WO2024092894A1 - 一种连续化微通道技术生产三氯丙酮的方法 - Google Patents

一种连续化微通道技术生产三氯丙酮的方法 Download PDF

Info

Publication number
WO2024092894A1
WO2024092894A1 PCT/CN2022/133242 CN2022133242W WO2024092894A1 WO 2024092894 A1 WO2024092894 A1 WO 2024092894A1 CN 2022133242 W CN2022133242 W CN 2022133242W WO 2024092894 A1 WO2024092894 A1 WO 2024092894A1
Authority
WO
WIPO (PCT)
Prior art keywords
trichloroacetone
chlorine
producing
reaction
continuous
Prior art date
Application number
PCT/CN2022/133242
Other languages
English (en)
French (fr)
Inventor
庄勇
朱凤博
孙敏
王勇
Original Assignee
南通市常海食品添加剂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通市常海食品添加剂有限公司 filed Critical 南通市常海食品添加剂有限公司
Publication of WO2024092894A1 publication Critical patent/WO2024092894A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/16Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen

Definitions

  • the invention belongs to the field of food additive synthesis, and in particular relates to a method for producing trichloroacetone by continuous microchannel technology.
  • trichloroacetone is also widely used in medicine, pesticides, spices and dyes.
  • the existing trichloroacetone preparation methods are divided into three types: direct chlorine chlorination, indirect chlorine chlorination and electrolytic chlorination.
  • the direct chlorine chlorination method is mainly used in China.
  • acetone is dissolved in a solvent using a suitable catalyst, and chlorine is directly introduced to synthesize chloroacetone. This method has the disadvantages of long reaction time, poor selectivity, low conversion rate, and many by-products.
  • Patent CN113548949A discloses a method for producing 1,1,3-trichloroacetone, which adopts a traditional reactor for production, uses acetone as a raw material and synthesizes 1,1,3-trichloroacetone by photocatalytic chlorination in an inert solvent, and recovers solvent, acetone, monochloroacetone and light components such as 1,1-dichloroacetone by distillation of the chlorinated liquid, and the intermediate components 1,3-dichloroacetone and 1,1,3-trichloroacetone are separated in a simulated moving bed equipped with an adsorbent to obtain 1,1,3-trichloroacetone.
  • Patent CN108752176A discloses a trichloroacetone production process, which adopts a stirring purification method, wherein acetone and ethylene glycol are mixed and heated, chlorine and a catalyst are introduced, and acid is added for hydrolysis to obtain a crude trichloroacetone product, and then water, benzene, and alcohol are used for three purifications to obtain a final trichloroacetone product.
  • the disadvantage of this method is that the purification steps are too complicated, a large amount of waste liquid is easily generated, the processing cost is too high, and the environmental protection is poor, and it is also not suitable for large-scale production of trichloroacetone.
  • Patent CN106316810A discloses a preparation method for improving the synthesis yield of 1 ,1 ,3-trichloroacetone.
  • the method first prepares a supported amine catalyst, then adds a certain amount of ultrapure acetone to a reactor, and after the supported amine catalyst and ultrapure acetone are fully mixed, the temperature is controlled and chlorine is introduced, and 1 ,1 ,3-trichloroacetone is obtained after stirring and heat preservation.
  • the disadvantage of this method is that the preparation of the supported amine catalyst is complicated and the amount used is large, the purity of acetone is extremely high, and the product yield is less than 50%, which cannot effectively improve the yield of trichloroacetone.
  • the reaction inevitably produces about 20% of impurities that are difficult to separate (such as 1,1,1-trichloroacetone, 1,1,3,3-tetrachloroacetone, 1,1,1,3-tetrachloroacetone, etc.).
  • impurities such as 1,1,1-trichloroacetone, 1,1,3,3-tetrachloroacetone, 1,1,1,3-tetrachloroacetone, etc.
  • the difficulty in separation and purification will lead to an increase in the production cost of folic acid, and the difficulty in degrading polychlorinated substitutes will cause serious environmental problems.
  • the present invention surprisingly found in the process development of trichloroacetone that if a continuous flow microchannel reactor is applied to the production of trichloroacetone, the reaction between chlorine and acetone can be completed almost instantly, and the process conditions obtained after a large number of attempts can ensure that the crude content of the main product 1,1,3-trichloroacetone reaches more than 90%, and the yield reaches more than 85%.
  • the object of the present invention is to provide a method for producing trichloroacetone using continuous microchannel technology.
  • the present invention discloses a method for producing trichloroacetone by continuous microchannel technology, which is characterized by comprising the following steps:
  • Acetone and catalyst are fed into the feed system of the continuous flow microchannel reactor and mixed in the reaction layer, while frozen brine is introduced into the heat transfer layer for cooling and temperature control;
  • reaction solution is subjected to heat preservation, temperature reduction and cooling treatment to obtain trichloroacetone
  • the catalyst in step (1) is one or more of triethylamine, diethylamine, DMF or a composite amine catalyst, preferably DMF;
  • the mass of the catalyst is 0.1% to 0.5%, preferably 0.2% to 0.3% of the mass of acetone;
  • step (1) the temperature of the frozen brine is controlled below 10°C, preferably 5°C to 10°C;
  • the chlorine gas flow rate in step (3) is 0 m 3 /hr and gradually increases to a maximum of 5 m 3 /hr; the chlorine flow time is 30 to 70 seconds, preferably 40 to 60 seconds;
  • the reaction pressure of step (3) is lower than 0.3 MPa, and the reaction temperature is lower than 55°C; preferably, the reaction pressure is 0.2 MPa to 0.3 MPa, and the reaction temperature is 45°C to 50°C;
  • the step (3) further comprises absorbing the generated byproduct hydrogen chloride and excess chlorine with water by an external absorption device;
  • step (4) the sampling requirement for step (4) is that the trichloroacetone content is greater than 90%
  • the insulation time of step (5) is 1 to 4 hours, preferably 2 to 3 hours.
  • the method for producing trichloroacetone by continuous microchannel technology provided by the present invention can realize continuous operation, significantly shorten the raw material contact time, and improve the reaction efficiency; by accurately adjusting the material-liquid ratio and controlling the reaction parameters, the free radical reaction activity is effectively reduced, and the reaction selectivity of the main product 1,1,3-trichloroacetone is improved, thereby ensuring that the product has high yield and high purity.
  • the method has the advantages of low energy consumption, short cycle, safety and environmental protection, and continuous operation, and is suitable for the industrial production of trichloroacetone.
  • Figure 1 Flow chart of continuous microchannel technology for producing trichloroacetone
  • FIG. 1 Hydrogen spectrum of trichloroacetone prepared in Example 1.
  • Chlorine was introduced into the preheating system of the continuous flow microchannel reactor for preheating, and the preheated chlorine was sent into the mixed solution for reaction.
  • the chlorine flow rate was gradually increased from 0m/hr to 3m 3 /hr, and the reaction pressure was controlled at 0.2MPa and the reaction temperature at 50°C, and the chlorine passing time was 45s.
  • reaction solution was kept warm for 2 hours, and then cooled to obtain trichloroacetone.
  • Chlorine was introduced into the preheating system of the continuous flow microchannel reactor for preheating, and the preheated chlorine was sent into the mixed solution for reaction.
  • the chlorine flow rate was gradually increased from 0m/hr to 3m 3 /hr, and the reaction pressure was controlled at 0.2MPa and the reaction temperature at 50°C, and the chlorine passing time was 45s.
  • reaction solution was kept warm for 2 hours, and then cooled to obtain trichloroacetone.
  • Chlorine was introduced into the preheating system of the continuous flow microchannel reactor for preheating, and the preheated chlorine was sent into the mixed solution for reaction.
  • the chlorine flow rate was gradually increased from 0m 3 /hr to 5m 3 /hr, the reaction pressure was controlled at 0.3MPa and the reaction temperature was controlled at 50°C, and the chlorine passing time was 60s.
  • reaction solution was kept warm for 3 hours and then cooled to obtain trichloroacetone.
  • Chlorine was introduced into the preheating system of the continuous flow microchannel reactor for preheating, and the preheated chlorine was sent into the mixed solution for reaction.
  • the chlorine flow rate was gradually increased from 0m/hr to 6m3 /hr, and the reaction pressure was controlled at 0.2MPa and the reaction temperature at 50°C, and the chlorine passing time was 30s.
  • reaction solution was kept warm for 2 hours, and then cooled to obtain trichloroacetone.
  • Chlorine was introduced into the preheating system of the continuous flow microchannel reactor for preheating, and the preheated chlorine was sent into the mixed solution for reaction.
  • the chlorine flow rate was gradually increased from 0m 3 /hr to 5m 3 /hr, the reaction pressure was controlled at 0.3MPa and the reaction temperature was controlled at 50°C, and the chlorine passing time was 60s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种连续化微通道技术生产三氯丙酮的方法,具体步骤为:将丙酮和催化剂投入连续流微通道反应器中,混合并控温;将氯气通入连续流微通道反应器预热,进一步送入混合溶液中反应;通氯结束后,反应液经保温、降温、冷却处理后得到三氯丙酮。该方法具有能耗低、周期短、安全环保、可连续化操作的优点,保证产品具备高收率、高纯度,有利于三氯丙酮的工业化生产。

Description

一种连续化微通道技术生产三氯丙酮的方法 技术领域
本发明属于食品添加剂合成领域,具体涉及一种连续化微通道技术生产三氯丙酮的方法。
背景技术
三氯丙酮作为叶酸合成的重要中间体,也广泛应用于医药、杀虫剂、香料和染料等方面。现有的三氯丙酮制备方法分为直接氯气氯化法、间接氯气氯化法和电解氯化法三种,目前国内主要采用直接氯气氯化法,通常选用合适的催化剂将丙酮溶于溶剂后,直接通入氯气合成氯代丙酮,具有反应时间长、选择性差、转化率低、副产物多等缺点。
专利CN113548949A公开了一种1 ,1 ,3-三氯丙酮的生产方法,该方法采用传统反应釜进行生产,以丙酮为原料并在惰性溶剂中经光催化氯化合成1,1,3-三氯丙酮,氯化液经过精馏方式回收溶剂、丙酮、一氯丙酮以及1,1‑二氯丙酮等轻组分,中间组分1,3‑二氯丙酮和1,1,3‑三氯丙酮在装有吸附剂的模拟移动床中进行分离,得到1,1 ,3‑三氯丙酮。该方法的不足之处在于后处理步骤多,反应周期长;反应产生的副产物多,分离困难;且对设备的要求极高,并不利于三氯丙酮的工业化生产。
专利CN108752176A公开了一种三氯丙酮生产工艺,该方法采用搅拌提纯的方法,将丙酮与乙二醇混合加热后通入氯气和催化剂,加入酸水解得到三氯丙酮粗品,随后分别用水、苯、醇进行三次提纯得到三氯丙酮终产品。该方法的不足之处在于提纯步骤过于繁琐,易产生大量废液,处理成本过高,环保性差,同样不适合三氯丙酮的大规模生产。
专利CN106316810A公开了一种提高1 ,1 ,3-三氯丙酮合成收率的制备方法,该方法首先制备负载型胺类催化剂,然后向反应器中加入一定量的超纯丙酮,待负载型胺类催化剂与超纯丙酮充分混合均匀后,控温并通入氯气,搅拌、保温反应后制得1 ,1 ,3-三氯丙酮。该方法的不足之处在于负载型胺类催化剂的制备复杂且用量较大,对丙酮的纯度要求极高,且产品收率不足50%,并不能有效提高三氯丙酮的收率。
技术问题
使用传统的反应釜合成三氯丙酮效果并不理想,因为只能进行简单的搅拌,并通过单根输气管通入氯气,无法对反应温度进行监测和调节,影响反应速度且反应产生的废气直接排放会造成环境污染;由于氯气活性大,而丙酮反应位点多,造成氯代产物杂乱,反应产物中1, 1, 3-三氯丙酮含量仅为40%~50%,通过精馏的方式仅能有17%左右的收率 (以丙酮计),反应不可避免的产生20%左右难以分离的杂质(如1,1,1-三氯丙酮、1,1,3,3-四氯丙酮、1,1,1,3-四氯丙酮等),分离纯化困难会导致叶酸生产成本提高,多氯取代物降解困难则造成严重的环保问题。
技术解决方案
本发明在三氯丙酮的工艺开发中惊奇地发现,如将连续流微通道反应器应用于三氯丙酮的生产中,氯气与丙酮的反应几乎可以瞬间完成,通过大量尝试后摸索得到的工艺条件,可保证主要产物1,1,3-三氯丙酮的粗品含量达到90%以上,收率达85%以上。
为了克服上述现有技术的不足,本发明的目的在于提供一种连续化微通道技术生产三氯丙酮的方法。
本发明解决上述技术问题的技术方案如下:
本发明公开了一种连续化微通道技术生产三氯丙酮的方法,其特征在于,包括如下步骤:
(1)将丙酮和催化剂投入连续流微通道反应器的进料系统中,在反应层中混合,同时在传热层中引进冷冻盐水进行冷却控温;
(2)将氯气通入连续流微通道反应器的预热系统中进行预热;
(3)将步骤(2)预热后的氯气送入步骤(1)的混合溶液中进行反应;
(4)当反应器内有氯气尾气溢出时,逐渐降低通入的氯气流量,取样分析至符合要求后,结束通氯;
(5)反应液经保温、降温、冷却处理后得到三氯丙酮;
进一步的,所述步骤(1)的催化剂为三乙胺、二乙胺、DMF或复合型胺类催化剂中的一种或几种,优选DMF;
进一步的,所述步骤(1)中催化剂质量是丙酮质量的0.1%~0.5%,优选0.2%~0.3%;
进一步的,所述步骤(1)中冷冻盐水的温度控制在10℃以下,优选5℃~10℃;
进一步的,所述步骤(3)的氯气流量为0m 3/hr渐开至最大5m 3/hr;通氯时间为30~70s,优选40~60s;
进一步的,所述步骤(3)的反应压力低于0.3 MPa,反应温度小于55℃;优选反应压力为0.2MPa~0.3MPa,反应温度为45℃~50℃;
进一步的,所述步骤(3)还包括产生的副产物氯化氢及过量氯气由外接吸收装置用水吸收;
进一步的,所述步骤(4)的取样要求为三氯丙酮含量大于90%;
进一步的,所述步骤(5)的保温时间为1~4h,优选2~3h。
本发明中化合物的中文命名与结构式有冲突的,以结构式为准;结构式有明显错误的除外。
有益效果
本发明提供的连续化微通道技术生产三氯丙酮的方法,可以实现连续性作业,且明显缩短原料接触时间,提高了反应效率;通过精准调节料液比、控制反应参数,有效降低了自由基反应活性,提高了主要产物1,1,3-三氯丙酮的反应选择性,进而保证产品具备高收率、高纯度。该方法具有能耗低、周期短、安全环保、可连续化操作的优点,适合三氯丙酮的工业化生产。
附图说明
图1:连续化微通道技术生产三氯丙酮的流程图;
图2:实施例1制备的三氯丙酮氢谱图。
本发明的最佳实施方式
将8kg丙酮投入连续流微通道反应器的进料系统中,并加入16gDMF,在反应层中进行混合,同时在传热层中引进冷冻盐水进行冷却控温,冷冻盐水温度降至8℃。
将氯气通入连续流微通道反应器的预热系统中进行预热,经预热后的氯气被送入上述混合溶液中反应,氯气流量由0m/hr渐开至3m 3/hr,控制反应压力0.2MPa和反应温度50℃,通氯时间45s。
当反应器内有氯气尾气溢出时,逐渐降低通入氯气流量,取样分析,主要产物三氯丙酮含量大于90%并稳定后结束通氯。
反应液经过2h保温,降温、冷却处理后得到三氯丙酮。
取样经GC检测得1,1,3-三氯丙酮的含量96%,收率92%。
本发明的实施方式
实施例 1
将8kg丙酮投入连续流微通道反应器的进料系统中,并加入16g二乙胺,在反应层中进行混合,同时在传热层中引进冷冻盐水进行冷却控温,冷冻盐水温度降至8℃。
将氯气通入连续流微通道反应器的预热系统中进行预热,经预热后的氯气被送入上述混合溶液中反应,氯气流量由0m/hr渐开至3m 3/hr,控制反应压力0.2MPa和反应温度50℃,通氯时间45s。
当反应器内有氯气尾气溢出时,逐渐降低通入氯气流量,取样分析,主要产物三氯丙酮含量大于90%并稳定后结束通氯。
反应液经过2h保温,降温、冷却处理后得到三氯丙酮。
取样经GC检测得1,1,3-三氯丙酮的含量94%,收率89%(以外标法计)。
实施例 2
将15kg丙酮投入连续流微通道反应器的进料系统中,并加入少量30gDMF,在反应层中进行混合,同时在传热层中引进冷冻盐水进行冷却控温,冷冻盐水温度降至10℃。
将氯气通入连续流微通道反应器的预热系统中进行预热,经预热后的氯气被送入上述混合溶液中反应,氯气流量由0m 3/hr渐开至5m 3/hr,控制反应压力0.3MPa和反应温度50℃,通氯时间60s。
当反应器内有氯气尾气溢出时,逐渐降低通入氯气流量,取样分析,主要产物三氯丙酮含量大于90%并稳定后结束通氯。
反应液经过3h保温,降温冷却处理后得到三氯丙酮。
取样经GC检测得1,1,3-三氯丙酮的含量96%,收率91%。
实施例 4
将8kg丙酮投入连续流微通道反应器的进料系统中,并加入16g二乙胺,在反应层中进行混合,同时在传热层中引进冷冻盐水进行冷却控温,冷冻盐水温度降至8℃。
将氯气通入连续流微通道反应器的预热系统中进行预热,经预热后的氯气被送入上述混合溶液中反应,氯气流量由0m/hr渐开至6m 3/hr,控制反应压力0.2MPa和反应温度50℃,通氯时间30s。
当反应器内有氯气尾气溢出时,逐渐降低通入氯气流量,取样分析,主要产物三氯丙酮含量大于90%并稳定后结束通氯。
反应液经过2h保温,降温、冷却处理后得到三氯丙酮。
取样经GC检测得1,1,3-三氯丙酮的含量90%,收率84%。
实施例 5
将15kg丙酮投入连续流微通道反应器的进料系统中,并加入少量30gDMF,在反应层中进行混合,同时在传热层中引进冷冻盐水进行冷却控温,冷冻盐水温度降至10℃。
将氯气通入连续流微通道反应器的预热系统中进行预热,经预热后的氯气被送入上述混合溶液中反应,氯气流量由0m 3/hr渐开至5m 3/hr,控制反应压力0.3MPa和反应温度50℃,通氯时间60s。
当反应器内有氯气尾气溢出时,逐渐降低通入氯气流量,取样分析,主要产物三氯丙酮含量大于90%并稳定后结束通氯。反应液经过4h保温,降温冷却处理后得到三氯丙酮。取样经GC检测得1,1,3-三氯丙酮的含量90%,收率85%。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种连续化微通道技术生产三氯丙酮的方法,其特征在于,包括如下步骤:
    (1)将丙酮和催化剂投入连续流微通道反应器的进料系统中,在反应层中混合,同时在传热层中引进冷冻盐水进行冷却控温;
    (2)将氯气通入连续流微通道反应器的预热系统中进行预热;
    (3)将步骤(2)预热后的氯气送入步骤(1)的混合溶液中进行反应;
    (4)当反应器内有氯气尾气溢出时,逐渐降低通入的氯气流量,取样分析至符合要求后,结束通氯;
    (5)反应液经保温、降温、冷却处理后得到三氯丙酮。
  2. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(1)的催化剂为三乙胺、二乙胺、DMF或复合型胺类催化剂中的一种或几种。
  3. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(1)中催化剂质量是丙酮质量的0.1%~0.5%。
  4. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(1)中冷冻盐水的温度控制在10℃以下。
  5. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(3)的氯气流量为0m 3/hr渐开至最大5m 3/hr,通氯时间为30~70s。
  6. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(3)的反应压力低于0.3MPa,反应温度小于55℃。
  7. 根据权利要求6所述的生产三氯丙酮的方法,其特征在于,所述步骤(3)的反应压力为0.2MPa~0.3MPa,反应温度为45℃~50℃。
  8. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(3)还包括产生的副产物氯化氢及过量氯气由外接吸收装置用水吸收。
  9. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(4)的取样要求为三氯丙酮含量大于90%。
  10. 根据权利要求1所述的生产三氯丙酮的方法,其特征在于,所述步骤(5)的保温时间为1~4h。
PCT/CN2022/133242 2022-11-04 2022-11-21 一种连续化微通道技术生产三氯丙酮的方法 WO2024092894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211377668.9A CN115784861B (zh) 2022-11-04 2022-11-04 一种连续化微通道技术生产三氯丙酮的方法
CN202211377668.9 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024092894A1 true WO2024092894A1 (zh) 2024-05-10

Family

ID=85435603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133242 WO2024092894A1 (zh) 2022-11-04 2022-11-21 一种连续化微通道技术生产三氯丙酮的方法

Country Status (2)

Country Link
CN (1) CN115784861B (zh)
WO (1) WO2024092894A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047853A (zh) * 1990-07-10 1990-12-19 中国科学院成都有机化学研究所 1,1,3-三氯丙酮制备方法
CN105418548A (zh) * 2015-12-11 2016-03-23 大连世慕化学有限公司 用于α-二羰基化合物α位氢原子氯代反应的微反应器及合成方法
CN106316810A (zh) * 2016-07-25 2017-01-11 安徽千和新材料科技发展有限公司 一种提高1,1,3‑三氯丙酮合成收率的制备方法
CN112358387A (zh) * 2020-11-26 2021-02-12 福州大学 一种微液滴反应器连续生产一氯丙酮的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117128B (zh) * 2016-06-26 2018-12-28 江苏扬农化工集团有限公司 一种微通道反应器连续制备吡啶酮氯加成物的方法
CN108752176A (zh) * 2018-07-04 2018-11-06 枣阳天燕硅普材料有限公司 一种三氯丙酮生产工艺
CN112010856B (zh) * 2019-05-29 2023-05-16 威海中腾医药科技有限公司 一种利用微通道反应制备叶酸叠缩工艺方法
CN112299975A (zh) * 2020-11-06 2021-02-02 山东利士得生物科技有限公司 一种三氯丙酮的生产工艺
CN113548949B (zh) * 2021-08-27 2023-04-18 常州新东化工发展有限公司 一种1,1,3-三氯丙酮的生产方法
CN113773181B (zh) * 2021-09-18 2024-03-26 无棣融川医药化工科技有限公司 一种1,3-二氯丙酮的连续流制备方法及微反应系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047853A (zh) * 1990-07-10 1990-12-19 中国科学院成都有机化学研究所 1,1,3-三氯丙酮制备方法
CN105418548A (zh) * 2015-12-11 2016-03-23 大连世慕化学有限公司 用于α-二羰基化合物α位氢原子氯代反应的微反应器及合成方法
CN106316810A (zh) * 2016-07-25 2017-01-11 安徽千和新材料科技发展有限公司 一种提高1,1,3‑三氯丙酮合成收率的制备方法
CN112358387A (zh) * 2020-11-26 2021-02-12 福州大学 一种微液滴反应器连续生产一氯丙酮的方法

Also Published As

Publication number Publication date
CN115784861A (zh) 2023-03-14
CN115784861B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
KR101125853B1 (ko) N-메틸 피롤리돈의 제조방법
CN111302915B (zh) 一种微通道连续化臭氧氧化制备茴香醛的方法
CN106431886A (zh) 一种2‑萘甲酸的制备方法
CN103467308A (zh) 不使用抗脱氯剂生产2,5-二氯苯胺的方法
CN111662197A (zh) 一种β-氨基丙酸的制备方法
WO2024092894A1 (zh) 一种连续化微通道技术生产三氯丙酮的方法
CN117142954A (zh) 4,4,4-三氟乙酰乙酸乙酯的制备方法
CN112028788A (zh) 一种连续制备叔丁基肼盐酸盐的制备方法
CN110563699A (zh) 一种氟呐普拉赞中间体的后处理纯化方法
CN114736102B (zh) 一种4-溴-3-甲基苯甲醚的合成方法
CN110902696A (zh) 一种氯化氰的制备方法
CN115784885A (zh) 一种高效制备十三碳二元酸的方法
CN111138330B (zh) 双二正丁胺二硫的合成方法
CN103524357A (zh) 不使用抗脱氯剂生产对氯苯胺方法
CN107445959A (zh) 一种2‑氮杂双环[2.2.1]‑庚‑5‑烯‑3‑酮的制备方法
CN110845440B (zh) 一种制备2-巯基苯并噻唑的方法
CN108047033B (zh) 一种制备扁桃酸类化合物的反应装置及其方法
CN106431885B (zh) 顺丁烯二酸酐混合溶剂臭氧化合成乙醛酸的方法
CN111100034A (zh) 一种利用微通道反应器连续合成氰乙酸的方法
CN103087018A (zh) 一种异抗坏血酸的制备方法
CN106380464A (zh) 氟呐普拉赞关键中间体的制备方法
CN112441935B (zh) 一种β-氨基酮类化合物的合成方法
CN113912501B (zh) 一种连续催化加氢脱氯制备4-三氟甲基苯胺的方法
CN108383720A (zh) 一种邻取代苯甲酸间位氯化方法
CN115403461B (zh) 一种乙苯氧化合成苯甲酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964192

Country of ref document: EP

Kind code of ref document: A1