WO2024106916A1 - 발효를 통해 생산된 컴파운드 k의 효율적인 정제방법 - Google Patents

발효를 통해 생산된 컴파운드 k의 효율적인 정제방법 Download PDF

Info

Publication number
WO2024106916A1
WO2024106916A1 PCT/KR2023/018289 KR2023018289W WO2024106916A1 WO 2024106916 A1 WO2024106916 A1 WO 2024106916A1 KR 2023018289 W KR2023018289 W KR 2023018289W WO 2024106916 A1 WO2024106916 A1 WO 2024106916A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
purification
liquid chromatography
paragraph
purification method
Prior art date
Application number
PCT/KR2023/018289
Other languages
English (en)
French (fr)
Inventor
백종인
김선창
전병민
김상용
Original Assignee
주식회사 메디카코리아
재단법인 지능형 바이오 시스템 설계 및 합성 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디카코리아, 재단법인 지능형 바이오 시스템 설계 및 합성 연구단 filed Critical 주식회사 메디카코리아
Publication of WO2024106916A1 publication Critical patent/WO2024106916A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention relates to a method for purifying Compound K.
  • Ginseng (Panax ginseng) has been traditionally used as an herb in oriental medicine in Korea, China, and Japan, and its main active ingredient is ginsenoside, a triterpene saponin. Ginsenosides are broadly classified into protopanaxadiols (PPD) and protopanaxatriols (PPT), and more specifically, steroidal sapogenin and Based on the number of sugar chains and linkages, they are classified into major and minor ginsenosides. Ginsenosides have been reported to have anti-cancer and anti-inflammatory effects as well as effects on Alzheimer's disease and diabetes.
  • PPD protopanaxadiols
  • PPT protopanaxatriols
  • compound K (20-O- ⁇ -(D-glucopyranosyl)-20(S)-protopanaxadiol) has attracted attention because of its special biological properties.
  • Compound K is one of the initial metabolites obtained by intestinal enzymes after oral administration of PPD-type ginsenosides, and has various pharmacological properties such as inducing apoptosis and inhibiting proliferation of human colon cancer cells and human hepatoblastoma HepG2 cells. It was reported to have .
  • Compound K inhibits pro-inflammatory cytokines in macrophages activated with lipopolysaccharide (LPS).
  • LPS lipopolysaccharide
  • Registration No. 10-0418604 B1 discloses a method of producing Compound K by adding and reacting enzymes such as naringinase and pectinase from ginseng saponin.
  • Compound K in natural products mainly exists in a low content of less than 0.01% and is mixed with various ginsenosides, making it difficult to purify and mass produce.
  • the problem to be solved by this application is to provide a method for purifying Compound K.
  • One object of the present application is a method for purifying Compound K from a microbial fermentation broth, comprising: (a) culturing a microorganism expressing Compound K to obtain a microbial fermentation broth (S100); (b) a first purification step (S200) of filtering the microbial fermentation broth with activated carbon; (c) a second purification step (S300) of purifying the filtrate obtained in the first purification step by isocratic high performance liquid chromatography; and (d) a third purification step (S400) of purifying the eluate obtained in the second purification step by recycling preparative liquid chromatography (Recycling Preparative HPLC). .
  • the purification method according to the present invention provides the major effect of purifying Compound K with high yield and high purity from microbial fermentation broth through a combination of activated carbon filtration and a series of chromatography. Since the purification method according to the present invention can be effectively applied to separate and purify Compound K from microbial fermentation broth expressing Compound K, higher productivity can be expected when applied industrially compared to conventional purification methods.
  • the purification method according to the present invention purifies Compound K with a high purity of 99% or more in high yield through a combination of activated carbon filtration and a series of chromatography even when the volume of the culture medium is scaled up to 100 L or more. can do.
  • 1 is a flowchart showing the process of the Compound K purification method of the present invention.
  • FIG. 2 is a schematic diagram showing the overall process of the Compound K purification method of the present invention, according to one embodiment.
  • Figure 3 is a schematic diagram showing a schematic process of the first purification step of filtering activated carbon microbial fermentation broth according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a schematic process of the second purification step of purifying the filtrate obtained in the first purification step by isocratic high-performance liquid chromatography, according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the results of quantitative analysis through HPLC of Compound K contained in the supernatant of the microbial fermentation broth obtained in Example 2.
  • Figure 6 is a diagram showing the normalized absorption spectrum as a result of microplate reader analysis of the supernatant before the first purification step and the supernatant after the first purification step.
  • Figure 7 shows the results of HPLC on a microbial fermentation broth containing Compound K at different ethanol solvent concentrations.
  • Figure 8 shows the TLC development results of the fraction obtained after performing the second purification step.
  • Figure 9 is a diagram showing the circular preparative liquid chromatography profile of the third purification step.
  • Figure 10 is a diagram showing the results of quantitative analysis through HPLC of Compound K obtained in Example 6 of the present invention.
  • Figure 11 is a schematic diagram showing the overall process of the Compound K mass purification method of the present invention, according to one embodiment.
  • the present inventors tried to develop a new purification method that can obtain high purity and high yield of Compound K from microbial fermentation broth containing Compound K. As a result, by effectively arranging the purification process sequence, the yield was improved and the removal ability of impurities was maximized. The present invention was completed by confirming that operational efficiency can be increased.
  • One aspect of the present application provides a method for purifying Compound K.
  • the method includes (a) culturing a microorganism expressing compound K to obtain a microbial fermentation broth (S100); (b) a first purification step (S200) of filtering the microbial fermentation broth with activated carbon; (c) a second purification step (S300) of purifying the filtrate obtained in the first purification step by isocratic high performance liquid chromatography; and (d) a third purification step (S400) of purifying the eluate obtained in the second purification step by recycling preparative liquid chromatography (Recycling Preparative HPLC).
  • the present inventors completed the present invention by confirming that the yield of Compound K purification can be significantly increased by effectively arranging the specific order of the purification process, including activated carbon filtration and a series of chromatography steps.
  • the purification method of the present invention may be one in which steps (b) to (d) are performed only once and the same or different chromatography is not performed additionally, but is not limited thereto.
  • the purification method of the present invention can be said to be significant in that it can improve purification yield by removing impurities in Compound K even if steps (b) to (d) are performed only once.
  • the term "compound K” is also called ginsenoside compound K, and does not exist in ginseng itself, but ginsenosides Rb1, Rb2, Rc, and Rd present in ginseng or red ginseng.
  • Saponins such as saponins, are converted into a form that can be absorbed in the body by the action of intestinal microorganisms such as Bifidobacterium or soil microorganisms, and are represented by the following formula (1).
  • the present invention improved the yield of Compound K purification from microbial fermentation broth by effectively arranging the purification process sequence, and maximized impurity removal through optimization of the process steps to simplify the number of purification processes and increase the efficiency of process operation.
  • Figure 1 is a flow chart showing the work steps according to an embodiment of the present invention
  • Figure 2 is a schematic diagram showing the overall process of the compound K purification method according to an embodiment of the present invention.
  • first step (a) (S100) is a step of culturing microorganisms expressing Compound K to obtain a microbial fermentation broth.
  • Compound K produced through fermentation in the above microorganisms is mostly secreted into the supernatant of the microbial fermentation broth.
  • the microorganism used in step (a) may be any recombinant microorganism transformed to express Compound K without limitation.
  • the recombinant microorganism may include, but is not limited to, a Saccharomyces cerevisiae strain in which a compound K production pathway has been established through transformation.
  • a representative example of the recombinant microorganism is the activity of the PgDS, PgPPDS, PgPPDS PgUGT71 , tHMG1 and ERG1 genes disclosed in the present inventors' prior patent No. 10-2022-0093190, It may be, but is not limited to, a Saccharomyces cerevisiae strain in which the expression level of the ERG7 gene is suppressed and the Compound K production pathway is established.
  • culture refers to a method of growing microorganisms under appropriately artificially controlled environmental conditions.
  • the method of culturing the microorganism expressing Compound K can be performed using methods widely known in the art.
  • the culture is not particularly limited as long as it can be produced by expressing Compound K of the present invention, but can be continuously cultured in a batch process or fed batch or repeated fed batch process. .
  • the medium used for culture must meet the requirements of a specific strain in an appropriate manner while controlling temperature, pH, etc. under aerobic conditions in a normal medium containing appropriate carbon sources, nitrogen sources, amino acids, vitamins, etc.
  • Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, as well as sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch, cellulose, soybean oil, sunflower oil, castor oil, and coconut. It includes oils and fats such as oil, fatty acids such as palmitic acid, stearic acid, and linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These substances can be used individually or in mixtures.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, and glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used. You can. These nitrogen sources can be used alone or in combination.
  • the medium may include, as ingredients, monopotassium phosphate, dipotassium phosphate and the corresponding sodium-containing salts.
  • Agents that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. Additionally, inorganic compounds such as sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate can be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins may be used.
  • precursors appropriate for the culture medium may be used.
  • the above-mentioned raw materials may be added to the culture in an appropriate manner in a batch, fed-batch, or continuous manner during the cultivation process, but are not particularly limited thereto.
  • the pH of the culture can be adjusted by using basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid in an appropriate manner.
  • step (b) (S200) is the first purification step of filtering the microbial fermentation broth with activated carbon.
  • step (b) (S200) the step of centrifuging the supernatant containing the cells and Compound K using a centrifuge before passing through activated carbon may be further included, but is not limited thereto.
  • the centrifugation may be performed at a speed of 8000 to 20000 rpm, preferably at a speed of 10000 to 16000 rpm, and more preferably at a speed of 12000 to 14000 rpm.
  • the centrifugation may be performed for 4 to 20 minutes, preferably 7 to 12 minutes.
  • activated carbon in the present invention refers to an aggregate of amorphous carbon with a large internal surface area and strong adsorption power made by activating carbon material or carbon-containing material.
  • Activated carbon is a material with strong adsorption properties and most of its components are carbonaceous. It is used as an adsorbent to absorb gas or moisture, or as a decolorizing agent. It is manufactured by treating wood or lignite with chemicals such as zinc chloride and drying it.
  • the first purification step of filtering the microbial fermentation broth of the present invention with activated carbon is a step of removing and filtering impurities other than Compound K in the microbial fermentation broth by adsorbing them onto the activated carbon.
  • the activated carbon filtration process impurities such as large-sized lipid metabolites and lipid medium components among by-products of microbial fermentation can be effectively removed.
  • filtration was performed using substitutes such as white soil and activated carbon powder in addition to activated carbon, but the filtering efficiency was not good, so including the activated carbon filtration step was used to remove metabolites and media components prior to purification using a chromatograph. It was confirmed to be most suitable for purification.
  • the activated carbon filtration in step (b) (S200) of the present invention is not limited to this as long as it uses an activated carbon filtration device commonly used in the art.
  • the activated carbon filtration in step (b) (S200) may be performed at a flow rate of 0.7 to 1.3 L/min, and more specifically, at a flow rate of 0.8 to 1.2 L/min. It may be performed at a rate).
  • activated carbon filtration is performed at a flow rate in the above range, impurity filtration can be performed efficiently while minimizing loss due to adsorption of compound K to the activated carbon filter.
  • step (c) (S300) is a second purification of the filtrate obtained in the first purification step by isocratic high performance liquid chromatography (isocratic HPLC). This is a purification step, and through this process, a large amount of impurities derived from host cells or media components are removed, thereby increasing the purification efficiency of Compound K.
  • high performance liquid chromatography refers to chromatography that enables high-speed and high-performance separation by improving the stationary phase filler and equipment filling the column.
  • HPLC high performance liquid chromatography
  • high-level separation is possible by making the filler into a sphere with fine and even particle size, so the resistance to flow increases and the solution to be separated is moved at high pressure. Therefore, it is called high pressure liquid chromatography, and because separation is fast, it is also called high speed liquid chromatography.
  • isocratic HPLC refers to an elution method that separates a mixture without changing the composition of the mobile phase in HPLC.
  • the isocratic HPLC in step (c) (S300) may use a Trilite GSH-20 or DIAION HP-20 column as a stationary phase, preferably a DIAION HP-20 column. You can use it.
  • the DIAION HP-20 is a high porous type synthetic adsorbent made of a copolymer of styrene and divinyl benzene (DVB).
  • DIAION HP-20 has a large number of pores distributed and has a high specific surface area, so it has excellent adsorption capacity.
  • DIAION HP-20 has a hydrophobic particle surface, so when organic substances are adsorbed on a synthetic adsorbent, hydrophobic groups in organic molecules are adsorbed.
  • the isocratic HPLC in step (c) may use methanol or ethanol as a mobile phase as a non-limiting example, and specifically, ethanol or an ethanol-water mixture may be used as a solvent. It may be used as . Solvents other than ethanol may elute other ginsenoside by-products with similar characteristics to Compound K, resulting in low purification efficiency.
  • the mobile phase may be an ethanol solvent at a concentration of 30 to 90% (w/w), and more specifically, the mobile phase may be an ethanol solvent at a concentration of 70 to 90% (w/w). Specifically, it may be an ethanol solvent at a concentration of 80 to 90% (w/w).
  • an ethanol solvent of a specific concentration is interpreted to have the same meaning as a mixed solvent of water and ethanol having the corresponding ethanol concentration.
  • the mobile phase was an ethanol solvent in the above concentration range, the elution of impurities could be minimized while the elution of Compound K could be maximized.
  • the isocratic HPLC in step (c) (S300) may be performed at a flow rate of 0.1 to 50 ml/min, and more specifically, at a flow rate of 30 to 50 ml/min ( It may be performed at a flow rate), but is not limited thereto.
  • the isocratic HPLC in step (c) (S300) may perform one or more of the sample injection step, equilibration step, washing step, and elution step.
  • step (c) (S300) may further include one or more of the steps of filtering and evaporating the eluate after performing isocratic HPLC.
  • step (c) (S300), host cell-derived peptides or media components of the culture medium pass through the column as is or are removed during the washing process, thereby effectively removing a large amount of impurities.
  • step (d) (S400) is a third purification step of purifying the eluate obtained in the second purification step by recycling preparative HPLC, which is the previous step. This is a step to further increase purity by further removing impurities contained in the eluate from the second purification step through recycling.
  • Recycling Preparative HPLC in the present invention refers to HPLC in which unseparated samples are separated through the principle of recycling them to the column.
  • the number of cycles can be increased infinitely.
  • the resolution of the sample increases, it can be applied to samples that are very difficult to separate. Additionally, there is an economic advantage because no solvent is consumed in this process.
  • the circulating preparative liquid chromatography may be performed by recycling the eluate obtained in the second purification step two or more times, but as the cycle is repeated, impurities are removed. If the difference in retention time between and makes it possible to purely collect only Compound K, the upper limit of the number of repetitions is not particularly limited.
  • fractionation may be performed in the last cycle.
  • the circulating preparative liquid chromatography in step (d) may use a silica or octadecylsilane (ODS) column as a stationary phase, preferably octadecylsilane. (ODS) column can be used.
  • ODS octadecylsilane
  • acetonitrile or acetonitrile-water mixture may be used as a mobile phase in the circulating preparative liquid chromatography in step (d) (S400).
  • the mobile phase may be an acetonitrile solvent at a concentration of 30 to 90% (w/w), and more specifically, it may be an acetonitrile solvent at a concentration of 70 to 80% (w/w).
  • the acetonitrile solvent of a specific concentration is interpreted to have the same meaning as the mixed solvent of water and acetonitrile having the corresponding acetonitrile concentration.
  • the mobile phase is an acetonitrile solvent in the above concentration range, the purification yield and purity of Compound K in circulating preparative liquid chromatography can be significantly increased.
  • the circulating preparative liquid chromatography in step (d) (S400) may be performed at a flow rate of 0.1 to 50 ml/min, and more specifically, 10 to 15 ml/min. It may be performed at a flow rate, but is not limited thereto.
  • the circulating preparative liquid chromatography in step (d) (S400) may perform one or more of the sample injection step, equilibration step, washing step, and elution step.
  • step (d) Through the circulation process in step (d) (S400), impurities remaining in the eluate of step (c) (S300) are removed, and high purity Compound K can be finally obtained.
  • Compound K purification method of the present invention more than 99% of Compound K is purified from microbial fermentation broth, and the Compound K purification efficiency may be significantly improved.
  • the method for purifying Compound K of the present invention may further include, but is not limited to, the step of (e) quantitatively analyzing Compound K obtained in step (d) (S400).
  • the quantitative analysis of Compound K may be performed by a conventional method in the art used for quantitative analysis of compounds, and may be performed using chromatography, more specifically, high performance liquid chromatography (HPLC). However, it is not limited to this.
  • HPLC high performance liquid chromatography
  • Another feature of the method according to the present invention is that it can purify Compound K with high yield and high purity from the bulk fermentation broth of Compound K-producing microorganisms.
  • Compound K is purified using the purification method according to the present invention, it is possible to obtain a large amount of Compound K of very high purity by overcoming the limitation of yield reduction due to excessive inclusion of impurities, which is a limitation of the purification of Compound K from microbial fermentation broth.
  • the method for mass purifying Compound K may further include the step of evaporating the solvent in the eluate obtained in the second purification step and pulverizing it. At this time, the pulverization can facilitate storage in the mass production process, and the pulverized eluate can be purified by circulating preparative liquid chromatography by mixing it with a solvent again in the third purification step.
  • Figure 11 is a schematic diagram showing the overall process of the Compound K mass purification method of the present invention, according to one embodiment.
  • the term "bulk fermentation broth” refers to a culture broth obtained by cultivating recombinant E. coli at a fermentation level in a medium of 50L or more, preferably 80L or more, more preferably 100L or more.
  • the conventional Compound K purification method had limitations in separating and purifying the target protein in high yield while maintaining high purity, and such limitations were further present under scale-up conditions.
  • the method according to the present invention can purify Compound K, which shows a high purity of 99% or more, with a high yield of 8% or more through a combination of activated carbon filtration and a series of chromatography, even if the volume of the culture medium is scaled up to 100 L or more. You can. Therefore, the method according to the present invention can be effectively applied to separate and purify Compound K from the mass culture of Compound K-producing microorganisms, and thus higher productivity can be expected when applied industrially compared to conventional purification methods.
  • compositions and food compositions containing Compound K purified according to the purification method of the present invention are also included within the scope of the present invention.
  • the preparation of the pharmaceutical composition and food composition can be carried out according to what is well known to those skilled in the art.
  • Example 1 Compound K production strain and plasmid production
  • a CK production strain and plasmid were prepared according to published literature (International Journal of Molecular Sciences ⁇ CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae ⁇ (2021.10.31)). The specific method is as follows.
  • Saccharomyces cerevisiae strain CEN.PK2-1D was transformed using Alkali-Cation Yeast Transformation Kit (MP, USA) according to the manufacturer's protocol.
  • the PPD-A1 strain was constructed by integrating the PgDS, PgPPDS, and PgCPR genes downstream of TEF2, upstream of GLK1, and upstream of RPS17B, respectively, in the CEN.PK2-1D strain.
  • the GPDpro-PgDS-CYC1ter cassette with a partially homologous recombination region of the TEF2 region was amplified from the PgDS-bearing pRS426GPD vector using the primer set TEF2-Integ-F/TEF2-Ineg-R.
  • the integration cassette containing plasmid Cas9-NAT and pRS42K-sgRNA(TEF2) was co-transformed into strain CEN.PK2-1D and then selected on YPD/ClonNAT/G418 plates. Strains were confirmed by diagnostic PCR, and colonies containing the desired plasmid and integration cassette were cultured in YPD/ClonNAT medium for 24 h at 30°C to remove pRS42KsgRNA(TEF2), resulting in strain CEN.PK2-1D-PgDS-Cas9-NAT. was created.
  • the GPDpro-PgPPDS-CYC1ter cassette with a partially homologous recombination region of the GLK1 site was amplified from the PgPPDS-bearing pRS426GPD vector using the primer set GLK1-Integ-F/GLK1-Integ-R.
  • This integration cassette containing the plasmid and pRS42H-sgRNA (GLK1) was co-transformed into strain CEN.PK2-1D-Cas9-NAT-PgDS and then selected on YPD/ClonNAT/Hygromycin B plates.
  • This integration cassette containing plasmid pRS42K-sgRNA was co-transformed into strain CEN.PK2-1D-Cas9-NAT-PgDS-PgPPDS and then selected on YPD/ClonNAT/G418 plates.
  • the strain was confirmed by diagnostic PCR, and colonies containing the desired plasmid and integration cassette were cultured in YPD medium at 30°C for 24 h to remove Cas9-NAT and pRS42K-sgRNA (RPS17B), generating the PPD-A1 strain.
  • Strain PPD-A2 was constructed by integrating the tHMG1 gene downstream of the TCB2 site of PPD-A1.
  • the [GPDpro-tHMG1-CYC1ter]-URA3 cassette with the partially homologous recombination region of the TCB2 site was amplified from the tHMG1-carrying pRS426GPD vector using the primer set TCB2-Integ-F/TCB2-Integ-R.
  • This integration cassette was transformed into strain PPD-A2 and then selected on SD/-URA plates. Strains were confirmed by diagnostic PCR, and colonies containing the integration cassette were cultured in SD/-URA medium at 30°C to generate strain PPD-A2.
  • Strain PPD-A3 was constructed by integrating the ERG1m gene into the trp1-289 site of PPD-A2.
  • the [TEF1pro-ERG1m-CYC1ter]-TRP1 cassette containing the partially homologous recombination region of the TRP1 gene was amplified from the ERG1m-bearing pRS424TEF1 vector using the primer set TRP1-Integ-F/TRP1-Integ-R.
  • the integration cassette was transformed into strain PPD-A2 and then selected on SD/-URA/-TRP plates. The strain was confirmed by diagnostic PCR, and colonies containing the integration cassette were cultured in SD/-URA/-TRP medium at 30°C to produce strain PPD-A3.
  • Strain PPD-A3-sgRNA1-5 was constructed by integrating dCas9 and ERG7 promoter targeting sgRNA genes upstream of the ISR1 region of PPD-A3.
  • the dCas9-[SNR52pro-sgRNA-SUP4ter]-LEU2 cassette with the partially homologous recombination region of the ISR1 region was amplified from pTDH3-dCas9-Mxi1-sgRNA1-5 using the primer set ISR1- Integ-F/ISR1-Integ.
  • Each integration cassette was transformed into PPD-A3 and then selected on SD/-URA/-TRP/-LEU plates.
  • the strain was confirmed by diagnostic PCR, and colonies containing the integration cassette were cultured in SD/-URA/-TRP/-LEU medium at 30°C to generate strain PPD-A3-sgRNA1-5.
  • the [GPDpro-UGT71(H144N)-CYC1ter]-HIS3 cassette containing the partially homologous recombination region of the HIS3 gene was amplified from the UGT71(H144N)-bearing pRS426GPD vector using the primer set HIS3-Integ-F/HIS3-Integ-R. .
  • the integration cassette was transformed into strain PPD-A3 and then selected on SD/-URA/-TRP/-HIS plates.
  • strain CK-sgRNA1-5 was constructed by integrating dCas9 and ERG7 promoter targeting sgRNA genes upstream of the ISR1 site of Compound K.
  • the dCas9-[SNR52pro-sgRNA-SUP4ter]-LEU2 cassette with the partially homologous recombination region of the ISR1 region was amplified from pTDH3-dCas9-Mxi1-sgRNA1-5 using the primer set ISR1- Integ-F/ISR1-Integ.
  • Each integration cassette was transformed with Compound K and then selected on SD/-URA/-TRP/-LEU/-HIS plates.
  • the strain was confirmed by diagnostic PCR, and colonies containing the integration cassette were cultured in SD/-URA/-TRP/-LEU/-HIS medium at 30°C to generate strain CK-sgRNA1-5.
  • Compound K producing strains were prepared through the above process.
  • the yeast strain obtained in Example 1 was cultured using YPD medium for shake-flask fermentation.
  • 1 mL of stock cells in 25% glycerol were inoculated into a 250 mL baffled flask (Tri-Forest, USA) containing 29 mL of YPD medium and grown to an optical density of approximately 6.0 at 600 nm (OD600) while shaking at 220 rpm (Thermo Scientific, USA) and cultured at 26°C until Then, 1 mL of seed culture was inoculated into a 250 mL baffled flask containing 29 mL of YPD medium and cultured for 48 hours at 26°C with shaking at 220 rpm. Flask fermentation results were presented as mean standard deviation based on biological triplicates.
  • the strains PPD-A3 and PPD-A3-sgRNA4 were used for PPD production through fed-batch fermentation in a 5L bioreactor (CNS, Korea) with an initial working volume of 2L YPD medium. Seed culture was prepared in two steps. First, 1 mL of stock cells in 25% glycerol were inoculated into a 250 mL baffled flask containing 29 mL of YPD medium, then cultured at 26 °C and shaken at 220 rpm so that the OD600 was approximately 6.0.
  • glucose 500g/L, KH2PO4 18.7g/L, K2SO4 6.5g/L, Na2SO4 0.53g/L, MgSO4 ⁇ 7H2O 9.75g/L, histidine 10g/L, 10 g/L leucine, 10mL /L trace metal solution (Jung et al., 2014) and 12 mL/L vitamin solution (Jung et al., 2014) were added and dissolved in the bioreactor, and the oxygen concentration increased to more than 50%.
  • the glucose concentration in the bioreactor was maintained below 10 g/L.
  • the fermented Compound K-producing yeast broth was centrifuged at 13,000 rpm for 10 minutes (CR 21GIII HITACHI).
  • the supernatant containing Compound K obtained by centrifugation was purified using an activated carbon filtration system (Quality by Design Inc., Korea). The conditions for activated carbon filtration are as follows.
  • Example 4-1 Solvent screening in isocratic HPLC
  • the present inventors Prior to secondary purification, the present inventors first attempted to screen the concentration of the solvent with the highest purification efficiency when using an HP20 column in isocratic HPLC.
  • the microbial fermentation broth obtained in Example 2 was subjected to isocratic HPLC using an HP 20 column with an ethanol concentration varying in the range of 10-100%, without first purification, to find the optimal concentration.
  • Example 3 the activated carbon-filtered supernatant purified first in Example 3 was placed in Biotage Sfar filled with 300 g of HP-20 resin (styrene-divinylbenzene, 250-850 ⁇ m, 260 ⁇ average pore size, Mitsubishi Chemical, Japan). It was purified by isocratic concentration elution using ethanol using a chromatography cartridge (Biotage, Sweden).
  • HP-20 resin styrene-divinylbenzene, 250-850 ⁇ m, 260 ⁇ average pore size, Mitsubishi Chemical, Japan. It was purified by isocratic concentration elution using ethanol using a chromatography cartridge (Biotage, Sweden).
  • the purification conditions for HPLC were as follows.
  • S1 and S2 represent standard solution 1 (Standard1) and standard solution 2 (Strandard2), respectively, T represents the supernatant (Total yeat broth) as a control, FT represents the Flow Trough passed through the HP-20 column, and W represents the flow trough passed through the HP-20 column.
  • the samples were washed with water after adsorption of the supernatant onto an HP-20 column, and 1-8 represent fractions #1 to #8 eluting with 58% ethanol, respectively.
  • Compound K was eluted from a total of 6 fractions #2 to #7 and fractionated. It can be confirmed that the same band as the Compound K standard is observed in all six fractions.
  • RP-HPLC JAL NEXT Recycling Preparative HPLC LC-9210II NEXT, Japan Analytical Industry Co, Japan.
  • RP-HPLC was performed using a pre-packed column (JAIGEL-ODS-AP-L, 10 ⁇ m, 20 mm i.d. ⁇ 500 mm) purchased from Japan Analytical Industry Co. (Japan).
  • the mobile phase was 75% acetonitrile, and the flow rate was 7.0 mL/min.
  • the evaporated compound K was dissolved in 75% acetonitrile to achieve a final concentration of 40 mg/mL, and 10 mL of the solution was loaded for purification.
  • the purification conditions for circulating preparative liquid chromatography were as follows.
  • Example 5 The eluate obtained in Example 5 was analyzed using HPLC (Agilent 1260 Infinity HPLC system (Agilent Co., Santa Clara, CA, USA). Compound K was analyzed using a guard column (Eclipse Separation was performed on a YMC ODS C18 column (5 ⁇ m, 250 ⁇ 4.6 mm, YMC, Kyoto, Japan) with water (A) and acetonitrile (B).
  • the following gradient program was used: 0 ⁇ 10 min, 20% B; 10 ⁇ 40 min, 40 ⁇ 48 min, 32 ⁇ 42% B; ⁇ 83 min, 45 ⁇ 75% B; 85 ⁇ 95 min, 100% B; 95 ⁇ 95.01 min, 100 ⁇ 95.01 ⁇ 100% B;
  • the detection wavelength was set to 203 nm, and the flow rate of the diode array detector (DAD) was 1.6 mL/min.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 미생물 발효액으로부터 컴파운드 K를 정제하는 방법으로서, (a) 컴파운드 K를 발현하는 미생물을 배양하여 미생물 발효액을 수득하는 단계; (b) 미생물 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계; (c) 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피(isocratic high performance liquid chromatography)로 정제하는 제2차 정제단계; 및 (d) 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피(Recycling Preparative HPLC)로 정제하는 제3차 정제단계를 포함하는, 컴파운드 K를 정제하는 방법에 관한 것이다.

Description

발효를 통해 생산된 컴파운드 K의 효율적인 정제방법
본 발명은 컴파운드 K를 정제하는 방법에 관한 것이다.
인삼(Panax ginseng)은 한국, 중국, 일본의 동양의학에서 전통적으로 약초로 사용되었으며, 인삼의 주요 활성 성분으로 트리테르펜 사포닌(triterpene saponins)인 진세노사이드(ginsenoside)가 있다. 진세노사이드는 넓게는 프로토파낙시디올(protopanaxadiols, PPD)과 프로토파낙사트리올(protopanaxatriols, PPT)로 분류되며, 더 구체적으로는 화합물의 다양한 생활성에 영향을 미치는 스테로이드 사포게닌(steroidal sapogenin) 및 당 사슬과 연결의 수를 기반으로 하여 메이저 및 마이너 진세노사이드로 분류된다. 진세노사이드는 항암 효과, 항염 효과뿐만 아니라, 알츠하이머, 당뇨에도 효과가 있는 것으로 보고되었다.
특히, 상기 진세노사이드 중에서도 컴파운드 K(compound K, 20-O-β-(D-glucopyranosyl)-20(S)-protopanaxadiol)는 특별한 생물학적 특성 때문에 주목 받았다. 컴파운드 K는 PPD 타입 진세노사이드의 경구투여 후 장내 효소에 의해 얻어지는 초기 대사물질의 하나이며, 인간 대장암 세포 및 인간간모세포종(hepatoblastoma) HepG2 세포의 세포사멸 유도와 증식의 억제 등 다양한 약물학적 특성을 가지는 것으로 보고되었다. 또한, 컴파운드 K는 지질다당류(lipopolysaccharide, LPS)로 활성화된 대식세포에서 염증유발 사이토카인을 억제한다.
이와 같이 컴파운드 K의 유용한 특성이 보고되었으며 그에 따라 수요가 증가되고 있으나, 종래 컴파운드 K를 합성하는 기술들을 천연물에서 직접적으로 컴파운드 K를 합성하여 수득하는 기술들이 대부분이었다. 예시적으로, 등록번호 제 10-0418604 B1호는 인삼 사포닌으로부터 나린지나제 및 펙티나제 등의 효소를 첨가하여 반응하여 컴파운드 K를 제조하는 방법을 개시하고 있다. 그러나 천연물 내 컴파운드 K는 주로 0.01% 미만의 낮은 함량으로 존재하며 다양한 진세노사이드와 혼재되어 있어 순수한 정제 및 대량 생산에 어려움이 존재하였다. 이에 반해, 미생물 발효를 통한 컴파운드 K 생산은 대사 조작을 통해 세포 생장 외 잉여의 탄소원 및 에너지원을 모두 컴파운드 K의 생합성으로 전환하여 효율적인 컴파운드 K의 생산이 가능하다. 그럼에도, 미생물 발효로부터의 컴파운드 K의 생산의 경우 부산물 등이 과량 발생하여 높은 수율로의 정제가 어려운 한계가 존재하였다.
본 출원의 해결하고자 하는 과제는 컴파운드 K를 정제하는 방법을 제공하는 것이다.
본 출원의 하나의 목적은 미생물 발효액으로부터 컴파운드 K를 정제하는 방법으로서, (a) 컴파운드 K를 발현하는 미생물을 배양하여 미생물 발효액을 수득하는 단계(S100); (b) 상기 미생물 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계(S200); (c)상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피(isocratic high performance liquid chromatography)로 정제하는 제2차 정제단계(S300); 및 (d)상기 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)로 정제하는 제3차 정제단계(S400)를 포함하는, 컴파운드 K를 정제하는 방법을 제공하는 것이다.
본 발명에 따른 정제방법은 활성탄 여과 및 일련의 크로마토그래피 조합을 통해 미생물 발효액으로부터 컴파운드 K를 고수율 및 고순도로 정제할 수 있다는 주요한 효과를 제공한다. 본 발명에 따른 정제방법은 컴파운드 K를 발현하는 미생물 발효액으로부터 컴파운드 K를 분리, 정제하는데 효과적으로 적용될 수 있으므로, 이의 산업적 응용 시 종래 정제방법에 비해 더 높은 생산성을 기대할 수 있다.
더 나아가, 본 발명에 따른 정제방법은 배양액의 부피를 100L 이상으로 스케일-업(scale-up)시키더라도 활성탄 여과 및 일련의 크로마토그래피 조합을 통해 99% 이상의 고순도를 나타내는 컴파운드 K를 높은 수율로 정제할 수 있다.
도 1은 본 발명의 컴파운드 K 정제방법의 과정을 나타내는 순서도이다.
도 2는 일 실시예에 따른, 본 발명의 컴파운드 K 정제방법의 전반적인 프로세스를 나타내는 모식도이다.
도 3은 본 발명의 일 실시예에 따른, 미생물 발효액을 활성탄 여과하는 제1차 정제단계의 개략적인 프로세스를 나타내는 모식도이다.
도 4는 본 발명의 일 실시예에 따른, 상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피로 정제하는 제2차 정제단계의 개략적인 프로세스를 나타내는 모식도이다.
도 5는 실시예 2에서 수득된 미생물 발효액의 상청액에 포함된 컴파운드 K의 HPLC를 통한 정량분석한 결과를 나타낸 도이다.
도 6은 제1차 정제 단계 수행 전의 상청액 및 제1차 정제 단계 수행 후 상청액의 마이크로플레이트 리더 분석 결과로서, 정규화된 흡수 스펙트럼을 나타낸 도이다.
도 7은 에탄올 용매 농도를 달리하여, 컴파운드 K를 포함하고 있는 미생물 발효액에 대해 HPLC를 실시한 결과를 나타낸 도이다.
도 8은 제2차 정제 단계 수행 후 수득된 분획물의 TLC 전개결과를 나타낸다.
도 9는 제3차 정제 단계의 순환 분취 액체 크로마토그래피 프로파일을 나타낸 도이다.
도 10은 본 발명의 실시예 6에서 수득된 컴파운드 K의 HPLC를 통한 정량분석 결과를 나타낸 도이다.
도 11은 일 실시예에 따른, 본 발명의 컴파운드 K 대량 정제방법의 전반적인 프로세스를 나타내는 모식도이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 출원이 속하는 기술 분야의 수준 및 본 출원의 내용이 보다 명확하게 설명된다.
본 발명자들은 컴파운드 K가 포함된 미생물 발효액으로부터 고순도, 고수율의 컴파운드 K를 얻을 수 있는 새로운 정제방법을 개발하고자 노력한 결과, 정제 공정 순서를 효과적으로 배열함으로써 수율을 향상시키고 불순물의 제거능을 최대화하는 동시에 공정 운용의 효율성을 증대시킬 수 있음을 확인함으로써, 본 발명을 완성하였다.
본 출원의 하나의 양태는 컴파운드 K(Compound K) 정제방법을 제공한다.
구체적으로, 상기 방법은 (a) 컴파운드 K를 발현하는 미생물을 배양하여 미생물 발효액을 수득하는 단계(S100); (b) 상기 미생물 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계(S200); (c) 상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피(isocratic high performance liquid chromatography)로 정제하는 제2차 정제단계(S300); 및 (d) 상기 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)로 정제하는 제3차 정제단계(S400)를 포함할 수 있다.
본 발명자들은 활성탄 여과 및 일련의 크로마토그래피 단계를 포함한, 정제 공정의 구체적인 순서를 효과적으로 배치함으로써 컴파운드 K 정제 수율을 현저히 증가시킬 수 있음을 확인하여, 본 발명을 완성하였다.
본 발명의 정제방법은 (b) 내지 (d) 단계를 1회만 수행하고 추가로 동일하거나 다른 크로마토그래피를 수행하지 않는 것일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 정제방법은 (b) 내지 (d) 단계를 1회만 수행하더라도 컴파운드 K의 불순물을 제거하여 정제 수율을 향상시킬 수 있다는 점에서 의의가 크다고 할 수 있다.
본 발명에서 용어 "컴파운드 K(compound K)"는 진세노사이드 화합물 K (ginsenoside compound K)라고도 명명되며, 인삼 자체에는 존재하지 않으나, 인삼 또는 홍삼에 존재하는 진세노사이드 Rb1, Rb2, Rc, Rd 등의 사포닌이 비피더스 균과 같은 장내 미생물 또는 토양미생물의 작용에 의하여 체내에서 흡수 가능한 형태로 전환된 사포닌으로 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2023018289-appb-img-000001
최근 상기 컴파운드 케이의 면역 증강 및 암세포 증식 억제 등의 우수한 효능들이 보고되어, 의약 및 식품 분야 등에 있어 대량 공급이 요구되는 추세이다. 그러나, 미생물로부터 생산된 컴파운드 K의 고순도 정제에 대한 연구는 많이 이루어지지 않아, 고효율의 컴파운드 K 대량 정제 시스템의 개발이 필요한 실정이다.
본 발명에서는 이를 위해, 정제 공정 순서를 효과적으로 배열하여 미생물 발효액으로부터의 컴파운드 K 정제 수율을 향상시키고, 공정 단계의 최적화를 통해 불순물 제거를 극대화함으로써 정제 공정 횟수를 간소화하고 공정 운용의 효율성을 증대하였다.
도 1은 본 발명의 일 실시예에 의한 작업단계를 나타낸 순서도이며, 도 2는 본 발명의 일 실시예에 따른 컴파운드 K 정제방법의 전반적인 프로세스를 나타내는 모식도이다.
이하, 상기 컴파운드 K의 정제방법의 각 단계에 대해 구체적으로 설명하면 다음과 같다.
상기 컴파운드 K의 정제방법에서, 먼저 (a) 단계(S100)는 컴파운드 K를 발현하는 미생물을 배양하여 미생물 발효액을 수득하는 단계이다. 상기 미생물에서 발효를 통해 생산된 컴파운드 K는 대부분 미생물 발효액 상의 상청액으로 분비된다.
상기 (a) 단계에 사용되는 미생물은 컴파운드 K를 발현하도록 형질전환된 재조합 미생물이라면 어느 것이나 제한 없이 사용될 수 있다. 일 예로, 상기 재조합 미생물은 형질전환을 통해 컴파운드 K 생산 경로가 구축된 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 균주를 들 수 있으나, 이에 제한되는 것은 아니다. 일 예로, 상기 재조합 미생물의 대표적인 예로는, 본 발명자들의 선행 특허 10-2022-0093190호에 개시된, PgDS, PgPPDS, PgPPDS PgUGT71, tHMG1 및 ERG1 유전자의 활성이 강화되고, ERG7 유전자의 발현 수준이 억제되어 컴파운드 K 생산 경로가 구축된 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 균주일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 용어, "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 방법을 의미한다. 본 발명에 있어서, 상기 컴파운드 K를 발현하는 미생물을 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 본 발명의 컴파운드 K를 발현시켜서 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈 및 자일로즈의 혼합당을 주 탄소원으로 사용하며 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.
상기 컴파운드 K의 정제방법에서, 다음으로 (b) 단계(S200)는 상기 미생물 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계이다.
상기 (b) 단계(S200)에서, 활성탄 통과 전 원심분리기를 이용하여, 세포와 컴파운드 K가 포함된 상청액을 원심 분리시키는 단계를 추가로 포함할 수 있으나, 이에 제한되지 않는다.
상기 원심 분리는 8000 내지 20000 rpm의 속도로 수행될 수 있으며, 바람직하게는 10000 내지 16000 rpm의 속도로, 보다 바람직하게는 12000 내지 14000 rpm의 속도로 수행될 수 있다.
또한, 상기 원심 분리는 4 내지 20분 동안 수행될 수 있으며, 바람직하게는 7 내지 12 분 동안 수행될 수 있다.
본 발명의 용어 "활성탄(activated carbon)" 이란 탄소물질 또는 탄소를 함유한 물질을 활성화시킨 것으로 내부 표면적이 크고 흡착력이 강한 무정형 탄소의 집합체이다. 활성탄은 흡착성이 강하고, 대부분의 구성물질이 탄소질로 된 물질로, 흡착제로 기체나 습기를 흡수시키는데, 또는 탈색제로 사용된다. 목재나 갈탄 등을 염화아연 등의 약품으로 처리, 건조시켜 제조한다.
본 발명의 상기 미생물 발효액을 활성탄 여과하는 제1차 정제단계는 미생물 발효액에서 컴파운드 K를 제외한 불순물을 상기 활성탄으로 흡착시켜 제거 및 여과하는 단계이다. 상기 활성탄 여과 과정을 통해 미생물 발효의 부산물 중 입자 크기가 큰 지질 대사 산물 및 지질 배지 성분 등의 불순물들이 효과적으로 제거될 수 있다. 본 발명의 일 실시예에서는 활성탄 이외에 백색토, 활성탄 파우더 등의 대체제를 이용한 여과를 수행하였으나 필터링 효율이 좋지 않아, 활성탄 여과 단계를 포함하는 것이 크로마토그래프를 이용한 정제 이전에 대사 산물 및 배지 성분 등의 정제에 가장 적합함을 확인하였다.
본 발명의 (b) 단계(S200)의 활성탄 여과는 당 업계에서 통상적으로 이용되는 활성탄 여과 장치를 이용하는 것이면 이에 제한되지 않는다.
일 예로, 본 발명에서 (b) 단계(S200)의 상기 활성탄 여과는 0.7 내지 1.3 L/min의 유속(flow rate)으로 수행되는 것일 수 있으며, 보다 구체적으로 0.8 내지 1.2 L/min의 유속(flow rate)으로 수행되는 것일 수 있다. 상기 범위의 유속으로 활성탄 여과가 수행될 경우 컴파운드 K의 활성탄 필터 흡착으로 인한 손실을 최소화하면서도 효율적으로 불순물 여과가 수행될 수 있다.
상기 컴파운드 K의 정제방법에서, (c) 단계(S300)는 상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능액체크로마토그래피(isocratic high performance liquid chromatography: isocratic HPLC)로 정제하는 제2차 정제단계로, 이 과정을 통해 숙주세포 유래 또는 배지 성분 유래의 불순물이 다량 제거됨으로써 컴파운드 K의 정제 효율을 높일 수 있다.
본 발명에서 용어 "고성능 액체 크로마토그래피(high performance liquid chromatography; HPLC)"란 칼럼에 채우는 고정상의 충진제 그리고 장치의 개선에 의해, 고속·고성능 분리가 가능해진 크로마토그래피를 의미한다. 고성능 액체 크로마토그래피에서는 충진제를 미세하고도 입도가 고른 구형으로 하여 고도의 분리가 가능하기 때문에 흐름에 대한 저항이 높아져 분리할 용액을 고압으로 이동시키게 된다. 그래서 고압 액체크로마토그래피(high pressure liquid chromatography)라고 하며, 분리가 빠르기 때문에, 고속액체크로마토그래피 (high speed liquid chromatography)라고도 한다.
본 발명에서 용어 "등용매(isocratic) HPLC"란 HPLC에서 이동상의 조성을 바꾸지 않고 혼합물을 분리하는 용리 방법을 의미한다.
일 예로, 본 발명에서 (c) 단계(S300)의 상기 등용매 HPLC는 고정상(stationary phase)으로서, Trilite GSH-20또는 DIAION HP-20 컬럼을 사용할 수 있고, 바람직하게는 DIAION HP-20 컬럼을 사용할 수 있다.
상기 DIAION HP-20는 스티렌(Styrene)과 디비닐벤젠(Divinyl benzene, DVB)의 공중합체의 High Porous Type 합성흡착제(Synthetic Adsorbent)이다. DIAION HP-20은 다수의 세공이 분포하며 비표면적이 높아 흡착 능력이 우수하다. 또한, DIAION HP-20은 입자의 표면이 소수성(hydrophobic)을 띠고 있어서 유기물이 합성 흡착제에 흡착될 때 유기분자 중의 소수성기가 흡착되는 특징이 있다.
일 예로, 본 발명에서 (c) 단계(S300)의 상기 등용매 HPLC은 이동상(mobile phase)으로서 비제한적인 예시로 메탄올 또는 에탄올을 용매로 사용할 수 있고, 구체적으로 에탄올 또는 에탄올-물 혼합물을 용매로 사용하는 것일 수 있다. 에탄올 이외의 용매는 컴파운드 K와 특성이 유사한 타 진세노사이드 부산물이 함께 용출되어 정제 효율이 낮을 수 있다. 더 구체적인 예로, 상기 이동상은 30 내지 90%(w/w) 농도의 에탄올 용매일 수 있으며, 보다 구체적으로, 상기 이동상은 70 내지 90%(w/w) 농도의 에탄올 용매일 수 있으며, 보다 더 구체적으로, 80 내지 90%(w/w)농도의 에탄올 용매일 수 있다. 이 때, 특정 농도의 에탄올 용매란, 해당 에탄올 농도를 갖는 물 및 에탄올 혼합 용매와 동일한 의미로 해석된다. 본 발명의 일 실시예에서는 이동상이 위와 같은 농도 범위의 에탄올 용매일 때 불순물 용출이 최소화되는 반면 컴파운드 K의 용출이 극대화될 수 있음을 확인하였다.
일 예로, 본 발명에서 (c) 단계(S300)의 상기 등용매 HPLC는 0.1 내지 50 ml/min의 유속(flow rate)으로 수행되는 것일 수 있으며, 보다 구체적으로 30 내지 50 ml/min의 유속(flow rate)으로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 목적상, 상기 (c) 단계(S300)의 등용매 HPLC는 시료주입단계, 평형단계, 세척단계, 및 용출단계 중 어느 하나 이상의 단계를 수행하는 것일 수 있다.
또한, 본 발명의 목적상, 상기 (c) 단계(S300)는 등용매 HPLC 수행 후 용출액을 여과하는 단계 및 증발하는 단계 중 어느 하나 이상을 추가로 포함할 수 있다.
상기 (c) 단계(S300)에서 숙주세포 유래 펩티드 또는 배양액의 배지 성분들은 그대로 칼럼을 통과하거나 세척 과정에서 제거되어 다량의 불순물을 효과적으로 제거할 수 있다.
상기 컴파운드 K의 정제방법에서, (d) 단계(S400)는 상기 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)로 정제하는 제3차 정제단계로, 전 단계인 제2차 정제단계의 용출액에 포함되어 있던 불순물을 재순환(recycling)을 통하여 더욱 제거하여 순도를 보다 높이는 단계이다.
본 발명의 용어 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)란 분리가 이루어지지 않은 시료를 분리를 컬럼에 재순환(Recycle)하는 원리를 통해 분취하는 HPLC로, 이론상 무한대로 순환횟수를 증가시킬 수 있으며 이때 시료에 대한 분리도(resolution)가 증가됨으로써 분리하기 매우 어려운 시료까지 적용 가능하다. 또한, 이 과정에서 용매의 소비가 전혀 이루어 지지 않기 때문에 경제적인 이점이 존재한다.
일 예로, 본 발명에서 상기 (d) 단계(S400)에서 순환분취 액체 크로마토그래피는 상기 제2차 정제단계에서 수득된 용출액에 대하여 2회 이상의 재순환을 수행하는 것일 수 있으나 상기 사이클의 반복에 따라 불순물과의 체류 시간의 차이가 벌어져 컴파운드 K만을 순수하게 분취하는 것이 가능하다면 반복 사이클의 회수 상한은 특별히 제한되지 않는다.
일 예로, 상기 제3차 정제단계에서 순환분취 액체 크로마토그래피가 2회의 재순환(Recycling)을 거칠 때, 마지막 사이클에서 분취가 이루어질 수 있다.
일 예로, 본 발명에서 상기 (d) 단계(S400)의 순환분취 액체 크로마토그래피는 고정상(stationary phase)으로서 실리카(silica) 또는 옥타데실실란(ODS) 컬럼을 사용할 수 있고, 바람직하게는 옥타데실실란(ODS) 컬럼을 사용할 수 있다.
일 예로, 본 발명에서 상기 (d) 단계(S400)의 순환분취 액체 크로마토그래피의 이동상(mobile phase)으로는 아세토니트릴(acetonitrile) 또는 아세토니트릴-물 혼합물을 용매로 사용하는 것일 수 있다. 더 구체적인 예로, 상기 이동상은 30 내지 90%(w/w)농도의 아세토니트릴 용매일 수 있으며, 보다 더 구체적으로, 70 내지 80%(w/w) 농도의 아세토니트릴용매일 수 있다. 이 때, 특정 농도의 아세토니트릴 용매란, 해당 아세토니트릴 농도를 갖는 물 및 아세토니트릴 혼합 용매와 동일한 의미로 해석된다. 이동상이 위와 같은 농도 범위의 아세토니트릴 용매일 때, 순환 분취 액체 크로마토그래피에서의 컴파운드 K의 정제 수율 및 순도가 현격히 상승할 수 있다.
일 예로, 본 발명에서 상기 (d) 단계(S400)의 순환 분취 액체 크로마토그래피는 0.1 내지 50 ml/min의 유속(flow rate)으로 수행되는 것일 수 있고, 보다 구체적으로 10 내지 15 ml/min의 유속(flow rate)으로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 목적상, 상기 (d) 단계(S400)의 순환분취 액체 크로마토그래피는 시료주입단계, 평형단계, 세척단계, 및 용출단계 중 어느 하나 이상의 단계를 수행하는 것일 수 있다.
상기 (d) 단계(S400)에서의 순환 과정을 통해 (c)단계(S300)의 용출액에 잔존하였던 불순물들이 제거되어 고순도의 컴파운드 K를 최종적으로 수득할 수 있다.
본 발명의 컴파운드 K 정제방법은, 미생물 발효액으로부터 정제된 컴파운드 K가 99% 이상이며, 컴파운드 K 정제 효율이 현저히 향상된 것일 수 있다.
본 발명의 컴파운드 K의 정제방법에서, (e) 상기 (d) 단계(S400)에서 수득한 컴파운드 K를 정량 분석하는 단계를 추가적으로 더 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 컴파운드 K의 정량 분석은 화합물 정량의 분석에 이용되는 당 기술분야의 통상적인 방법에 의해 수행될 수 있으며, 구체적으로 크로마토그래피, 보다 구체적으로는 고성능 액체 크로마토그래피(HPLC)를 이용하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
전술한 바와 같은, 본 발명의 활성탄 여과 및 일련의 크로마토그래피 조합을 통해 정제된 컴파운드 K는 고성능 액체 크로마토그래피 결과, 99% 이상의 고순도를 나타내면서 고수율로 정제되었음을 확인하였다.
본 발명에 따른 방법은 컴파운드 K 생산 미생물의 대량 발효액으로부터 컴파운드 K를 고수율 및 고순도로 정제할 수 있다는데 발명의 또 다른 특징이 있다. 본 발명의 따른 정제방법으로 컴파운드 K를 정제할 경우 미생물 발효액으로부터의 컴파운드 K 정제의 한계인 불순물의 과량 함유로 인한 수율 저하의 한계를 극복하여 순도가 매우 높은 컴파운드 K를 대량으로 수득할 수 있다.
따라서, (a) 컴파운드 K를 발현하는 미생물을 배양하여 미생물 대량 발효액을 수득하는 단계; (b) 상기 미생물 대량 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계;(c)상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피(isocratic high performance liquid chromatography)로 정제하는 제2차 정제단계; 및 (d)상기 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)로 정제하는 제3차 정제단계를 포함하는, 컴파운드 K를 대량 정제하는 방법 또한 본 발명의 범위에 포함된다.
상기 컴파운드 K를 대량 정제하는 방법은 상기 제2차 정제단계에서 수득된 용출액에서 용매를 증발시켜 가루화하는 단계를 더 포함할 수 있다. 이 때 상기 가루화는 대량 생산 공정에서의 보관을 용이하게 할 수 있으며, 상기 가루화된 용출액은 이후 제3차 정제단계에서 다시 용매와 혼합하여 순환분취 액체 크로마토그래피로 정제할 수 있다.
도 11은 일 실시예에 따른, 본 발명의 컴파운드 K 대량 정제방법의 전반적인 프로세스를 나타내는 모식도이다.
본 발명에서 "대량 발효액"이라는 용어는 50L이상의 배지에서 발효 수준으로 재조합 대장균을 배양하여 얻은 배양액을 의미하며, 바람직하게 80L 이상, 더욱 바람직하게는 100L이상의 배양액이다. 종래의 컴파운드 K 정제 방법은 고순도를 유지하면서 고수율로 목적 단백질을 분리, 정제하는데 한계가 있었으며 scale up 조건에서는 그러한 한계가 더욱 존재하였다. 본 발명에 따른 방법은 배양액의 부피를 100L이상으로 스케일-업(scale-up)시키더라도 활성탄 여과 및 일련의 크로마토그래피 조합을 통해 99% 이상의 고순도를 나타내는 컴파운드 K를 8% 이상의 높은 수율로 정제할 수 있다. 따라서, 본 발명에 따른 방법은 컴파운드 K 생산 미생물의 대량 배양액으로부터 컴파운드 K를 분리, 정제하는데 효과적으로 적용될 수 있으므로, 이의 산업적 응용 시 종래 정제방법에 비해 더 높은 생산성을 기대할 수 있다.
본 발명의 정제방법에 따라 정제된 컴파운드 K를 포함하는 약학적 조성물 및 식품 조성물 역시 본 발명의 범위 내에 포함된다.
상기 약학적 조성물 및 식품 조성물의 제조는 당해 분야에서 숙련자에게 잘 알려진 바에 따라 수행될 수 있다.
이하, 실시예를 통하여 본 출원을 보다 상세히 설명하고자 한다. 이들 실시예는 본 출원을 보다 구체적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
실시예 1: 컴파운드 K 생산균주 및 플라스미드 제작
공개된 문헌(International Journal of Molecular Sciences{CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae}(2021.10.31))에 따라 CK 생산균주 및 플라스미드를 제작하였다. 구체적인 방법은 하기와 같다.
Saccharomyces cerevisiae 균주 CEN.PK2-1D는 제조업체의 프로토콜에 따라Alkali-Cation Yeast Transformation Kit(MP, USA)를 사용하여 형질전환하였다. PPD-A1 균주는 CEN.PK2-1D 균주에서 TEF2의 다운스트림, GLK1의 업스트림 및 RPS17B의 업스트림에 각각 PgDS, PgPPDS 및 PgCPR 유전자를 통합하여 구축하였다. TEF2 부위의 부분적 상동 재조합 영역을 가진 GPDpro-PgDS-CYC1ter 카세트는 프라이머 세트 TEF2-Integ-F/TEF2-Ineg-R을 사용하여 PgDS-보유 pRS426GPD 벡터로부터 증폭하였다. 플라스미드 Cas9-NAT 및 pRS42K-sgRNA(TEF2)를 포함하는 상기 통합 카세트는 균주 CEN.PK2-1D로 공동 형질 전환된 후 YPD/ClonNAT/G418 플레이트에서 선택되었다. 균주를 진단 PCR로 확인하고 원하는 플라스미드 및 통합 카세트를 포함하는 콜로니를 YPD/ClonNAT 배지에서 30°C에서 24시간 동안 배양하여 pRS42KsgRNA(TEF2)를 제거하여 CEN.PK2-1D-PgDS-Cas9-NAT 균주를 생성하였다.
GLK1 부위의 부분적 상동 재조합 영역을 가진 GPDpro-PgPPDS-CYC1ter 카세트를 프라이머 세트 GLK1-Integ-F/GLK1-Integ-R을 사용하여 PgPPDS-보유 pRS426GPD 벡터로부터 증폭하였다. 플라스미드 및 pRS42H-sgRNA(GLK1)가 포함된 이 통합 카세트는 균주 CEN.PK2-1D-Cas9-NAT-PgDS로 공동 형질전환된 후 YPD/ClonNAT/하이그로마이신 B 플레이트에서 선택되었다. 진단 PCR로 균주를 확인하고 원하는 플라스미드 및 통합 카세트를 포함하는 콜로니를 YPD/ClonNAT 배지에서 30°C에서 24시간동안 배양하여 pRS42H-sgRNA(GLK1)를 제거하여 CEN.PK2-1D-Cas9-NAT-PgDS-PgPPDS균주를 생성하였다. RPS17B 부위의 부분적 상동 재조합 영역을 가진 PGK1pro-PgCPR-CYC1ter 카세트를 프라이머 세트 RPS17B-Integ-F/RPS17B-Integ-R을 사용하여 PgCPR-보유pRS426PGK1 벡터로부터 증폭하였다. 플라스미드 pRS42K-sgRNA(RPS17B)가 포함된 이 통합 카세트는 균주 CEN.PK2-1D-Cas9-NAT-PgDS-PgPPDS로 공동 형질전환된 후 YPD/ClonNAT/G418 플레이트에서 선택되었다. 균주를 진단 PCR로 확인하고 원하는 플라스미드 및 통합 카세트를 포함하는 콜로니를 YPD 배지에서 30°C에서 24시간동안 배양하여 Cas9-NAT 및 pRS42K-sgRNA(RPS17B)를 제거하여 PPD-A1 균주를 생성하였다. 균주 PPD-A2를 PPD-A1의 TCB2 부위의 다운스트림에 tHMG1 유전자를 통합함으로써 구축하였다. TCB2 부위의 부분적 상동 재조합 영역이 있는 [GPDpro-tHMG1-CYC1ter]-URA3 카세트는 프라이머 세트 TCB2-Integ-F/TCB2-Integ-R을 사용하여tHMG1-운반 pRS426GPD 벡터로부터 증폭하였다. 이 통합 카세트를 균주 PPD-A2로 형질전환시킨 후 SD/-URA 플레이트에서 선택하였다. 균주를 진단 PCR로 확인하고, 통합 카세트를 포함하는 콜로니를 SD/-URA 배지에서 30°C에서 배양하여 PPD-A2 균주를 생성하였다. 균주 PPD-A3은 ERG1m 유전자를 PPD-A2의 trp1-289 부위에 통합하여 구축하였다. TRP1 유전자의 부분적 상동 재조합 영역이 있는 [TEF1pro-ERG1m-CYC1ter]-TRP1카세트는 프라이머 세트 TRP1-Integ-F/TRP1-Integ-R을 사용하여 ERG1m-보유pRS424TEF1 벡터로부터 증폭하였다. 상기 통합 카세트를 균주 PPD-A2로 형질전환시킨 후 SD/-URA/-TRP 플레이트에서 선택하였다. 균주를 진단 PCR로 확인하고 통합카세트를 포함하는 콜로니를 SD/-URA/-TRP 배지에서 30°C에서 배양하여 PPD-A3 균주를 생산하였다. 균주 PPD-A3-sgRNA1-5는 PPD-A3의 ISR1 부위 상류에 dCas9 및 ERG7 프로모터 표적화 sgRNA 유전자를 통합하여 구성하였다. ISR1 부위의 부분적 상동 재조합 영역이 있는 dCas9-[SNR52pro-sgRNA-SUP4ter]-LEU2 카세트를 프라이머 세트 ISR1- Integ-F/ISR1-Integ를 사용하여 pTDH3-dCas9-Mxi1-sgRNA1-5에서 증폭하였다. 각 통합 카세트를 PPD-A3으로 형질전환한 후 SD/-URA/-TRP/-LEU 플레이트에서 선택하였다. 균주는 진단 PCR로 확인하고 통합 카세트를 포함하는 콜로니를 SD/-URA/-TRP/-LEU 배지에서 30°C에서 배양하여 균주 PPD-A3-sgRNA1-5를 생성하였다. HIS3 유전자의 부분적 상동 재조합 영역이 있는 [GPDpro-UGT71(H144N)-CYC1ter]-HIS3카세트는 프라이머 세트 HIS3-Integ-F/HIS3-Integ-R을 사용하여 UGT71(H144N)-보유pRS426GPD 벡터로부터 증폭하였다. 상기 통합 카세트를 균주 PPD-A3로 형질전환시킨 후 SD/-URA/-TRP/-HIS 플레이트에서 선택하였다. 균주를 진단 PCR로 확인하고 통합카세트를 포함하는 콜로니를 SD/-URA/-TRP/-HIS 배지에서 30°C에서 배양하여 컴파운드 K 균주를 생산하였다. 균주 CK-sgRNA1-5는 컴파운드 K의 ISR1 부위 상류에 dCas9 및 ERG7 프로모터 표적화 sgRNA 유전자를 통합하여 구성하였다. ISR1 부위의 부분적 상동 재조합 영역이 있는 dCas9-[SNR52pro-sgRNA-SUP4ter]-LEU2 카세트를 프라이머 세트 ISR1- Integ-F/ISR1-Integ를 사용하여 pTDH3-dCas9-Mxi1-sgRNA1-5에서 증폭하였다. 각 통합 카세트를 컴파운드 K으로 형질전환한 후 SD/-URA/-TRP/-LEU/-HIS 플레이트에서 선택하였다. 균주는 진단 PCR로 확인하고 통합 카세트를 포함하는 콜로니를 SD/-URA/-TRP/-LEU/-HIS 배지에서 30°C에서 배양하여 균주 CK-sgRNA1-5를 생성하였다.
위와 같은 과정을 통해 컴파운드 K 생산 균주를 준비하였다.
실시예 2: 컴파운드 K의 발현을 위한 발효공정
진탕-플라스크 발효를 위해 YPD 배지를 사용하여 상기 실시예 1에서 수득한 효모 균주를 배양하였다. 먼저, 25% 글리세롤에 1mL의 스톡 세포를 29mL의 YPD 배지가 들어 있는 250mL 배플플라스크(Tri-Forest, USA)에 접종하고 220rpm에서 진탕하면서 600 nm(OD600)에서 약 6.0의 광학 밀도(Thermo Scientific, USA)가 될 때까지 26°C에서 배양하였다. 그런 다음, 1mL의 종자 배양액을 29mL의 YPD 배지가 들어 있는 250mL 배플 플라스크에 접종하고 26°C에서 220rpm으로 진탕하면서 48시간 동안 배양하였다. 플라스크 발효 결과는 생물학적 삼중수를 기반으로 평균 표준 편차로 제시하였다.
상기 균주 PPD-A3 및 PPD-A3-sgRNA4를 초기 작업 부피가 2L YPD 배지인 5L 생물반응기(CNS, 대한민국)에서 유가식 발효를 통한 PPD 생산에 사용하였다. 종자 배양은 두 단계로 준비하였다. 먼저, 25% 글리세롤에 1mL의 스톡 세포를 29mL의 YPD 배지를 포함하는 250mL 배플 플라스크에 접종한 다음, 26°C에서 배양하고 220rpm에서진탕하여 OD600이 약 6.0이 되도록 하였다. 그런 다음, 12mL의 첫 번째 종자 배양물을 138mL의 YPD 배지가 들어 있는 2개의 1L 배플 플라스크(Duran)에 접종하고 220rpm에서 진탕하면서 26°C에서 약 7.0의 OD600이 될 때까지 배양하였다. 그 다음, 300mL의 두 번째 종자 배양물을 1.7L의 YPD 배지를 함유하는 5L 생물반응기에 접종하였다. 발효는 26°C에서 300rpm으로 진탕하고 에어 플로우는 4L/min으로 하여 수행하였다. 15% 수산화암모늄(v/v)을 자동으로 첨가하여 pH를 5.5로 조절하였다. 생물반응기에서 거품 발생을 최소화하기 위해 10% Antifoam 204(v/v)를 사용하였다. 초기 포도당이 완전히 소모된 후 포도당 500g/L, KH2PO4 18.7g/L, K2SO4 6.5g/L, Na2SO4 0.53g/L, MgSO4·7H2O 9.75g/L, 히스티딘 10g/L, 10 g/L 류신, 10mL/L의 미량 금속 용액(Jung et al., 2014) 및 12 mL/L의 비타민 용액(Jung et al., 2014)을 생물 반응기에 첨가하고 용해하였고, 산소 농도는 50% 이상으로 증가하였다. 생물반응기의 포도당 농도는 10g/L 미만으로 유지하였다.
위와 같은 조건에서 균주를 배양하여, 컴파운드 K 정제에 이용하기 위한 미생물 발효액을 수득하였다.
실시예 3: 활성탄 여과법(Activated Carbon Filtering)을 이용한 1차 정제
상기 실시예 2에서 수득한 미생물 발효액에서의 세포와 상층액의 분리를 위해, 발효된 컴파운드 K 생성 효모 배지(broth)를 13,000 rpm에서 10분 동안 원심분리하였다(CR 21GⅢ HITACHI). 원심분리하여 수득한 컴파운드 K를 포함하는 상층액을 활성탄 여과 시스템(Quality by Design Inc., 한국)을 사용하여 정제하였다. 활성탄 여과의 진행 조건은 하기한 바와 같다.
<여과 조건>
주입 샘플(loading sample): 미생물 발효액 상청액 (5L)
유속(flow rate): 1 L/min
마이크로플레이트 리더(SPARK, TECAN)를 이용하여 활성탄 여과 진행 후 불순물 제거를 확인한 결과를 확인하고자 원심분리 후 상청액에 포함된 컴파운드 K의 순도를 측정하여 도 6에 나타내었다.
도 6에서 볼 수 있듯이, 활성탄 여과 과정을 거쳐 상청액 불순물의 농도가 감소되었음을 확인하였다.
실시예 4: 등용매(isocratic) HPLC를 이용한 2차 정제
실시예 4-1. 등용매 HPLC에서의 용매 스크리닝
본 발명자들은 먼저 2차 정제에 앞서, 등용매 HPLC에서 HP20 컬럼 사용시에 가장 정제 효율이 우수한 용매의 농도를 스크리닝하고자하였다. 상기 실시예 2에서 수득한 미생물 발효액을 1차 정제 과정 없이, 에탄올 농도를 10 - 100% 범위에서 달리하여 HP 20컬럼을 이용하여 등용매 HPLC 진행 후, 최적 농도를 찾고자 하였다. 미생물 발효액 샘플을 컬럼에 로딩한 후, 증류수로 세척 후 에탄올의 농도에 따라서 10-100% 농도에 따라 불순물 및 컴파운드 K의 용출을 확인하였다.
도 7에서 볼 수 있듯이, 80-89% 농도의 에탄올을 용매로 이용한 경우에 불순물은 가장 적고 컴파운드 K의 용출이 가장 효과적임을 확인하였으며, 그보다 낮은 농도에서는 컴파운드 K의 용출이 효과적으로 되지 않았고, 더 높은 농도에서는 불순물이 같이 용출되었는 바, 80-90% 구간을 제2차 정제 과정에서의 최적 농도로 선정하였다.
실시예 4-2. 등용매(isocratic) HPLC를 이용한 2차 정제 수행
다음으로, 상기 실시예 3에서 1차 정제시킨, 활성탄 여과된 상청액을 300g의 HP-20 레진(스티렌-디비닐벤젠, 250-850μm, 260Å 평균 기공 크기, Mitsubishi Chemical, 일본)으로 충전된 Biotage Sfar 크로마토그래피 카트리지(Biotage, Sweden)를 사용하여 에탄올로 isocratic concentration elution 따라 정제하였다. HPLC의 정제 조건은 하기와 같았다.
<정제 조건>
주입 샘플(loading sample): 활성탄 여과된 샘플 (2L)
고정상(stationary phase): HP-20
이동상(mobile phase): 85% 에탄올
유속(flow rate): 40 ml/min
분획(Fraction): 2100ml
그 다음, 분취한 분획물들을 여과지(Advantec, Tokyo, Japan)를 통해 여과하여 TLC 로 분석하였다(도 8).
도 8에서 S1 및 S2는 각각 스탠다드 용액1(Standard1), 스탠다드 용액2(Strandard2)을, T는 대조군으로서 상청액(Total yeat broth)를, FT는 HP-20 컬럼을 통과한 Flow Trough를, W는 HP-20 컬럼에 상청액 흡착 후 물로 세척한 샘플을, 1-8은 각각 58% 에탄올 용출 분획 #1~#8을 나타낸다. 상기 #2 내지 #7의 총 6개의 분획에서 컴파운드 K가 용출되어 이를 분획하였다. 상기 6개 분획물 모두에서 컴파운드 K 스탠다드와 동일한 밴드가 관찰됨을 확인할 수 있다.
실시예 5: 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)를 이용한 3차 정제
상기 실시예 4에서 2차 정제를 거친 용출액을 RP-HPLC(JAL NEXT Recycling Preparative HPLC LC-9210II NEXT, Japan Analytical Industry Co, Japan)를 사용하여 3차 정제하였다. RP-HPLC는 Japan Analytical Industry Co.(Japan)에서 구입한 pre-packed column(JAIGEL-ODS-AP-L, 10 μm, 20 mm i.d. Х 500 mm)을 사용하여 수행하였다. 이동상은 75% 아세토니트릴을 이용하였으며, 유속은 7.0 mL/min으로 하였다. 증발된 컴파운드 K를 75% 아세토니트릴에 용해시켜 최종 농도가 40 mg/mL가 되도록 하였고, 10 mL의 용액을 정제를 위해 로딩하였다. 순환분취 액체 크로마토그래피의 정제 조건은 하기와 같았다.
<정제 조건>
주입 샘플(loading sample): HP20 purified 샘플 (400ml)
고정상(stationary phase): ODS 15㎛
이동상(mobile phase): 75% Acetonitrile
유속(flow rate): 12 ml/min
분획(Fraction): 50ml
상기 조건 하에서, 용출 분획을 분취하지 않고 다시 컬럼으로 순환하는 방식으로, 최종적으로 2회의 재순환을 통해 final fraction을 얻었다. 수행한 크로마토그래피 프로파일을 도 9에 나타내었다.
실시예 6: 정제된 화합물 K의 정량분석
상기 실시예 5에서 수득된 용출액을 HPLC (Agilent 1260 Infinity HPLC 시스템(Agilent Co., Santa Clara, CA, USA)을 사용하여 분석하였다. 컴파운드 K는 가드 컬럼(Eclipse XDB C18, 5㎛, 12.5 x 4.6mm, Agilent Technologies, CA, USA)이 있는 YMC ODS C18 컬럼(5μm, 250 Х 4.6mm, YMC, Kyoto, Japan)에서 분리하였다. gradient 용출 시스템은 물(A)과 아세토니트릴(B)로 구성되었으며 다음 gradient 프로그램을 사용하였다: 0 → 10분, 20% B; 10 → 40분, 20 → 32% B; 40 → 48분, 32 → 42% B; 48 → 60분, 42 → 45% B; 60 → 83분, 45 → 75% B; 83 → 85분, 75 → 100% B; 85 → 95분, 100% B; 95 → 95.01분, 100 → 20% B; 95.01 → 100분, 20% B. 검출 파장은 203nm 으로 설정되었고, 다이오드 어레이 검출기(DAD)의 유량은 1.6mL/분이었다.
상기 분석시스템을 통한 분석 결과를 도 10에 나타내었다.
도 10에서 볼 수 있듯, 본원발명의 정제방법을 거친 후 99%가량의 순도로 컴파운드 K가 정제되었음을 확인하였다. 발효를 통해 생산된 CK의 초기 순도가 약 0.34%임을 고려할 때, 본원발명을 이용하여 매우 고순도의 컴파운드 K의 정제가 가능함을 나타내며, 이는 종래의 정제방법들에 비해 현격히 개선된 순도이다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 미생물 발효액으로부터 컴파운드 K를 정제하는 방법으로서,
    (a) 컴파운드 K를 발현하는 미생물을 배양하여 미생물 발효액을 수득하는 단계;
    (b) 상기 미생물 발효액을 활성탄 여과(Activated Carbon Filtering)하는 제1차 정제단계;
    (c) 상기 제1차 정제단계에서 수득된 여과액을 등용매 고성능 액체 크로마토그래피(isocratic high performance liquid chromatography)로 정제하는 제2차 정제단계; 및
    (d) 상기 제2차 정제단계에서 수득된 용출액을 순환분취 액체 크로마토그래피 (Recycling Preparative HPLC)로 정제하는 제3차 정제단계를 포함하는, 컴파운드 K를 정제하는 방법.
  2. 제1항에 있어서, 상기 방법은 (a) 내지 (c) 단계를 1회 수행하고, 추가로 동일하거나 다른 크로마토그래피를 수행하지 않는 것인, 정제방법.
  3. 제1항에 있어서,
    상기 미생물은 컴파운드 K를 발현하도록 형질전환된 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 균주인, 정제방법.
  4. 제1항에 있어서,
    상기 (c) 단계의 등용매 고성능 액체 크로마토그래피는 고정상(stationary phase)으로 HP-20컬럼을 사용하는 것인, 정제방법.
  5. 제1항에 있어서,
    상기 (c) 단계의 등용매 고성능 액체 크로마토그래피는 이동상(mobile phase)으로 에탄올 용매를 사용하는 것인, 정제방법.
  6. 제5항에 있어서, 상기 에탄올 용매는 70 내지 90%(w/w) 에탄올 용매인, 정제방법.
  7. 제1항에 있어서,
    상기 (c) 단계의 등용매 고성능 액체 크로마토그래피는 30 내지 50 ml/min의 유속(flow rate)으로 수행되는 것인, 정제방법.
  8. 제1항에 있어서,
    상기 (d) 단계의 순환분취 액체 크로마토그래피는 고정상(stationary phase)으로 옥타데실릴란(ODS) 컬럼을 사용하는 것인, 정제방법.
  9. 제1항에 있어서,
    상기 (d) 단계의 순환분취 액체 크로마토그래피는 10 내지 15 ml/min의 유속(flow rate)으로 수행되는 것인, 정제방법.
  10. 제1항에 있어서,
    상기 (d) 단계의 순환분취 액체 크로마토그래피는 상기 제2차 정제단계에서 수득된 용출액에 대하여 2회 이상의 사이클을 수행하는 것인, 정제방법.
  11. 제1항에 있어서,
    상기 각 단계의 크로마토그래피는 시료주입단계, 평형단계, 세척단계 및 용출단계 중 어느 하나 이상의 단계를 추가로 수행하는 것인, 정제방법.
  12. 제1항에 있어서, (e) 고성능액체크로마토그래피(HPLC)를 사용하여 상기 (d) 단계에서 수득한 컴파운드 K를 정량 분석하는 단계를 더 포함하는, 정제방법.
  13. 제1항에 있어서,
    상기 방법에 의해 정제된 컴파운드 K는 순도 99% 이상인 것인, 정제방법.
PCT/KR2023/018289 2022-11-14 2023-11-14 발효를 통해 생산된 컴파운드 k의 효율적인 정제방법 WO2024106916A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0152008 2022-11-14
KR1020220152008A KR20240070299A (ko) 2022-11-14 2022-11-14 발효를 통해 생산된 컴파운드 k의 효율적인 정제방법

Publications (1)

Publication Number Publication Date
WO2024106916A1 true WO2024106916A1 (ko) 2024-05-23

Family

ID=91084818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018289 WO2024106916A1 (ko) 2022-11-14 2023-11-14 발효를 통해 생산된 컴파운드 k의 효율적인 정제방법

Country Status (2)

Country Link
KR (1) KR20240070299A (ko)
WO (1) WO2024106916A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570133A (zh) * 2004-04-27 2005-01-26 复旦大学 一种制备人参皂甙Compound-K的方法
KR20080028266A (ko) * 2006-09-26 2008-03-31 부산대학교 산학협력단 펙티네스 또는 비스코자임을 이용하여 인삼 사포닌으로부터장내 진세노사이드 대사물질인 화합물 케이, 화합물와이, 진세노사이드 에프 1 및 화합물 피지-2를 제조하는방법
CN101921304A (zh) * 2009-06-17 2010-12-22 浙江海正药业股份有限公司 一种运用大孔树脂纯化人参皂甙compound-K的方法
KR20150125902A (ko) * 2014-04-30 2015-11-10 한국과학기술원 인삼 유래의 당전이효소를 이용한 신규한 진세노사이드 당전이 방법
KR20220006894A (ko) * 2020-07-09 2022-01-18 한국과학기술원 신규 진세노사이드 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570133A (zh) * 2004-04-27 2005-01-26 复旦大学 一种制备人参皂甙Compound-K的方法
KR20080028266A (ko) * 2006-09-26 2008-03-31 부산대학교 산학협력단 펙티네스 또는 비스코자임을 이용하여 인삼 사포닌으로부터장내 진세노사이드 대사물질인 화합물 케이, 화합물와이, 진세노사이드 에프 1 및 화합물 피지-2를 제조하는방법
CN101921304A (zh) * 2009-06-17 2010-12-22 浙江海正药业股份有限公司 一种运用大孔树脂纯化人参皂甙compound-K的方法
KR20150125902A (ko) * 2014-04-30 2015-11-10 한국과학기술원 인삼 유래의 당전이효소를 이용한 신규한 진세노사이드 당전이 방법
KR20220006894A (ko) * 2020-07-09 2022-01-18 한국과학기술원 신규 진세노사이드 및 이의 제조방법

Also Published As

Publication number Publication date
KR20240070299A (ko) 2024-05-21

Similar Documents

Publication Publication Date Title
Woo et al. Migrastatin and a new compound, isomigrastatin, from Streptomyces platensis
US5380916A (en) Method for the isolation and purification of taxane derivatives
KR101406635B1 (ko) 에포틸론 b의 제조, 분리 및 정제 방법, 및 에포틸론 b의 x-선 결정 구조
WO2012144790A1 (en) Cyclic peptide from nonomuraea sp., process for the production thereof, and pharmaceutical composition for the prevention or treatment of mycobacteria related disease comprising the same
HU193579B (en) Process for preparing leucine derivative and pharmaceutical composition formed therefrom
US5382655A (en) Process for the purification of cyclosporin A
DE69015393T2 (de) Immunosuppressives Mittel.
WO2012026665A1 (en) Novel tacrolimus derivatives, a neuroprotective composition comprising the same, an immunosuppressive composition comprising the same, a method for preparing the same, and a mutant for producing the same
WO2024106916A1 (ko) 발효를 통해 생산된 컴파운드 k의 효율적인 정제방법
WO2009100571A1 (zh) 一种分离和提纯埃博霉素的方法
WO2014030832A1 (ko) 이소플라본 및 소야사포닌을 포함하는 콩 추출물 및 이의 제조방법
Jansen et al. Antibiotics from gliding bacteria, LXXX. Chivosazoles A–F: novel antifungal and cytotoxic macrolides from Sorangium cellulosum (Myxobacteria)
CN113603744A (zh) 一种白桦脂酮酸衍生物及其制备方法
US5250563A (en) Inhibitors of HIV protease
Schupp et al. New rifamycins produced by a recombinant strain of Nocardia mediterranei
Herrmann et al. A non-extractable triterpenoid of the hopane series in Acetobacter xylinum
CN112028959A (zh) 无柄灵芝中具有抗糖尿病活性的三萜化合物的制备方法及应用
WO2023068703A1 (ko) 두룸아마이드 a의 제조 방법
JPH024785A (ja) ストレプトミセス属からの新規なフラン類およびラクトン類
IE45888B1 (en) Method for producing maytansinol and its derivatives
CN109467579B (zh) 一种具有免疫抑制活性的pks i型聚酮类化合物及其制备方法和应用
IL152612A (en) Cyclipostins, a method for their preparation, and their use
Ambrus et al. Novel 26-oxygenated products in microbial degradation of ergosterol
CN114133424B (zh) 三萜类化合物及其制备方法和应用
JP2002518057A (ja) ムンバイスタチン、その製造法およびその医薬としての使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891983

Country of ref document: EP

Kind code of ref document: A1