WO2024098620A1 - 含锂溶液联产碳酸锂和氢氧化锂的方法 - Google Patents

含锂溶液联产碳酸锂和氢氧化锂的方法 Download PDF

Info

Publication number
WO2024098620A1
WO2024098620A1 PCT/CN2023/083442 CN2023083442W WO2024098620A1 WO 2024098620 A1 WO2024098620 A1 WO 2024098620A1 CN 2023083442 W CN2023083442 W CN 2023083442W WO 2024098620 A1 WO2024098620 A1 WO 2024098620A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
reaction
containing solution
solution
Prior art date
Application number
PCT/CN2023/083442
Other languages
English (en)
French (fr)
Inventor
张金超
刘少葵
刘勇奇
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024098620A1 publication Critical patent/WO2024098620A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • Lithium carbonate and lithium hydroxide are important compounds of lithium salts.
  • Battery-grade lithium carbonate is widely used in the preparation of lithium iron phosphate positive electrode materials
  • battery-grade lithium hydroxide is used in the preparation of nickel-cobalt-manganese-oxide lithium ternary materials. Since lithium iron phosphate and ternary precursors have their own advantages and disadvantages, and their market share is constantly changing, the prices of their corresponding raw materials, battery-grade lithium carbonate and battery-grade lithium hydroxide, fluctuate accordingly. Therefore, it is of great market value to invent a process that can co-produce battery-grade lithium carbonate and battery-grade lithium hydroxide and can flexibly adjust the production capacity of lithium carbonate and lithium hydroxide according to market demand.
  • the present invention is achieved in that:
  • the present invention provides a method for co-producing lithium carbonate and lithium hydroxide from a lithium-containing solution, comprising the following steps:
  • Utilization of lithium precipitation mother liquor Acid is added to the lithium precipitation mother liquor for decarbonization, and the decarbonized lithium precipitation mother liquor is combined with the lithium-containing solution for reuse.
  • the lithium content in the lithium-containing solution is 20-25 g/L;
  • the lithium-containing solution is evaporated and concentrated to a lithium content of 20-25 g/L.
  • the water-soluble carbonate is sodium carbonate or potassium carbonate
  • the molar ratio of the amount of water-soluble carbonate to the Li content in the lithium-containing solution is 0.5-0.8:1;
  • the molar ratio of the amount of water-soluble carbonate to the Li content in the lithium-containing solution is 0.5-0.6:1;
  • the water-soluble carbonate is added in the form of a solution
  • the mass fraction of sodium carbonate in the sodium carbonate solution is 20%-30%;
  • the lithium precipitation step is carried out at 60-90° C. for 30-120 min;
  • the reaction temperature of the lithium precipitation step is 80-90°C and the reaction time is 90-120min;
  • the lithium content in the lithium precipitation mother solution is lower than 3 g/L.
  • the molar ratio of calcium hydroxide to lithium carbonate in the crude lithium carbonate is 1.0-1.5:1;
  • the molar ratio of calcium hydroxide to lithium carbonate is 1.1-1.2:1;
  • the reaction temperature is 50-80°C and the reaction time is 30-120min;
  • the reaction temperature is 60-80°C and the reaction time is 60-90min;
  • the reaction solution is stirred at a speed of 400-600 rpm;
  • calcium in the reaction solution is first removed by resin before evaporation and crystallization.
  • the crude lithium carbonate is first slurried with pure water and then subjected to a causticizing reaction
  • the crude lithium carbonate and pure water are first slurried in a mass ratio of 1:3-5;
  • calcium hydroxide is mixed with crude lithium carbonate in the form of a calcium hydroxide solution
  • the crude lithium carbonate is washed with pure water
  • the mass ratio of pure water to crude lithium carbonate is 5-10.
  • the acid in the lithium precipitation mother liquor utilization step is sulfuric acid
  • the lithium-containing solution is evaporated and concentrated to obtain sodium sulfate decahydrate as a byproduct;
  • the reaction temperature of the decarburization step is 60-70°C;
  • the lithium precipitation mother liquor after decarbonization The content is less than 0.5g/L.
  • a portion of the crude lithium carbonate solid enters a causticizing step, and another portion is purified, and the purification step includes a second pulping, carbonization and high-temperature pyrolysis to obtain purified lithium carbonate.
  • a second slurry is obtained, and the mass concentration of lithium in the second slurry is 6.5-9.5 g/L;
  • the crystallization mother liquor obtained after the evaporative crystallization is transferred to the second slurry for reuse;
  • the mass concentration of lithium in the second slurry is 8-9 g/L.
  • the carbonization is to introduce CO 2 into the second slurry to obtain a lithium bicarbonate solution
  • the pressure of CO 2 introduced in the carbonization step is 0.2-0.3Mpa;
  • the CO2 released in the decarbonization step is passed into the second slurry
  • the reaction temperature of the carbonization step is 15-40°C and the reaction time is 30-120min;
  • the reaction temperature of the carbonization step is 25-30°C and the reaction time is 60-90min;
  • the reaction solution is stirred in the carbonization step at a speed of 400-600 rpm;
  • the reaction is filtered after the carbonization step to obtain a lithium bicarbonate solution.
  • the high temperature pyrolysis is to heat the lithium bicarbonate solution to 70-95° C., react for 30-120 min, and filter to obtain purified lithium carbonate;
  • the temperature is 85-95°C and the reaction time is 60-90min;
  • the reaction solution is stirred at a stirring speed of 400-600 rpm;
  • purified lithium carbonate and high-temperature pyrolysis mother liquor are obtained by filtration, and the high-temperature pyrolysis mother liquor is transferred to the second slurry for reuse;
  • the filtered solid is washed with water to remove impurities to obtain purified lithium carbonate;
  • the CO2 released in the high-temperature pyrolysis step is collected and passed into the second slurry for reuse.
  • the present application can realize the co-production of two products, lithium carbonate and lithium hydroxide, from a lithium-containing solution, and can flexibly adjust the output of the two products according to market price fluctuations to maximize profits.
  • FIG1 is a flow chart of the present application.
  • This embodiment provides a method for co-producing lithium carbonate and lithium hydroxide from a lithium-containing solution, comprising the following steps:
  • Lithium precipitation reacting a lithium-containing solution with a water-soluble carbonate, filtering the reaction solution to obtain a crude lithium carbonate solid and a lithium precipitation mother liquor;
  • Utilization of lithium precipitation mother liquor Acid is added to the lithium precipitation mother liquor for decarbonization, and the decarbonized lithium precipitation mother liquor is combined with the lithium-containing solution for reuse.
  • the present application adopts a high-temperature lithium precipitation method and a causticization method to co-produce two products, lithium carbonate and lithium hydroxide, and can be used for the production of battery-grade lithium carbonate and battery-grade lithium hydroxide.
  • the distribution of crude lithium carbonate can be flexibly adjusted according to the fluctuations in the market prices of lithium carbonate and lithium hydroxide to maximize profits; the mass of crude lithium carbonate required for the carbonization reaction can also be calculated based on the CO2 production of the decarbonization reaction, the lithium content in the crystallization mother liquor and the high-temperature pyrolysis mother liquor to minimize costs.
  • Lithium precipitation is to add excess sodium carbonate solution to the concentrated mother liquor.
  • White precipitate namely lithium carbonate, is continuously produced in the solution.
  • Crude lithium carbonate is obtained by filtration.
  • the high-temperature lithium precipitation method has the advantages of high conversion rate and fast reaction speed.
  • the reaction formula is as follows:
  • Lithium hydroxide is produced by causticizing lithium carbonate and calcium hydroxide solution at high temperature, filtering to obtain lithium hydroxide solution.
  • the reaction solution can be impurity-removed before evaporation and crystallization.
  • the reaction formula is as follows: Ca(OH) 2 +Li 2 CO 3 ⁇ LiOH+CaCO 3 ⁇
  • the lithium content in the lithium-containing solution is 20-25 g/L;
  • the lithium-containing solution is evaporated and concentrated to a lithium content of 20-25 g/L.
  • the lithium-containing solution in the present application can be obtained by recovering lithium from battery materials, or by extracting lithium from lithium-containing ores such as spodumene.
  • the lithium content in the solution is relatively high, which is conducive to the subsequent precipitation of lithium carbonate; if the lithium content is too high, the energy consumption for concentration is large, and the solubility of impurities in the solution is also large, which makes the impurity content in the crude lithium carbonate relatively high, which is not conducive to the subsequent purification of the crude lithium carbonate.
  • the solution is evaporated and concentrated before lithium precipitation.
  • the lithium precipitation mother liquor is decarbonized to avoid clogging of the equipment when the lithium precipitation mother liquor is evaporated and concentrated after being combined with the lithium-containing solution.
  • the water-soluble carbonate is sodium carbonate or potassium carbonate, and potassium sulfate or sodium sulfate can be collected accordingly;
  • the molar ratio of the amount of water-soluble carbonate to the Li content in the lithium-containing solution is 0.5-0.8:1;
  • the molar ratio of the amount of water-soluble carbonate to the Li content in the lithium-containing solution is 0.5-0.6:1, so that the lithium is fully converted into lithium carbonate;
  • the water-soluble carbonate is added in the form of a solution to increase the lithium precipitation reaction rate.
  • the solution can be added dropwise to the lithium-containing solution to prevent the lithium carbonate crystals from being generated too quickly, causing impurities to enter the lithium carbonate lattice, thereby facilitating the improvement of product purity;
  • the mass fraction of sodium carbonate in the sodium carbonate solution is 20%-30%, which is conducive to the subsequent precipitation of lithium carbonate;
  • the lithium precipitation step is carried out at 60-90° C. for 30-120 min;
  • the reaction temperature of the lithium precipitation step is 80-90°C and the reaction time is 90-120min;
  • the reaction solution is stirred in the lithium precipitation step at a stirring speed of 400-600 rpm;
  • the lithium content in the lithium precipitation mother solution is lower than 3 g/L.
  • the molar ratio of calcium hydroxide to lithium carbonate in crude lithium carbonate is 1.0-1.5:1, and calcium hydroxide is in excess, so that the lithium carbonate can be fully converted into lithium hydroxide;
  • the molar ratio of calcium hydroxide to lithium carbonate is 1.1-1.2:1;
  • the reaction temperature is 50-80°C and the reaction time is 30-120min;
  • the reaction temperature is 60-80°C and the reaction time is 60-90min;
  • the reaction solution is stirred at a speed of 400-600 rpm;
  • calcium in the reaction solution is first removed by resin before evaporation and crystallization.
  • High-purity lithium carbonate is reacted with calcium hydroxide aqueous solution, and high-purity lithium hydroxide solution is obtained after separation and impurity removal. Battery-grade lithium hydroxide solid is obtained after evaporation and crystallization. This method has the advantage of high product purity.
  • the crude lithium carbonate and pure water are first slurried and then subjected to causticization reaction;
  • the crude lithium carbonate and pure water are first slurried in a mass ratio of 1:3-5;
  • calcium hydroxide is mixed with crude lithium carbonate in the form of a calcium hydroxide solution
  • the crude lithium carbonate is washed with pure water
  • the mass ratio of pure water to crude lithium carbonate is 5-10.
  • part of the crude lithium carbonate is slurried with pure water and reacted with calcium hydroxide solution at high temperature to reduce the impurity content in the product.
  • the reaction of crude lithium carbonate with calcium hydroxide solution is a homogeneous reaction that is beneficial to increasing the reaction rate.
  • the acid in the lithium precipitation mother liquor utilization step is sulfuric acid, which is conducive to obtaining the by-product sodium sulfate decahydrate;
  • the lithium-containing solution is evaporated and concentrated to obtain sodium sulfate decahydrate as a byproduct;
  • the reaction temperature of the decarburization step is 60-70°C, which is conducive to accelerating the decarburization speed of the solution;
  • the lithium precipitation mother liquor after decarbonization The content is less than 0.5g/L. Due to the excessive amount of sodium carbonate solution in the above lithium precipitation reaction, the lithium precipitation mother liquor contains a large amount of Dilute acid needs to be added to remove it, generating a large amount of CO 2 .
  • the reaction formula is as follows:
  • the present application can also calculate the mass of crude lithium carbonate required for the carbonization reaction based on the CO2 production of the decarbonization reaction, the lithium content in the crystallization mother liquor and the high-temperature pyrolysis mother liquor, so as to minimize the cost.
  • part of the crude lithium carbonate solid enters the causticizing step, and the other part is purified, and the purification step includes a second pulping, carbonization and high-temperature pyrolysis to obtain purified lithium carbonate.
  • the main methods for producing battery-grade lithium carbonate include high-temperature lithium precipitation method and carbonization decomposition method.
  • the high-temperature lithium precipitation method has the advantages of high conversion rate and fast reaction speed, but the total mass fraction of sodium and sulfur in the product is higher than 1%, and there is a problem of excessive sodium impurity content in the product;
  • the carbonization decomposition method can decompose lithium bicarbonate by heating to produce battery-grade lithium carbonate, and the total mass fraction of sodium and sulfur in the product is lower than 0.2%.
  • This method has the advantages of simple operation and high product purity. This application creatively combines the two to obtain high-purity lithium carbonate.
  • a second slurry is obtained, and the mass concentration of lithium in the second slurry is 6.5-9.5 g/L;
  • the crystallization mother liquor obtained after the evaporative crystallization is transferred to the second slurry for reuse;
  • the mass concentration of lithium in the second slurry is 8-9 g/L g/L.
  • the carbonization is to introduce CO 2 into the second slurry to obtain a lithium bicarbonate solution
  • the pressure of CO 2 introduced in the carbonization step is 0.2-0.3Mpa;
  • the CO2 released in the decarbonization step is passed into the second slurry
  • the reaction temperature of the carbonization step is 15-40°C and the reaction time is 30-120min;
  • the reaction temperature of the carbonization step is 25-30°C and the reaction time is 60-90min;
  • the reaction solution is stirred in the carbonization step at a speed of 400-600 rpm;
  • the reaction is filtered after the carbonization step to obtain a lithium bicarbonate solution.
  • the reaction formula is as follows: Li 2 CO 3 + CO 2 + H 2 O ⁇ 2LiHCO 3
  • the high temperature pyrolysis is to heat the lithium bicarbonate solution to 70-95° C., react for 30-120 min, and filter to obtain purified lithium carbonate;
  • the temperature is 85-95°C and the reaction time is 60-90min;
  • the reaction solution is stirred at a stirring speed of 400-600 rpm;
  • purified lithium carbonate and high-temperature pyrolysis mother liquor are obtained by filtration, and the high-temperature pyrolysis mother liquor is transferred to the second slurry for reuse;
  • the filtered solid is washed with water to remove impurities to obtain purified lithium carbonate;
  • the CO2 released in the high-temperature pyrolysis step is collected and passed into the second slurry for reuse.
  • the filtered and impurity-removed lithium bicarbonate solution is heated and decomposed to obtain high-purity lithium carbonate, pyrolysis mother liquor and CO 2 .
  • the pyrolysis mother liquor is recycled to make pulp with crude lithium carbonate, and CO 2 is recycled to the front-end carbonization reaction.
  • the reaction formula is as follows:
  • the specific flow chart of the method for co-producing lithium carbonate and lithium hydroxide from a lithium-containing solution of the present application is shown in Figure 1.
  • the lithium-containing solution is evaporated and concentrated to obtain a high-lithium concentrated mother liquor
  • a certain amount of sodium carbonate solution is added to the concentrated mother liquor for high-temperature lithium precipitation reaction
  • crude lithium carbonate precipitate and lithium precipitation mother liquor are obtained by filtration.
  • the lithium precipitation mother liquor is acid-decarbonized to obtain a large amount of CO2 gas and a lithium-containing mother liquor, wherein the CO2 is used for subsequent carbonization reaction to achieve the recycling of carbon resources, and the lithium-containing mother liquor re-enters the evaporation system for concentration to achieve closed-loop recovery of lithium resources and obtain sodium sulfate decahydrate as a by-product; a part of the crude lithium carbonate obtained from high-temperature lithium precipitation is subjected to causticization reaction to prepare battery-grade lithium hydroxide, and a part is subjected to carbonization and high-temperature pyrolysis reaction to prepare battery-grade lithium carbonate, and at the same time, the crystallization mother liquor of the lithium hydroxide solution and the high-temperature pyrolysis mother liquor are returned for crude lithium carbonate pulping, thereby saving pure water consumption and achieving the recycling of lithium resources.
  • the embodiment of the present invention provides a method for co-producing lithium carbonate and lithium hydroxide with a lithium-containing solution, and specifically provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide with a lithium-containing solution, and the steps are as follows:
  • a certain amount of concentrated lithium-containing mother liquor is taken, wherein the lithium content is 21.3 g/L, and a sodium carbonate solution with a concentration of 30 wt% is added dropwise to the lithium-containing mother liquor, wherein the molar ratio of the amount of sodium carbonate used to the Li content in the solution is between 0.6:1, and the mixture is stirred at 85°C and 400 rpm for 120 min.
  • a crude lithium carbonate solid is obtained, and the lithium-precipitated mother liquor enters a decarbonization reaction.
  • the lithium-precipitated mother liquor Contains The amount is 15g/L;
  • the clarified lithium bicarbonate solution obtained above is heated to 90°C, stirred at 400 rpm for 90 minutes, filtered to obtain a high-purity lithium carbonate precipitate, and then washed and dried to obtain a battery-grade lithium carbonate product.
  • the CO2 gas generated during the reaction is collected and recycled to the carbonization reaction.
  • the filtered high-temperature pyrolysis mother liquor is collected and used for slurrying of carbonization reaction raw materials. At this time, the lithium content in the high-temperature pyrolysis mother liquor is less than 3 g/L.
  • step (1) sodium carbonate is used for high temperature lithium precipitation reaction:
  • c1 is the mass concentration of Li in the lithium-containing solution
  • c2 is the mass concentration of Li in the filtrate after the high-temperature lithium precipitation reaction
  • V1 is the volume of the lithium-containing solution
  • V2 is the volume of the filtrate after the high-temperature lithium precipitation reaction.
  • c 3 is the mass concentration of Li in the crude lithium carbonate slurry
  • c 4 is the mass concentration of Li in the filtrate after the high-temperature pyrolysis reaction
  • V 3 is the volume of the crude lithium carbonate slurry
  • V 4 is the volume of the filtrate after the high-temperature pyrolysis reaction.
  • c5 is the mass concentration of Li in the slurry after pure water slurrying of crude lithium carbonate
  • c6 is the mass concentration of Li in the filtrate after causticizing reaction
  • V5 is the volume of the slurry after pure water slurrying of crude lithium carbonate
  • V6 is the volume of the filtrate after causticizing reaction.
  • c1 is the mass concentration of Li in the lithium-containing solution
  • c7 is the mass concentration of Li in the crystallization mother liquor
  • c8 is the mass concentration of Li in the high-temperature pyrolysis mother liquor
  • V1 is the volume of the lithium-containing solution
  • V7 is the volume of the crystallization mother liquor
  • V8 is the volume of the high-temperature pyrolysis mother liquor
  • ⁇ 1 is the mass proportion of lithium in the calcium carbonate slag after the causticizing reaction
  • ⁇ 2 is the mass proportion of lithium in the insoluble impurity slag after the carbonization reaction
  • m1 is the mass of the calcium carbonate slag after the causticizing reaction
  • m2 is the mass of the insoluble impurities after the carbonization reaction.
  • the volume of all reaction solutions is 1L, that is, m1 is the mass of CO2 produced by the decarbonization reaction of 1L solution, m2 is the mass of CO2 produced by the high-temperature thermal decomposition reaction of 1L solution, and m3 is the mass of CO2 required for the carbonization reaction of 1L solution.
  • Examples 2-6 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the reaction temperatures for high-temperature lithium precipitation with sodium carbonate in step (1) are 50°C, 60°C, 70°C, 80°C and 90°C, respectively.
  • Examples 7-9 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions.
  • the only difference from Example 1 is that the high-temperature lithium precipitation reaction time in step (1) is 30 min, 60 min, and 90 min, respectively. Considering production efficiency, the reaction time is not further extended.
  • Examples 10-12 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the molar ratio of the amount of sodium carbonate used in step (1) to the Li content in the solution is 0.5:1, 0.7:1 and 0.8:1, respectively.
  • Examples 13-15 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the carbonization reaction times in step (4) are 30 min, 90 min, and 120 min, respectively.
  • Examples 16-18 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the carbonization reaction temperatures in step (4) are 40°C, 30°C and 20°C, respectively.
  • Examples 19-21 provide a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution, which differs from Example 1 only in that the theoretical mass concentration of lithium in the slurry in step (4) is 7.5 g/L, 6.5 g/L and 9.5 g/L, respectively.
  • Examples 22-25 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the high-temperature pyrolysis reaction time in step (5) is 60 min, 70 min, 80 min and 95 min, respectively.
  • Examples 26-28 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the causticizing reaction time in step (3) is 30 min, 90 min, and 120 min, respectively.
  • Examples 29-32 provide methods for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solutions, which differ from Example 1 only in that the causticizing reaction temperatures in step (3) are 50°C, 60°C, 80°C and 90°C, respectively.
  • Examples 33-34 provide a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution, which differs from Example 1 only in that the amount of calcium hydroxide added in step (3) is 1 times and 1.1 times the theoretical amount, respectively.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution, which differs from Example 1 only in that in step (3), the crystallization mother liquor is not returned to the pulping but is directly discharged.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution, which differs from Example 1 only in that the high-temperature pyrolysis mother liquor in step (5) is not returned to pulping but is directly discharged.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution.
  • the only difference from Example 1 is that the crystallization mother liquor in step (3) and the high-temperature pyrolysis mother liquor in step (5) are not returned to pulping but are directly discharged.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution.
  • the only difference from Example 1 is that the CO2 produced by the carbonization reaction in step (2) is not collected but directly discharged.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution.
  • the only difference from Example 1 is that the CO2 produced by the high-temperature pyrolysis reaction in step (5) is not collected but directly discharged.
  • This comparative example provides a method for co-producing battery-grade lithium carbonate and battery-grade lithium hydroxide from a lithium-containing solution.
  • the only difference from Example 1 is that the CO2 produced by the carbonization reaction in step (2) and the high-temperature pyrolysis reaction in step (5) is not collected but directly discharged.
  • This technology can realize the co-production of battery-grade lithium carbonate and battery-grade lithium hydroxide from lithium-containing solution, and can flexibly adjust the output of the two products according to market price fluctuations to maximize profits; it can also determine the quality of crude lithium carbonate required for pulping according to the output of crystallization mother liquor and high-temperature pyrolysis mother liquor in the process, reduce the amount of pure water required for pulping, and minimize costs.
  • the present invention utilizes lithium-containing crystallization mother liquor, high-temperature pyrolysis mother liquor and crude lithium carbonate to prepare pulp, thereby reducing the amount of pure water used and realizing the recycling of lithium resources, greatly improving the lithium recovery rate of the entire process.
  • This process collects CO 2 produced in the decarbonization reaction and high-temperature pyrolysis reaction and uses it in the carbonization reaction, thereby avoiding waste gas emissions and realizing the recycling of carbon resources, greatly saving production costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了含锂溶液联产碳酸锂和氢氧化锂的方法,包括如下步骤:沉锂:将含锂溶液与水溶性碳酸盐进行反应后,对反应液过滤后得到粗碳酸锂固体和沉锂母液;苛化:将粗碳酸锂与氢氧化钙在液相中进行反应后,对反应液进行除杂、蒸发结晶,得到氢氧化锂固体;沉锂母液利用:向沉锂母液中加酸进行脱碳,脱碳后的沉锂母液与含锂溶液合并再利用。本申请可以实现从含锂溶液中联产碳酸锂、氢氧化锂两种产品,并且可以根据市场价格波动灵活调配两种产品产量,实现利益最大化。

Description

含锂溶液联产碳酸锂和氢氧化锂的方法 技术领域
本发明涉及锂盐制备技术领域,具体而言,涉及含锂溶液联产碳酸锂和氢氧化锂的方法。
背景技术
碳酸锂、氢氧化锂作为锂盐的重要化合物,其中电池级碳酸锂广泛用于制备磷酸铁锂正极材料,电池级氢氧化锂则被应用在镍钴锰酸锂三元材料制备中。由于磷酸铁锂和三元前驱体性能各有优劣,市场份额不断变化,导致其相应原材料电池级碳酸锂、电池级氢氧化锂价格随之波动。因此,发明一种能够联产电池级碳酸锂、电池级氢氧化锂且能够根据市场需求灵活调整碳酸锂和氢氧化锂产能的工艺,具有很大市场价值。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供含锂溶液联产碳酸锂和氢氧化锂的方法,解决现有联产碳酸锂和氢氧化锂方法不能够灵活调整碳酸锂和氢氧化锂产能的问题。
本发明是这样实现的:
第一方面,本发明提供一种含锂溶液联产碳酸锂和氢氧化锂的方法,包括如下步骤:
沉锂:将含锂溶液与水溶性碳酸盐进行反应后,对反应液过滤后得到粗碳酸锂固体和沉锂母液;
苛化:将部分粗碳酸锂与氢氧化钙在液相中进行反应后,对反应液进行蒸发结晶,得到氢氧化锂固体;
沉锂母液利用:向沉锂母液中加酸进行脱碳,脱碳后的沉锂母液与含锂溶液合并再利用。
在可选的实施方式中,所述含锂溶液中锂含量为20-25g/L;
优选地,当含锂溶液中锂含量低于20g/L时,对含锂溶液进行蒸发浓缩至锂含量为20-25g/L。
在可选的实施方式中,所述沉锂步骤中,
水溶性碳酸盐为碳酸钠或碳酸钾;
优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.8:1;
优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.6:1;
优选地,所述沉锂步骤中水溶性碳酸盐以溶液的形式加入;
优选地,所述碳酸钠溶液中碳酸钠质量分数为20%-30%;
优选地,所述沉锂步骤在60-90℃反应30-120min;
优选地,所述沉锂步骤反应温度80-90℃,反应时间90-120min;
优选地,所述沉锂步骤对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述沉锂母液中锂含量低于3g/L。
在可选的实施方式中,所述苛化步骤中,氢氧化钙与粗碳酸锂中碳酸锂的摩尔比为1.0-1.5:1;
优选地,所述苛化步骤中,氢氧化钙与碳酸锂的摩尔比为1.1-1.2:1;
优选地,所述苛化步骤中,反应温度为50-80℃,反应时间为30-120min;
优选地,所述苛化步骤中,反应温度为60-80℃,反应时间为60-90min;
优选地,所述苛化步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述苛化步骤中,蒸发结晶前,先用树脂去除反应液中的钙。
在可选的实施方式中,粗碳酸锂与纯水进行第一制浆后再进行苛化反应;
优选地,粗碳酸锂与纯水按质量比为1:3-5进行第一制浆;
优选地,所述苛化步骤中,氢氧化钙以氢氧化钙溶液的形式与粗碳酸锂混合;
优选地,所述苛化步骤前,先用纯水对粗碳酸锂进行洗涤;
优选地,用纯水对粗碳酸锂进行洗涤步骤中,纯水与粗碳酸锂质量比为5-10。
在可选的实施方式中,所述沉锂母液利用步骤中,向沉锂母液中加酸直至溶液中无气泡产生:
优选地,所述沉锂母液利用步骤中酸为硫酸;
优选地,对含锂溶液进行蒸发浓缩得到副产品十水硫酸钠;
优选地,所述脱碳步骤的反应温度为60-70℃;
优选地,所述脱碳后的沉锂母液中含量低于0.5g/L。
在可选的实施方式中,所述粗碳酸锂固体一部分进入苛化步骤,另一部分进行提纯,所述提纯步骤包括第二制浆、碳化和高温热解,得到纯化的碳酸锂。
在可选的实施方式中,所述第二制浆结束后得到第二浆液,所述第二浆液中锂的质量浓度为6.5-9.5g/L;
优选地,所述蒸发结晶后得到的结晶母液转移至第二浆液中再利用;
优选地,所述第二浆液中锂的质量浓度为8-9g/L。
在可选的实施方式中,所述碳化是向第二浆液中通入CO2得到碳酸氢锂溶液;
优选地,所述碳化步骤中通入CO2的压力为0.2-0.3Mpa;
优选地,所述脱碳步骤释放的CO2通入第二浆液中;
优选地,所述碳化步骤的反应温度为15-40℃,反应时间为30-120min;
优选地,所述碳化步骤的反应温度为25-30℃,反应时间为60-90min;
优选地,所述碳化步骤对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述碳化步骤后对反应进行过滤,得到碳酸氢锂溶液。
在可选的实施方式中,所述高温热解是将所述碳酸氢锂溶液加热至70-95℃,反应时间30-120min,过滤得到纯化的碳酸锂;
优选地,所述高温热解步骤中,温度为85-95℃,反应时间在60-90min;
优选地,所述高温热解步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述高温热解步骤中,过滤得到纯化的碳酸锂和高温热解母液,所述高温热解母液转移至第二浆液中再利用;
优选地,高温热解步骤中,对过滤得到的固体进行水洗除杂,得到纯化的碳酸锂;
优选地,所述高温热解步骤中释放的CO2收集并通入第二浆液中再利用。
本发明具有以下有益效果:
本申请可以实现从含锂溶液中联产碳酸锂、氢氧化锂两种产品,并且可以根据市场价格波动灵活调配两种产品产量,实现利益最大化。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方 案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本实施例提供一种含锂溶液联产碳酸锂和氢氧化锂的方法,包括如下步骤:
沉锂:将含锂溶液与水溶性碳酸盐进行反应后,对反应液过滤后得到粗碳酸锂固体和沉锂母液;
苛化:将部分粗碳酸锂与氢氧化钙在液相中进行反应后,对反应液进行蒸发结晶,得到氢氧化锂固体;
沉锂母液利用:向沉锂母液中加酸进行脱碳,脱碳后的沉锂母液与含锂溶液合并再利用。
本申请采用高温沉锂法和苛化法联产碳酸锂和氢氧化锂两种产品,且可以用于电池级碳酸锂和电池级氢氧化锂的生产,其中粗碳酸锂的分配可根据碳酸锂、氢氧化锂市场价格的波动来灵活调配,实现利益最大化;也可根据脱碳反应的CO2产量、结晶母液和高温热解母液中的锂含量来计算碳化反应所需补充粗碳酸锂质量,实现成本最小化。
沉锂是向浓缩母液中滴加过量碳酸钠溶液,溶液中不断有白色沉淀产生即碳酸锂产生,过滤得到粗碳酸锂,高温沉锂法具备转化率高、反应速度快等优点,反应式如下:
氢氧化锂是将碳酸锂与氢氧化钙溶液在高温下进行苛化反应,过滤得到氢氧化锂溶液,对反应液进行蒸发结晶前可进行除杂,反应式如下:
Ca(OH)2+Li2CO3→LiOH+CaCO3
在本申请的其他实施例中,所述含锂溶液中锂含量为20-25g/L;
优选地,当含锂溶液中锂含量低于20g/L时,对含锂溶液进行蒸发浓缩至锂含量为20-25g/L。
本申请中的含锂溶液可以为对电池材料中的锂进行回收得到的,也可以是对锂辉石等含锂矿石中的锂进行提取得到的。
溶液中的锂含量相对较高,有利于后续碳酸锂的析出;锂含量过高,浓缩的能耗大,且溶液中杂质的溶度也大,使得粗碳酸锂中杂质含量相对较高,不利于后续对粗碳酸锂的提纯。
当含锂溶液与沉锂母液合并后溶液中锂含量过低时,对溶液进行蒸发浓缩后再进行沉锂,本申请中对沉锂母液进行脱碳,可以避免沉锂母液与含锂溶液合并后进行蒸发浓缩时堵塞设备。
在本申请的其他实施例中,所述沉锂步骤中,
水溶性碳酸盐为碳酸钠或碳酸钾,对应的可以收集硫酸钾或硫酸钠;
优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.8:1;
优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.6:1,使锂被充分转化成碳酸锂;
优选地,所述沉锂步骤中水溶性碳酸盐以溶液的形式加入,提高沉锂反应速率,溶液可以滴加至含锂溶液中,防止碳酸锂晶粒生成太快,导致杂质进入碳酸锂晶格中,便于提高产品纯度;
优选地,所述碳酸钠溶液中碳酸钠质量分数为20%-30%,有利于后续碳酸锂的析出;
优选地,所述沉锂步骤在60-90℃反应30-120min;
优选地,所述沉锂步骤反应温度80-90℃,反应时间90-120min;
优选地,所述沉锂步骤对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述沉锂母液中锂含量低于3g/L。
在本申请的其他实施例中,所述苛化步骤中,氢氧化钙与粗碳酸锂中碳酸锂的摩尔比为1.0-1.5:1,氢氧化钙过量,使得碳酸锂能够被充分转化成氢氧化锂;
优选地,所述苛化步骤中,氢氧化钙与碳酸锂的摩尔比为1.1-1.2:1;
优选地,所述苛化步骤中,反应温度为50-80℃,反应时间为30-120min;
优选地,所述苛化步骤中,反应温度为60-80℃,反应时间为60-90min;
优选地,所述苛化步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述苛化步骤中,蒸发结晶前,先用树脂去除反应液中的钙。
将高纯度碳酸锂与氢氧化钙水溶液反应,经过分离除杂后得到高纯度氢氧化锂溶液,经蒸发结晶后得到电池级氢氧化锂固体,此法具备产品纯度高的优点。
在本申请的其他实施例中,粗碳酸锂与纯水进行第一制浆后再进行苛化反应;
优选地,粗碳酸锂与纯水按质量比为1:3-5进行第一制浆;
优选地,所述苛化步骤中,氢氧化钙以氢氧化钙溶液的形式与粗碳酸锂混合;
优选地,所述苛化步骤前,先用纯水对粗碳酸锂进行洗涤;
优选地,用纯水对粗碳酸锂进行洗涤步骤中,纯水与粗碳酸锂质量比为5-10。
部分粗碳酸锂经水洗降低Na、S等杂质含量后,再用纯水制浆与氢氧化钙溶液在高温下进行苛化反应,降低产品中的杂质含量。粗碳酸锂与氢氧化钙溶液反应,均相反应有利于提高反应速率。
在本申请的其他实施例中,所述沉锂母液利用步骤中,向沉锂母液中加酸直至溶液中无气泡产生:
优选地,所述沉锂母液利用步骤中酸为硫酸,有利于得到副产品十水硫酸钠;
优选地,对含锂溶液进行蒸发浓缩得到副产品十水硫酸钠;
优选地,所述脱碳步骤的反应温度为60-70℃,有利于加快溶液脱碳速度;
优选地,所述脱碳后的沉锂母液中含量低于0.5g/L。因上述沉锂反应中碳酸钠溶液过量,沉锂母液中含有大量需添加稀酸脱除,生成大量CO2,反应式如下:
本申请也可根据脱碳反应的CO2产量、结晶母液和高温热解母液中的锂含量来计算碳化反应所需补充粗碳酸锂质量,实现成本最小化。
在本申请的其他实施例中,所述粗碳酸锂固体一部分进入苛化步骤,另一部分进行提纯,所述提纯步骤包括第二制浆、碳化和高温热解,得到纯化的碳酸锂。
目前电池级碳酸锂生产方法主要有高温沉锂法、碳化分解法等。其中高温沉锂法具备转化率高、反应速度快等优点,但产品钠、硫总质量分数高于1%,存在产品中钠杂质含量过高的问题;碳化分解法可通过加热的方式分解碳酸氢锂生成电池级碳酸锂,产品钠、硫总质量分数低于0.2%,此法具有操作简单、产品纯度高的优点。本申请创造性的将二者结合起来,可得到高纯度碳酸锂。
在本申请的其他实施例中,所述第二制浆结束后得到第二浆液,所述第二浆液中锂的质量浓度为6.5-9.5g/L;
优选地,所述蒸发结晶后得到的结晶母液转移至第二浆液中再利用;
优选地,所述第二浆液中锂的质量浓度为8-9g/L g/L。
在本申请的其他实施例中,所述碳化是向第二浆液中通入CO2得到碳酸氢锂溶液;
优选地,所述碳化步骤中通入CO2的压力为0.2-0.3Mpa;
优选地,所述脱碳步骤释放的CO2通入第二浆液中;
优选地,所述碳化步骤的反应温度为15-40℃,反应时间为30-120min;
优选地,所述碳化步骤的反应温度为25-30℃,反应时间为60-90min;
优选地,所述碳化步骤对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述碳化步骤后对反应进行过滤,得到碳酸氢锂溶液。
部分粗碳酸锂与结晶母液、高温热解母液混合制浆后,持续通入过量CO2,得到碳酸氢锂溶液和不溶杂质,不溶性杂质主要为含Ca、Mg、Si化合物,反应式如下:
Li2CO3+CO2+H2O→2LiHCO3
在本申请的其他实施例中,所述高温热解是将所述碳酸氢锂溶液加热至70-95℃,反应时间30-120min,过滤得到纯化的碳酸锂;
优选地,所述高温热解步骤中,温度为85-95℃,反应时间在60-90min;
优选地,所述高温热解步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
优选地,所述高温热解步骤中,过滤得到纯化的碳酸锂和高温热解母液,所述高温热解母液转移至第二浆液中再利用;
优选地,高温热解步骤中,对过滤得到的固体进行水洗除杂,得到纯化的碳酸锂;
优选地,所述高温热解步骤中释放的CO2收集并通入第二浆液中再利用。
将过滤除杂后的碳酸氢锂溶液加热,分解得到高纯碳酸锂、热解母液以及CO2,热解母液回用与粗碳酸锂制浆,CO2回用至前端碳化反应,反应式如下:
本申请含锂溶液联产碳酸锂和氢氧化锂的方法具体流程图如图1所示,首先含锂溶液经蒸发浓缩后得到高锂浓缩母液,向浓缩母液中添加一定量的碳酸钠溶液进行高温沉锂反应,过滤得到粗碳酸锂沉淀及沉锂母液,沉锂母液经加酸脱碳得到大量CO2气体和含锂母液,其中CO2用于后续碳化反应,实现碳资源的回收利用,含锂母液重新进入蒸发系统浓缩,实现锂资源的闭环回收,同时得到副产品十水硫酸钠;高温沉锂所得的粗碳酸锂一部分经苛化反应制备电池级氢氧化锂,一部分经碳化、高温热解反应制备电池级碳酸锂,同时将氢氧化锂溶液的结晶母液与高温热解母液返回用于粗碳酸锂制浆,节约纯水用量的同时实现了锂资源的循环利用。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本发明实施例提供一种含锂溶液联产碳酸锂和氢氧化锂的方法,具体提供了一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,步骤如下所示:
(1)取一定量浓缩后的含锂母液,其中锂含量在21.3g/L,向含锂母液中滴加浓度为30wt%的碳酸钠溶液,碳酸钠用量与溶液中Li含量摩尔比在0.6:1之间,在85℃、400rpm下搅拌反应120min,经过过滤后得到粗碳酸锂固体,沉锂母液进入脱碳反应,此时沉锂母液中含 量为15g/L;
(2)在65℃下向沉锂母液中缓慢滴加浓硫酸,直至溶液中无气泡产生,并且收集反应过程中CO2,净化提纯后用于后续碳化反应,含锂母液再次返回蒸发系统,得到副产品十水硫酸钠,此时含锂母液中含量为0.3g/L;
(3)取部分粗碳酸锂按照1:10的质量比进行纯水洗涤,水洗除杂后的粗碳酸锂按照1:3的质量比进行纯水制浆,再向粗碳酸锂浆液中加入理论量1.2倍的氢氧化钙溶液,在70℃、400rpm下搅拌反应60min后,过滤得到氢氧化锂溶液,氢氧化锂溶液经树脂除钙、蒸发结晶后得到电池级氢氧化锂产品,同时结晶母液回用于碳化反应原料制浆;
(4)取部分粗碳酸锂与结晶母液、高温热解母液混合制浆,浆液中锂的理论质量浓度为8.5g/L,再向浆液中持续通入0.3Mpa来自脱碳、高温热解反应中的CO2,在25℃、400rpm下搅拌反应60min,过滤除去Ca、Mg、Si等不溶性杂质,得到澄清碳酸氢锂溶液;
(5)将上述得到的澄清碳酸氢锂溶液加热至90℃,在400rpm下搅拌反应90min后,过滤得到高纯碳酸锂沉淀,再经洗涤干燥后得到电池级碳酸锂产品,同时收集反应过程中产生的CO2气体,循环回用至碳化反应,收集过滤后的高温热解母液用于碳化反应原料制浆,此时高温热解母液中锂含量低于3g/L。
其中,步骤(1)中碳酸钠高温沉锂反应:
其中:c1为含锂溶液中Li的质量浓度,c2为高温沉锂反应后滤液中Li的质量浓度;V1为含锂溶液体积,V2为高温沉锂反应后滤液体积。
步骤(4)、(5)中碳化、高温热解反应:
其中:c3为粗碳酸锂浆液中Li的质量浓度,c4为高温热解反应后滤液中Li的质量浓度;V3为粗碳酸锂浆液体积,V4为高温热解反应后滤液体积。
步骤(3)中苛化反应:
其中:c5为粗碳酸锂经纯水制浆后浆液中Li的质量浓度,c6为苛化反应后滤液中Li的质量浓度;V5为粗碳酸锂纯水制浆浆液体积,V6为苛化反应后滤液体积。
全流程锂回收率:
其中:洗水全部回用至蒸发系统,此处不计锂损失;c1为含锂溶液中Li的质量浓度,c7为结晶母液中Li的质量浓度,c8为高温热解母液中Li的质量浓度;V1为含锂溶液体积,V7为结晶母液体积,V8为高温热解母液体积;ω1为苛化反应后碳酸钙渣中锂质量占比,ω2为碳化反应后不溶杂质渣中锂质量占比;m1为苛化反应后碳酸钙渣质量,m2为碳化反应后不溶杂质质量。
全流程碳回收利用效率:
其中:为方便计算,此处假定所有反应溶液体积为1L,即m1为1L溶液脱碳反应产生的CO2质量,m2为1L溶液高温热分解反应产生的CO2质量,m3为1L溶液碳化反应所需的CO2质量。
实施例2-6
实施例2-6提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(1)中碳酸钠高温沉锂反应温度分别为50℃、60℃、70℃、80℃和90℃。
效果对比:
实施例7-9
实施例7-9提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(1)中高温沉锂反应时间分别为30min、60min和90min,考虑到生产效率,并未进一步延长反应时间。
效果对比:
实施例10-12
实施例10-12提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(1)中碳酸钠用量与溶液中Li含量摩尔比分别在0.5:1、0.7:1和0.8:1。
效果对比:
实施例13-15
实施例13-15提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(4)中碳化反应时间分别为30min、90min和120min。
效果对比:
实施例16-18
实施例16-18提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(4)中碳化反应温度分别为40℃、30℃和20℃。
效果对比:
实施例19-21
实施例19-21提了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(4)中浆液中锂的理论质量浓度分别为7.5g/L、6.5g/L和9.5g/L。
效果对比:
实施例22-25
实施例22-25提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(5)中高温热解反应时间分别为60min、70min、80min和95min。
效果对比:
实施例26-28
实施例26-28提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(3)中苛化反应时间分别为30min、90min和120min。
效果对比:
实施例29-32
实施例29-32提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(3)中苛化反应温度分别为50℃、60℃、80℃和90℃。
效果对比:
实施例33-34
实施例33-34提供了含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(3)氢氧化钙加入量分别为理论量的1倍和1.1倍。
效果对比:
对比例1
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(3)中结晶母液未返回制浆,直接排放。
对比例2
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(5)中高温热解母液未返回制浆,直接排放。
对比例3
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(3)中结晶母液、步骤(5)中高温热解母液均未返回制浆,直接排放。
效果对比:
对比例4
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(2)中碳化反应产生的CO2未收集,直接排放。
对比例5
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(5)中高温热解反应产生的CO2未收集,直接排放。
对比例6
本对比例提供一种含锂溶液联产电池级碳酸锂和电池级氢氧化锂的方法,与实施例1的区别仅在于:步骤(2)中碳化反应、步骤(5)中高温热解反应产生的CO2均未收集,直接排放。
效果对比:

(1)本技术可以实现从含锂溶液中联产电池级碳酸锂、电池级氢氧化锂两种产品,并且可以根据市场价格波动灵活调配两种产品产量,实现利益最大化;也可以根据工艺中结晶母液、高温热解母液的产量来决定制浆所需粗碳酸锂的质量,减少制浆所需纯水的用量,实现成本最小化。
(2)本发明利用含锂的结晶母液、高温热解母液与粗碳酸锂制浆,减少纯水用量的同时实现了锂资源的循环利用,大大提高了整个流程的锂回收率。
(3)本工艺收集脱碳反应、高温热解反应中产生的CO2,用于碳化反应,避免了废气排放的同时实现了碳资源的回收利用,大大节约了生产成本。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,包括如下步骤:
    沉锂:将含锂溶液与水溶性碳酸盐进行反应后,对反应液过滤后得到粗碳酸锂固体和沉锂母液;
    苛化:将部分粗碳酸锂与氢氧化钙在液相中进行反应后,对反应液进行蒸发结晶,得到氢氧化锂固体;
    沉锂母液利用:向沉锂母液中加酸进行脱碳,脱碳后的沉锂母液与含锂溶液合并再利用。
  2. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述含锂溶液中锂含量为20-25g/L;
    优选地,当含锂溶液中锂含量低于20g/L时,对含锂溶液进行蒸发浓缩至锂含量为20-25g/L。
  3. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述沉锂步骤中
    水溶性碳酸盐为碳酸钠或碳酸钾;
    优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.8:1;
    优选地,水溶性碳酸盐用量与含锂溶液中Li含量摩尔比为0.5-0.6:1;
    优选地,所述沉锂步骤中水溶性碳酸盐以溶液的形式加入;
    优选地,所述碳酸钠溶液中碳酸钠质量分数为20%-30%;
    优选地,所述沉锂步骤在60-90℃反应30-120min;
    优选地,所述沉锂步骤反应温度80-90℃,反应时间90-120min;
    优选地,所述沉锂步骤对反应液进行搅拌,搅拌速度400-600rpm;
    优选地,所述沉锂母液中锂含量低于3g/L。
  4. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述苛化步骤中,氢氧化钙与粗碳酸锂中碳酸锂的摩尔比为1.0-1.5:1;
    优选地,所述苛化步骤中,氢氧化钙与碳酸锂的摩尔比为1.1-1.2:1;
    优选地,所述苛化步骤中,反应温度为50-80℃,反应时间为30-120min;
    优选地,所述苛化步骤中,反应温度为60-80℃,反应时间为60-90min;
    优选地,所述苛化步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
    优选地,所述苛化步骤中,蒸发结晶前,先用树脂去除反应液中的钙。
  5. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,粗碳酸锂与纯水进行第一制浆后再进行苛化反应;
    优选地,粗碳酸锂与纯水按质量比为1:3-5进行第一制浆;
    优选地,所述苛化步骤中,氢氧化钙以氢氧化钙溶液的形式与粗碳酸锂混合;
    优选地,所述苛化步骤前,先用纯水对粗碳酸锂进行洗涤;
    优选地,用纯水对粗碳酸锂进行洗涤步骤中,纯水与粗碳酸锂质量比为5-10。
  6. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述沉锂母液利用步骤中,向沉锂母液中加酸直至溶液中无气泡产生:
    优选地,所述沉锂母液利用步骤中酸为硫酸;
    优选地,对含锂溶液进行蒸发浓缩得到副产品十水硫酸钠;
    优选地,所述脱碳步骤的反应温度为60-70℃;
    优选地,所述脱碳后的沉锂母液中含量低于0.5g/L。
  7. 根据权利要求1所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述粗碳酸锂固体一部分进入苛化步骤,另一部分进行提纯;所述提纯步骤包括第二制浆、碳化和高温热解,得到纯化的碳酸锂。
  8. 根据权利要求7所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述第二制浆结束后得到第二浆液;所述第二浆液中锂的质量浓度为6.5-9.5g/L;
    优选地,所述蒸发结晶后得到的结晶母液转移至第二浆液中再利用;
    优选地,所述第二浆液中锂的质量浓度为8-9g/L。
  9. 根据权利要求7所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述碳化是向第二浆液中通入CO2得到碳酸氢锂溶液;
    优选地,所述碳化步骤中通入CO2的压力为0.2-0.3Mpa;
    优选地,所述脱碳步骤释放的CO2通入第二浆液中;
    优选地,所述碳化步骤的反应温度为15-40℃,反应时间为30-120min;
    优选地,所述碳化步骤的反应温度为25-30℃,反应时间为60-90min;
    优选地,所述碳化步骤对反应液进行搅拌,搅拌速度400-600rpm;
    优选地,所述碳化步骤后对反应进行过滤,得到碳酸氢锂溶液。
  10. 根据权利要求7所述的含锂溶液联产碳酸锂和氢氧化锂的方法,其特征在于,所述高温 热解是将所述碳酸氢锂溶液加热至70-95℃,反应时间30-120min,过滤得到纯化的碳酸锂;
    优选地,所述高温热解步骤中,温度为85-95℃,反应时间在60-90min;
    优选地,所述高温热解步骤中,对反应液进行搅拌,搅拌速度400-600rpm;
    优选地,所述高温热解步骤中,过滤得到纯化的碳酸锂和高温热解母液,所述高温热解母液转移至第二浆液中再利用;
    优选地,高温热解步骤中,对过滤得到的固体进行水洗除杂,得到纯化的碳酸锂;
    优选地,所述高温热解步骤中释放的CO2收集并通入第二浆液中再利用。
PCT/CN2023/083442 2022-11-07 2023-03-23 含锂溶液联产碳酸锂和氢氧化锂的方法 WO2024098620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211385753.X 2022-11-07
CN202211385753.XA CN115536046A (zh) 2022-11-07 2022-11-07 含锂溶液联产碳酸锂和氢氧化锂的方法

Publications (1)

Publication Number Publication Date
WO2024098620A1 true WO2024098620A1 (zh) 2024-05-16

Family

ID=84721126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083442 WO2024098620A1 (zh) 2022-11-07 2023-03-23 含锂溶液联产碳酸锂和氢氧化锂的方法

Country Status (2)

Country Link
CN (1) CN115536046A (zh)
WO (1) WO2024098620A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536046A (zh) * 2022-11-07 2022-12-30 广东邦普循环科技有限公司 含锂溶液联产碳酸锂和氢氧化锂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207297A (en) * 1978-03-27 1980-06-10 Foote Mineral Company Process for producing high purity lithium carbonate
CN109970085A (zh) * 2019-04-26 2019-07-05 核工业北京化工冶金研究院 一种从锂云母浸出液制备锂产品的新工艺
CN110040750A (zh) * 2019-04-26 2019-07-23 核工业北京化工冶金研究院 一种碳酸锂沉淀母液的处理方法
CN110330041A (zh) * 2019-07-22 2019-10-15 重庆锦弘建设工程有限公司 一种低品级碳酸锂的高值化利用方法
CN112919505A (zh) * 2021-03-03 2021-06-08 中国恩菲工程技术有限公司 盐湖富锂卤水连续生产氢氧化锂的装置及方法
CN115286017A (zh) * 2022-08-25 2022-11-04 广东邦普循环科技有限公司 一种电池级碳酸锂的制备方法
CN115536046A (zh) * 2022-11-07 2022-12-30 广东邦普循环科技有限公司 含锂溶液联产碳酸锂和氢氧化锂的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115101B (zh) * 2011-01-05 2013-09-04 屈俊鸿 一种生产碳酸锂和氢氧化锂的方法
CN103408041B (zh) * 2013-08-22 2015-08-05 四川国理锂材料有限公司 碳酸锂的生产工艺
CN105819472A (zh) * 2016-03-09 2016-08-03 江苏容汇通用锂业股份有限公司 一种用硫酸锂溶液生产高纯度电池级碳酸锂的方法
EP3689821A1 (en) * 2017-08-02 2020-08-05 JX Nippon Mining & Metals Corporation Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
CN107986301A (zh) * 2017-12-27 2018-05-04 江西赣锋锂业股份有限公司 一种利用电池级碳酸锂沉锂母液生产电池级氢氧化锂的方法
CN113912090A (zh) * 2021-11-15 2022-01-11 福州大学 一种沉锂母液苛化冷冻除芒硝回收高纯级碳酸锂的方法
CN216662498U (zh) * 2022-03-08 2022-06-03 宁夏中化锂电池材料有限公司 制备电池级氢氧化锂和碳酸锂的系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207297A (en) * 1978-03-27 1980-06-10 Foote Mineral Company Process for producing high purity lithium carbonate
CN109970085A (zh) * 2019-04-26 2019-07-05 核工业北京化工冶金研究院 一种从锂云母浸出液制备锂产品的新工艺
CN110040750A (zh) * 2019-04-26 2019-07-23 核工业北京化工冶金研究院 一种碳酸锂沉淀母液的处理方法
CN110330041A (zh) * 2019-07-22 2019-10-15 重庆锦弘建设工程有限公司 一种低品级碳酸锂的高值化利用方法
CN112919505A (zh) * 2021-03-03 2021-06-08 中国恩菲工程技术有限公司 盐湖富锂卤水连续生产氢氧化锂的装置及方法
CN115286017A (zh) * 2022-08-25 2022-11-04 广东邦普循环科技有限公司 一种电池级碳酸锂的制备方法
CN115536046A (zh) * 2022-11-07 2022-12-30 广东邦普循环科技有限公司 含锂溶液联产碳酸锂和氢氧化锂的方法

Also Published As

Publication number Publication date
CN115536046A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN111039310B (zh) 一种硫酸钠制备碳酸氢钠联产硫酸铵的方法
CN100542961C (zh) 一种氢氧化钠熔盐法处理铝土矿生产氢氧化铝的工艺
CN1486931A (zh) 一水氢氧化锂生产工艺
CN103693665A (zh) 一种粉煤灰制备高纯氧化铝的方法
WO2024098620A1 (zh) 含锂溶液联产碳酸锂和氢氧化锂的方法
CN114105172A (zh) 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法
CN103708479B (zh) 用粉煤灰同时制备偏铝酸钠和活性硅酸钙的方法
CN108862335A (zh) 一种用磷酸锂制备碳酸锂的方法
CN111039305B (zh) 一种硫酸钠短流程制备碳酸氢钠与硫酸铵的方法
WO2023246156A1 (zh) 一种苛化法制备氢氧化锂的工艺及其应用
CN103663516A (zh) 一种利用高铝粉煤灰制备氢氧化铝的方法
CN112429752B (zh) 一种废旧磷酸铁锂正极材料中回收锂铁磷的方法
CN112279277A (zh) 一种烟气镁法脱硫高端资源化利用的系统和方法
CN103011209A (zh) 氯化铵循环法由电石渣和盐湖氯化镁生产氢氧化镁和氯化钙
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN115448334B (zh) 一种电池级单水氢氧化锂生产工艺
CN114573006B (zh) 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法
CN212799651U (zh) 一种半水-二水法磷酸快速萃取结晶生产系统
CN1880223A (zh) 芒硝-氨循环法氯化钡、硫酸钾、碳酸钠联产技术
CN214114930U (zh) 一种烟气镁法脱硫高端资源化利用的系统
CN115535979B (zh) 一种磷酸二氢钾及利用磷酸氢钙制备磷酸二氢钾的方法
CN115676857A (zh) 一种联合生产锂电池原材料、碳酸钙和硫酸钙的方法
CN111498872B (zh) 一种磷酸锂循环回收工艺
CN111041249B (zh) 一种稀土冶炼分离过程含镁和/或钙废液的处理方法
CN116281906A (zh) 一种高纯碳酸锂母液高效利用的方法