WO2024103938A1 - 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用 - Google Patents

基于氨基苯甲酸类化合物的光催化材料、制备方法及应用 Download PDF

Info

Publication number
WO2024103938A1
WO2024103938A1 PCT/CN2023/118283 CN2023118283W WO2024103938A1 WO 2024103938 A1 WO2024103938 A1 WO 2024103938A1 CN 2023118283 W CN2023118283 W CN 2023118283W WO 2024103938 A1 WO2024103938 A1 WO 2024103938A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalytic material
aia
photocatalytic
juglone
uio
Prior art date
Application number
PCT/CN2023/118283
Other languages
English (en)
French (fr)
Inventor
马雪娟
尚鹏辉
梁彬
Original Assignee
电子科技大学长三角研究院(湖州)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学长三角研究院(湖州) filed Critical 电子科技大学长三角研究院(湖州)
Publication of WO2024103938A1 publication Critical patent/WO2024103938A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/32Quinones containing groups having oxygen atoms singly bound to carbon atoms the quinoid structure being part of a condensed ring system having two rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • Photocatalysis is a promising and ideal technology for using solar energy for energy regeneration and environmental restoration.
  • Photocatalytic materials can be used to decompose organic compounds, some inorganic compounds, bacteria and viruses.
  • Photocatalytic materials can effectively degrade toxic and harmful gases in the air, such as formaldehyde, and purify the air efficiently; at the same time, they can effectively kill a variety of bacteria, and can decompose and harmlessly treat toxins released by bacteria or fungi.
  • the present invention provides a photocatalytic material based on aminobenzoic acid compounds, a preparation method and an application thereof.
  • the present invention provides the following technical solutions:
  • the photocatalytic material based on aminobenzoic acid compounds is prepared by the following steps:
  • the ligand is added to a DMF solution of UiO-66, the mass ratio of the ligand to UiO-66 is 0.2-1.5, and the mixture is stirred at room temperature overnight.
  • the obtained reactant is washed with DMF until the supernatant has no characteristic ultraviolet absorption peak of the ligand.
  • the solid is collected after centrifugation and dried to obtain a photocatalytic material.
  • the ligand is 2-aminoisophthalic acid, 2-aminoterephthalic acid, 5-aminoisophthalic acid, and 2-hydroxyterephthalic acid.
  • stirring time is 2 to 24 h.
  • stirring speed is 300-1000 rpm/min.
  • centrifugal speed is 6000 ⁇ 10000 rmp/min.
  • the photocatalytic material is obtained by drying for 12 to 24 hours.
  • the synthesis method of juglone, wherein the photocatalytic material is the photocatalytic material described above, comprises the following steps:
  • the mass concentrations of the photocatalytic material and 1,5-DHN are 20-1000 mg/L and 50-200 ⁇ g/mL, respectively;
  • the xenon lamp power is 50 ⁇ 300W.
  • the volume ratio of acetonitrile to water is 4:1.
  • the xenon lamp irradiation time is 1 to 30 min.
  • the present invention screened a series of aminobenzoic acid compounds, using TMB as a substrate to evaluate the photocatalytic performance of the ligands, and successfully screened out a ligand with strong photocatalytic oxidation performance of TMB - 2-aminoisophthalic acid (2-AIA).
  • 2-AIA has photosensitizing activity, and using 2-AIA as a photosensitizer to synthesize nanomaterials for photocatalytic oxidation has great prospects.
  • the present invention is based on the reaction of 2-AIA and MOFs (UiO-66) to obtain a heterogeneous catalyst UiO-66@2-AIA with high photocatalytic activity.
  • UiO-66@2-AIA can significantly catalyze 1,5-DHN to obtain juglone.
  • Juglone also known as 5-5-hydroxynaphthoquinone, has the effects of reducing swelling and relieving pain, dissipating heat, inhibiting bacteria, and anti-tumor, and has great prospects in the medical field; at the same time, it can also be used as a herbicide, dye, etc. in agriculture, life and other fields.
  • the photocatalytic material based on aminobenzoic acid compounds of the present invention provides a possibility for the expansion of new photocatalysts.
  • FIG1 is a molecular structure diagram and abbreviation of the screened aminobenzoic acid compounds and controls.
  • FIG. 2 is a photograph showing the color development of TMB by photocatalytic oxidation of aminobenzoic acid compound ligands.
  • Figure 3 shows the photos of the photocatalytic oxidation of TMB by different concentrations of 2-AIA, ATA, 5-AIA, and HTA under irradiation of 365 nm and 395 nm ultraviolet light, respectively.
  • Figure 4 shows the absorbance curves of TMBox at 652 nm after photocatalytic TMB oxidation under irradiation of UV light at 365 nm and 395 nm with different concentrations of 2-AIA, ATA, 5-AIA, and HTA, respectively.
  • Figure 5 shows the absorbance value of TMBox at 652 nm after photocatalytic oxidation of TMB by 5 ⁇ M 2-AIA, ATA, 5-AIA, and HTA under 365 nm ultraviolet light irradiation.
  • Figure 6 shows the color development effect of photocatalytic oxidation of TMB by 2-AIA with a concentration of 0-20 ⁇ M and the absorbance curve of the oxidation product TMBox at 652 nm.
  • FIG. 7 is a bar graph showing the absorbance values of TMBox at 652 nm after adding different inhibitors of reactive oxygen species.
  • Figure 8 is a color photograph of the photocatalytic oxidation of TMB by UiO-66@2-AIA and a bar graph of the absorbance value of the oxidation product TMBox at 652 nm.
  • Figure 9 is a bar graph showing the absorbance value of juglone obtained by photocatalytic oxidation of 1,5-DHN by UiO-66@2-AIA at 415 nm.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the terms “first”, “second”, “third” and the like involved in this application are only used to distinguish similar objects and do not represent a specific ordering of objects.
  • TMB 3,3',5,5'-Tetramethylbenzidine
  • the electrons in the valence band will be excited to transition to the conduction band, thereby generating electrons ( e- ) and holes (h + ).
  • the dissolved oxygen adsorbed on its surface captures electrons to form superoxide anions, while the holes oxidize the hydroxide ions and water adsorbed on the catalyst surface into hydroxyl radicals to make TMB show color.
  • the photocatalytic oxidation of TMB was carried out on 15 different ligands (the structures of the 15 ligands are shown in FIG1 ).
  • the ligand solution was configured as follows:
  • the ligand solution was added to 50 mM, pH 4.0 HAc-NaAc buffer solution, and then TMB DMSO solution was added.
  • the above solutions were mixed evenly in a microplate.
  • the concentration of the ligand in the mixed solution was 0.15 mM, and the concentration of TMB was 200 mg/L.
  • the mixture was irradiated under a 365 nm UV lamp for 1 min, and the irradiance was 20 mM/cm 2 .
  • Control experimental group react for 1 min in dark conditions, i.e. no light group.
  • Blank control group refers to the HAc-NaAc buffer solution without ligand.
  • UV-Vis ultraviolet-visible spectrophotometer
  • the photo of the ligand photocatalytic oxidation of TMB is shown in Figure 2.
  • 2-aminoisophthalic acid (2-AIA) 2-aminoterephthalic acid (ATA), 5-aminoisophthalic acid (5-AIA), and 2-hydroxyterephthalic acid (HTA) can oxidize TMB to turn it blue, and the ability of 2-AIA to photocatalytically oxidize TMB is stronger than that of ATA, a commonly used ligand for synthesizing MOFs.
  • the concentrations and optimal absorption wavelengths of the four ligands (2-AIA, ATA, 5-AIA, and HTA) were optimized.
  • the four ligands of TMB photocatalytic oxidation color were optimized to have final concentrations of 0 ⁇ M, 5 ⁇ M, 10 ⁇ M, 20 ⁇ M, and 50 ⁇ M.
  • Other experimental conditions remained unchanged.
  • the color development photos and the absorbance value of TMBox at 652 nm were recorded; and the color development photos and the absorbance value of TMBox at 652 nm were recorded after irradiation under 395 nm ultraviolet light for 1 min. No light group: reacted for 1 min under dark conditions.
  • the color intensity was compared to screen the ligand with the best photocatalytic activity.
  • the results of photocatalytic oxidation of TMB by different concentrations of 2-AIA, ATA, 5-AIA and HTA under irradiation of 365 nm and 395 nm ultraviolet light are shown in Figure 3.
  • the absorbance curves of TMBox at 652 nm after photocatalytic oxidation of TMB by different concentrations of 2-AIA, ATA, 5-AIA and HTA under irradiation of 365 nm and 395 nm ultraviolet light are shown in Figure 4.
  • the absorbance values of TMBox at 652 nm after photocatalytic oxidation of TMB by 5 ⁇ M 2-AIA, ATA, 5-AIA and HTA under irradiation of 365 nm ultraviolet light are shown in Figure 5. It can be seen from Figure 5 that the 2-AIA ligand has the best performance in photocatalytic oxidation of TMB, and its oxidation product TMBox has a strong absorbance at the maximum absorption wavelength of 652 nm.
  • 2-AIA has a very strong photocatalytic oxidation activity of TMB. Solutions with final concentrations of 0 ⁇ M, 1 ⁇ M, 2 ⁇ M, 3 ⁇ M, 5 ⁇ M, 10 ⁇ M, and 20 ⁇ M of 2-AIA were prepared. After irradiation under a 365 nm UV lamp for 1 min, the color development photos and the absorbance value of TMBox at 652 nm were recorded.
  • Inhibitors of different reactive oxygen species were added to the 2-AIA photocatalytic oxidation of TMB system. After addition, the concentrations of L-tryptophan, mannitol, and superoxide dismutase were 16.4 mM, 2.5 mM, and 140 U, respectively, and the concentration of 2-AIA was 1 ⁇ M. Other experimental conditions remained unchanged, and the absorbance value of TMBox at 652 nm was recorded. Blank control group: TMB system without adding any inhibitors.
  • TMBox After adding inhibitors of different reactive oxygen species, the absorbance value of TMBox at 652 nm is shown in Figure 7.
  • 2-AIA can produce singlet oxygen ( 1 O 2 ) and superoxide anion ( ⁇ O 2 - ) reactive oxygen species under 365 nm ultraviolet light, so it has photosensitivity.
  • 2-AIA with strong photocatalytic activity was exchanged into the MOF material to obtain a heterogeneous catalyst with strong photocatalytic activity.
  • the preparation method of the heterogeneous catalyst is as follows: 2-AIA is added to a 0.1 mg/mL UiO-66 DMF solution, wherein the mass ratio of 2-AIA to UiO-66 is 1:1, and the mixture is stirred at room temperature for 12 h at a rotation speed of 300 rpm/min. The obtained reactant is washed with DMF several times until the supernatant has no characteristic ultraviolet absorption peak of 2-AIA, and the solid is collected after centrifugation at a rotation speed of 10,000 rpm/min, and dried for 12 h to obtain UiO-66@2-AIA.
  • FIG 8 (a) The color photo of the photocatalytic oxidation of TMB by UiO-66@2-AIA is shown in Figure 8 (a), and the absorbance result of the oxidation product TMBox at 652 nm is shown in Figure 8 (b).
  • the blank group refers to the group without light, and the other conditions are consistent with the experimental group, both containing UiO-66@2-AIA;
  • the UiO-66 group refers to the group containing UiO-66 but not containing UiO-66@2-AIA, and the other conditions are consistent with the experimental group.
  • UiO-66@2-AIA has high photocatalytic activity and can photocatalytically oxidize TMB.
  • the presence of 2-AIA significantly increases the performance of UiO-66, which has basically no photocatalytic activity, in oxidizing TMB.
  • Photocatalytic oxidation of 1,5-dihydroxynaphthalene (1,5-DHN) by UiO-66@2-AIA to synthesize juglone Weigh the aqueous dispersion of UiO-66@2-AIA and add it to a mixed solvent of acetonitrile and water (4:1, V/V), and then add 1,5-DHN; in the mixed solution, the final concentrations of UiO-66@2-AIA and 1,5-DHN are 60 mg/L and 100 ⁇ g/mL, respectively; after irradiating the mixed solution with a 300 W xenon lamp for 10 min, juglone was obtained; the characteristic ultraviolet absorption peak of the generated juglone at 415 nm was recorded.
  • the absorbance value of juglone at 415 nm is shown in FIG9 .
  • the no-light group refers to: compared with the experimental group, only the light is lacking, and other conditions are the same as those of the experimental group.
  • the illumination group refers to: there is illumination, but no catalyst UiO-66@2-AIA, and the rest is the same as the experimental group.
  • the experimental group (UiO-66@2-AIA+light group) refers to: both light and UiO-66@2-AIA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了基于氨基苯甲酸类化合物的光催化材料、制备方法及应用,本发明成功筛选出具有较强的光催化氧化TMB能力的配体:2-氨基间苯二甲酸(2-AIA),2-AIA具有光敏活性,以2-AIA为光敏剂合成纳米材料进行光催化氧化具有较大的前景。基于2-AIA与MOFs(UiO-66)反应得到具有较高光催化活性的非均相催化剂UiO-66@2-AIA。在较短的辐照时间下,UiO-66@2-AIA能明显催化1,5-DHN得到胡桃酮。本发明基于氨基苯甲酸类化合物的光催化材料对于新型光催化剂的拓展提供了可能。

Description

基于氨基苯甲酸类化合物的光催化材料、制备方法及应用 技术领域
本发明具体涉及基于氨基苯甲酸类化合物的光催化材料、制备方法及应用。
背景技术
光催化是利用太阳能进行能源再生和环境修复的一种有前途的理想技术。光催化材料可用于分解有机化合物、部分无机化合物、细菌及病毒等。日常生活中,光催化材料能有效地降解空气中有毒有害气体如甲醛等,高效净化空气;同时,能够有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理。
但是目前光催化材料的催化活性有待提高,亟需开发一种具有更高光催化活性的催化材料。
技术解决方案
针对上述情况,为克服现有技术的缺陷,本发明提供基于氨基苯甲酸类化合物的光催化材料、制备方法及应用。
为了实现上述目的,本发明提供以下技术方案:
基于氨基苯甲酸类化合物的光催化材料,所述材料采用以下步骤制备得到:
将配体加入到UiO-66的DMF溶液中,配体与UiO-66的质量比为0.2~1.5,常温搅拌过夜,得到的反应物用DMF洗涤,直至上清液无配体的紫外吸收特征峰,离心后收集固体,干燥得到光催化材料;
所述配体为2-氨基间苯二甲酸、2-氨基对苯二甲酸、5-氨基间苯二甲酸、2-羟基对苯二甲酸。
进一步地,搅拌时间为2~24 h。
进一步地,搅拌转速为300~1000 rpm/min。
进一步地,离心转速为6000~10000 rmp/min。
进一步地,干燥12~24 h得到光催化材料。
光催化材料在合成胡桃酮中的应用,所述光催化材料为以上所述的光催化材料。
胡桃酮的合成方法,所述光催化材料为以上所述的光催化材料,包括以下步骤:
(1)取光催化材料的水分散液加入到乙腈和水的混合溶剂中;
(2)加入1,5-DHN,得到混合液;混合液中,光催化材料与1,5-DHN的质量浓度分别为20~1000 mg/L,50~200 μg/mL;
(3)采用氙灯辐照,得到胡桃酮;
进一步地,氙灯功率为50~300 W。
进一步地,乙腈和水的混合溶剂中,乙腈和水的体积比为4:1。
进一步地,氙灯辐照时间为1~30 min。
有益效果
本发明的有益效果是:
(1)本发明筛选了一系列的氨基苯甲酸类化合物,以TMB为底物,评价配体的光催化性能,并成功筛选出具有较强光催化氧化TMB性能的配体——2-氨基间苯二甲酸(2-AIA),2-AIA具有光敏活性,以2-AIA为光敏剂合成纳米材料进行光催化氧化具有较大的前景。
(2)本发明基于2-AIA与MOFs(UiO-66)反应得到具有较高光催化活性的非均相催化剂UiO-66@2-AIA。在较短的辐照时间下,UiO-66@2-AIA能明显催化1,5-DHN得到胡桃酮。胡桃酮,又名5-5-羟萘醌,具有消肿止痛、散热、抑菌、抗肿瘤等功效,在医学领域具有非常大的前景;同时,也可作为除草剂、染色剂等应用于农业、生活等领域。本发明基于氨基苯甲酸类化合物的光催化材料对于新型光催化剂的拓展提供了可能。
附图说明
图1是筛选的氨基苯甲酸类化合物及对照物的分子结构图及缩写。
图2为氨基苯甲酸类化合物配体光催化氧化TMB显色的照片。
图3为不同浓度的2-AIA、ATA、5-AIA、HTA分别在365 nm和395 nm的紫外灯辐照下光催化氧化TMB显色的照片。
图4为不同浓度的2-AIA、ATA、5-AIA、HTA分别在365 nm和395 nm的紫外灯辐照下的光催化TMB氧化后的TMBox在652 nm的吸光度曲线。
图5为5 μM的2-AIA、ATA、5-AIA、HTA在365 nm紫外灯辐照下光催化氧化TMB后的TMBox在652 nm的吸光度值。
图 6为浓度为0~20 μM的2-AIA光催化氧化TMB显色效果图和氧化产物TMBox在652 nm的吸光度曲线图。
图7为加入不同活性氧物质的抑制剂之后,TMBox在652 nm的吸光度值柱形图。
图8为UiO-66@2-AIA光催化氧化TMB的显色照片及氧化产物TMBox在652 nm的吸光度值柱形图。
图9为UiO-66@2-AIA光催化氧化1,5-DHN合成胡桃酮,得到的胡桃酮在415 nm处的吸光度值柱形图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;本申请所涉及的“连接”、“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
3,3',5,5'-四甲基联苯胺(TMB)是迄今为止最常用的生色底物,可以通过单电子和两电子途径被氧化为有色产物,失去一个电子得到蓝色的氧化产物TMBox,继续失去一个电子被氧化为黄色的产物。光敏剂也可以在光催化的条件下通过电子的跃迁释放能量与溶解氧产生超氧阴离子、单线态氧、羟基自由基来使TMB失去一个电子而显色。光催化剂在光照下,价带中的电子将被激发跃迁到导带,从而产生电子(e -)和空穴(h +)。吸附在其表面的溶解氧捕获电子形成超氧阴离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成羟基自由基使TMB显色。
以下实施例以TMB为底物,评价配体的光催化性能,1 M=1 mol/L。
实施例1
通过对氨基苯甲酸类配体进行光催化氧化TMB(3,3',5,5'-四甲基联苯胺)显色的实验,探究配体的光催化性能。
对15种不同配体(15种配体的结构如图1所示)进行光催化氧化TMB的实验,配体溶液配置:
分别配制2-氨基间苯二甲酸(2-AIA)、2-氨基对苯二甲酸(ATA)、5-氨基间苯二甲酸(5-AIA)、2-羟基对苯二甲酸(HTA)、苯甲酸(BA)、苯胺(PAm)、对苯二甲酸(TPA)、间苯二甲酸(IPA)、邻苯二甲酸(PA)、4-氨基间苯二甲酸(4-AIA)、对氨基苯甲酸(ABA)、2,5-二氨基对苯二甲酸(DTA)、3,5-二氨基苯甲酸(DBA)乙醇和水的混合溶液(乙醇和水的体积比为1:1),4-氨基邻苯二甲酸(APA)的DMF溶液,均苯三甲酸(TMA)水溶液。
筛选配体光催化氧化TMB显色:
将配体溶液加入到50 mM,pH 4.0 HAc-NaAc缓冲溶液中,再加入TMB的DMSO溶液, 以上溶液在微孔板中混合均匀,混合液中配体的浓度为0.15 mM,TMB的浓度为200 mg/L;在365 nm的紫外灯下辐照1 min,辐照度为20 mM/cm 2
对照实验组:避光条件下反应1 min,即无光照组。
空白对照组:指的是不含有配体的HAc-NaAc缓冲溶液。
最后记录显色照片;用紫外可见分光光度计(UV-Vis)进行光谱扫描,记录TMB氧化产物(TMBox)在652 nm的吸光度值。
配体光催化氧化TMB显色的照片如图2所示;由图2可知,在365 nm的紫外灯下光照,其中2-氨基间苯二甲酸(2-AIA)、2-氨基对苯二甲酸(ATA)、5-氨基间苯二甲酸(5-AIA)、2-羟基对苯二甲酸(HTA)能氧化TMB使其变成蓝色,而且2-AIA光催化氧化TMB的能力比常用的合成MOFs的配体ATA强。
实施例2
对这4种配体(2-AIA、ATA、5-AIA、HTA)的浓度和最佳吸收波长进行优化实验。
优化光催化氧化TMB的配体浓度及辐照波长:
在上述实验过程中,使TMB光催化氧化显色的4种配体,优化其终浓度为0μM、5 μM 、10 μM 、20 μM 、50 μM,其他实验条件不变,在365 nm的紫外灯下辐照1 min后记录显色照片及TMBox在652 nm的吸光度值;对比在395 nm的紫外灯下辐照1 min后记录显色照片及TMBox在652 nm的吸光度值。无光照组:避光条件下反应1 min。
对比显色强度,筛选具有最佳光催化活性的配体。
不同浓度的2-AIA、ATA、5-AIA、HTA分别在365 nm和395 nm的紫外灯辐照下,光催化氧化TMB显色的结果如图3所示,不同浓度的2-AIA、ATA、5-AIA、HTA分别在365 nm和395 nm紫外灯辐照下光催化TMB氧化后的TMBox在652 nm的吸光度曲线如图4所示;5 μM的2-AIA、ATA、5-AIA、HTA在365 nm紫外灯辐照下光催化氧化TMB氧化后的TMBox在652 nm的吸光度值对比结果如图5 所示;由图5可以看出,2-AIA配体光催化氧化TMB的性能最佳,其氧化产物TMBox在最大吸收波长652 nm的吸光度较强。
实施例3
优化2-AIA光催化氧化TMB的浓度:
2-AIA具有非常强的光催化氧化TMB的活性,配置2-AIA的终浓度为0μM、1μM、2μM、3μM、5μM、10μM、20 μM的溶液,在365 nm的紫外灯下辐照1 min后记录显色照片及TMBox在652 nm的吸光度值。
浓度为0 μM、1 μM、2 μM、3 μM、5 μM、10 μM、20 μM的 2-AIA 溶液光催化氧化TMB显色效果如图 6(a)所示,氧化产物TMBox在652 nm的吸光度如图 6(b)所示。由图6可知,在较低浓度的2-AIA也具有非常优异的光催化氧化TMB 的性能。
实施例4
探究2-AIA具有光敏性的机理:
分别将不同活性氧物质的抑制剂(单线态氧抑制剂L-色氨酸、羟基自由基抑制剂甘露醇、超氧根阴离子抑制剂超氧化物歧化酶)添加到2-AIA光催化氧化TMB的体系中,添加后,L-色氨酸、甘露醇、超氧化物歧化酶的浓度分别为16.4 mM、2.5 mM、140 U,2-AIA的浓度为1 μM。其他实验条件不变,记录TMBox在652 nm的吸光度值。空白对照组:不添加任何抑制剂的TMB的体系。
加入不同活性氧物质的抑制剂之后,TMBox在652 nm的吸光度值如图7所示,由图7可知,2-AIA在365 nm紫外光照下能够产生单线态氧( 1O 2)及超氧根阴离子(·O 2 -)活性氧物质,因此其具有光敏活性。
实施例5
通过配体交换,将具有较强光催化活性的2-AIA交换到MOF材料中,获得具有强光催化活性的非均相催化剂。
所述非均相催化剂的制备方法:将2-AIA加入到0.1mg /mLUiO-66的DMF溶液中,其中,2-AIA与UiO-66的质量比为1:1,常温搅拌12 h,转速为300 rpm/min,得到的反应物用DMF洗涤数次,直至上清液无2-AIA的紫外吸收特征峰,以10000 rmp/min转速离心后收集固体,干燥12 h得到UiO-66@2-AIA。
实施例6
UiO-66@2-AIA光催化氧化TMB:
称取UiO-66@2-AIA水分散液加入到50 mM,pH 4.0 HAc-NaAc缓冲溶液中,再加入TMB溶液,以上悬浊液在微孔板中混合均匀后(UiO-66@2-AIA的终浓度为60 mg/L,TMB的终浓度为200 mg/L),在365 nm的紫外灯下辐照1 min,辐照度为20 mM/cm 2。离心后记录上清液显色照片;上清液用紫外可见分光光度计(UV-Vis)进行光谱扫描,记录TMB氧化产物(TMBox)在652 nm的吸光度值。
UiO-66@2-AIA光催化氧化TMB的显色照片如图8(a)所示,氧化产物TMBox在652 nm的吸光度结果如图8(b)所示,图8(b)中,空白组指的是:无光照组,其他与实验组一致,均含有UiO-66@2-AIA;UiO-66组指的是:含有UiO-66,不含有UiO-66@2-AIA,其他与实验组条件一致。由图8可以看出,UiO-66@2-AIA具有较高的光催化活性,能够光催化氧化TMB。2-AIA的存在使基本没有光催化活性的UiO-66氧化TMB的性能明显增加。
实施例7
UiO-66@2-AIA光催化氧化1,5-二羟基萘(1,5-DHN)合成胡桃酮:称取UiO-66@2-AIA水分散液加入到乙腈和水的混合溶剂(4:1,V/V)中,加入1,5-DHN;混合液中,UiO-66@2-AIA、1,5-DHN的终浓度分别为60 mg/L、100 μg/mL;300 W氙灯辐照混合液10 min后,制得胡桃酮;记录生成的胡桃酮在415 nm处的紫外吸收特征峰。
胡桃酮在415 nm处的吸光度值如图9所示,图9中,无光照组指的是:与实验组相比,只是缺少光照,其他条件与实验组都一样。
光照组指的是:有光照,但是没有催化剂UiO-66@2-AIA,其他与实验组一样。
实验组(UiO-66@2-AIA+光照组)指的是:既有光照,也有UiO-66@2-AIA。
由图9可知,在较短的辐照时间下,UiO-66@2-AIA能明显催化1,5-DHN得到胡桃酮。因此,以2-AIA为光敏剂用于合成纳米材料进行光催化氧化具有较大的前景。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (10)

  1. 基于氨基苯甲酸类化合物的光催化材料,其特征是,所述材料采用以下步骤制备得到:
    将配体加入到UiO-66的DMF溶液中,配体与UiO-66的质量比为0.2 ~ 1.5,常温搅拌过夜,得到的反应物用DMF洗涤,直至上清液无配体的紫外吸收特征峰,离心后收集固体,干燥得到光催化材料;
    所述配体为2-氨基间苯二甲酸、2-氨基对苯二甲酸、5-氨基间苯二甲酸、2-羟基对苯二甲酸。
  2. 根据权利要求1所述的基于氨基苯甲酸类化合物的光催化材料,其特征是,搅拌时间为2~24 h。
  3. 根据权利要求1所述的基于氨基苯甲酸类化合物的光催化材料,其特征是,搅拌转速为300~1000 rpm/min。
  4. 根据权利要求1所述的基于氨基苯甲酸类化合物的光催化材料,其特征是,离心转速为6000~10000 rmp/min。
  5. 根据权利要求1所述的基于氨基苯甲酸类化合物的光催化材料,其特征是,干燥12~24 h得到光催化材料。
  6. 光催化材料在合成胡桃酮中的应用,其特征是,所述光催化材料为权利要求1-5中任一项所述的光催化材料。
  7. 胡桃酮的合成方法,其特征是,所述光催化材料为权利要求1-5中任一项所述的光催化材料,包括以下步骤:
    (1)取光催化材料的水分散液加入到乙腈和水的混合溶剂中;
    (2)加入1,5-DHN,得到混合液;混合液中,光催化材料与1,5-DHN的质量浓度分别为20~1000 mg/L,50~200 μg/mL;
    (3)采用氙灯辐照,得到胡桃酮。
  8. 根据权利要求7所述的胡桃酮的合成方法,其特征是,氙灯功率为50~300 W。
  9. 根据权利要求7所述的胡桃酮的合成方法,其特征是,乙腈和水的混合溶剂中,乙腈和水的体积比为4:1。
  10. 根据权利要求7所述的胡桃酮的合成方法,其特征是,氙灯辐照时间为1~30 min。
PCT/CN2023/118283 2022-11-18 2023-09-12 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用 WO2024103938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211448041.8A CN115739192B (zh) 2022-11-18 2022-11-18 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用
CN202211448041.8 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024103938A1 true WO2024103938A1 (zh) 2024-05-23

Family

ID=85373427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118283 WO2024103938A1 (zh) 2022-11-18 2023-09-12 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用

Country Status (2)

Country Link
CN (1) CN115739192B (zh)
WO (1) WO2024103938A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814859B (zh) * 2022-11-18 2024-05-14 电子科技大学长三角研究院(湖州) 一种新型光催化剂、制备方法及应用
CN115739192B (zh) * 2022-11-18 2024-05-14 电子科技大学长三角研究院(湖州) 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用
CN116037212A (zh) * 2023-01-12 2023-05-02 成都理工大学 一种用于光催化降解有机磷化合物的2-aia@mof-808复合材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559936A (zh) * 2021-07-30 2021-10-29 陕西科技大学 一种缺陷型UiO-66光催化材料及其制备方法和应用
CN113663731A (zh) * 2021-08-09 2021-11-19 西北大学 一种fl@mof复合光催化剂的制备方法及应用
US20220323931A1 (en) * 2019-08-28 2022-10-13 Korea Research Institute Of Chemical Technology Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
US20220347664A1 (en) * 2021-04-28 2022-11-03 Industry-Academic Cooperation Foundation, Yonsei University Titanium-organic framework photocatalyst for adsorption and decomposition of volatile organic compound, manufacturing method thereof and method for removing volatile organic compound using titanium-organic framework
CN115739192A (zh) * 2022-11-18 2023-03-07 电子科技大学长三角研究院(湖州) 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用
CN115814859A (zh) * 2022-11-18 2023-03-21 电子科技大学长三角研究院(湖州) 一种新型光催化剂、制备方法及应用
CN116037212A (zh) * 2023-01-12 2023-05-02 成都理工大学 一种用于光催化降解有机磷化合物的2-aia@mof-808复合材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813381A (zh) * 2019-10-28 2020-02-21 上海电力大学 复合光催化材料UiO-66@BiOIO3及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220323931A1 (en) * 2019-08-28 2022-10-13 Korea Research Institute Of Chemical Technology Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
US20220347664A1 (en) * 2021-04-28 2022-11-03 Industry-Academic Cooperation Foundation, Yonsei University Titanium-organic framework photocatalyst for adsorption and decomposition of volatile organic compound, manufacturing method thereof and method for removing volatile organic compound using titanium-organic framework
CN113559936A (zh) * 2021-07-30 2021-10-29 陕西科技大学 一种缺陷型UiO-66光催化材料及其制备方法和应用
CN113663731A (zh) * 2021-08-09 2021-11-19 西北大学 一种fl@mof复合光催化剂的制备方法及应用
CN115739192A (zh) * 2022-11-18 2023-03-07 电子科技大学长三角研究院(湖州) 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用
CN115814859A (zh) * 2022-11-18 2023-03-21 电子科技大学长三角研究院(湖州) 一种新型光催化剂、制备方法及应用
CN116037212A (zh) * 2023-01-12 2023-05-02 成都理工大学 一种用于光催化降解有机磷化合物的2-aia@mof-808复合材料

Also Published As

Publication number Publication date
CN115739192B (zh) 2024-05-14
CN115739192A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024103938A1 (zh) 基于氨基苯甲酸类化合物的光催化材料、制备方法及应用
Zhang et al. Porous organic polymers: a promising platform for efficient photocatalysis
WO2024103939A1 (zh) 一种新型光催化剂、制备方法及应用
Lacombe et al. Materials for selective photo-oxygenation vs. photocatalysis: preparation, properties and applications in environmental and health fields
CN109529931B (zh) 一种氧化石墨烯共价固载化金属酞菁催化剂及其制备方法和应用
CN101195094B (zh) 可见光活化的二氧化钛卟啉纳米复合催化剂及其制备方法
CN108855131B (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
Krishnakumar et al. Solar and visible active amino porphyrin/SiO2ZnO for the degradation of naphthol blue black
CN111514937A (zh) 一种卟啉基金属有机骨架材料敏化氧化物型催化剂的制备方法
CN114904582B (zh) 具有灭菌性能的锆卟啉基MOF/Ag2O-Ag光催化复合材料及其制备方法和应用
CN115845888B (zh) PbBiO2Br/Ti3C2复合催化剂的制备方法及其在光催化降解甲基橙中的应用
CN106391014A (zh) 二氧化钛/氧化铜复合氧化物纳米材料的制备方法
CN112774706A (zh) 一种碳酸氧铋/海泡石复合光催化剂及其制备方法
CN112774718A (zh) 一种氧化亚铜/管状类石墨相氮化碳复合催化剂及其制备方法和应用
CN116603558A (zh) 一种荸荠状钨酸锑复合材料的制备方法及其应用
CN104475159B (zh) 1‑3代芳醚树枝状酞菁配合物负载SiO2可见光光催化剂的制备方法及其应用
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN111604067A (zh) 卤氧化硅铋材料及其制备方法与应用
CN111298759A (zh) 一种pn型半导体-磁性多孔碳光催化复合吸附材料及其制法
CN113578394A (zh) 一种无机/有机双异质结可见光催化复合材料及其制备方法和应用
KR20220095952A (ko) 구리산화텅스텐 콜로이드를 포함하는 가시광 응답형 광촉매의 제조방법 및 이를 이용한 가시광 응답형 광촉매
CN111672522A (zh) 一种NYF-Ti二元复合光催化剂及其制备方法
CN111790425A (zh) 石墨相氮化碳改性的铝镓共掺杂氧化锌复合材料及其应用
CN113976152B (zh) 桥接型TiO2-mCm/TA/CN异质结光催化剂及其制备和应用
KR100682033B1 (ko) 물분해 수소 생성용 광촉매 복합체 및 이를 포함하는물분해 수소 생성용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890375

Country of ref document: EP

Kind code of ref document: A1