WO2024108896A1 - 一种电解液和锂离子电池 - Google Patents

一种电解液和锂离子电池 Download PDF

Info

Publication number
WO2024108896A1
WO2024108896A1 PCT/CN2023/090734 CN2023090734W WO2024108896A1 WO 2024108896 A1 WO2024108896 A1 WO 2024108896A1 CN 2023090734 W CN2023090734 W CN 2023090734W WO 2024108896 A1 WO2024108896 A1 WO 2024108896A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
carbonate
mass fraction
lithium
negative electrode
Prior art date
Application number
PCT/CN2023/090734
Other languages
English (en)
French (fr)
Inventor
李迟
张恒
刘范芬
苑丁丁
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Publication of WO2024108896A1 publication Critical patent/WO2024108896A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of lithium-ion batteries and relates to an electrolyte, and in particular to an electrolyte and a lithium-ion battery.
  • the main methods to increase battery energy density are: 1 Increase the coating surface density and compaction density, and increase the proportion of positive and negative active materials per unit volume; 2 Reduce the proportion of auxiliary materials per unit volume, such as using thinner current collectors and separators; 3 Reduce the amount of electrolyte injection.
  • the related prior art discloses a lithium metal battery electrolyte containing an aromatic compound as a diluent.
  • the diluent is an aromatic compound, which can be used to inhibit lithium dendrites generated by uneven deposition of lithium metal negative electrodes in lithium metal batteries during the cycle process, thereby improving the wetting performance of the electrolyte.
  • the related prior art discloses a highly wettable electrolyte for lithium metal batteries and a lithium ion battery.
  • the wettability improving additive is a meta-toluene sulfonate wettability additive, which improves the liquid absorption efficiency of the positive and negative pole pieces of the lithium metal battery and improves the wettability of the electrolyte.
  • the purpose of the present application is to provide an electrolyte and a lithium-ion battery with high wettability.
  • the present application provides an electrolyte, wherein the electrolyte comprises a compound as shown in Formula 1,
  • R1 is selected from any one of C1-C6 fully substituted or partially substituted fluoroalkyl groups
  • R2 and R3 are independently selected from any one of hydrogen atom, alkane, phenyl, alkylbenzene or methoxysilyl.
  • the compound shown in Formula 1 of the present application has the structure of a nonionic fluorocarbon surfactant, containing both an amide group of a polar group and a carbon-fluorine bond of a nonpolar group.
  • the structure of the carbon-fluorine bond is stable and difficult to be polarized, so that the fluorocarbon chain has both hydrophobicity and oleophobicity. Therefore, the additive has a stronger tendency to leave the solution than other surfactant molecules, and is directed to aggregate and arrange into a molecular film at the liquid/gas interface.
  • the compound shown in Formula 1 also has high thermal stability and chemical stability, which can greatly improve the wetting ability of the electrolyte in the thick electrode without deteriorating the performance of the electrolyte.
  • the electrolyte includes any one of the compounds shown in Formula 2 to Formula 5,
  • the mass fraction of the compound described in Formula 1 is 0.1-0.5%, wherein the mass fraction can be 0.1%, 0.2%, 0.3%, 0.4% or 0.5%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable, preferably 0.1-0.3%.
  • the electrolyte further includes an additive.
  • the additive includes vinylene carbonate, tris(trimethylsilyl)phosphite and vinyl sulfate.
  • the mass fraction of the vinylene carbonate is 0.3-3.5%, wherein the mass fraction can be 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 1.8%, 2.1%, 2.4%, 2.7%, 3.0%, 3.3% or 3.5%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the mass fraction of the tris(trimethylsilyl)phosphite is 0.3-3.5%, wherein the mass fraction can be 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 1.8%, 2.1%, 2.4%, 2.7%, 3.0%, 3.3% or 3.5%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the mass fraction of the vinyl sulfate is 0.3-3.5%, wherein the mass fraction can be 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 1.8%, 2.1%, 2.4%, 2.7%, 3.0%, 3.3% or 3.5%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the electrolyte further includes a lithium salt.
  • the lithium salt includes any one of LiPF6 , LiClO4 , LiBF4 , LiPO2F2 , LiODFB , LiTFSI or LiFSI, or a combination of at least two of them, wherein typical but non-limiting examples of the combination include: a combination of LiPF6 and LiClO4 , a combination of LiClO4 and LiBF4 , a combination of LiBF4 and LiPO2F2 , a combination of LiPO2F2 and LiODFB , a combination of LiODFB and LiTFSI, a combination of LiTFSI and LiFSI, etc.
  • the lithium salt is LiPF 6 .
  • the mass fraction of the lithium salt is 8-12%, wherein the mass fraction can be 8%, 9%, 10%, 11% or 12%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the electrolyte further comprises an organic solvent, wherein the organic solvent comprises ethylene carbonate At least two of esters, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene sulfite, ethyl acetate, diethyl sulfite or 1,3-propane sultone.
  • organic solvent comprises ethylene carbonate At least two of esters, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene sulfite, ethyl acetate, diethyl sulfite or 1,3-propane sultone.
  • the organic solvent includes at least two of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate.
  • the mass fraction of ethylene carbonate is 20-30%, wherein the mass fraction can be 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29% or 30%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the mass fraction of the ethyl methyl carbonate is 30-40%, wherein the mass fraction can be 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39% or 40%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the mass fraction of dimethyl carbonate is 30-50%, wherein the mass fraction can be 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44%, 46%, 48% or 50%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the present application provides a lithium-ion battery, comprising a positive electrode sheet, a negative electrode sheet, a separator and an electrolyte as described in one of the purposes.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode material located on the positive electrode current collector.
  • the positive electrode material includes a positive electrode active substance, and the positive electrode active substance includes lithium iron phosphate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode current collector. Extreme material.
  • the negative electrode material includes a negative electrode active material, and the negative electrode active material includes graphite.
  • Adding the compound shown in Formula 1 to the electrolyte prepared in this application can reduce the viscosity and surface tension of the electrolyte, and can significantly improve the wettability of the electrolyte in a high-area-density and high-density battery system, thereby improving production efficiency, and can also improve the rate and cycle performance of the battery.
  • the positive electrode sheet climbing height can reach 11.5mm
  • the negative electrode climbing height can be as high as 15.5mm.
  • This embodiment provides an electrolyte, which includes a compound as shown in Formula 2, a lithium salt, an additive, and an organic solvent.
  • the mass fraction of the compound represented by Formula 2 in the electrolyte is 0.3%.
  • the lithium salt is lithium hexafluorophosphate, and its mass fraction in the electrolyte is 10%.
  • the additives are vinylene carbonate (VC), tris(trimethylsilyl)phosphite (TMSP) and diethylene sulfate (DTD).
  • VC vinylene carbonate
  • TMSP tris(trimethylsilyl)phosphite
  • DTD diethylene sulfate
  • the balance of the electrolyte is an organic solvent, and the organic solvent is ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a mass ratio of 3:4:3.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the lithium-ion battery is a lithium iron phosphate square aluminum shell battery with a capacity distribution of 160Ah at room temperature, a charge and discharge voltage range of 2.5 to 3.65V, and a continuous cycle rate of 1C at both room and high temperatures.
  • the first step is to add LiFePO 4 , SP, NMP, revolve at 25 ⁇ 1r/min, disperse at 500 ⁇ 50r/min, stir for 10min, then revolve at 25 ⁇ 1r/min, disperse at 1000 ⁇ 50r/min, stir at 45°C for 90min;
  • the second step is to add conductive agent CNT slurry, revolve at 25 ⁇ 1r/min, disperse at 1000 ⁇ 50r/min, vacuum degree 0.080KPa, stir at 45°C for 60min;
  • the third step is to add positive electrode glue, revolve at 25 ⁇ 1r/min, Disperse at 2500 ⁇ 50r/min, vacuum degree 0.080KPa, stir at 45°C for 90min;
  • the fourth step is the viscosity adjustment step, add NMP to adjust the slurry viscosity;
  • the fifth step is slow stirring revolution 15 ⁇
  • Negative electrode glue the solid content of glue is 8%
  • the first step is to add graphite and SP dry mix, rotate 20 ⁇ 1r / min, disperse 1000 ⁇ 50r / min, stir for 1h
  • the second step is to add 50% negative electrode slurry, rotate 20 ⁇ 1r / min, disperse 1000 ⁇ 50r / min, stir for 1.5h
  • the third step is to add another 50% negative electrode glue, rotate 25 ⁇ 1r / min, disperse 2000 ⁇ 50r / min, vacuum 0.085KPa, stir for 1h
  • the fourth step is the viscosity adjustment step, add deionized water to adjust the slurry viscosity
  • the fifth step is to add water-based dispersant SBR, rotate 25 ⁇ 1r / min, disperse 800 ⁇ 50r / min, vacuum 0.085KPa, stir for 1h.
  • the negative electrode material has a viscosity of 4000 ⁇ 1500mPa ⁇ s and a fineness of ⁇ 20 ⁇ m, and promptly scrape the deposited material on the stirring cylinder wall and the stirring rod at each step.
  • the negative electrode sheet is obtained by sieving, coating, cold pressing, and cutting.
  • the positive electrode sheet, negative electrode sheet and electrolyte are assembled to obtain a lithium-ion battery.
  • Example 2 The other operations of Example 2 are the same as those of Example 1, except that the compound of Formula 2 in Example 1 is replaced by the compound of Formula 3.
  • Example 3 The other operations of Example 3 are the same as those of Example 1, except that the compound of Formula 2 in Example 1 is replaced by the compound of Formula 4.
  • Example 4 The other operations of Example 4 are the same as those of Example 1, except that the compound of Formula 2 in Example 1 is replaced by the compound of Formula 5.
  • Example 6 The other operations of Example 6 are the same as those of Example 1, except that the mass fraction of the lithium salt is changed to 13%.
  • Example 7 The other operations of Example 7 are the same as those of Example 1, except that the mass fraction of the compound of Formula 2 is changed by 0.7%.
  • Comparative Example 1 The other operations of Comparative Example 1 are the same as those of Example 1, except that the compound of Formula 2 of the present application is not contained.
  • Comparative Example 1 The other operations of Comparative Example 1 are the same as those of Example 1, except that the compound of Formula 2 of the present application is replaced by fluorobenzene.
  • the lithium ion batteries prepared in the above Examples 1-7 and Comparative Examples 1-3 were tested for electrolyte wettability. The test results are shown in Table 2.
  • test method for electrolyte wettability is as follows:
  • Examples 1-4 use compounds of different structures as shown in Formula 1,
  • the electrolyte has good wetting properties for both the positive and negative electrodes.
  • the amount of lithium salt added is too much, and the wetting properties of the electrolyte are significantly reduced.
  • Example 7 the content of the compound of formula 2 is too much, and the wetting properties of the electrolyte are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液和锂离子电池。电解液包括如式1所示的化合物,其中,R 1选自C1-C6全取代或部分取代的氟代烷基中的任意一种,R 2和R 3分别独立地选自氢原子、烷烃、苯基、烷基苯或甲氧基硅烷基中的任意一种。

Description

一种电解液和锂离子电池
本申请要求在2022年11月25日提交中国专利局、申请号为202211493181.7的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于锂离子电池领域,涉及一种电解液,尤其涉及一种电解液和锂离子电池。
背景技术
近几年来,随着国家对新能源汽车的大力推广及补助政策的实施,锂电池的需求急剧增长。新能源汽车普及的同时,市场对锂离子电池的能量密度要求也越来越高,如何在相同体积空间提高锂电池的能量密度是众多产品共同的追求。提高电池能量密度的主要方法有:①增大涂布面密度和压实密度,提高单位体积内正负极活性物质的占比;②降低单位体积内辅料的占比,比如选用更薄的集流体和隔膜;③减少电解液注液量。
伴随着涂布面密度和压实密度的增大,虽然能更大程度的提升电池的能量密度,但带来的问题是使用传统的电解液会出现极片浸润性变差,吸液时间增长。这一方面会导致电池生产效率降低,另一方面会造成电池吸液一致性差,循环性能恶化和负极析锂等安全问题。因此,开发新型高浸润性电解液是解决高面密度、高压实极片浸润性差较为实用和有效的措施。
相关现有技术公开了一种含芳香类化合物作为稀释剂的锂金属电池电解液,稀释剂为芳香类化合物,可以用于抑制锂金属电池中锂金属负极在循环过程中由于不均匀沉积而产生的锂枝晶,从而提高电解液的浸润性能。
相关现有技术公开了一种锂金属电池用高浸润性电解液及锂离子电池。改善浸润性添加剂为间甲苯磺酸盐类浸润性添加剂,提高了锂金属电池正负极极片的吸液效率,提高电解液的浸润性。
但是相关现有技术都是应用在锂金属电池改性中,应用场景有限,对于电池的改善性能有限,因此如何制备一种应用于商业电池的新型高浸润性电解液,是本领域重要的研究方向。
发明内容
针对现有技术存在的不足,本申请的目的在于提供一种高浸润性的电解液和锂离子电池。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种电解液,所述电解液包括如式1所示的化合物,
其中,R1选自C1-C6全取代或部分取代的氟代烷基中的任意一种,R2和R3分别独立地选自氢原子、烷烃、苯基、烷基苯或甲氧基硅烷基中的任意一种。
本申请式1所示的化合物具有非离子氟碳表面活性剂的结构,既含有极性基团的酰胺基,又含有非极性基团碳-氟键。碳-氟键的结构稳定,难以被极化,使得氟碳链同时具备疏水性和疏油性,因此该添加剂具有比其他表面活性分子更强的脱离溶液的倾向,在液/气界面定向聚集排列成分子膜,在极低的应用浓度下便能显著降低电解液的表面张力,改善电解液的浸润性,增加电解液与厚电极深层孔隙中固相的接触,从而降低电池的内阻,提升倍率和循环等性能。 另外式1所示的化合物还具有较高的热稳定性和化学稳定性,既能较大程度提升电解液在厚电极中的浸润能力,也不会劣化电解液的性能。
在一实施例中,所述电解液包括如式2-式5所示化合物中的任意一种,
在一实施例中,在所述电解液中,所述式1所述的化合物的质量分数为0.1~0.5%,其中所述质量分数可以是0.1%、0.2%、0.3%、0.4%或0.5%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为0.1~0.3%。
在一实施例中,所述电解液还包括添加剂。
在一实施例中,所述添加剂包括碳酸亚乙烯酯、三(三甲基硅基)亚磷酸酯和硫酸乙烯酯。
在一实施例中,在所述电解液中,所述碳酸亚乙烯酯的质量分数为0.3~3.5%,其中所述质量分数可以是0.3%、0.6%、0.9%、1.2%、1.5%、1.8%、2.1%、2.4%、2.7%、3.0%、3.3%或3.5%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,在所述电解液中,所述三(三甲基硅基)亚磷酸酯的质量分数为0.3~3.5%,其中所述质量分数可以是0.3%、0.6%、0.9%、1.2%、1.5%、1.8%、2.1%、2.4%、2.7%、3.0%、3.3%或3.5%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,在所述电解液中,所述硫酸乙烯酯的质量分数为0.3~3.5%,其中所述质量分数可以是0.3%、0.6%、0.9%、1.2%、1.5%、1.8%、2.1%、2.4%、2.7%、3.0%、3.3%或3.5%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,所述电解液还包括锂盐。
在一实施例中,所述锂盐包括LiPF6、LiClO4、LiBF4、LiPO2F2、LiODFB、LiTFSI或LiFSI中的任意一种或至少两种的组合,其中所述组合典型但非限制性实例有:LiPF6和LiClO4的组合、LiClO4和LiBF4的组合、LiBF4和LiPO2F2的组合、LiPO2F2和LiODFB的组合、LiODFB和LiTFSI的组合或LiTFSI和LiFSI的组合等。
在一实施例中,所述锂盐为LiPF6
在一实施例中,在所述电解液中,所述锂盐的质量分数为8~12%,其中所述质量分数可以是8%、9%、10%、11%或12%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,所述电解液还包括有机溶剂,所述有机溶剂包括碳酸乙烯 酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、亚硫酸丙烯酯、乙酸乙酯、亚硫酸二乙酯或1,3-丙烷磺酸内酯中的至少两种。
在一实施例中,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯中的至少两种。
在一实施例中,在所述电解液中,所述碳酸乙烯酯的质量分数为20~30%,其中所述质量分数可以是20%、21%、22%、23%、24%、25%、26%、27%、28%、29%或30%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,在所述电解液中,所述碳酸甲乙酯的质量分数为30~40%,其中所述质量分数可以是30%、31%、32%、33%、34%、35%、36%、37%、38%、39%或40%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一实施例中,在所述电解液中,所述碳酸二甲酯的质量分数为30~50%,其中所述质量分数可以是30%、32%、34%、36%、38%、40%、42%、44%、46%、48%或50%等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二方面,本申请提供了一种锂离子电池,所述锂离子电池包括正极片、负极片、隔膜和如目的之一所述的电解液。
在一实施例中,所述正极片包括正极集流体和位于所述正极集流体上的正极材料。
在一实施例中,所述正极材料包括正极活性物质,所述正极活性物质包括磷酸铁锂。
在一实施例中,所述负极片包括负极集流体和位于所述负极集流体上的负 极材料。
在一实施例中,所述负极材料包括负极活性物质,所述负极活性物质包括石墨。
与现有技术相比,本申请的有益效果为:
本申请制备的电解液中加入式1所示的化合物,可以降低电解液黏度和表面张力,可以显著改善电解液在高面密度高压实电池体系中的浸润性,从而提高生产效率,还可以提升电池的倍率和循环性能。其中,电解液浸润性测试中,正极片爬坡高度可以达到11.5mm,负极爬坡高度可以高达15.5mm。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。
实施例1
本实施例提供一种电解液,所述电解液包括如式2所示的化合物、锂盐、添加剂和有机溶剂。
所述如式2所示的化合物在电解液中的质量分数为0.3%。
所述锂盐为六氟磷酸锂,在电解液中的质量分数为10%。
添加剂为碳酸亚乙烯酯(VC)、三(三甲基硅基)亚磷酸酯(TMSP)和硫酸乙烯酯(DTD),在电解液中,所述碳酸亚乙烯酯的质量分数为3.0%,所述三(三甲基硅基)亚磷酸酯的质量分数为0.5%和所述硫酸乙烯酯的质量分数为0.3%。
电解液的余量为有机溶剂,有机溶剂为质量比为3:4:3的碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)。
本实施例还提供了一种锂离子电池及其制备方法:
锂离子电池为磷酸铁锂方形铝壳电池,常温容量分布为160Ah,充放电电压范围2.5~3.65V,常温和高温均为1C倍率连续循环。
制备正极极片:LiFePO4:SP:CNT:PVDF=95.0:2.0:0.5:2.5。正极制胶,胶液固含量为1.327%。第一步加入LiFePO4、SP、NMP公转25±1r/min,分散500±50r/min,搅拌10min,然后公转25±1r/min,分散1000±50r/min,45℃搅拌90min;第二步加入导电剂CNT浆料,公转25±1r/min,分散1000±50r/min,真空度0.080KPa,45℃搅拌60min;第三步加入正极胶液,公转25±1r/min,分散2500±50r/min,真空度0.080KPa,45℃搅拌90min;第四步为调粘步骤,加入NMP,调整浆料粘度;第五步慢搅拌公转15±1r/min,分散500±50r/min,真空度0.080KPa,搅拌0.5h降温,保证正极出料粘度20000±5000mPa·s,细度≤15μm,每一步及时刮动搅拌缸壁和搅拌杆上的沉积物料。过筛、涂布、冷压、分切制得正极极片。
制备负极极片:石墨:SP:CMC:SBR=95.5:1.5:1.2:1.8。负极制胶,胶液固含量为8%,第一步加入石墨、SP干混公转20±1r/min,分散1000±50r/min,搅拌1h;第二步加入50%负极浆液,公转20±1r/min,分散1000±50r/min,搅拌1.5h;第三步补加另外50%负极胶液,公转25±1r/min,分散2000±50r/min,真空度0.085KPa,搅拌1h;第四步为调粘步骤,加入去离子水,调整浆料粘度;第五步加入水系分散剂SBR,公转25±1r/min,分散800±50r/min,真空度0.085KPa,搅拌1h结束。保证负极出料粘度4000±1500mPa·s,细度≤20μm,每一步及时刮动搅拌缸壁和搅拌杆上的沉积物料。过筛、涂布、冷压、分切制得负极极片。
上述正极极片、负极极片和电解液组装得到锂离子电池。
实施例2
实施例2的其他操作均同实施例1,只是将实施例1的式2化合物替换成式3化合物。
实施例3
实施例3的其他操作均同实施例1,只是将实施例1的式2化合物替换成式4化合物。
实施例4
实施例4的其他操作均同实施例1,只是将实施例1的式2化合物替换成式5化合物。
实施例5
实施例5的其他操作均同实施例1,只是将有机溶剂替换为EC:EMC=3:7(质量比)。
实施例6
实施例6的其他操作均同实施例1,只是将锂盐的质量分数变成13%。
实施例7
实施例7的其他操作均同实施例1,只是将式2化合物的质量分数变更0.7%。
对比例1
对比例1的其他操作均同实施例1,只是不含有本申请式2化合物。
对比例2
对比例1的其他操作均同实施例1,只是将本申请式2的化合物替换成氟苯。
对比例3
对比例3的其他操作均同实施例1,只是将有机溶剂替换为EC:EMC:DMC=3:2:5,同时将添加剂更换为VC 1.5%+DTD 1.0%+LiPO2F20.5%+PS0.8%。
实施例1-7和对比例1-3的电解液组分和含量如下表1所示。
表1

对上述实施例1-7和对比例1-3制备的锂离子电池进行电解液浸润性的测试,测试结果如表2所示。
其中,电解液浸润性的测试方法如下:
1.沿极片纵向方向用切片机切宽15mm,长115mm的长条(共3组);
2.取GT和TC电解液,分别将冷压后的正负极极片(先测正极)等高浸入电解液中;
3.在软包线注液房的环境下进行测试,记录10min内电解液的爬坡高度,记录三组电解液的爬坡高度的平均值。
表2
通过上述表格可知:实施例1-4采用不同结构的如式1所示的化合物,电 解液对正极片和负极片均有良好的浸润性能。实施例5将有机溶剂的配比改变后,电解液对正极片和负极片的浸润性能变差,因此,电解液的最佳有机溶剂配比为EC:EMC:DMC=3:4:3。实施例6中锂盐添加量过多,电解液的浸润性能明显下降。实施例7中式2化合物的含量过多,电解液的浸润性能下降。
对比例1中未添加如式1所示的化合物,对比例2中将式1所示的化合物替换为氟苯,以及对比例3中将式1所示的化合物替换为PS,将有机溶剂的配修改为EC:EMC:DMC=3:2:5,可以观察到对比例1-3的电解液浸润性能均发生显著的下降。

Claims (20)

  1. 一种电解液,所述电解液包括如式1所示的化合物,
    其中,R1选自C1-C6全取代或部分取代的氟代烷基中的任意一种,R2和R3分别独立地选自氢原子、烷烃、苯基、烷基苯或甲氧基硅烷基中的任意一种。
  2. 根据权利要求1所述的电解液,其中,所述电解液包括如式2-式5所示化合物中的任意一种,
  3. 根据权利要求1或2所述的电解液,其中,在所述电解液中,所述式1所述的化合物的质量分数为0.1~0.5%。
  4. 根据权利要求3所述的电解液,其中,在所述电解液中,所述式1所述的化合物的质量分数为0.1~0.3%。
  5. 根据权利要求1-4任一项所述的电解液,其中,所述电解液还包括添加剂;
    所述添加剂包括碳酸亚乙烯酯、三(三甲基硅基)亚磷酸酯和硫酸乙烯酯。
  6. 根据权利要求5所述的电解液,其中,在所述电解液中,所述碳酸亚乙烯酯的质量分数为0.3~3.5%。
  7. 根据权利要求5所述的电解液,其中,在所述电解液中,所述三(三甲基硅基)亚磷酸酯的质量分数为0.3~3.5%。
  8. 根据权利要求5所述的电解液,其中,在所述电解液中,所述硫酸乙烯酯的质量分数为0.3~3.5%。
  9. 根据权利要求1-8任一项所述的电解液,其中,所述电解液还包括锂盐;
    所述锂盐包括LiPF6、LiClO4、LiBF4、LiPO2F2、LiODFB、LiTFSI或LiFSI中的任意一种或至少两种的组合。
  10. 根据权利要求9所述的电解液,其中,所述锂盐为LiPF6
  11. 根据权利要求9所述的电解液,其中,在所述电解液中,所述锂盐的质量分数为8~12%。
  12. 根据权利要求1-11任一项所述的电解液,其中,所述电解液还包括有机溶剂,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、亚硫酸丙烯酯、乙酸乙酯、亚硫酸二乙酯或1,3-丙烷磺酸内酯中的至少两种。
  13. 根据权利要求12所述的电解液,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯中的至少两种。
  14. 根据权利要求13所述的电解液,在所述电解液中,所述碳酸乙烯酯的质量分数为20~30%。
  15. 根据权利要求13所述的电解液,在所述电解液中,所述碳酸甲乙酯的质量分数为30~40%。
  16. 根据权利要求13所述的电解液,在所述电解液中,所述碳酸二甲酯的质量分数为30~50%。
  17. 一种锂离子电池,其中,所述锂离子电池包括正极片、负极片、隔膜和如权利要求1-16任一项所述的电解液。
  18. 根据权利要求17所述的锂离子电池,其中,所述正极片包括正极集流体和位于所述正极集流体上的正极材料;
    所述正极材料包括正极活性物质,所述正极活性物质包括磷酸铁锂。
  19. 根据权利要求17或18所述的锂离子电池,其中,所述负极片包括负极集流体和位于所述负极集流体上的负极材料。
  20. 根据权利要求19所述的锂离子电池所述负极材料包括负极活性物质,所述负极活性物质包括石墨。
PCT/CN2023/090734 2022-11-25 2023-04-26 一种电解液和锂离子电池 WO2024108896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211493181.7 2022-11-25
CN202211493181.7A CN115882067B (zh) 2022-11-25 2022-11-25 一种电解液和锂离子电池

Publications (1)

Publication Number Publication Date
WO2024108896A1 true WO2024108896A1 (zh) 2024-05-30

Family

ID=85764064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090734 WO2024108896A1 (zh) 2022-11-25 2023-04-26 一种电解液和锂离子电池

Country Status (3)

Country Link
US (1) US20230411691A1 (zh)
CN (1) CN115882067B (zh)
WO (1) WO2024108896A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882067B (zh) * 2022-11-25 2024-06-11 湖北亿纬动力有限公司 一种电解液和锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110290A1 (ja) * 2009-03-26 2010-09-30 ダイキン工業株式会社 リチウム二次電池用非水電解液
CN104282940A (zh) * 2013-07-08 2015-01-14 三星Sdi株式会社 用于锂二次电池的电解质和包含所述电解质的锂二次电池
CN108123175A (zh) * 2016-11-29 2018-06-05 微宏动力系统(湖州)有限公司 用于锂二次电池电解液的酰胺化合物的合成方法、酰胺化合物及非水电解液
JP2019175774A (ja) * 2018-03-29 2019-10-10 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019185979A (ja) * 2018-04-06 2019-10-24 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
CN115882067A (zh) * 2022-11-25 2023-03-31 湖北亿纬动力有限公司 一种电解液和锂离子电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207111B2 (ja) * 2002-05-30 2009-01-14 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
JP2013105549A (ja) * 2011-11-11 2013-05-30 Kuraray Co Ltd 電池用電極及びそれを用いたリチウムイオン二次電池
JP2015191807A (ja) * 2014-03-28 2015-11-02 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
KR102411931B1 (ko) * 2015-02-06 2022-06-22 삼성에스디아이 주식회사 리튬 이차 전지
WO2016140342A1 (ja) * 2015-03-05 2016-09-09 日本電気株式会社 二次電池
CN109286041B (zh) * 2017-07-19 2020-12-11 宁德时代新能源科技股份有限公司 电解液及二次锂电池
EP4012814A4 (en) * 2019-08-08 2022-10-05 Mitsubishi Chemical Corporation NON-AQUEOUS ELECTROLYTIC SOLUTION AND NON-AQUEOUS ELECTROLYTIC SOLUTION BATTERY
CN111710911B (zh) * 2020-07-04 2021-07-16 湖南大学 一种电解液及锂离子电池
WO2022127796A1 (zh) * 2020-12-16 2022-06-23 华为技术有限公司 电池电解液、二次电池和终端
CN113488696B (zh) * 2021-06-04 2022-08-02 天津市捷威动力工业有限公司 一种圆柱锂离子电池高浸润性电解液
CN114156526A (zh) * 2021-12-02 2022-03-08 浙江大学 一种用于锂电池的高电压电解液
CN114400381A (zh) * 2022-02-23 2022-04-26 合肥国轩高科动力能源有限公司 一种电解液添加剂、含该添加剂的电解液和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110290A1 (ja) * 2009-03-26 2010-09-30 ダイキン工業株式会社 リチウム二次電池用非水電解液
CN104282940A (zh) * 2013-07-08 2015-01-14 三星Sdi株式会社 用于锂二次电池的电解质和包含所述电解质的锂二次电池
CN108123175A (zh) * 2016-11-29 2018-06-05 微宏动力系统(湖州)有限公司 用于锂二次电池电解液的酰胺化合物的合成方法、酰胺化合物及非水电解液
JP2019175774A (ja) * 2018-03-29 2019-10-10 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019185979A (ja) * 2018-04-06 2019-10-24 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
CN115882067A (zh) * 2022-11-25 2023-03-31 湖北亿纬动力有限公司 一种电解液和锂离子电池

Also Published As

Publication number Publication date
US20230411691A1 (en) 2023-12-21
CN115882067B (zh) 2024-06-11
CN115882067A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023040082A1 (zh) 一种锂离子电池非水电解液及其应用
WO2021031956A1 (zh) 二次电池及其相关的电池模块、电池包和装置
CN109728340B (zh) 锂离子电池
CN110085906B (zh) 非水电解液、含有该非水电解液的锂离子电池
WO2023142693A1 (zh) 一种锂离子电池
CN109687026B (zh) 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
CN113067033B (zh) 电化学装置及电子装置
CN110718715A (zh) 一种电池电解液添加剂、电池电解液和锂离子电池
CN112635832A (zh) 一种锂离子电池电解液及其锂离子电池
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
US20220158243A1 (en) Electrolytic solution, and preparation method thereof and application thereof
CN112018442B (zh) 一种锂离子电池电解液及锂离子电池
WO2024108896A1 (zh) 一种电解液和锂离子电池
WO2023070770A1 (zh) 一种正极极片及包含其的锂离子二次电池
CN113130990A (zh) 一种电解液及使用该电解液的二次电池
CN114094183A (zh) 电解液及其应用
CN114069047A (zh) 一种耐高压锂二次电池电解液、锂二次电池
WO2024093659A1 (zh) 高电压非水电解液及锂离子二次电池
WO2023109259A1 (zh) 电解液添加剂、电解液以及包含其的锂离子二次电池
CN117039155A (zh) 一种改善浸润的锂离子电池电解液及锂离子电池
CN111900474A (zh) 用于天然石墨负极锂离子电池的电解液
CN111384438A (zh) 一种锂离子电池非水电解液及锂离子电池
CN111916828B (zh) 一种锂硫电池电解液及其应用
WO2021023265A1 (zh) 一种电解液及其制备方法和锂离子电池
CN113067031A (zh) 电解液、电化学装置及电子装置