在所述第一基体上的投影与所述过流口至多部分重叠。
  36. 根据权利要求28所述的雾化组件,所述第一基体的外周面的上端 和所述容纳通道的壁面的上端之间的间距大于所述第一基体的外周面的下端和所述容纳通道的壁面的下端之间的间距。
  37. 根据权利要求36所述的雾化组件,所述第一基体的外周面和所述容纳通道的壁面之间的间距从上至下逐渐增大。
  38. 根据权利要求28所述的雾化组件,所述第一基体的轮廓形状呈圆柱形或圆锥台。
  39. 根据权利要求28所述的雾化组件,所述第二基体的轮廓形状呈圆柱形或圆锥台。
  40. 根据权利要求28所述的雾化组件,所述雾化组件包括多个发热膜,多个所述发热膜间隔设置于所述发热面上。
  41. 根据权利要求28所述的雾化组件,所述多孔件为陶瓷多孔结构。
  42. 根据权利要求1所述的雾化组件,所述基体包括至少一个所述进液面和至少两个所述发热面,所述发热面上具有多个有序排列的所述导液孔。
  43. 根据权利要求42所述的雾化组件,所述雾化组件包括发热膜,每个所述发热面设置有至少一个所述发热膜,每个所述发热膜独立供电。
  44. 根据权利要求43所述的雾化组件,至少部分所述发热面的发热膜的加热温度或者加热功率不同。
  45. 根据权利要求43所述的雾化组件,根据所述基体的中心轴与水平面之间的角度,调节各个所述发热面的发热膜的功率。
  46. 根据权利要求42所述的雾化组件,所述基体包括多个所述进液面,每个所述进液面对应一个所述发热面,所述发热面上的所述导液孔连通对应的所述进液面。
  47. 根据权利要求42所述的雾化组件,所述基体包括多个相互连接的子单元,每个所述子单元包括一个所述发热面,各个所述发热面的朝向相 异。
  48. 根据权利要求42所述的雾化组件,所述基体为一体成型结构。
  49. 根据权利要求42所述的雾化组件,所述基体形成有进液槽和与所述进液槽连通的进液口,所述进液面形成于所述进液槽的槽壁面上,所述发热面形成于所述基体的外表面。
  50. 根据权利要求49所述的雾化组件,所述进液槽被分隔成多个相互隔离的子槽,每个所述子槽对应一个所述发热面。
  51. 根据权利要求42所述的雾化组件,至少部分所述发热面的导液孔的孔径不同;和/或,
    至少部分所述发热面的导液孔的横截面形状不同;和/或,
    至少部分所述发热面的孔隙率不同。
  52. 根据权利要求42所述的雾化组件,所述基体的轮廓形状呈多面体或旋转体。
  53. 根据权利要求52所述的雾化组件,所述基体的轮廓形状呈三棱锥形,所述基体的至少两个外侧面为所述发热面。
  54. 根据权利要求52所述的雾化组件,所述基体的轮廓形状呈六面体形,所述基体的至少两个外侧面为所述发热面。
  55. 根据权利要求52所述的雾化组件,所述基体的轮廓形状呈正多面体、棱锥、棱台或棱柱。
  56. 根据权利要求1所述的雾化组件,所述雾化组件包括发热元件,所述发热元件设于所述发热面;所述发热元件包括弯折部和非弯折部;
    其中,所述弯折部覆盖所述基体的区域为第一区域,所述非弯折部覆盖所述基体的区域为第二区域;所述第一区域内的所述导液孔的孔径大于所述第二区域内的所述导液孔的孔径;和/或,所述第一区域内的所述导液孔的孔隙率大于所述第二区域内的所述导液孔的孔隙率;和/或,所述第一 区域内的所述导液孔的长度小于所述第二区域内的所述导液孔的长度。
  57. 根据权利要求56所述的雾化组件,所述第一区域内所述导液孔的孔径为20μm-50μm;和/或,所述第二区域内所述导液孔的孔径为10μm-30μm。
  58. 根据权利要求56所述的雾化组件,所述第一区域内所述导液孔的孔隙率为30%-60%;和/或,所述第二区域内所述导液孔的孔隙率为10%-40%。
  59. 根据权利要求56所述的雾化组件,所述第一区域内所述导液孔的长度为0.4mm-0.8mm;和/或,所述第二区域内所述导液孔的长度为0.6mm-1.2mm。
  60. 根据权利要求56所述的雾化组件,所述非弯折部包括第一非弯折部和第二非弯折部,所述第一非弯折部连接所述第二非弯折部与所述弯折部;所述第一非弯折部覆盖所述基体的区域为第一子区域,所述第二非弯折部覆盖所述基体的区域为第二子区域,所述第一子区域和所述第二子区域共同组成所述第二区域;
    所述第一子区域内的所述导液孔的孔径大于所述第二子区域内的所述导液孔的孔径;和/或,所述第一子区域内的所述导液孔的孔隙率大于所述第二子区域内的所述导液孔的孔隙率;和/或,所述第一子区域内的所述导液孔的长度小于所述第二子区域内的所述导液孔的长度。
  61. 根据权利要求60所述的雾化组件,所述第一区域内所述导液孔的孔径为20μm-50μm;和/或,所述第一区域内所述导液孔的孔隙率为30%-60%;和/或,所述第一区域内所述导液孔的长度为0.4mm-0.8mm;
    所述第一子区域内所述导液孔的孔径为10μm-30μm,和/或,所述第一子区域内所述导液孔的孔隙率为10%-40%,和/或,所述第一子区域内所述导液孔的长度为0.6mm-1.2mm;
    所述第二子区域内所述导液孔的孔径为5μm-15μm,和/或,所述第二子区域内所述导液孔的孔隙率为10%-20%,和/或,所述第二子区域内所述导液孔的长度为0.6mm-1.2mm。
  62. 根据权利要求56所述的雾化组件,所述弯折部呈折线或呈弧线。
  63. 根据权利要求56所述的雾化组件,所述发热元件包括相互平行的第一发热部、第二发热部、第三发热部,以及连接所述第一发热部与所述第二发热部的第一连接部、连接所述第二发热部与所述第三发热部的第二连接部;所述第一发热部、所述第二发热部和所述第三发热部分别呈直线延伸,所述第二发热部位于所述第一发热部与所述第三发热部之间,所述第一连接部和所述第二连接部呈弧线延伸,所述发热元件整体呈S型延伸;
    其中,所述第一连接部和所述第二连接部分别为一个所述弯折部;所述第二发热部覆盖所述基体的区域内的导液孔的孔径和/或孔隙率和/或长度与所述第一区域内的所述导液孔的孔径和/或孔隙率和/或长度相同;所述第一发热部和所述第三发热部分别为一个所述非弯折部。
  64. 根据权利要求63所述的雾化组件,所述第一发热部包括第一部分和第二部分,所述第一部分位于所述第二部分远离第一连接部的一侧;所述第三发热部包括第三部分和第四部分,所述第三部分位于所述第四部分远离所述第二连接部的一侧;
    所述第二部分和所述第四部分分别为一个第一非弯折部,所述第一部分和所述第三部分分别为一个第二非弯折部。
  65. 根据权利要求56所述的雾化组件,所述发热元件具有多个通孔。
  66. 根据权利要求65所述的雾化组件,所述发热元件为发热膜,多个所述通孔为无序通孔。
  67. 根据权利要求65所述的雾化组件,所述通孔的孔径为5μm-50μm,和/或,所述发热元件的孔隙率为20%-60%。
  68. 根据权利要求65所述的雾化组件,所述发热元件为发热膜,所述发热膜的厚度为5μm-100μm。
  69. 根据权利要求65所述的雾化组件,所述发热元件为发热膜,所述发热膜呈条状结构,所述发热膜的宽度为0.2cm-0.6cm。
  70. 根据权利要求56所述的雾化组件,所述发热元件的材料包括镍铬合金、不锈钢合金、铝合金中的至少一种。
  71. 根据权利要求56所述的雾化组件,所述导液孔的孔径为5μm-60μm,和/或,所述导液孔的孔隙率为5%-60%。
  72. 根据权利要求56所述的雾化组件,所述导液孔的横截面形状为圆形或六边形。
  73. 根据权利要求56所述的雾化组件,所述基体的材料为多孔材料,所述导液孔为所述多孔材料自身具有的无序通孔。
  74. 根据权利要求56所述的雾化组件,所述基体的材料为致密材料,所述导液孔为贯穿所述进液面和所述发热面的通孔。
  75. 根据权利要求56所述的雾化组件,所述基体的厚度为2mm-5mm。
  76. 一种雾化器,包括:
    储液器,用于储存待雾化的液态基质;
    权利要求1~75任一项所述的雾化组件,所述储液器中的液态基质能够流动至所述进液面。
  77. 一种电子雾化装置,包括:
    权利要求76所述的雾化器;
    电源件,用于给所述雾化组件供电。
  78. 一种制造方法,用于制造雾化组件,所述雾化组件包括基体和阻液层,所述基体包括进液面、发热面和导液孔,所述导液孔连通所述进液面和所述发热面,所述导液孔的至少部分周侧面覆盖有所述阻液层,所述 制造方法包括:
    提供与所述基体的结构嵌套的反模,其中,所述反模包括连接板和与所述连接板连接的立柱,所述立柱对应所述导液孔;
    将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔;
    浆料填充所述模腔以形成生胚;
    处理所述生胚以形成所述基体。
  79. 根据权利要求78所述的制造方法,在所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔的步骤之前,还包括:
    在所述反模的表面覆盖所述阻液层,其中,所述立柱的至少部分周向面覆盖有所述阻液层。
  80. 根据权利要求79所述的制造方法,在所述浆料填充所述模腔以形成生胚的步骤之后,还包括:
    将所述反模与所述生胚分离,使得所述阻液层附着至所述生胚上。
  81. 根据权利要求80所述的制造方法,所述处理所述生胚以形成所述基体的步骤,具体包括:处理所述生胚以形成所述基体和所述阻液层。
  82. 根据权利要求79所述的制造方法,在所述反模的表面覆盖所述阻液层,包括:
    所述连接板的朝向所述立柱的至少部分表面覆盖有所述阻液层。
  83. 根据权利要求79所述的制造方法,通过化学气相沉积沉积所述阻液层。
  84. 根据权利要求78所述的制造方法,所述浆料中掺有空心体,其中,所述空心体的内部填充热的不良导体。
  85. 根据权利要求78所述的制造方法,所述制造方法包括:
    制造与所述基体的结构相同的母模,根据所述母模制造所述反模。
  86. 根据权利要求81所述的制造方法,处理所述生胚以形成所述基体和所述阻液层之后,所述制造方法包括:
    在所述发热面镀膜或刷膜以形成发热膜。
  87. 根据权利要求78所述的制造方法,所述反模为软性材质和/或所述反模为一次性牺牲模。
  88. 根据权利要求78所述的制造方法,所述雾化组件包括发热层,所述发热层设置于所述导液孔的周向面上;
    在所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔的步骤之前,还包括:
    在所述立柱的周向面覆盖所述发热层。
  89. 根据权利要求88所述的制造方法,在所述浆料填充所述模腔以形成生胚的步骤之后,还包括:
    将所述反模与所述生胚分离,使得所述发热层附着至所述生胚上。
  90. 根据权利要求89所述的制造方法,所述处理所述生胚以形成所述基体的步骤,具体包括:处理所述生胚以形成所述基体和所述发热层。
  91. 根据权利要求90所述的制造方法,处理所述生胚以形成所述基体和所述发热层之后,所述制造方法包括:
    所述发热面镀膜或刷膜以形成发热膜。
  92. 根据权利要求88所述的制造方法,所述制造方法包括:在所述立柱的周向面覆盖所述发热层的同时,所述连接板的朝向所述立柱的至少部分表面覆盖发热膜。
  93. 根据权利要求88所述的制造方法,通过化学气相沉积形成所述发热层。
  94. 根据权利要求78所述的制造方法,提供与所述基体的结构嵌套的 反模,包括:
    先一体注塑形成软性模板,其中,所述软性模板包括承载板和设置于所述承载板上多个所述立柱;
    将所述承载板折叠或弯曲以形成所述反模。
  95. 根据权利要求78所述的制造方法,所述反模的轮廓呈柱形或者球面,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
  96. 根据权利要求78所述的制造方法,所述基体包括第一基体和第二基体,所述第一基体形成有中间通道;所述第二基体形成有容纳通道,所述第一基体容设于所述容纳通道中,所述第一基体的外周面和所述容纳通道的壁面之间具有间隔空间,所述间隔空间空置或填充有多孔件,所述中间通道的壁面和所述第二基体的外周面其中一个为所述发热面,所述中间通道的壁面和所述第二基体的外周面其中另一个为所述进液面;其中,所述提供与所述基体的结构嵌套的反模,包括:
    制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模。
  97. 根据权利要求96所述的制造方法,所述将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
    将所述第一反模套设于所述第二反模中,并在所述第一反模和所述第二反模之间放置隔断模,所述第一反模、所述第二反模和所述隔断模均放置于外模中以共同限定出模腔。
  98. 根据权利要求96所述的制造方法,所述制造方法包括:
    制造与所述第一基体的结构相同的第一母模、以及与所述第二基体的结构相同的第二母模,根据所述第一母模制造所述第一反模以及根据所述第二母模制造所述第二反模。
  99. 根据权利要求96所述的制造方法,所述第一基体形成有多个过流 孔,所述第二基体形成有多个连通孔,所述过流孔连通所述中间通道和所述间隔空间,所述连通孔连通所述间隔空间和所述第二基体的外周面,所述第一反模具有与所述过流孔嵌套的第一立柱,所述第二反模具有与所述连通孔嵌套的第二立柱,所述立柱包括所述第一立柱和所述第二立柱。
  100. 根据权利要求99所述的制造方法,制造与所述第一基体的结构嵌套的第一反模、以及与所述第二基体的结构嵌套的第二反模,包括:
    分别制造第一软性模板和第二软性模板,其中,所述第一软性模板包括第一平板和多个位于所述第一平板上的所述第一立柱,所述第二软性模板包括第二平板和多个位于所述第二平板上的所述第二立柱;
    将所述第一平板卷绕成中空的圆环结构以形成所述第一反模,并将所述第二平板卷绕成中空的圆环结构以形成所述第二反模,其中,所述第一立柱朝向外侧,所述第二立柱朝向内侧。
  101. 根据权利要求78所述的制造方法,提供与所述基体的结构嵌套的反模,包括:
    先一体注塑形成软性模板,其中,所述软性模板包括多个依次连接的平板,至少两个所述平板上具有多个所述立柱;
    将多个所述平板折叠以形成所述反模。
  102. 根据权利要求78所述的制造方法,提供与所述基体的结构嵌套的反模,包括:
    先形成多个子模,其中,所述子模包括承载板和设置于所述承载板上多个所述立柱;
    将多个所述子模拼接以形成所述反模。
  103. 根据权利要求78所述的制造方法,将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
    所述模框形成有容纳槽,所述反模间隙套装于所述容纳槽中。
  104. 根据权利要求78所述的制造方法,将与所述反模的轮廓形状适配的模框和所述反模间隙套装,以共同限定出模腔,包括:
    所述反模形成有容纳槽,所述模框间隙套装于所述容纳槽中。
  105. 根据权利要求78所述的制造方法,所述基体的轮廓形状呈三棱锥形,所述基体的至少两个外侧面为发热面;
    所述反模的轮廓形状呈三棱锥形,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
  106. 根据权利要求78所述的制造方法,所述基体的轮廓形状呈六面体形,所述基体的至少两个外侧面为所述发热面;
    所述反模的轮廓形状呈六面体形,所述反模与所述发热面相对应的侧面均具有多个所述立柱。
PCT/CN2023/126490 2022-11-25 2023-10-25 雾化组件、雾化器、电子雾化装置以及制造方法 WO2024109427A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202211493593.0 2022-11-25
CN202211494452.0A CN115708598A (zh) 2022-11-25 2022-11-25 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN202211494471.3A CN115844061A (zh) 2022-11-25 2022-11-25 一种发热组件、雾化器、电子雾化装置以及制造方法
CN202211494452.0 2022-11-25
CN202211494471.3 2022-11-25
CN202211493593.0A CN115736374A (zh) 2022-11-25 2022-11-25 一种发热组件、雾化器、电子雾化装置以及制造方法
CN202211571416.X 2022-12-08
CN202211570359.3 2022-12-08
CN202211570359.3A CN115721058A (zh) 2022-12-08 2022-12-08 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN202211571416.XA CN115769917A (zh) 2022-12-08 2022-12-08 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN202310037883.2A CN118319068A (zh) 2023-01-10 发热组件、雾化器及电子雾化装置
CN202310037883.2 2023-01-10

Publications (1)

Publication Number Publication Date
WO2024109427A1 true WO2024109427A1 (zh) 2024-05-30

Family

ID=91195158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126490 WO2024109427A1 (zh) 2022-11-25 2023-10-25 雾化组件、雾化器、电子雾化装置以及制造方法

Country Status (1)

Country Link
WO (1) WO2024109427A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215381467U (zh) * 2021-06-25 2022-01-04 比亚迪精密制造有限公司 雾化芯及其电子烟
WO2022077359A1 (zh) * 2020-10-15 2022-04-21 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
CN114794567A (zh) * 2021-07-05 2022-07-29 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
CN115053999A (zh) * 2022-07-08 2022-09-16 深圳市赛尔美电子科技有限公司 雾化组件及雾化装置
CN115708598A (zh) * 2022-11-25 2023-02-24 思摩尔国际控股有限公司 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN115721058A (zh) * 2022-12-08 2023-03-03 思摩尔国际控股有限公司 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN115736374A (zh) * 2022-11-25 2023-03-07 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115769917A (zh) * 2022-12-08 2023-03-10 思摩尔国际控股有限公司 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN115844061A (zh) * 2022-11-25 2023-03-28 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077359A1 (zh) * 2020-10-15 2022-04-21 深圳麦克韦尔科技有限公司 雾化组件及电子雾化装置
CN215381467U (zh) * 2021-06-25 2022-01-04 比亚迪精密制造有限公司 雾化芯及其电子烟
CN114794567A (zh) * 2021-07-05 2022-07-29 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
CN115053999A (zh) * 2022-07-08 2022-09-16 深圳市赛尔美电子科技有限公司 雾化组件及雾化装置
CN115708598A (zh) * 2022-11-25 2023-02-24 思摩尔国际控股有限公司 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN115736374A (zh) * 2022-11-25 2023-03-07 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115844061A (zh) * 2022-11-25 2023-03-28 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115721058A (zh) * 2022-12-08 2023-03-03 思摩尔国际控股有限公司 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN115769917A (zh) * 2022-12-08 2023-03-10 思摩尔国际控股有限公司 一种雾化组件、雾化器、电子雾化装置以及制造方法

Similar Documents

Publication Publication Date Title
US20220125113A1 (en) Atomization core
WO2022033267A1 (zh) 一种雾化芯的制造方法、雾化芯及其电子雾化装置
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
CN109349680A (zh) 多孔发热体、包含多孔发热体的雾化器及多孔体制备方法
WO2023000799A1 (zh) 一种雾化芯、雾化组件、雾化器及电子雾化装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
CN115708598A (zh) 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN109349681A (zh) 多孔发热体、包含多孔发热体的雾化器及多孔体制备方法
CN115844061A (zh) 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115736374A (zh) 一种发热组件、雾化器、电子雾化装置以及制造方法
WO2024109427A1 (zh) 雾化组件、雾化器、电子雾化装置以及制造方法
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
WO2022179300A2 (zh) 发热组件、雾化器及电子雾化装置
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
CN115769917A (zh) 一种雾化组件、雾化器、电子雾化装置以及制造方法
CN115721058A (zh) 一种雾化组件、雾化器、电子雾化装置以及制造方法
WO2024012131A1 (zh) 雾化芯、雾化器及电子雾化装置
CN114259085B (zh) 单体陶瓷发热体
CN220109152U (zh) 一种雾化组件、雾化器以及电子雾化装置
CN219781607U (zh) 一种雾化组件、雾化器以及电子雾化装置
CN219306049U (zh) 雾化芯、雾化器以及电子雾化装置
WO2020056826A1 (zh) 一种无机三维储油体、雾化装置及电子烟
CN219396284U (zh) 一种发热组件、雾化器以及电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2023216262A1 (zh) 发热体及其制备方法、雾化组件及电子雾化装置