WO2024012131A1 - 雾化芯、雾化器及电子雾化装置 - Google Patents
雾化芯、雾化器及电子雾化装置 Download PDFInfo
- Publication number
- WO2024012131A1 WO2024012131A1 PCT/CN2023/099969 CN2023099969W WO2024012131A1 WO 2024012131 A1 WO2024012131 A1 WO 2024012131A1 CN 2023099969 W CN2023099969 W CN 2023099969W WO 2024012131 A1 WO2024012131 A1 WO 2024012131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating section
- heating
- electrode
- section
- atomization
- Prior art date
Links
- 238000000889 atomisation Methods 0.000 title claims abstract description 121
- 238000010438 heat treatment Methods 0.000 claims abstract description 719
- 239000007788 liquid Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000000443 aerosol Substances 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims description 21
- 238000003860 storage Methods 0.000 claims description 8
- 230000004308 accommodation Effects 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 25
- 239000000306 component Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000004071 soot Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000009688 liquid atomisation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001007 puffing effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/51—Arrangement of sensors
Definitions
- This application relates to the field of atomization technology, specifically to atomization cores, atomizers and electronic atomization devices.
- an electronic atomization device mainly consists of an atomizer and a power supply component.
- the atomization core in the atomizer is the core component.
- the atomization core is equipped with a heating element for heating the aerosol-generating matrix to generate aerosol.
- uneven heating aggravates the formation of soot, which reduces the amount of mist produced by the atomizer, greatly reduces the service life of the atomizing core, and seriously affects the user experience.
- the present application provides an atomizing core, an atomizer and an electronic atomizing device to solve the problems in the prior art of low mist output and reduced service life of the atomizing core caused by uneven heating.
- the first technical solution provided by this application is to provide an atomization core, including a liquid conductor and a heating element.
- the liquid conductor has a liquid suction surface and an atomization surface, and is used to remove the aerosol-generating matrix from the The liquid suction surface is guided to the atomization surface; a heating element is disposed on the atomization surface for heating and atomizing the aerosol-generating substrate to generate aerosol; wherein, the heating elements include parallel-connected and The first heating circuit and the second heating circuit work independently, and the first heating circuit and the second heating circuit have a common intermediate heating section.
- the common middle heating section is located at the center of the atomization surface.
- the heating element includes a plurality of heating sections, namely a first heating section, a second heating section, a third heating section, a fourth heating section and the common intermediate heating section; the first heating section
- the first ends of the second heating section and the second heating section are both electrically connected to the first end of the common intermediate heating section, and the first ends of the third heating section and the fourth heating section are both electrically connected to the common middle heating section.
- the second end of the middle heating section is electrically connected.
- the length of the common middle heating section along the first direction is greater than the width along the second direction, and the first direction is perpendicular to the second direction; the first heating section and the third heating section are The two heating sections are respectively located on opposite sides of the common middle heating section along the second direction and extend along the second direction, and the third heating section and the fourth heating section are respectively located on the common middle heating section.
- the middle heating section extends along opposite sides of the second direction and along the second direction.
- the first heating section and the third heating section are located on the same side of the common middle heating section and both protrude in an arc shape in a direction away from each other; the second heating section and the The fourth heating section is located on the same side of the common middle heating section and both are convex in an arc shape in a direction away from each other.
- the width of the first heating section, the width of the second heating section, the width of the third heating section and The width of the fourth heating section is smaller than the width of the common middle heating section.
- the first heating section and the third heating section are arranged axially symmetrically, and/or the second heating section and the fourth heating section are arranged axially symmetrically, and/or the first heating section
- the third heating section is arranged axially symmetrically with the second heating section, and/or the third heating section and the fourth heating section are arranged axially symmetrically.
- the first heating section and the third heating section are arranged symmetrically about the center, and/or the second heating section and the fourth heating section are arranged symmetrically about the center; the width of the first heating section is less than The width of the second heating section.
- the heating element further includes a plurality of electrodes, namely a first electrode, a second electrode, a third electrode and a fourth electrode; the first electrode, the second electrode, the third electrode and The fourth electrode is electrically connected to the first heating section, the second heating section, the third heating section and the second end of the fourth heating section respectively; wherein, the first heating section The electrode, the first heating section, the common intermediate heating section, the fourth heating section and the fourth electrode constitute the first heating circuit; the third electrode, the third heating section, The common middle heating section, the second heating section and the second electrode constitute the second heating circuit.
- the heating element further includes a plurality of electrodes, namely a first electrode, a second electrode, and a third electrode; the first electrode and the third electrode are respectively connected with the first heating section and the The second ends of the third heating section are electrically connected in one-to-one correspondence; the second electrodes are electrically connected to the second ends of the second heating section and the fourth heating section respectively; wherein, the first electrode, the The first heating section, the common intermediate heating section, the second heating section, the fourth heating section and the second electrode constitute the first heating circuit; the third electrode, the third heating section Three heating sections, the common middle heating section, the second heating section, the fourth heating section and the second electrode form the second heating circuit.
- the heating element further includes a plurality of electrodes, namely a first electrode, a second electrode, a third electrode, and a fourth electrode; the first electrode, the second electrode, the third electrode, and The fourth electrode is electrically connected to the first heating section, the second heating section, the third heating section and the second end of the fourth heating section respectively; wherein, the first heating section
- the first heating circuit is composed of a group of electrodes, the second electrode, the third electrode and the fourth electrode, and the heating section electrically connecting the group of electrodes, Another set of electrodes and the heating section electrically connecting the other set of electrodes form the second heating circuit.
- the second technical solution provided by this application is to provide an atomizer including a shell and an atomizing core.
- the housing has a receiving cavity; the atomizing core is disposed in the receiving cavity and cooperates with the housing to form a liquid storage cavity; the atomizing core is used to heat and atomize the liquid from the storage when power is applied
- the aerosol generating matrix in the cavity is used to form an aerosol; wherein, the atomizing core is the atomizing core described in any one of the above.
- the third technical solution provided by this application is to provide an electronic atomization device, including an atomizer and a power supply assembly; wherein the atomizer is the atomizer described in any one of the above atomizer; a power component is electrically connected to the atomizer and used to supply power to the atomizer.
- the atomization core of this application includes: a liquid-conducting liquid and a heating element.
- the liquid-conducting liquid has a liquid-absorbing surface and an atomizing surface, and is used to guide the aerosol-generating matrix from the liquid-absorbing surface to the Atomization surface;
- the heating element is arranged on the atomization surface and is used to heat and atomize the aerosol-generating substrate to generate aerosol; wherein, the heating element includes a first heating circuit and a second heating circuit that are connected in parallel and work independently. Set up at least two independently working heating circuits to greatly increase the service life of the heating element.
- the first heating circuit and the second heating circuit have a common intermediate heating section, which solves the problem of heating The problem of uneven heating of parts of the body.
- this application switches between two heating circuits to form different heating modes to provide different atomization amounts and improve the user's puffing satisfaction.
- Figure 1 is a schematic structural diagram of the electronic atomization device provided by this application.
- Figure 2 is a schematic structural diagram of the atomizer provided by this application.
- Figure 3 is a schematic structural diagram of an atomizing core in an embodiment provided by this application.
- Figure 4 is a schematic structural diagram of the atomization core provided in Figure 3, viewed from below;
- Figure 5 is a first structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 6 is a second structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 7 is a third structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 8 is a fourth structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 9 is a fifth structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 10 is a schematic structural diagram of a heating element provided in the second embodiment of the present application.
- Figure 11 is a schematic structural diagram of a heating element provided in the third embodiment of the present application.
- Figure 12 is a schematic structural diagram of a heating element provided in the fourth embodiment of the present application.
- Figure 13 is a comparison of optical photos of the existing S-shaped heating film and the heating element of the first to third embodiments provided in this application after 250 puffs.
- first and second in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined by “first” and “second” may explicitly or implicitly include at least one of these features. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly. Furthermore, the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
- a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the heating element layout basically adopts the single-line method of S film.
- the inventor of the present application found that during the application process of the aerosol-generating matrix, the basic failure mode is local overburning of the heating film to produce cracks. Abnormal phenomena such as small atomization volume, burnt smell or even no mist are produced, which leads to a short service life of the electronic atomization device. However, there are almost no abnormalities in the ceramic liquid supply part of the heating element. At the same time, the single-line heating method cannot meet the user's needs for different atomization amounts.
- multiple heating lines are connected in parallel to form a heating element to increase the service life of the heating element.
- the multiple heating lines in the prior art are independently set up and work independently.
- the layout of the heating lines The way is extending in parallel. For example, when the first heating circuit is working, the second heating circuit is not working, so the heating uniformity of the atomization surface is poor, and local high-temperature areas increase the formation of soot, which greatly reduces the service life of the atomizing core.
- this application provides a new atomizer core, atomizer and electronic atomization device.
- Figure 1 is a schematic structural diagram of the electronic atomization device provided by this application.
- the electronic atomization device includes an atomizer 1 and a power supply component 2.
- the power supply component 2 is connected to the atomizer 1 and used to supply power to the atomizer 1.
- Electronic atomization devices can be used to atomize liquid substrates.
- the atomizer 1 is used to store a liquid aerosol-generating substrate and atomize the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
- the liquid aerosol-generating substrate can be a liquid substrate such as a medicinal liquid or a plant grass-leaf aerosol-generating substrate. .
- the atomizer 1 can be used in different fields, such as medical treatment, beauty, leisure smoking, etc.
- the power component 2 includes a battery (not shown), an airflow sensor (not shown), a controller (not shown), etc.; the battery is used to power the atomizer 1 and control the heating power, heating time, etc. of the atomizing core 20 , so that the atomizer 1 can atomize the aerosol to generate the matrix to form an aerosol.
- the airflow sensor is used to detect changes in airflow or air pressure in the electronic atomization device, and the controller starts the electronic atomization device based on the changes in airflow or air pressure detected by the airflow sensor.
- the atomizer 1 and the power supply assembly 2 can be integrated or detachably connected, and can be designed according to specific needs.
- Figure 2 is a schematic structural diagram of the atomizer provided by this application.
- the atomizer 1 includes a housing 10 and an atomization core 20 .
- the housing 10 has a receiving cavity 11 .
- the atomizing core 20 and the housing 10 may be integrally provided and non-detachably connected, or may be detachably connected.
- the atomizing core 20 and the housing 10 are detachably connected, and the atomizing core 20 is directly connected to the housing 10 , so that there is no need to introduce additional conduits between the atomizing core 20 and the housing 10
- the detachable connection is realized, the volume of the atomizer 1 is reduced, and the use is more convenient. It can be understood that the atomizer 1 of the present application is a portable atomizer.
- the atomizing core 20 is disposed in the accommodation cavity 11 and cooperates with the housing 10 to form a liquid storage cavity 12 for storing the aerosol-generating substrate.
- the atomizing core 20 can be used in different fields, such as pharmaceutical atomization, plant herbal liquid atomization, etc., and is used to heat and atomize the aerosol-generating matrix from the liquid storage chamber 12 to form an aerosol when power is supplied.
- the atomizer 1 may also include a mounting base (not labeled) for installing the atomizing core 20 .
- the outer wall of the atomizing core 20 is provided with protrusions (not shown), the outer wall of the housing 10 is provided with a chute (not shown), and a limiting block (not shown) is provided in the chute. ; Insert the protrusion on the atomizing core 20 into the chute on the housing 10, rotate the atomizing core 20 or the housing 10, so that the protrusion is limited by the limit block in the chute, and realize the atomizing core 20 and the housing 10, thereby realizing the detachable connection between the atomizing core 20 and the housing 10. It can be understood that it can also be installed outside the housing 10 Protrusions are provided on the wall, and a chute is provided on the outer wall of the atomizing core 20.
- a limiting block is provided in the chute to realize the detachable connection between the atomizing core 20 and the housing 10; magnetic attraction can also be used to realize the mist.
- the core 20 and the housing 10 are detachably connected. It is only necessary to realize the detachable connection between the atomizing core 20 and the housing 10, and the specific implementation is not limited.
- the atomization surface of the atomization core 20 faces upward, which can increase the atomization amount.
- the pins (not shown) of the atomizing core 20 can be set at any position of the atomizing core 20 . In this embodiment, the pins are set downward to facilitate the atomizer 1 .
- a suction channel 30 is provided on the side of the atomization core 20 away from the power supply assembly 2, and the suction channel 30 is connected with the atomization chamber 201.
- the suction port 31 on the side of the suction channel 30 away from the power supply assembly 2 is connected to the atmosphere, so that the aerosol in the atomization chamber 201 can flow out through the suction channel 30 and be provided to the user from the suction port 31 for inhalation.
- the atomizing surface of the atomizing core 20 faces downward.
- Figure 3 is a schematic structural diagram of the atomizing core in an embodiment provided by this application
- Figure 4 is a schematic structural diagram of the atomizing core provided in Figure 3 from below.
- the atomizing core 20 provided in this application includes a liquid conductor 21 and a heating element 22.
- the liquid guide 21 has a liquid suction surface 212 and an atomization surface 211, and is used to guide the aerosol-generating substrate from the liquid suction surface 212 to the atomization surface 211.
- the liquid-absorbing surface 212 can be disposed on any side of the liquid-conducting surface 21, such as on the top, bottom or side surface of the liquid-conducting surface 21.
- the atomizing surface 211 can be disposed opposite or adjacent to the liquid-conducting surface 212, as long as the liquid-conducting surface 212 is disposed opposite to the liquid-conducting surface 212. The positions of 212 and atomization surface 211 do not conflict.
- the liquid suction surface 212 and the atomization surface 211 are arranged oppositely along the height direction of the liquid conduction 21, and the heating element 22 is arranged on the atomization surface 211 for heating and atomizing the aerosol-generating substrate to generate gas. sol.
- the liquid-conducting liquid 21 can store and guide the aerosol-generating matrix in the liquid storage chamber 12 , and the liquid-conducting liquid 21 can be a loose porous material such as a fiber layer or porous ceramics.
- the liquid-conducting liquid 21 is a porous ceramic; or the liquid-conducting liquid 21 is a dense matrix, which can be specifically dense ceramics or glass.
- the liquid-conducting body 21 may be a porous ceramic matrix or a perforated dense matrix.
- the perforated dense matrix may be a perforated glass matrix or a dense ceramic matrix, and the dense matrix has a structure extending from the liquid-absorbing surface 212 to the atomization surface. 211 through hole.
- the liquid-conducting liquid 21 in this embodiment is porous ceramics.
- Porous ceramic materials are generally ceramic materials that are sintered at high temperature by components such as aggregates, binders, and pore-forming agents. They have a large number of pore structures inside that are connected to each other and to the surface of the material. Because porous ceramic materials have excellent properties such as high porosity, stable chemical properties, large specific surface area, low volume density, low thermal conductivity, high temperature resistance and corrosion resistance, they have many applications in metallurgy, biology, energy, environmental protection and other fields.
- the liquid-conducting liquid 21 may be cylindrical, flat or stepped, etc., and this application does not specifically limit this.
- the liquid guide 21 includes an atomization surface 211 and a liquid suction surface 212.
- the liquid guide 21 is also provided with a liquid suction groove 213 connected with the liquid suction surface 212.
- the liquid suction surface 212 and the liquid suction groove 213 are used to absorb the aerosol-generating matrix in the liquid storage chamber 12, and then enter the atomization surface 211 through the through hole of the atomization surface 211.
- the heating element 22 is disposed on the atomization surface 211 and is used to heat and atomize the aerosol-generating substrate entering the atomization surface 211 from the through hole to generate aerosol for the user to inhale.
- the heating element 22 is a metal layer, which can be formed by screen printing metal paste and sintering, or by metal plating.
- the metal slurry may contain one or more elements such as Ag, Cu, Au, Ni, W, Ru, Fe, etc., and the slurry form of the metal or alloy material is filled into the through hole of the liquid conductor 21 by metal screen printing. , matched and co-fired with the porous structure ceramic liquid conductor 21 to form the heating element 22 .
- the heating element 22 is prepared by thick film printing; specifically, it can be made by sintering metal paste through screen printing. Specifically, the metal slurry is applied to the atomization surface 211 according to the shape in this embodiment, and then sintered. A curved heating element 22 with a certain thickness is formed. Since the angular heating element 22 made of silk screen printing is easily broken or cracked by thermal shock, the heating element 22 in this application adopts a curved shape, which can overcome the above problems and make the heating element 22 provided in this application stronger and more durable. The performance is more stable and the service life is longer.
- the heating element 22 is electrically connected to the power component 2 through the electrode 25.
- the electrode 25 can be disposed on a part of the atomization surface 211, or can extend to the edge of the atomization surface 211, or to The side of the liquid-conducting liquid 21 is not limited in this application.
- the heating element 22 can generate heat after being energized, and heat the aerosol-generating matrix guided by the conductive liquid 21, so that the aerosol-generating matrix is atomized to form an aerosol.
- the heating element 22 is electrically connected to the battery and the controller of the power supply assembly 2, so that the battery can provide power to the heating element 22, and the controller can control the heating time, heating power, etc. of the heating element 22.
- the atomizing core 20 further includes a plurality of electrode leads 16 , the number of the electrode leads 16 corresponds to the number of electrodes 25 , and one end of the plurality of electrode leads 16 is buried in the conductive liquid 21 and are electrically connected to the corresponding electrodes 25 respectively, and the other end extends outside the atomization surface 211 for connecting to the battery.
- the bottom of the electrode 25 is provided with an ejection pin 26 that is in direct contact with the electrode 25 and used to conduct the heating element 22 and the power component 2 .
- its force-bearing direction is longitudinal, that is, the direction from the liquid suction surface 212 to the atomization surface 211.
- the inter-embedded structure of the conductive liquid 21 and the conductor lead can play a limiting role, enhance the stability of the conductive contact between the two, and has excellent mechanical properties to prevent the conductor lead from falling off from the conductive liquid 21.
- the conductivity is also more stable.
- the heating element 22 includes at least two sections of heating circuits connected in parallel and each working independently, and the at least two sections of heating circuits connected in parallel and each working independently have a common middle heating section 220 .
- the heating element 22 includes at least two sections of a first heating circuit 23 and a second heating circuit 24 that are connected in parallel and work independently, and the first heating circuit 23 and the second heating circuit 24 have a common middle heating section 220 . Since the first heating circuit 23 and the second heating circuit 24 have a common middle heating section 220, by selecting the position of the common middle heating section 220, no matter whether the first heating circuit 23 or the second heating circuit 24 works independently, there is a The area of the common middle heating section 220 can be effectively heated. For example, depending on the shape of the atomization surface 211, the shape and position of the core atomization area of the atomization surface 211 are also different. By arranging the common middle heating section 220 in the center of the core atomization area, the core atomization area can be The distribution of the temperature field is more uniform.
- the first heating circuit 23 and the second heating circuit 24 when one of the first heating circuit 23 and the second heating circuit 24 operates and generates heat, the temperature near the circuit that operates and generates heat is relatively high, while the temperature of the area near the circuit that does not operate and generates heat is relatively low.
- the first heating circuit 23 and the second heating circuit 24 since the first heating circuit 23 and the second heating circuit 24 have a common middle heating section 220, the heat generated by the working and heating circuit can be transferred to the non-working and heating circuit through the common middle heating section 220, thereby improving atomization.
- the distribution uniformity of the temperature field on surface 211 when one of the first heating circuit 23 and the second heating circuit 24 operates and generates heat, the temperature near the circuit that operates and generates heat is relatively high, while the temperature of the area near the circuit that does not operate and generates heat is relatively low.
- the atomization surface 211 is a regular shape, such as a rectangle, and the core atomization area of the atomization surface 211 is the central area of the atomization surface 211; the common middle heating section 220 is located in the central area of the atomization surface 211, so that No matter whether the first heating circuit 23 or the second heating circuit 24 is working, the central area of the atomization surface 211 can always be heated, further improving the distribution uniformity of the core atomization area of the atomization surface 211 and even improving the overall fog.
- the distribution uniformity of the temperature field on the chemical surface 211 is a regular shape, such as a rectangle, and the core atomization area of the atomization surface 211 is the central area of the atomization surface 211; the common middle heating section 220 is located in the central area of the atomization surface 211, so that No matter whether the first heating circuit 23 or the second heating circuit 24 is working, the central area of the atomization surface 211 can always be heated, further improving the distribution uniformity of the core
- the heating element 22 includes a plurality of heating sections, and the plurality of heating sections may be a first heating section 221, a third heating section 221, and a first heating section 221.
- the second heating section 222 , the third heating section 223 , the fourth heating section 224 and the common middle heating section 220 form the heating part of the heating element 22 .
- the first heating section 221 , the second heating section 222 , the third heating section 223 , the fourth heating section 224 and the common middle heating section 220 form the heating part of the heating element 22 .
- the first ends of the first heating section 221 and the second heating section 222 are both electrically connected to the first end 2201 of the common intermediate heating section 220, and the first ends of the third heating section 223 and the fourth heating section 224 are both electrically connected. It is electrically connected to the second end 2202 of the common middle heating section 220 . That is to say, one end of the first heating section 221 , the second heating section 222 , the third heating section 223 , and the fourth heating section 224 close to the common middle heating section 220 are electrically connected to the common middle heating section 220 , thereby forming a The heating part of the heating element 22.
- the atomization surface 211 is rectangular, the length of the common middle heating section 220 along the first direction is greater than the width along the second direction, and the first direction is perpendicular to the second direction, that is, the common middle heating section 220 is a strip extending along the first direction.
- the first direction may be the width direction of the rectangular atomization surface 211
- the second direction may be the length direction of the rectangular atomization surface 211.
- the length of the common middle heating section 220 in the first direction is greater than the length in the second direction. , forming a rectangular common middle heating section 220. It can be understood that in other embodiments, the common middle heating section 220 can also be square, polygonal, etc., and this application is not limited thereto.
- first heating section 221 and the second heating section 222 are respectively located on opposite sides of the common middle heating section 220 along the second direction and extend along the second direction, and the third heating section 223 and the fourth heating section 224 are respectively located at The common middle heating section 220 extends along opposite sides of the second direction and along the second direction.
- the positions of the first heating section 221 and the second heating section 222 can be relatively fixed.
- the first heating section 221 and the second heating section 222 are respectively located in the second direction of the common middle heating section, that is, the horizontal direction in the figure, and the first heating section 221 and the second heating section 222 are arranged oppositely.
- the first heating section 221 and the second heating section 222 are symmetrically arranged on both sides of the common middle heating section 220, and the first heating section 221 and the second heating section 222 extend in opposite directions in the horizontal direction. .
- the third heating section 223 and the fourth heating section 224 are respectively disposed in the second direction of the common middle heating section 220, that is, the horizontal direction in the figure, and the third heating section 223 and the fourth heating section 224 They are arranged relatively symmetrically on both sides of the common middle heating section 220 in the horizontal direction, and the third heating section 223 and the fourth heating section 224 extend in opposite directions in the horizontal direction. It can be understood that in other embodiments, the positions of the first heating section 221 and the second heating section 222, the third heating section 223 and the fourth heating section 224 can be interchanged, and can also be arranged in other positions and directions as needed. , this application does not limit this.
- the first heating section 221 , the second heating section 222 , the third heating section 223 and the fourth heating section 224 are respectively located in the common middle heating section 220 Along opposite sides of the second direction and extending along the second direction, the core atomization area (ie, the central area) of the atomization surface 211 has poor thermal field uniformity in the first direction.
- the common middle heating section 220 in a strip shape extending along the first direction, the thermal field uniformity of the core atomization area (i.e., the central area) of the atomization surface 211 in the first direction can be effectively improved. .
- the surrounding area of the heating element 22 is a concentrated area of soot
- the first heating circuit 23 and the second heating circuit 24 that are used alternately compared with only using the first heating circuit 23 or the second heating circuit 24, the amount of smoke can be reduced.
- the formation of soot can improve the atomization efficiency and increase the amount of atomization.
- the first heating section 221 and the third heating section 223 can be arranged axially symmetrically, and/or the second heating section 222 and the fourth heating section 224 can be arranged axially symmetrically, and/or the first heating section 221 and The second heating section 222 may be arranged axially symmetrically, and/or the third heating section 223 and the fourth heating section 224 may be arranged axially symmetrically.
- the first heating section 221 and the third heating section 223 can be arranged axially symmetrically with a common middle heating section 220 parallel to the central axis of the second direction, and the second heating section 222 and the fourth heating section 224 can be arranged with a common middle heating section 220 .
- the heating section 220 is arranged axially symmetrically parallel to the central axis in the second direction.
- the first heating section 221 and the second heating section 222 can be arranged axially symmetrically with a common middle heating section 220 parallel to the central axis in the first direction, and the third heating section 223 and the fourth heating section 224 can be arranged with a common middle heating section.
- the segment 220 is arranged axially symmetrically parallel to the central axis of the first direction. Therefore, it can be considered that in some embodiments, the heating portion of the heating element 22 is arranged axially symmetrically in both the first direction and the second direction.
- the heating element 22 also includes an electrode 25.
- the electrode 25 includes a first electrode 251, a second electrode 252, a third electrode 253 and a fourth electrode 254; the first electrode 251, the second electrode 252 and the third electrode 253 and the fourth electrode 254 are electrically connected to the second ends of the first heating section 221, the second heating section 222, the third heating section 223 and the fourth heating section 224 respectively.
- the first electrode 251, the first heating section 221, the common middle heating section 220, the fourth heating section 224 and the fourth electrode 254 form the first heating circuit 23;
- the third electrode 253, the third heating section 223, the common The middle heating section 220 , the second heating section 222 and the second electrode 252 form the second heating circuit 24 .
- Figure 5 is a first structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 6 is a second structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 7 is a third structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 8 is a fourth structural schematic diagram of the heating element provided by the first embodiment of the present application.
- Figure 9 is a schematic diagram of the heating element provided by the first embodiment of the present application. Schematic diagram of the fifth structure of the body.
- the first structure of the first heating section 221 and the third heating section 223 can be: the first heating section 221 and the third heating section 223 can be arranged in a common middle heating section.
- the segments 220 are on the same side and both protrude in the direction away from each other to form an arc.
- the second heating segment 222 and the fourth heating segment 224 are also located on the same side of the common middle heating segment 220 and both protrude in the direction away from each other. Form an arc.
- the first heating section 221 and the third heating section 223 are also arranged oppositely, and are symmetrically arranged on the same side of the common middle heating section 220, but are different from the first heating section 221 and the second heating section 222.
- the first heating section 221 and the third heating section 223 are arranged oppositely along the first direction of the common middle heating section 220 .
- the arc-shaped protruding directions of the first heating section 221 and the third heating section 223 are both on the side away from each other. That is to say, the first heating section 221 and the third heating section 223 protrude outward, while the first heating section 221 and the third heating section 223 protrude outward.
- the sides of the first heating section 221 and the third heating section 223 that are close to each other are concave.
- the second heating section 222 and the fourth heating section 224 are also arranged oppositely and symmetrically arranged on the same side of the common middle heating section 220.
- the second heating section 222 and the fourth heating section 224 are also along the common middle heating section. 220 are arranged oppositely in the first direction, and the arc-shaped protruding directions of the second heating section 222 and the fourth heating section 224 are both on the side away from each other.
- the electrode 25 of the heating element 22 includes a first electrode 251, a second electrode 252, a third electrode 253, and a fourth electrode 254.
- the electrodes 254 are electrically connected to the second ends of the first heating section 221 , the second heating section 222 , the third heating section 223 and the fourth heating section 224 respectively.
- the first electrode 251 and the third electrode 253 are positive electrodes
- the second electrode 252 and the fourth electrode 254 are negative electrodes.
- the first electrode 251, the first heating section 221, the common middle heating section 220, the fourth heating section 224 and the fourth electrode 254 form the first heating circuit 23; the third electrode 253, the third heating section 223, the common The middle heating section 220 , the second heating section 222 and the second electrode 252 form the second heating circuit 24 .
- the first heating circuit 23 and the second heating circuit 24 have a symmetrical structure, and the entire heating element 22 also has a symmetrical structure.
- the second structure of the first heating section 221 and the third heating section 223 can be: the first heating section 221 and the third heating section 223 can also be disposed in a common middle.
- the heating sections 220 are on the same side and are both convex in the direction of approaching each other to form an arc.
- the second heating section 222 and the fourth heating section 224 are also located on the same side of the common middle heating section 220 and are both convex in the direction of approaching each other. Form an arc.
- the third structure of the first heating section 221 and the third heating section 223 can be: the first heating section 221 and the third heating section 223 can also be arranged in a common middle heating section.
- the same side of the segments 220 and in the direction away from the common middle heating segment 220 gradually converge toward each other to form a funnel shape.
- the second heating segment 222 and the fourth heating segment 224 are also located at the common middle heating segment 220 .
- the same side and in the direction away from the common middle heating section 220 gradually converge toward each other to form a funnel shape.
- the fourth structure of the first heating section 221 and the third heating section 223 can be: the first heating section 221 and the third heating section 223 can also be arranged in a common middle heating section.
- the same side of the segments 220 gradually spreads away from each other in the direction away from the common middle heating segment 220 to form a trumpet shape.
- the second heating segment 222 and the fourth heating segment 224 are also located in the common middle heating segment 220 On the same side and in the direction away from the common middle heating section 220, they gradually spread out in the direction away from each other to form a trumpet shape.
- the fifth structure of the first heating section 221 and the third heating section 223 can be: the first heating section 221 and the third heating section 223 can also be arranged in a common middle heating section.
- the same side of the segments 220 extends linearly and horizontally away from the common middle heating segment 220 in a direction away from each other, and is bent to form an arc at a position close to the first electrode 251 and the third electrode 253.
- the first electrode 251 and the third electrode 253 are electrically connected in a one-to-one correspondence.
- the second heating section 222 and the fourth heating section 224 are also located on the same side of the common middle heating section 220 and both extend linearly and horizontally in the direction away from the common middle heating section 220 and away from each other, and are close to the second heating section 222 .
- the positions of the electrode 252 and the fourth electrode 254 are bent to form arcs, and are electrically connected to the second electrode 252 and the fourth electrode 254 respectively in a one-to-one correspondence.
- each heating circuit can be configured as an integrated structure, which is more convenient for production and preparation. It can be understood that in actual use, the heating element 22 can be manufactured into any shape, as long as it can meet the requirements of at least two heating circuits and the at least two heating circuits can work independently. In actual manufacturing, the number of heating circuits can also be three, four, etc., which can be set according to actual needs. This application does not limit this.
- the width L1 of the first heating section 221 , the width L2 of the second heating section 222 , the width L3 of the third heating section 223 and the width of the fourth heating section 224 are L4 are all equal, so that the resistance values of the first heating section 221, the second heating section 222, the third heating section 223 and the fourth heating section 224 are basically equal. 223.
- the power of the two heating circuits formed by any two heating sections in the fourth heating section 224 and the common intermediate heating section 220 is basically the same, so that the service life of the heating element 22 can be twice or more than that of a single heating circuit. Improve the service life of the heating element 22.
- the width L1 of the first heating section 221 , the width L2 of the second heating section 222 , the width L3 of the third heating section 223 and the width L4 of the fourth heating section 224 are all smaller than the width L5 of the common middle heating section 220 .
- the width L5 of the common middle heating section 220 is set to be larger than the width of the above four heating sections, so that the temperature distribution of the atomization surface 211 of the heating element 22 is more uniform, thereby making the heating more uniform and preventing the local temperature from being too high. Produces more soot.
- the peripheral area of the atomization surface 211 is close to components such as the mounting base or the housing and dissipates heat quickly, while the central area is far away from components such as the mounting base or the housing and dissipates heat slowly. Therefore, if the entire first heating circuit 23 or the heating part of the second heating circuit 24 generates heat uniformly, then the temperature distribution of the atomization surface 211 will not be uniform.
- the first heating circuit 23 and the second heating circuit 24 can have exactly the same circuit structure, so that the resistance values of the first heating circuit 23 and the second heating circuit 24 are equal, so that the power of the first heating circuit 23 and the second heating circuit 24 is equal, and the heating element 22 can be provided with the same of heat.
- FIG. 10 is a schematic structural diagram of a heating element provided in a second embodiment of the present application.
- the first heating section 221 and the third heating section 223 may be arranged to be centrally symmetrical, and/or the second heating section 222 and the fourth heating section 224 may be arranged to be centrally symmetrical. That is to say, the first heating section 221, the third heating section 223, the second heating section 222 and the fourth heating section 224 can be set to be centrally symmetrical at the same time, or only one of them can be set to be centrally symmetrical, depending on the needs. This application does not limit this.
- the heating element 22 also includes an electrode 25.
- the electrode 25 includes a first electrode 251, a second electrode 252, a third electrode 253 and a fourth electrode 254; the first electrode 251, the second electrode 252 and the third electrode 253 and the fourth electrode 254 are electrically connected to the first heating section 221, the second heating section 222, the third heating section 223 and the second end of the fourth heating section 224 in a one-to-one correspondence; wherein, the first electrode 251, the first The heating section 221, the common middle heating section 220, the fourth heating section 224 and the fourth electrode 254 are connected in sequence to form the first heating circuit 23; the third electrode 253, the third heating section 223, the common middle heating section 220, the second The heating section 222 and the second electrode 252 are connected in sequence to form the second heating circuit 24 .
- the width L1 of the first heating section 221 and/or the width L4 of the fourth heating section 224 is adjusted so that the width L1 of the first heating section 221 is smaller than the width L2 of the second heating section 222, and/ Or the width L4 of the fourth heating section 224 is smaller than the width L3 of the third heating section 223 .
- the width L1 of the first heating section 221 and the width L4 of the fourth heating section 224 are simultaneously narrowed, so that the width L1 of the first heating section 221 is smaller than the width L1 of the second heating section 222 .
- the width L2, and the width L4 of the fourth heating section 224 is smaller than the width L3 of the third heating section 223, so that the resistance of the first heating circuit 23 is greater than the resistance of the second heating circuit 24, thereby enabling different heating circuits to be realized.
- the heating power enables the first heating circuit 23 and the second heating circuit 24 to form different atomization amounts to meet the user's needs for different atomization amounts.
- FIG. 11 is a schematic structural diagram of a heating element provided in a third embodiment of the present application.
- the heating circuit of the third embodiment is basically the same as the heating circuit of the first embodiment. The difference is that in the third embodiment, The first heating circuit 23 and the second heating circuit 24 share a negative electrode. That is, in this embodiment, there are two positive electrodes and one negative electrode.
- the electrode 25 in this embodiment includes a first electrode 251, a second electrode 252, and a third electrode 253.
- the first electrode 251 and the third electrode 253 are electrically connected to the second ends of the first heating section 221 and the third heating section 223 respectively.
- the second electrode 252 is electrically connected to the second ends of the second heating section 222 and the fourth heating section 224 respectively.
- the first electrode 251, the first heating section 221, the common middle heating section 220, the second heating section 222, the fourth heating section 224 and the second electrode 252 form the first heating circuit 23; the third electrode 253,
- the heating section 223 , the common middle heating section 220 , the second heating section 222 , the fourth heating section 224 and the second electrode 252 form the second heating circuit 24 .
- the width L1 of the first heating section 221 , the width L2 of the second heating section 222 , the width L3 of the third heating section 223 and the width L4 of the fourth heating section 224 are all equal. Therefore, the first heating circuit 23
- the circuit structure can be exactly the same as that of the second heating circuit 24, so that the resistances of the first heating circuit 23 and the second heating circuit 24 are equal, so that the powers of the first heating circuit 23 and the second heating circuit 24 are equal, which can be
- the heating element 22 provides the same amount of heat.
- the third embodiment has one less negative electrode in the heating circuit, thereby reducing the complexity of the circuit design.
- the heating element 22 is connected to the first heating circuit 23 and reaches the common intermediate heating section 220, most of the current flows to the second heating section 222, and a small part flows to the fourth heating section 224, which can make the thermal field of the heating element 22 more Uniform, so that the life of the heating element 22 can be doubled or more.
- Figure 12 is a schematic structural diagram of a heating element provided in a fourth embodiment of the present application.
- the heating circuit of the fourth embodiment is basically the same as the heating circuit of the first embodiment.
- the electrode 25 includes a first electrode 251, a second electrode 252, a third electrode 253, and a fourth electrode 254. ;
- the first electrode 251, the second electrode 252, the third electrode 253 and the fourth electrode 254 are respectively connected to the second end of the first heating section 221, the second heating section 222, the third heating section 223 and the fourth heating section 224.
- the first electrode 251, the second electrode 252, the third electrode 253 and the fourth electrode 254 are connected with the first heating section 221, the second heating section 222, the third heating section 223 and the fourth heating section.
- the segments 224 can be freely combined with one-to-one correspondence between electrodes and heating segments to form the first heating circuit 23 and the second heating circuit 24 .
- the width and length of the first heating section 221, the second heating section 222, the third heating section 223 and the fourth heating section 224 can all be set to different values. Any two heating sections, the common middle The first heating circuit 23 and the second heating circuit 24 formed by the heating section 220 and the electrodes electrically connected to the two heating sections have different resistance values and can be flexibly matched to form a combination of various heating circuits.
- the first electrode 251, the first heating section 221, the common middle heating section 220, the fourth heating section 224 and the fourth electrode 254 form the first heating circuit 23; the third electrode 253, The three heating sections 223 , the common middle heating section 220 , the second heating section 222 and the second electrode 252 form the second heating circuit 24 .
- it can also be configured as follows: the first electrode 251, the first heating section 221, the common intermediate heating section 220, the third heating section 223 and the third electrode 253 form the first heating circuit 23; the second electrode 252, the second The heating section 222 , the common intermediate heating section 220 , the fourth heating section 224 and the fourth electrode 254 form the second heating circuit 24 .
- the above two heating circuit settings can be Thus, two first heating circuits 23 and a second heating circuit 24 are formed in parallel and work independently, thereby realizing switching between the two heating circuits, thereby increasing the service life of the heating element 22 .
- the setting method of the heating circuit in this embodiment can further improve the selectivity of the heating gear and improve the heating and atomization efficiency of the atomizing core 20 .
- the generated Part of the carbon deposits are dispersed through atomization, which can remove part of the soot, thereby reducing part of the soot accumulation to a certain extent, causing the entire heating element 22 to produce less soot, and increasing the service life of the heating element 22 .
- Figure 13 is a comparison of optical photos of the existing S-shaped heating film and the heating element of the first to third embodiments provided in this application after 250 puffs.
- the inventor compared the S-shaped heating film in the prior art and this application from the perspectives of atomization amount, taste, image of the heating element 22 after 250 puffs, temperature field comparison, etc.
- the heating element 22 in the embodiment is compared, please refer to Table 1.
- the heating element 22 in Examples 1 to 4 of the present application has obvious performance in temperature field and atomization amount.
- the S-shaped heating film is significantly better than existing products. Especially among electronic atomization device products, the service life is much longer than existing products.
- the first embodiment can take more than 1,200 puffs, and the second embodiment can take more than 1,000 puffs. Compared with the existing technology, the puff can be about 600 puffs, which is a great improvement.
- this application shows the advantages of long service life, less soot, and large atomization volume.
- the technical solution of the present application reduces the thermal stress of the heating element 22 to a great extent, thereby reducing the risk of cracking caused by stress and improving product safety.
- the atomization core disclosed in this application includes: a liquid-conducting liquid and a heating element.
- the liquid-conducting liquid has a liquid-absorbing surface and an atomizing surface, and is used to guide the aerosol-generating substrate from the liquid-absorbing surface to the atomizing surface; the heating element is arranged on the atomizing surface. , used to heat and atomize the aerosol-generating substrate to generate aerosol; wherein, the heating element includes a first heating circuit and a second heating circuit that are connected in parallel and work independently. By arranging at least two independently working heating circuits, so that The service life of the heating element is greatly improved. Moreover, the first heating circuit and the second heating circuit have a common middle heating section, which solves the problem of uneven local heating of the heating element. At the same time, this application switches between two heating circuits to form different heating modes to provide different atomization amounts and improve the user's puffing satisfaction.
Landscapes
- Resistance Heating (AREA)
Abstract
一种雾化芯(20)、雾化器(1)及电子雾化装置,该雾化芯(20)包括:导液体(21)和发热体(22),导液体(21)具有吸液面(212)和雾化面(211),用于将气溶胶产生基质从吸液面(212)引导至雾化面(211);发热体(22)设置于雾化面(211),用于加热并雾化气溶胶产生基质以产生气溶胶;其中,发热体(22)包括相互并联且各自独立工作的第一发热电路(23)和第二发热电路(24);且第一发热电路(23)和第二发热电路(24)具有公共的中间发热段(220)。该雾化芯(20)通过设置至少两个独立工作的发热电路,使得发热体(22)的使用寿命大幅度提高,并解决了发热体(22)局部加热不均的问题;同时,通过两个发热电路切换,形成不同的发热模式,以提供不同的雾化量,提升用户的抽吸满足感。
Description
【相关申请的交叉引用】
本申请要求2022年7月13日提交的中国专利申请202210828430.7的优先权,其全部内容通过引用并入本文。
本申请涉及雾化技术领域,具体涉及雾化芯、雾化器及电子雾化装置。
相关技术中,电子雾化装置主要由雾化器和电源组件构成。其中,雾化器中的雾化芯是核心部件,雾化芯中设有发热体,用于加热气溶胶产生基质以产生气溶胶。但是,发热体在工作状态下,加热不均加重了烟垢的形成,使得雾化器出雾量变小,同时大大降低雾化芯的使用寿命,且严重影响用户体验感。
【发明内容】
有鉴于此,本申请提供一种雾化芯、雾化器及电子雾化装置,以解决现有技术中加热不均导致的出雾量小、雾化芯的使用寿命降低的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种雾化芯,包括导液体和发热体,导液体具有吸液面和雾化面,用于将气溶胶产生基质从所述吸液面引导至所述雾化面;发热体设置于所述雾化面,用于加热并雾化所述气溶胶产生基质以产生气溶胶;其中,所述发热体包括相互并联且各自独立工作的第一发热电路和第二发热电路,且所述第一发热电路和所述第二发热电路具有公共的中间发热段。
可选地,所述公共的中间发热段位于所述雾化面的中心位置。
可选地,所述发热体包括多个发热段,分别为第一发热段、第二发热段、第三发热段、第四发热段以及所述公共的中间发热段;所述第一发热段和所述第二发热段的第一端均与所述公共的中间发热段的第一端电连接,所述第三发热段和所述第四发热段的第一端均与所述公共的中间发热段的第二端电连接。
可选地,所述公共的中间发热段在沿第一方向的长度大于沿第二方向的宽度,且所述第一方向垂直于所述第二方向;所述第一发热段和所述第二发热段分别位于所述公共的中间发热段沿所述第二方向的相对两侧且沿所述第二方向延伸,所述第三发热段和所述第四发热段分别位于所述公共的中间发热段沿所述第二方向的相对两侧且沿所述第二方向延伸。
可选地,所述第一发热段和所述第三发热段位于所述公共的中间发热段的同一侧且均向远离对方的方向凸起成弧形;所述第二发热段和所述第四发热段位于所述公共的中间发热段的同一侧且均向远离对方的方向凸起成弧形。
可选地,所述第一发热段的宽度、所述第二发热段的宽度、所述第三发热段的宽度以及
所述第四发热段的宽度均小于所述公共的中间发热段的宽度。
可选地,所述第一发热段和所述第三发热段轴对称设置,和/或所述第二发热段和所述第四发热段轴对称设置,和/或所述第一发热段和所述第二发热段轴对称设置,和/或所述第三发热段和所述第四发热段轴对称设置。
可选地,所述第一发热段和所述第三发热段中心对称设置,和/或所述第二发热段和所述第四发热段中心对称设置;所述第一发热段的宽度小于所述第二发热段的宽度。
可选地,所述发热体还包括多个电极,分别为第一电极、第二电极、第三电极以及第四电极;所述第一电极、所述第二电极、所述第三电极以及所述第四电极分别与所述第一发热段、所述第二发热段、所述第三发热段以及所述第四发热段的第二端一一对应电连接;其中,所述第一电极、所述第一发热段、所述公共的中间发热段、所述第四发热段以及所述第四电极组成所述第一发热电路;所述第三电极、所述第三发热段、所述公共的中间发热段、所述第二发热段以及所述第二电极组成所述第二发热电路。
可选地,所述发热体还包括多个电极,分别为第一电极、第二电极、第三电极;所述第一电极和所述第三电极分别与所述第一发热段和所述第三发热段的第二端一一对应电连接;所述第二电极分别与所述第二发热段和所述第四发热段的第二端电连接;其中,所述第一电极、所述第一发热段、所述公共的中间发热段、所述第二发热段、所述第四发热段以及所述第二电极组成所述第一发热电路;所述第三电极、所述第三发热段、所述公共的中间发热段、所述第二发热段、所述第四发热段以及所述第二电极组成所述第二发热电路。
可选地,所述发热体还包括多个电极,分别为第一电极、第二电极、第三电极、第四电极;所述第一电极、所述第二电极、所述第三电极以及所述第四电极分别与所述第一发热段、所述第二发热段、所述第三发热段以及所述第四发热段的第二端一一对应电连接;其中,所述第一电极、所述第二电极、所述第三电极以及所述第四电极中的一组所述电极以及将所述一组所述电极电连接的所述发热段组成所述第一发热电路,另一组所述电极以及将所述另一组所述电极电连接的所述发热段组成所述第二发热电路。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种雾化器,包括壳体和雾化芯。壳体具有容置腔;雾化芯设置于所述容置腔内,并与所述壳体配合形成储液腔;所述雾化芯用于在通电时加热并雾化来自所述储液腔的气溶胶产生基质以形成气溶胶;其中,所述雾化芯为上述任一项所述的雾化芯。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子雾化装置,包括雾化器和电源组件;其中,所述雾化器为上述任一项所述的雾化器;电源组件与所述雾化器电连接,用于向所述雾化器供电。
本申请的有益效果:区别于现有技术,本申请的雾化芯包括:导液体和发热体,导液体具有吸液面和雾化面,用于将气溶胶产生基质从吸液面引导至雾化面;发热体设置于雾化面,用于加热并雾化气溶胶产生基质以产生气溶胶;其中,发热体包括相互并联且各自独立工作的第一发热电路和第二发热电路,通过设置至少两个独立工作的发热电路,使得发热体的使用寿命大幅度提高。且,第一发热电路和第二发热电路具有公共的中间发热段,解决了发热
体局部加热不均的问题。同时,本申请通过两个发热电路切换,形成不同的发热模式,以提供不同的雾化量,提升用户的抽吸满足感。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图;
图2是本申请提供的雾化器的结构示意图;
图3是本申请提供的一实施例中的雾化芯的结构示意图;
图4是图3提供的雾化芯的仰视结构示意图;
图5是本申请第一实施例提供的发热体的第一种结构示意图;
图6是本申请第一实施例提供的发热体的第二种结构示意图;
图7是本申请第一实施例提供的发热体的第三种结构示意图;
图8是本申请第一实施例提供的发热体的第四种结构示意图;
图9是本申请第一实施例提供的发热体的第五种结构示意图;
图10是本申请第二实施例提供的发热体的结构示意图;
图11是本申请第三实施例提供的发热体的结构示意图;
图12是本申请第四实施例提供的发热体的结构示意图;
图13是现有S形发热膜与本申请提供的第一实施例至第三实施例的发热体在抽吸250口后的光学照片对比图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、的特征可以明示或者隐含地包括至少一个该特征。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
现有的电子雾化装置,其中发热元件布局基本采用S膜的单线路方式,本申请发明人发现在气溶胶产生基质应用过程中,基本的失效方式均为发热膜局部过烧产生裂纹,而产生雾化量偏小、焦味甚至不出雾的异常现象,导致电子雾化装置的使用寿命较短,然而发热体的陶瓷供液部分几乎无异常。同时,单线路的供热方式不能满足用户对不同雾化量的需求。
另外,现有技术中还有采用多条发热线路并联的方式形成发热体,以提高发热体的使用寿命,但是现有技术中的多条发热线路均是独立设置且独立工作的,发热线路布局方式是平行延伸的。例如第一发热线路工作时,第二发热线路不工作,因此雾化面的发热均匀性较差,且局部的高温区域加重了烟垢的形成,大大降低了雾化芯的使用寿命。
为了解决上述问题,本申请提供了一种新的雾化芯、雾化器和电子雾化装置。
请参阅图1,图1是本申请提供的电子雾化装置的结构示意图。
电子雾化装置包括雾化器1和电源组件2,电源组件2与雾化器1连接,用于向雾化器1供电。电子雾化装置可用于液态基质的雾化。雾化器1用于存储液态气溶胶产生基质并雾化气溶胶产生基质以形成可供用户吸食的气溶胶,液态气溶胶产生基质可以是药液、植物草叶类气溶胶产生基质等液态基质。雾化器1具体可用于不同的领域,比如医疗、美容、休闲吸食等。电源组件2包括电池(图未示)、气流传感器(图未示)以及控制器(图未示)等;电池用于为雾化器1供电并控制雾化芯20加热的功率、加热时长等,以使得雾化器1能够雾化气溶胶产生基质形成气溶胶。气流传感器用于检测电子雾化装置中的气流或气压变化,控制器根据气流传感器检测到的气流或气压变化启动电子雾化装置。雾化器1与电源组件2可以是一体设置,也可以是可拆卸连接,根据具体需要进行设计。
请参阅图2,图2是本申请提供的雾化器的结构示意图。
雾化器1包括壳体10和雾化芯20,壳体10具有容置腔11。雾化芯20和壳体10可以为一体设置的不可拆卸连接,也可以为可拆卸连接。在本实施例中,雾化芯20和壳体10为可拆卸连接,且雾化芯20与壳体10直接连接,使得雾化芯20与壳体10之间不需要引入额外的导管即可实现可拆卸连接,减小雾化器1的体积,使用更加方便。可以理解,本申请的雾化器1为便携式雾化器。雾化芯20设置于容置腔11内,并与壳体10配合形成储液腔12,用于存储气溶胶产生基质。雾化芯20可用于不同的领域,比如,药品雾化、植物草本液体雾化等领域,用于在通电时加热并雾化来自储液腔12的气溶胶产生基质以形成气溶胶。雾化器1还可以包括安装座(图未标),用于安装雾化芯20。
具体的,雾化芯20的外壁面上设置有凸起(图未示),壳体10的外壁面上设置有滑槽(图未示),滑槽中设置有限位块(图未示);将雾化芯20上的凸起对准壳体10上的滑槽插入,旋转雾化芯20或壳体10,使凸起被滑槽中的限位块限位,实现雾化芯20和壳体10的固定,进而实现雾化芯20和壳体10的可拆卸连接。可以理解的是,也可以在壳体10的外
壁面上设置凸起,雾化芯20的外壁面上设置有滑槽,滑槽中设置有限位块,实现雾化芯20和壳体10的可拆卸连接;也可以采用磁吸的方式实现雾化芯20和壳体10的可拆卸连接。只需实现雾化芯20和壳体10的可拆卸连接即可,具体实施方式不做限定。
在一实施例中,雾化芯20的雾化面朝上,可以提高雾化量。当雾化面朝上时,雾化芯20的引脚(图未示)可以设置在雾化芯20的任何位置,而本实施例中将引脚向下设置,可以方便雾化器1的自动化组装。雾化芯20远离电源组件2的一侧设有抽吸通道30,抽吸通道30与雾化腔201连通。抽吸通道30远离电源组件2的一侧的抽吸口31与大气连通,以使雾化腔201中的气溶胶能通过抽吸通道30流出,并从抽吸口31提供给用户吸食。在另一实施例中,雾化芯20的雾化面朝下。
请参阅图3和图4,图3是本申请提供的一实施例中的雾化芯的结构示意图,图4是图3提供的雾化芯的仰视结构示意图。
本申请提供的雾化芯20包括导液体21和发热体22。导液体21具有吸液面212和雾化面211,用于将气溶胶产生基质从吸液面212引导至雾化面211。吸液面212可以设置于导液体21的任一侧面,例如设置于导液体21的顶面、底面或者侧面,雾化面211可以与吸液面212相对设置或者相邻设置,只要吸液面212与雾化面211的位置不冲突即可。在本实施例中,吸液面212和雾化面211沿导液体21的高度方向相背设置,发热体22设置于雾化面211上,用于加热并雾化气溶胶产生基质以产生气溶胶。
具体的,导液体21可以储存和导流储液腔12中的气溶胶产生基质,导液体21可以是纤维层或多孔陶瓷等疏松多孔材料。在本实施例中,导液体21为多孔陶瓷;或导液体21为致密基体,具体可以为致密陶瓷或玻璃。其中导液体21具体可以是多孔陶瓷基体或者打孔的致密基体,打孔的致密基体具体可以是打孔的玻璃基体或致密陶瓷基体等,且致密基体具有从吸液面212延伸至雾化面211的通孔。本实施例中的导液体21为多孔陶瓷。多孔陶瓷材料一般是由骨料、粘结剂及造孔剂等组分经高温烧结的陶瓷材料,其内部具有大量彼此连通并与材料表面连通的孔道结构。由于多孔陶瓷材料具有孔隙率高、化学性质稳定、比表面积大、体积密度小、导热性低以及耐高温耐腐蚀等优良性能,在冶金、生物、能源、环保等领域有着众多应用。导液体21可以呈圆柱状、平板状或阶梯状等,本申请对此不做具体限制。
具体的,导液体21包括雾化面211和吸液面212,导液体21还设置有与吸液面212连通的吸液槽213。吸液面212和吸液槽213用于吸收储液腔12中的气溶胶产生基质,然后通过雾化面211的通孔进入雾化面211。发热体22设置于雾化面211上,用于加热并雾化从通孔进入雾化面211的气溶胶产生基质,以产生气溶胶供用户吸食。
如图2和图3所示,发热体22为金属层,可以通过丝网印刷金属浆料烧结而成,或者通过金属镀膜形成。金属浆料可以含有Ag、Cu、Au、Ni、W、Ru、Fe等其中的一种或多种元素,通过将该金属或者合金材料的浆料形态金属丝印填充到导液体21的通孔内,与多孔结构陶瓷导液体21进行匹配共烧,形成发热体22。
在本实施例中,发热体22采用厚膜印刷的方式制备;具体的可以采用丝网印刷金属浆料烧结而成。具体的,将金属浆料按照本实施例中的形状涂附于雾化面211上,然后进行烧结,
形成具有一定厚度的曲线发热体22。由于丝印制成的具有棱角的发热体22受到热冲击容易折断或者容易形成裂纹,因此本申请中的发热体22采用曲线型,可以克服上述问题,以使得本申请提供的发热体22更加坚固、性能更加稳定、使用寿命更长。
如图2至图4所示,发热体22通过电极25与电源组件2电连接,电极25可以设置在雾化面211上的一部分区域,也可以延伸至雾化面211的边缘,或者延伸至导液体21的侧面,本申请对此不做限制。发热体22通电后能发热,并对导液体21导流的气溶胶产生基质进行加热,以使气溶胶产生基质雾化形成气溶胶。发热体22与电源组件2的电池和控制器均电连接,以使电池能为发热体22提供电源,控制器能控制发热体22的加热时长、加热功率等。
在一些实施例中,如图3所示,雾化芯20还包括多个电极引线16,电极引线16的数量与电极25的数量相对应,多个电极引线16的一端均埋设于导液体21内并分别与对应的电极25电连接,另一端伸出于雾化面211外部,用于连接电池。
在其他实施例中,如图2所示,电极25的底部设置有与电极25直接接触的顶针26,用于导通发热体22与电源组件2。顶针26在工作时,其受力方向是纵向的,即从吸液面212到雾化面211的方向。在顶针26施加作用力的时候,导液体21与导体引线的互嵌结构可以起到限位的作用,增强两者导电接触的稳定性,同时力学性能优异,防止导体引线从导液体21脱落,导电也更加稳定。
请参阅图4,在一实施例中,发热体22包括至少两段相互并联且各自独立工作的发热电路,且至少两段相互并联且各自独立工作的发热电路具有公共的中间发热段220。
具体的,发热体22包括至少两段相互并联且各自独立工作的第一发热电路23和第二发热电路24,且第一发热电路23和第二发热电路24具有公共的中间发热段220。由于第一发热电路23和第二发热电路24具有公共的中间发热段220,通过选择公共的中间发热段220的位置可以使得无论第一发热电路23还是第二发热电路24独立工作时,设置有公共的中间发热段220的区域均可以被有效加热。例如,根据雾化面211的形状不同,雾化面211的核心雾化区的形状和位置也不同,通过将公共的中间发热段220设置于核心雾化区的中心,可以使得核心雾化区的温度场的分布更加均匀。
而且,当第一发热电路23和第二发热电路24中的一个电路工作发热时,工作发热的电路附近的温度较高,而不工作发热的电路附近的区域温度相对较低。本申请由于第一发热电路23和第二发热电路24具有公共的中间发热段220,工作发热的电路产生的热量可以通过公共的中间发热段220传递到不工作发热的电路,从而提高了雾化面211的温度场的分布均匀性。
本实施例中,雾化面211为规则图形,例如矩形,雾化面211的核心雾化区为雾化面211的中心区域;公共的中间发热段220位于雾化面211的中心区域,使得无论是第一发热电路23工作还是第二发热电路24工作,雾化面211的中心区域始终可以进行加热,进一步提高了雾化面211的核心雾化区的分布均匀性,甚至提高了整个雾化面211的温度场的分布均匀性。
在一实施例中,发热体22包括多个发热段,多个发热段可以分别为第一发热段221、第
二发热段222、第三发热段223、第四发热段224以及公共的中间发热段220。第一发热段221、第二发热段222、第三发热段223、第四发热段224以及公共的中间发热段220组成发热体22的发热部。具体的,第一发热段221和第二发热段222的第一端均与公共的中间发热段220的第一端2201电连接,第三发热段223和第四发热段224的第一端均与公共的中间发热段220的第二端2202电连接。也就是说,第一发热段221、第二发热段222、第三发热段223、第四发热段224靠近公共的中间发热段220的一端均与公共的中间发热段220进行电连接,从而构成发热体22的发热部。
在一实施例中,雾化面211为矩形,公共的中间发热段220在沿第一方向的长度大于沿第二方向的宽度,且第一方向垂直于第二方向,即公共的中间发热段220为沿第一方向延伸的条状。
具体的,第一方向可以是矩形雾化面211的宽度方向,第二方向可以是矩形雾化面211的长度方向,公共的中间发热段220在第一方向的长度大于在第二方向的长度,形成一个矩形的公共的中间发热段220。可以理解,在其他实施例中,公共的中间发热段220也可以为正方形、多边形等,本申请对此不做限制。
进一步的,第一发热段221和第二发热段222分别位于公共的中间发热段220沿第二方向的相对两侧且沿第二方向延伸,第三发热段223和第四发热段224分别位于公共的中间发热段220沿第二方向的相对两侧且沿第二方向延伸。
具体的,在公共的中间发热段220的第一方向和第二方向确定的基础上,那么第一发热段221和第二发热段222的位置就可以相对固定。具体来讲,第一发热段221和第二发热段222分别位于公共的中间发热段的第二方向上,即图中的水平方向上,且第一发热段221和第二发热段222相对设置,可以理解为第一发热段221和第二发热段222对称设置于公共的中间发热段220的两侧,且第一发热段221和第二发热段222在水平方向上分别朝相反的方向延伸。同样的,第三发热段223和第四发热段224也分别设置于公共的中间发热段220的第二方向上,即图中的水平方向上,且第三发热段223和第四发热段224沿水平方向相对对称设置于公共的中间发热段220的两侧,且第三发热段223和第四发热段224在水平方向上分别朝相反的方向延伸。可以理解,在其他实施例中,第一发热段221和第二发热段222、第三发热段223和第四发热段224的位置可以互换,也可以根据需要设置于其他的位置和方向上,本申请对此不做限制。由于雾化面211在第二方向的尺寸大于在第一方向的尺寸,第一发热段221、第二发热段222、第三发热段223以及第四发热段224分别位于公共的中间发热段220沿第二方向的相对两侧且沿第二方向延伸,因此雾化面211的核心雾化区(即中心区域)在第一方向上的热场均匀性较差。本申请中,通过将公共的中间发热段220设置为沿第一方向延伸的条状,可以有效提高雾化面211的核心雾化区(即中心区域)在第一方向上的热场均匀性。
另外,由于发热体22的周围为烟垢的集中区域,通过设置交替使用的第一发热电路23和第二发热电路24,相较于仅采用第一发热电路23或第二发热电路24可以减少烟垢的形成,提高雾化效率,增大雾化量。
在一些实施例中,第一发热段221和第三发热段223可以轴对称设置,和/或第二发热段222和第四发热段224可以轴对称设置,和/或第一发热段221和第二发热段222可以轴对称设置,和/或第三发热段223和第四发热段224可以轴对称设置。
例如,第一发热段221和第三发热段223可以以公共的中间发热段220平行于第二方向的中轴线进行轴对称设置,第二发热段222和第四发热段224可以以公共的中间发热段220平行于第二方向的中轴线进行轴对称设置。而第一发热段221和第二发热段222可以以公共的中间发热段220平行于第一方向的中轴线进行轴对称设置,第三发热段223和第四发热段224可以以公共的中间发热段220平行于第一方向的中轴线进行轴对称设置。因此,可以认为在一些实施例中,发热体22的发热部不论是在第一方向还是第二方向均是轴对称设置的。
在本实施例中,发热体22还包括电极25,电极25包括第一电极251、第二电极252、第三电极253以及第四电极254;第一电极251、第二电极252、第三电极253以及第四电极254分别与第一发热段221、第二发热段222、第三发热段223以及第四发热段224的第二端一一对应电连接。其中,第一电极251、第一发热段221、公共的中间发热段220、第四发热段224以及第四电极254组成第一发热电路23;第三电极253、第三发热段223、公共的中间发热段220、第二发热段222以及第二电极252组成第二发热电路24。
请参阅图5至图9,图5是本申请第一实施例提供的发热体的第一种结构示意图,图6是本申请第一实施例提供的发热体的第二种结构示意图,图7是本申请第一实施例提供的发热体的第三种结构示意图,图8是本申请第一实施例提供的发热体的第四种结构示意图,图9是本申请第一实施例提供的发热体的第五种结构示意图。
在第一实施例中,如图5所示,第一发热段221和第三发热段223的第一种结构可以为:第一发热段221和第三发热段223可以设置于公共的中间发热段220的同一侧且均向远离对方的方向凸起形成弧形,同时第二发热段222和第四发热段224也位于公共的中间发热段220的同一侧且均向远离对方的方向凸起形成弧形。
具体的,可以理解为第一发热段221和第三发热段223也是相对设置,且对称设置于公共的中间发热段220的同一侧,但是不同于第一发热段221和第二发热段222设置位置的是,第一发热段221和第三发热段223是沿公共的中间发热段220的第一方向相对设置的。同时,第一发热段221和第三发热段223的弧形凸起方向均为远离对方的一侧,也就是说,第一发热段221和第三发热段223向外部凸起,而在第一发热段221和第三发热段223相互靠近的一侧是凹陷的。同样的,第二发热段222和第四发热段224也是相对设置,且对称设置于公共的中间发热段220的同一侧,第二发热段222和第四发热段224也是沿公共的中间发热段220的第一方向相对设置,第二发热段222和第四发热段224的弧形凸起方向均为远离对方的一侧。
在本实施例中,发热体22的电极25包括第一电极251、第二电极252、第三电极253以及第四电极254,第一电极251、第二电极252、第三电极253以及第四电极254分别与第一发热段221、第二发热段222、第三发热段223以及第四发热段224的第二端一一对应电连接。且,第一电极251和第三电极253为正极电极,第二电极252及第四电极254为负极电极。
其中,第一电极251、第一发热段221、公共的中间发热段220、第四发热段224以及第四电极254组成第一发热电路23;第三电极253、第三发热段223、公共的中间发热段220、第二发热段222以及第二电极252组成第二发热电路24。本实施例中的第一发热电路23和第二发热电路24为对称结构,发热体22整体也为对称结构。
在另一实施例中,如图6所示,第一发热段221和第三发热段223的第二种结构可以为:第一发热段221和第三发热段223也可以设置于公共的中间发热段220的同一侧且均向靠近对方的方向凸起形成弧形,同时第二发热段222和第四发热段224也位于公共的中间发热段220的同一侧且均向靠近对方的方向凸起形成弧形。
在其他实施例中,如图7所示,第一发热段221和第三发热段223的第三种结构可以为:第一发热段221和第三发热段223也可以设置于公共的中间发热段220的同一侧且在远离公共的中间发热段220的方向上均向靠近对方的方向逐渐聚合形成漏斗形,同时第二发热段222和第四发热段224也位于公共的中间发热段220的同一侧且在远离公共的中间发热段220的方向上均向靠近对方的方向逐渐聚合形成漏斗形。
在其他实施例中,如图8所示,第一发热段221和第三发热段223的第四种结构可以为:第一发热段221和第三发热段223也可以设置于公共的中间发热段220的同一侧且均在远离公共的中间发热段220的方向上向远离对方的方向逐渐散开形成喇叭形,同时第二发热段222和第四发热段224也位于公共的中间发热段220的同一侧且在远离公共的中间发热段220的方向上均向远离对方的方向逐渐散开形成喇叭形。
在其他实施例中,如图9所示,第一发热段221和第三发热段223的第五种结构可以为:第一发热段221和第三发热段223也可以设置于公共的中间发热段220的同一侧且均在远离公共的中间发热段220的方向上向远离对方的方向直线水平延伸,且在靠近第一电极251和第三电极253的位置进行弯折形成圆弧,与第一电极251和第三电极253分别一一对应电连接。同时第二发热段222和第四发热段224也位于公共的中间发热段220的同一侧且均在远离公共的中间发热段220的方向上向远离对方的方向直线水平延伸,且在靠近第二电极252及第四电极254的位置进行弯折形成圆弧,与第二电极252及第四电极254分别一一对应电连接。
另外,上述的五种结构中,每一种发热电路的结构均可以设置为一体成型结构,更便于生产制备。可以理解,在实际使用中,发热体22可以被制造成任意形状,只要能够满足至少两个发热电路且至少两个发热电路可以分别独立工作的要求即可。在实际制造中,发热电路的数量也可以为三个、四个等多个,具体根据需要设置,本申请对此不做限制。
在第一实施例中,如图5至图9所示,第一发热段221的宽度L1、第二发热段222的宽度L2、第三发热段223的宽度L3以及第四发热段224的宽度L4均相等,使得第一发热段221、第二发热段222、第三发热段223以及第四发热段224的阻值基本相等,第一发热段221、第二发热段222、第三发热段223、第四发热段224中任意两个发热段以及公共的中间发热段220构成的两个发热电路的功率基本一致,从而使得发热体22的使用寿命可以达到单个发热电路的两倍及以上,提高发热体22的使用寿命。
同时,第一发热段221的宽度L1、第二发热段222的宽度L2、第三发热段223的宽度L3以及第四发热段224的宽度L4均小于公共的中间发热段220的宽度L5。
具体的,公共的中间发热段220的宽度L5设置为均大于上述四个发热段的宽度,使得发热体22的雾化面211的温度分布更加均匀,从而使得加热更加均匀,防止局部温度过高产生较多的烟垢。可以理解,雾化面211的周边区域与安装座或外壳等元件距离近而散热较快,而中心区域与安装座或外壳等元件距离较远而散热较慢,因此,如果整个第一发热电路23或第二发热电路24的发热部均匀发热,那么雾化面211的温度分布就不均匀。本申请通过将公共的中间发热段220的宽度L5设置为均大于上述四个发热段的宽度,使得公共的中间发热段220的电阻较小,由于整个第一发热电路23或第二发热电路24内的电流相等,因此根据焦耳定律Q=I2RT,公共的中间发热段220在单位时间内产生的热量较少,从而使得整个雾化面211的温度分布更加均匀。
由于第一发热段221的宽度L1、第二发热段222的宽度L2、第三发热段223的宽度L3以及第四发热段224的宽度L4均相等,因此第一发热电路23和第二发热电路24可以是完全相同的电路结构,使得第一发热电路23和第二发热电路24的阻值相等,从而使得第一发热电路23和第二发热电路24的功率相等,能够为发热体22提供相同的热量。
请参阅图10,图10是本申请第二实施例提供的发热体的结构示意图。
在第二实施例中,第一发热段221和第三发热段223可以设置为中心对称,和/或第二发热段222和第四发热段224可以设置为中心对称。也就是说,第一发热段221和第三发热段223,第二发热段222和第四发热段224可以同时设置为中心对称,也可以只有其中一组设置为中心对称,具体根据需要设置,本申请对此不做限制。
在本实施例中,发热体22还包括电极25,电极25包括第一电极251、第二电极252、第三电极253以及第四电极254;第一电极251、第二电极252、第三电极253以及第四电极254分别与第一发热段221、第二发热段222、第三发热段223以及第四发热段224的第二端一一对应电连接;其中,第一电极251、第一发热段221、公共的中间发热段220、第四发热段224以及第四电极254依次连接组成第一发热电路23;第三电极253、第三发热段223、公共的中间发热段220、第二发热段222以及第二电极252依次连接组成第二发热电路24。
本实施例中,通过将第一发热段221的宽度L1和/或第四发热段224的宽度L4进行调整,使得第一发热段221的宽度L1小于第二发热段222的宽度L2,和/或第四发热段224的宽度L4小于第三发热段223的宽度L3。
具体的,在本实施例中,通过将将第一发热段221的宽度L1和第四发热段224的宽度L4同时进行调窄,使得第一发热段221的宽度L1小于第二发热段222的宽度L2,且第四发热段224的宽度L4小于第三发热段223的宽度L3,使得第一发热电路23的阻值大于第二发热电路24的阻值,从而能够实现两支发热电路不同的发热功率,使得第一发热电路23和第二发热电路24能够形成不同的雾化量,满足用户对不同雾化量的需求。
请参阅图11,图11是本申请第三实施例提供的发热体的结构示意图。
第三实施例的发热电路与第一实施例的发热电路基本相同,不同点在于:第三实施例中,
第一发热电路23和第二发热电路24共用一个负极电极。也就是说,在本实施例中,具有两个正极电极和一个负极电极。
具体的,本实施例中的电极25包括第一电极251、第二电极252、第三电极253。第一电极251和第三电极253分别与第一发热段221和第三发热段223的第二端一一对应电连接。第二电极252分别与第二发热段222和第四发热段224的第二端一一对应电连接。其中,第一电极251、第一发热段221、公共的中间发热段220、第二发热段222、第四发热段224以及第二电极252组成第一发热电路23;第三电极253、第三发热段223、公共的中间发热段220、第二发热段222、第四发热段224以及第二电极252组成第二发热电路24。
在本实施例中,第一发热段221的宽度L1、第二发热段222的宽度L2、第三发热段223的宽度L3以及第四发热段224的宽度L4均相等,因此第一发热电路23和第二发热电路24可以是完全相同的电路结构,使得第一发热电路23和第二发热电路24的阻值相等,从而使得第一发热电路23和第二发热电路24的功率相等,能够为发热体22提供相同的热量。
第三实施例相比于第一实施例,发热电路减少了一个负极电极,从而减小了电路设计的复杂程度。当发热体22连接到第一发热电路23,到公共的中间发热段220之后,电流大部分流向第二发热段222,少部分流向第四发热段224,这样可以使得发热体22的热场更加均匀,从而使得发热体22的寿命可达到两倍及以上。
请参阅图12,图12是本申请第四实施例提供的发热体的结构示意图。
第四实施例的发热电路与第一实施例的发热电路基本相同,不同点在于:第四实施例中,电极25包括第一电极251、第二电极252、第三电极253、第四电极254;第一电极251、第二电极252、第三电极253以及第四电极254分别与第一发热段221、第二发热段222、第三发热段223以及第四发热段224的第二端一一对应电连接;其中,第一电极251、第二电极252、第三电极253以及第四电极254中的一组电极以及将该一组电极电连接的发热段组成第一发热电路23,另一组电极以及将另一组电极电连接的发热段组成第二发热电路24。
具体的,在本实施例中,第一电极251、第二电极252、第三电极253以及第四电极254与第一发热段221、第二发热段222、第三发热段223以及第四发热段224可以任意进行电极和发热段的一一对应自由组合,以形成第一发热电路23和第二发热电路24。
如图12所示,第一发热段221、第二发热段222、第三发热段223以及第四发热段224的宽度和长度可以均设置为不同的值,任意两个发热段、公共的中间发热段220及与该两个发热段电连接的电极构成的第一发热电路23和第二发热电路24的阻值均不同,可以灵活搭配,形成多种发热电路的组合。
例如,与第一实施例相同,第一电极251、第一发热段221、公共的中间发热段220、第四发热段224以及第四电极254组成第一发热电路23;第三电极253、第三发热段223、公共的中间发热段220、第二发热段222以及第二电极252组成第二发热电路24。再例如,也可以设置为:第一电极251、第一发热段221、公共的中间发热段220、第三发热段223以及第三电极253组成第一发热电路23;第二电极252、第二发热段222、公共的中间发热段220、第四发热段224以及第四电极254组成第二发热电路24。上述两种发热电路的设置方式均可
以形成两个并联且分别独立工作的第一发热电路23和第二发热电路24,实现两个发热电路的切换,从而提高发热体22的使用寿命。
本实施例中发热电路的设置方式,可以进一步提高发热档位的选择性,提高雾化芯20的发热及雾化效率。
本申请将公共的中间发热段220设置在雾化面211中间位置,且通过将公共的中间发热段220的宽度L5设置为均大于上述四个发热段的宽度,使得公共的中间发热段220的电阻较小,由于整个第一发热电路23或第二发热电路24内的电流相等,因此根据焦耳定律Q=I2RT,公共的中间发热段220在单位时间内产生的热量较少,温度较低,因此公共的中间发热段220产生的积碳也更少,而四个发热段产生的积碳较多。然而,由于四个发热段是不同时工作的,当某一发热段不工作、其他发热段工作时,流动的雾化基质具有一定的清洁作用,通过液态的雾化基质的流动,将产生的部分积碳通过雾化的作用冲散,可以清除掉一部分烟垢,因而可以在一定程度上减少一部分的烟垢累积,使得整个发热体22产生的烟垢更少,提高发热体22的使用寿命。
请参阅图13,图13是现有S形发热膜与本申请提供的第一实施例至第三实施例的发热体在抽吸250口后的光学照片对比图。
为了验证本申请提供的实施例的技术效果,发明人从雾化量、口感、抽吸250口后发热体22的图像、温度场对比等角度对现有技术中的S形发热膜和本申请实施例中的发热体22进行了对比,请参考表1。
表1
从上表1中可知:本申请实施例一至四中的发热体22在温度场表现、雾化量表现上均明
显优于现有产品的S形发热膜。尤其在电子雾化装置产品中,使用寿命远大于现有产品。针对甜味雾化基质,实施例一可抽吸1200口以上,实施例二可抽吸1000口以上,对比现有技术中可抽吸600口左右,具有极大的提升。
上述实施例,实现方式简单,效果达成度高,具备快速导入的量产性要求;针对一次性雾化基质等高使用寿命要求、不同烟雾满足感的市场需求以及现阶段雾化基质等易失效产品,均具有较强的应用价值。
本申请与现有产品相比,均表现出寿命高、烟垢少、雾化量大的优势。同时,本申请的技术方案较大程度地降低了发热体22的热应力,进而降低了应力导致开裂的风险,提高了产品的安全性。
本申请公开的雾化芯包括:导液体和发热体,导液体具有吸液面和雾化面,用于将气溶胶产生基质从吸液面引导至雾化面;发热体设置于雾化面,用于加热并雾化气溶胶产生基质以产生气溶胶;其中,发热体包括相互并联且各自独立工作的第一发热电路和第二发热电路,通过设置至少两个独立工作的发热电路,使得发热体的使用寿命大幅度提高。且,第一发热电路和第二发热电路具有公共的中间发热段,解决了发热体局部加热不均的问题。同时,本申请通过两个发热电路切换,形成不同的发热模式,以提供不同的雾化量,提升用户的抽吸满足感。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (13)
- 一种雾化芯,其中,包括:导液体,具有吸液面和雾化面,用于将气溶胶产生基质从所述吸液面引导至所述雾化面;发热体,设置于所述雾化面,用于加热并雾化所述气溶胶产生基质以产生气溶胶;其中,所述发热体包括相互并联且各自独立工作的第一发热电路和第二发热电路,且所述第一发热电路和所述第二发热电路具有公共的中间发热段。
- 根据权利要求1所述的雾化芯,其中,所述公共的中间发热段位于所述雾化面的中心位置。
- 根据权利要求1所述的雾化芯,其中,所述发热体包括多个发热段,分别为第一发热段、第二发热段、第三发热段、第四发热段以及所述公共的中间发热段;所述第一发热段和所述第二发热段的第一端均与所述公共的中间发热段的第一端电连接,所述第三发热段和所述第四发热段的第一端均与所述公共的中间发热段的第二端电连接。
- 根据权利要求3所述的雾化芯,其中,所述公共的中间发热段在沿第一方向的长度大于沿第二方向的宽度,且所述第一方向垂直于所述第二方向;所述第一发热段和所述第二发热段分别位于所述公共的中间发热段沿所述第二方向的相对两侧且沿所述第二方向延伸,所述第三发热段和所述第四发热段分别位于所述公共的中间发热段沿所述第二方向的相对两侧且沿所述第二方向延伸。
- 根据权利要求4所述的雾化芯,其中,所述第一发热段和所述第三发热段位于所述公共的中间发热段的同一侧且均向远离对方的方向凸起成弧形;所述第二发热段和所述第四发热段位于所述公共的中间发热段的同一侧且均向远离对方的方向凸起成弧形。
- 根据权利要求5所述的雾化芯,其中,所述第一发热段的宽度、所述第二发热段的宽度、所述第三发热段的宽度以及所述第四发热段的宽度均小于所述公共的中间发热段的宽度。
- 根据权利要求6所述的雾化芯,其中,所述第一发热段和所述第三发热段轴对称设置,和/或所述第二发热段和所述第四发热段轴对称设置,和/或所述第一发热段和所述第二发热段轴对称设置,和/或所述第三发热段和所述第四发热段轴对称设置。
- 根据权利要求5所述的雾化芯,其中,所述第一发热段和所述第三发热段中心对称设置,和/或所述第二发热段和所述第四发热段中心对称设置;所述第一发热段的宽度小于所述第二发热段的宽度。
- 根据权利要求3所述的雾化芯,其中,所述发热体还包括多个电极,分别为第一电极、第二电极、第三电极以及第四电极;所述第一电极、所述第二电极、所述第三电极以及所述第四电极分别与所述第一发热段、所述第二发热段、所述第三发热段以及所述第四发热段的第二端一一对应电连接;其中,所述第一电极、所述第一发热段、所述公共的中间发热段、所述第四发热段以及所述第四电极组成所述第一发热电路;所述第三电极、所述第三发热段、所述公共的中间发热段、所述第二发热段以及所述第二电极组成所述第二发热电路。
- 根据权利要求3所述的雾化芯,其中,所述发热体还包括多个电极,分别为第一电 极、第二电极、第三电极;所述第一电极和所述第三电极分别与所述第一发热段和所述第三发热段的第二端一一对应电连接;所述第二电极分别与所述第二发热段和所述第四发热段的第二端电连接;其中,所述第一电极、所述第一发热段、所述公共的中间发热段、所述第二发热段、所述第四发热段以及所述第二电极组成所述第一发热电路;所述第三电极、所述第三发热段、所述公共的中间发热段、所述第二发热段、所述第四发热段以及所述第二电极组成所述第二发热电路。
- 根据权利要求3所述的雾化芯,其中,所述发热体还包括多个电极,分别为第一电极、第二电极、第三电极、第四电极;所述第一电极、所述第二电极、所述第三电极以及所述第四电极分别与所述第一发热段、所述第二发热段、所述第三发热段以及所述第四发热段的第二端一一对应电连接;其中,所述第一电极、所述第二电极、所述第三电极以及所述第四电极中的一组所述电极以及将所述一组所述电极电连接的所述发热段组成所述第一发热电路,另一组所述电极以及将所述另一组所述电极电连接的所述发热段组成所述第二发热电路。
- 一种雾化器,其中,包括:壳体,具有容置腔;雾化芯,设置于所述容置腔内,并与所述壳体配合形成储液腔;所述雾化芯用于在通电时加热并雾化来自所述储液腔的气溶胶产生基质以形成气溶胶;其中,所述雾化芯为如权利要求1所述的雾化芯。
- 一种电子雾化装置,其中,包括:雾化器;其中,所述雾化器为如权利要求12所述的雾化器;电源组件,与所述雾化器电连接,用于向所述雾化器供电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210828430.7A CN115251471A (zh) | 2022-07-13 | 2022-07-13 | 雾化芯、雾化器及电子雾化装置 |
CN202210828430.7 | 2022-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024012131A1 true WO2024012131A1 (zh) | 2024-01-18 |
Family
ID=83765526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/099969 WO2024012131A1 (zh) | 2022-07-13 | 2023-06-13 | 雾化芯、雾化器及电子雾化装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115251471A (zh) |
WO (1) | WO2024012131A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115251471A (zh) * | 2022-07-13 | 2022-11-01 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
WO2024179516A1 (zh) * | 2023-02-28 | 2024-09-06 | 深圳市合元科技有限公司 | 一种电子雾化装置及其雾化器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209234991U (zh) * | 2018-09-29 | 2019-08-13 | 深圳市合元科技有限公司 | 雾化器发热元件和雾化器 |
CN211832806U (zh) * | 2019-11-15 | 2020-11-03 | 深圳麦克韦尔科技有限公司 | 发热体及电子雾化装置 |
WO2022016538A1 (zh) * | 2020-07-24 | 2022-01-27 | 深圳市华诚达精密工业有限公司 | 多面式加热雾化组件及其雾化加热方法 |
CN114587021A (zh) * | 2022-01-11 | 2022-06-07 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN115251471A (zh) * | 2022-07-13 | 2022-11-01 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN219047327U (zh) * | 2022-11-22 | 2023-05-23 | 深圳市卓力能技术有限公司 | 一种发热体及雾化器 |
-
2022
- 2022-07-13 CN CN202210828430.7A patent/CN115251471A/zh active Pending
-
2023
- 2023-06-13 WO PCT/CN2023/099969 patent/WO2024012131A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209234991U (zh) * | 2018-09-29 | 2019-08-13 | 深圳市合元科技有限公司 | 雾化器发热元件和雾化器 |
CN211832806U (zh) * | 2019-11-15 | 2020-11-03 | 深圳麦克韦尔科技有限公司 | 发热体及电子雾化装置 |
WO2022016538A1 (zh) * | 2020-07-24 | 2022-01-27 | 深圳市华诚达精密工业有限公司 | 多面式加热雾化组件及其雾化加热方法 |
CN114587021A (zh) * | 2022-01-11 | 2022-06-07 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN115251471A (zh) * | 2022-07-13 | 2022-11-01 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN219047327U (zh) * | 2022-11-22 | 2023-05-23 | 深圳市卓力能技术有限公司 | 一种发热体及雾化器 |
Also Published As
Publication number | Publication date |
---|---|
CN115251471A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024012131A1 (zh) | 雾化芯、雾化器及电子雾化装置 | |
US20220240582A1 (en) | Atomization element and electronic cigarette | |
WO2023134314A1 (zh) | 雾化芯、雾化器及电子雾化装置 | |
CN112931952A (zh) | 一种雾化芯及电子雾化装置 | |
CN110384258A (zh) | 电子雾化装置及其雾化器和发热组件 | |
WO2021142786A1 (zh) | 电子雾化装置及其雾化器和发热体 | |
US12089644B2 (en) | Electronic atomization device, and atomizer and heating assembly thereof | |
CN216821765U (zh) | 加热组件、热交换器及气溶胶发生装置 | |
CN216019085U (zh) | 一种雾化芯及电子雾化装置 | |
WO2021254230A1 (zh) | 一种用于抽烟装置的加热组件 | |
WO2022179641A2 (zh) | 发热体、雾化器及电子雾化装置 | |
CN211048390U (zh) | 一种电子烟用新型多孔陶瓷发热体 | |
CN217609584U (zh) | 雾化器及其雾化芯 | |
WO2022193673A1 (zh) | 雾化芯、雾化装置及电子烟 | |
WO2024041124A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
CN211672461U (zh) | 雾化芯及电子雾化装置 | |
CN216853801U (zh) | 一种雾化芯、雾化器及电子烟 | |
CN211048400U (zh) | 一种电子烟用陶瓷雾化器芯 | |
CN218737246U (zh) | 雾化芯、雾化器及电子雾化装置 | |
CN218551320U (zh) | 雾化芯、雾化器及电子雾化装置 | |
CN113142667A (zh) | 一种雾化芯、雾化器及电子烟 | |
CN211048389U (zh) | 一种用于电子烟的空心陶瓷雾化器芯 | |
CN221011992U (zh) | 电子雾化装置 | |
WO2023216262A1 (zh) | 发热体及其制备方法、雾化组件及电子雾化装置 | |
CN207285191U (zh) | 一种发热元件、电子烟雾化芯组件以及电子烟雾化器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23838625 Country of ref document: EP Kind code of ref document: A1 |