WO2024092436A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2024092436A1
WO2024092436A1 PCT/CN2022/128723 CN2022128723W WO2024092436A1 WO 2024092436 A1 WO2024092436 A1 WO 2024092436A1 CN 2022128723 W CN2022128723 W CN 2022128723W WO 2024092436 A1 WO2024092436 A1 WO 2024092436A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
capacitor
compensation capacitor
area
display area
Prior art date
Application number
PCT/CN2022/128723
Other languages
English (en)
French (fr)
Inventor
闫卓然
嵇凤丽
周宏军
周桢力
卢彦伟
程羽雕
秦成杰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/128723 priority Critical patent/WO2024092436A1/zh
Publication of WO2024092436A1 publication Critical patent/WO2024092436A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present disclosure relates to but is not limited to the field of display technology, and in particular to a display substrate and a display device.
  • OLED Organic Light Emitting Diode
  • QLED Quantum-dot Light Emitting Diode
  • TFT thin film transistors
  • the present disclosure provides a display substrate, comprising a display area and a frame area located outside the display area, the display area comprising a plurality of sub-pixels forming a plurality of pixel rows and a plurality of pixel columns, along the direction close to the frame area, the number of sub-pixels in at least part of the pixel columns decreases, and a first stepped display area boundary is formed on a side of the display area close to the frame area;
  • the frame area at least comprises a capacitor area, the capacitor area comprises a plurality of compensation capacitors, and the plurality of compensation capacitors form a second stepped capacitor area boundary on a side away from the display area;
  • the display area boundary comprises a plurality of first steps connected in sequence, the first step having a first step length and a first step width, the capacitor area boundary comprises a plurality of second steps connected in sequence, the second step having a second step length and a second step width, the second step length is less than or equal to the first step length, the second step width is less than
  • the display area includes a plurality of pixel column groups, at least one pixel column group includes n pixel columns arranged in sequence along the pixel row direction, at least two pixel columns in the pixel column group have the same number of sub-pixels, or each pixel column in the pixel column group has a different number of sub-pixels, and n is a positive integer greater than or equal to 2;
  • the border area includes a plurality of capacitor groups, at least one capacitor group includes n compensation capacitors arranged in sequence along the pixel row direction; the capacitor groups are arranged corresponding to the pixel column groups.
  • At least one compensation capacitor is in a strip shape extending along the pixel column direction.
  • At least one compensation capacitor in at least one capacitor group, includes at least a main portion and an extension portion connected to each other, wherein the main portion is in the shape of a strip extending along the pixel column direction, and the extension portion is in the shape of a strip extending along the pixel row direction.
  • the plurality of capacitor groups include at least a plurality of first capacitor groups and a plurality of second capacitor groups, and the plurality of first capacitor groups and the plurality of second capacitor groups are alternately arranged along an extension direction of a boundary of the display area.
  • At least one pixel column group includes a first pixel column, a second pixel column and a third pixel column arranged in sequence along the pixel row direction
  • at least one first capacitor group includes a first compensation capacitor, a second compensation capacitor and a third compensation capacitor arranged in sequence along the pixel row direction
  • the first compensation capacitor, the second compensation capacitor and the third compensation capacitor are respectively arranged on one side of the first pixel column, the second pixel column and the third pixel column in the pixel column direction
  • the display substrate has a baseline, which is a straight line that bisects the display area in the pixel column direction and extends along the pixel row direction
  • the ends of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor close to the baseline are roughly flush in the pixel row direction
  • the ends of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor away from the baseline form a second stepped capacitor area boundary.
  • the first length of the first compensation capacitor is smaller than the second length of the second compensation capacitor
  • the second length of the second compensation capacitor is smaller than the third length of the third compensation capacitor
  • the first width of the first compensation capacitor is larger than the second width of the second compensation capacitor
  • the second width of the second compensation capacitor is larger than the third width of the third compensation capacitor
  • the first length, the second length and the third length are respectively the maximum dimensions of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor in the direction of the pixel column
  • the first width, the second width and the third width are respectively the maximum dimensions of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor in the direction of the pixel row.
  • the first compensation capacitor includes at least a first main portion and a first extension portion, the first end of the first main portion is arranged on a side of the first pixel column away from the baseline, the second end of the first main portion extends along the pixel column direction away from the baseline, the first end of the first extension portion is connected to a side of the first main portion away from the display area, and the second end of the first extension portion extends along the pixel row direction away from the display area, so that the end of the first compensation capacitor away from the display area forms a step shape.
  • the first extension portion includes at least a first sub-portion and a second sub-portion, the first sub-portion is arranged on a side of the second sub-portion close to the baseline, the first ends of the first sub-portion and the second sub-portion are respectively connected to a side of the first main portion away from the display area, the second ends of the first sub-portion and the second sub-portion extend along the pixel row direction in a direction away from the display area, the extension length of the first sub-portion is greater than the extension length of the second sub-portion, the first sub-portion is located at an end of at least two compensation capacitors in the second capacitor group away from the baseline, and the second sub-portion is located at an end of at least one compensation capacitor of the at least two compensation capacitors away from the baseline.
  • the second compensation capacitor includes at least a second main body portion and a second extension portion, the first end of the second main body portion is arranged on a side of the second pixel column away from the baseline, the second end of the second main body portion extends along the pixel column direction away from the baseline, the first end of the second extension portion is connected to a side of the second main body portion away from the display area, the second end of the second extension portion extends along the pixel row direction away from the display area, the second extension portion is located on a side of the first compensation capacitor away from the baseline, and the first compensation capacitor is located on a side of the second main body portion away from the display area, so that the end of the second compensation capacitor away from the display area forms a step shape.
  • the third compensation capacitor includes at least a third main body, a first end of the third main body is arranged on a side of the third pixel column away from the baseline, and a second end of the second main body extends along the pixel column direction away from the baseline.
  • At least one pixel column group includes a first pixel column, a second pixel column and a third pixel column arranged in sequence along the pixel row direction
  • at least one second capacitor group includes a fourth compensation capacitor, a fifth compensation capacitor and a sixth compensation capacitor arranged in sequence along the pixel row direction
  • the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor are respectively arranged on one side of the pixel column direction of the first pixel column, the second pixel column and the third pixel column
  • the display substrate has a baseline, which is a straight line that bisects the display area in the pixel column direction and extends along the pixel row direction
  • the ends of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor close to the baseline are roughly flush in the pixel row direction
  • the ends of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor away from the baseline form a second stepped capacitor area boundary.
  • the fourth length of the fourth compensation capacitor is less than the fifth length of the fifth compensation capacitor, the fifth length of the fifth compensation capacitor is equal to the sixth length of the sixth compensation capacitor, the fourth width of the fourth compensation capacitor is greater than the fifth width of the fifth compensation capacitor, and the fifth width of the fifth compensation capacitor is equal to the sixth width of the sixth compensation capacitor;
  • the fourth length, the fifth length and the sixth length are respectively the maximum dimensions of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor in the direction of the pixel column, and the fourth width, the fifth width and the sixth width are respectively the maximum dimensions of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor in the direction of the pixel row.
  • the fourth compensation capacitor includes at least a fourth main portion and a fourth extension portion, the first end of the fourth main portion is arranged on a side of the first pixel column away from the baseline, the second end of the fourth main portion extends along the pixel column direction away from the baseline, the first end of the fourth extension portion is connected to a side of the fourth main portion away from the display area, the second end of the fourth extension portion extends along the pixel row direction away from the display area, the fourth extension portion is located on a side of at least one compensation capacitor in the first capacitor group away from the baseline, and at least one compensation capacitor in the first capacitor group is located on a side of the fourth main portion away from the display area, so that the end of the fourth compensation capacitor away from the display area forms a step shape.
  • the fifth compensation capacitor includes at least a fifth main body, a first end of the fifth main body is arranged on a side of the second pixel column away from the reference line, and a second end of the fifth main body extends along the pixel column direction away from the reference line.
  • the sixth compensation capacitor includes at least a sixth main portion, a first end of the sixth main portion is arranged on a side of the third pixel column away from the baseline, and a second end of the sixth main portion extends along the pixel column direction away from the baseline.
  • the border area includes at least a first border and a second border arranged opposite to each other in the direction of the pixel row, a third border and a fourth border arranged opposite to each other in the direction of the pixel column, a first corner connecting the first border and the third border, a second corner connecting the second border and the third border, a third corner connecting the first border and the fourth border, and a fourth corner connecting the second border and the fourth border; the multiple compensation capacitors are arranged in any one or more of the first corner, the second corner, the third corner and the fourth corner.
  • At least one of the first corner and the second corner further includes a circuit area arranged on a side of the capacitor area away from the display area, the circuit area includes at least a first circuit area and a second circuit area located on a side of the first circuit area away from the display area, the first circuit area is provided with at least a plurality of test circuits, the second circuit area is provided with at least a plurality of gate drive circuits, and the plurality of test circuits and the plurality of gate drive circuits are arranged in sequence along an extension direction of a boundary of the display area.
  • a plurality of test circuits form an arc-shaped first edge line away from an edge of one side of the display area
  • a plurality of gate drive circuits form an arc-shaped second edge line close to an edge of one side of the display area
  • a first distance between the first edge line and the boundary of the display area is smaller than a second distance between the second edge line and the boundary of the display area
  • the first distance is the minimum distance between the first edge line and the boundary of the display area
  • the second distance is the minimum distance between the second edge line and the boundary of the display area.
  • At least one of the third corner and the fourth corner includes a circuit area arranged on one side of the display area, the circuit area includes at least a first circuit area and a second circuit area located on a side of the first circuit area away from the display area, the first circuit area is provided with at least a plurality of multi-way selection units, the second circuit area is provided with at least a plurality of gate driving circuits, and the plurality of multi-way selection units and the plurality of gate driving circuits are arranged in sequence along the extension direction of the boundary of the display area.
  • a plurality of multi-way selection circuits form an arc-shaped third edge line away from an edge of one side of the display area
  • a plurality of gate driving circuits form an arc-shaped fourth edge line close to an edge of one side of the display area
  • a third distance between the third edge line and the boundary of the display area is less than a fourth distance between the fourth edge line and the boundary of the display area
  • the third distance is the minimum distance between the third edge line and the boundary of the display area
  • the fourth distance is the minimum distance between the fourth edge line and the boundary of the display area.
  • At least a plurality of multi-way selection units are provided in the fourth frame, and the shape of the multi-way selection units located in the fourth frame is substantially the same as the shape of the multi-way selection units located in the third corner or the fourth corner.
  • At least one of the third corner, the fourth corner and the fourth frame is further provided with at least one source output signal line and a plurality of selection signal lines
  • the orthographic projection of the at least one source output signal line on the display substrate plane and the orthographic projection of the plurality of selection signal lines on the display substrate plane have a first overlapping area
  • the orthographic projection of the at least one source output signal line on the display substrate plane and the orthographic projection of the plurality of selection signal lines on the display substrate plane have a second overlapping area
  • the first overlapping area is 0.9*the second overlapping area to 1.1*the second overlapping area
  • the second overlapping area is 0.9*the first overlapping area to 1.1*the first overlapping area.
  • the circuit area is further provided with at least one dummy unit, the shape of the dummy unit is substantially the same as that of the multi-way selection unit, and the dummy unit is connected to the high-voltage power supply line in the circuit area.
  • the present disclosure also provides a display substrate, including a display area and a frame area located outside the display area, the display area including a plurality of sub-pixels forming a plurality of pixel rows and a plurality of pixel columns, at least one pixel column including a data signal line and a first power line, the frame area including at least a plurality of compensation capacitors, at least one compensation capacitor including a first compensation plate and a second compensation plate, the orthographic projection of the first compensation plate on the display substrate and the orthographic projection of the second compensation plate on the display substrate at least partially overlapping; on a plane perpendicular to the display substrate, the display substrate includes a substrate and a first conductive layer, a second conductive layer, a third conductive layer and a fourth conductive layer sequentially arranged on the substrate, the data signal line is arranged in the third conductive layer or the fourth conductive layer, the first power line is arranged in the fourth conductive layer, the first compensation plate and the second compensation plate are arranged in two conductive
  • At least one compensation capacitor also includes a third compensation plate, the orthographic projection of the third compensation plate on the display substrate at least partially overlaps with the orthographic projection of the first compensation plate on the display substrate, and the orthographic projection of the third compensation plate on the display substrate at least partially overlaps with the orthographic projection of the second compensation plate on the display substrate; the third compensation plate is arranged between the first compensation plate and the second compensation plate, or the third compensation plate is arranged on a side of the first compensation plate away from the second compensation plate, or the third compensation plate is arranged on a side of the second compensation plate away from the first compensation plate.
  • the present disclosure further provides a display device, comprising the aforementioned display substrate.
  • FIG1 is a schematic structural diagram of a display device
  • FIG2 is a schematic diagram of a planar structure of a display substrate
  • FIG3 is a schematic diagram of a planar structure of a display area in a display substrate
  • FIG4 is a schematic diagram of a cross-sectional structure of a display area in a display substrate
  • FIG5 is a schematic diagram of an equivalent circuit of a pixel driving circuit
  • FIG6 is a schematic diagram of a planar structure of a display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 7A and 7B are enlarged views of the capacitor region in FIG. 6 ;
  • FIG8 is a schematic diagram of an arrangement of a capacitor group according to an exemplary embodiment of the present disclosure.
  • FIG9 is a schematic structural diagram of a first capacitor group according to an exemplary embodiment of the present disclosure.
  • FIG10 is a schematic structural diagram of a first compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG11 is a schematic structural diagram of a second compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG12 is a schematic diagram of the structure of a third compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG13 is a schematic structural diagram of a second capacitor group according to an exemplary embodiment of the present disclosure.
  • FIG14 is a schematic structural diagram of a fourth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG15 is a schematic diagram of the structure of a fifth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG16 is a schematic structural diagram of a sixth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of an arrangement of compensation capacitors according to an exemplary embodiment of the present disclosure.
  • FIG18 is a schematic diagram showing a substrate after a first conductive layer pattern is formed according to an embodiment of the present disclosure
  • FIG19 is a schematic diagram showing a substrate after a second conductive layer pattern is formed according to an embodiment of the present disclosure
  • FIG20 is a schematic diagram showing a substrate after a third conductive layer pattern is formed according to an embodiment of the present disclosure
  • FIG21 is a schematic diagram of a cross-sectional structure of a compensation capacitor according to an embodiment of the present disclosure.
  • FIG22 is a schematic cross-sectional view of another compensation capacitor according to an embodiment of the present disclosure.
  • FIG23 is a schematic diagram showing the arrangement of a compensation capacitor of a conventional display substrate
  • FIG24 is a schematic diagram of a planar structure of another display substrate according to an exemplary embodiment of the present disclosure.
  • 25 and 26 are schematic plan views of another display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 27 is a schematic diagram showing the arrangement of a multi-way selection circuit and a gate driving circuit of a conventional display substrate.
  • 20B second compensation plate
  • 20C third compensation plate
  • 21 first compensation capacitor
  • 50 capacitor group
  • 51 first capacitor group
  • 52 second capacitor group
  • test output line 72—test output line; 80—high voltage power supply line; 81—data signal line;
  • 82 first power supply line
  • 90 multi-way selection circuit
  • 90A dummy circuit
  • 100 display area
  • 101 substrate
  • 102 driving circuit layer
  • 103 light emitting structure layer
  • 104 packetaging structure layer
  • 200 frame area
  • 201 first border
  • 202 second border
  • 203 third border
  • the proportions of the drawings in this disclosure can be used as a reference in the actual process, but are not limited to this.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display substrate and the number of sub-pixels in each pixel are not limited to the numbers shown in the figures.
  • the drawings described in this disclosure are only structural schematic diagrams, and one method of this disclosure is not limited to the shapes or values shown in the drawings.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • a transistor refers to an element including at least three terminals: a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode.
  • the channel region refers to a region where current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” are sometimes interchanged. Therefore, in this specification, the “source electrode” and the “drain electrode” may be interchanged, and the “source terminal” and the “drain terminal” may be interchanged.
  • electrical connection includes the case where components are connected together through an element having some electrical function.
  • element having some electrical function There is no particular limitation on the “element having some electrical function” as long as it can transmit and receive electrical signals between the connected components. Examples of “element having some electrical function” include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel means a state where the angle formed by two straight lines is greater than -10° and less than 10°, and therefore, also includes a state where the angle is greater than -5° and less than 5°.
  • perpendicular means a state where the angle formed by two straight lines is greater than 80° and less than 100°, and therefore, also includes a state where the angle is greater than 85° and less than 95°.
  • film and “layer” may be interchanged.
  • conductive layer may be replaced by “conductive film”.
  • insulating film may be replaced by “insulating layer”.
  • triangles, rectangles, trapezoids, pentagons or hexagons are not strictly defined, but may be approximate triangles, rectangles, trapezoids, pentagons or hexagons, etc., and may have some small deformations caused by tolerances, and may have chamfers, arc edges and deformations, etc.
  • "About" in this disclosure means that the limits are not strictly defined, and the values within the range of process and measurement errors are allowed.
  • FIG1 is a schematic diagram of the structure of a display device.
  • the display device may include a timing controller, a data driver, a scan driver, a light emitting driver and a pixel array, the timing controller is respectively connected to the data driver, the scan driver and the light emitting driver, the data driver is respectively connected to a plurality of data signal lines (D1 to Dn), the scan driver is respectively connected to a plurality of scan signal lines (S1 to Sm), and the light emitting driver is respectively connected to a plurality of light emitting signal lines (E1 to Eo).
  • D1 to Dn data signal lines
  • S1 to Sm scan signal lines
  • E1 to Eo light emitting signal lines
  • the pixel array may include a plurality of sub-pixels 10xij, i and j may be natural numbers, at least one sub-pixel 10xij may include a circuit unit and a light emitting unit connected to the circuit unit, the circuit unit may include at least a pixel driving circuit, and the pixel driving circuit is respectively connected to the scan signal line, the data signal line and the light emitting signal line.
  • the timing controller may provide a grayscale value and a control signal suitable for the specifications of the data driver to the data driver, may provide a clock signal suitable for the specifications of the scan driver, a scan start signal, etc. to the scan driver, and may provide a clock signal suitable for the specifications of the light emitting driver, an emission stop signal, etc.
  • the data driver may generate a data voltage to be provided to the data signal lines D1, D2, D3, ... and Dn using the grayscale value and the control signal received from the timing controller. For example, the data driver may sample the grayscale value using the clock signal, and apply the data voltage corresponding to the grayscale value to the data signal lines D1 to Dn in units of pixel rows, where n may be a natural number.
  • the scan driver may generate a scan signal to be provided to the scan signal lines S1, S2, S3, ... and Sm by receiving a clock signal, a scan start signal, etc. from the timing controller. For example, the scan driver may sequentially provide a scan signal having a conduction level pulse to the scan signal lines S1 to Sm.
  • the scan driver may be constructed in the form of a shift register, and may sequentially transmit the scan start signal provided in the form of a conduction level pulse to the next level circuit under the control of the clock signal to generate a scan signal, where m may be a natural number.
  • the light emitting driver may generate an emission signal to be provided to the light emitting signal lines E1, E2, E3, ... and Eo by receiving a clock signal, an emission stop signal, etc. from the timing controller.
  • the light emitting driver may sequentially provide an emission signal having a cut-off level pulse to the light emitting signal lines E1 to Eo.
  • the light emitting driver may be constructed in the form of a shift register, and may generate an emission signal in a manner of sequentially transmitting an emission stop signal provided in the form of a cut-off level pulse to a next stage circuit under the control of a clock signal, and o may be a natural number.
  • FIG2 is a schematic diagram of a planar structure of a display substrate, illustrating a display substrate with a rectangular rounded corner shape.
  • the display substrate may include a display area 100 and a frame area 200 located around the display area 100.
  • the display area 100 may include a first edge (left edge) and a second edge (right edge) arranged oppositely in a first direction X, and a third edge (upper edge) and a fourth edge (lower edge) arranged oppositely in a second direction Y, and adjacent edges are connected by arc-shaped chamfers to form a rounded quadrilateral shape, and the first direction X and the second direction Y intersect.
  • the display area 100 may be a flat area including a plurality of sub-pixels constituting a pixel array, the plurality of sub-pixels being configured to display a dynamic picture or a still image, and the display area 100 may be referred to as an active area (AA).
  • the display substrate may be deformable, such as curled, bent, folded, or rolled.
  • the border area 200 may include at least a first border (left border) 201 and a second border (right border) 202 arranged opposite to each other in the first direction X, a third border (upper border) 203 and a fourth border (lower border) 204 arranged opposite to each other in the second direction Y, and a first corner 211 connecting the first border 201 and the third border 203, a second corner 212 connecting the second border 202 and the third border 203, a third corner 213 connecting the first border 201 and the fourth border 204, and a fourth corner 214 connecting the second border 202 and the fourth border 204.
  • the fourth frame 204 may be referred to as a binding frame, and may include a lead area, a driver chip area, and a binding pin area sequentially arranged in a direction away from the display area 100.
  • the lead area may include at least a plurality of data transmission lines, and the plurality of data transmission lines are connected to the data signal lines of the display area.
  • the driver chip area may include at least an integrated circuit (IC), which is configured to be connected to the plurality of data transmission lines.
  • the binding pin area may include at least a plurality of binding pins (Bonding Pad), which is configured to be bound and connected to an external flexible printed circuit (FPC).
  • the first frame 201 and the second frame 202 may be referred to as side frames, and may include at least a plurality of cascaded gate driving circuits, and the plurality of gate driving circuits may be respectively connected to the scanning signal lines and the light emitting signal lines in the display area 100.
  • the third frame 203 may be referred to as an upper frame, and may include at least a plurality of detection circuits, and the plurality of detection circuits may be respectively connected to the data signal lines in the display area 100.
  • first corner portion 211 and the second corner portion 212 may include a plurality of gate driving circuits, or may include a plurality of detection circuits, or may include a plurality of gate driving circuits and a plurality of detection circuits, which is not limited in the present disclosure.
  • a first isolation dam and a second isolation dam may be further provided in the border area 200.
  • the first isolation dam and the second isolation dam may extend in a direction parallel to a boundary of the display area to form an annular structure surrounding the display area 100.
  • the boundary of the display area may be the edge of the display area close to the border area.
  • FIG3 is a schematic diagram of a planar structure of a display area in a display substrate.
  • the display area may include a plurality of pixel units P arranged in a matrix manner, and at least one pixel unit P may include a first sub-pixel P1 emitting a first color light, a second sub-pixel P2 emitting a second color light, and a third sub-pixel P3 emitting a third color light.
  • Each sub-pixel may include a circuit unit and a light-emitting unit, and the circuit unit may include at least a pixel driving circuit, and the pixel driving circuit is respectively connected to a scanning signal line, a data signal line, and a light-emitting signal line, and the pixel driving circuit is configured to receive a data voltage transmitted by the data signal line under the control of the scanning signal line and the light-emitting signal line, and output a corresponding current to the light-emitting unit.
  • the light-emitting unit in each sub-pixel is respectively connected to the pixel driving circuit of the sub-pixel in which it is located, and the light-emitting unit is configured to emit light of corresponding brightness in response to the current output by the connected pixel driving circuit.
  • the first sub-pixel P1 may be a red sub-pixel (R) emitting red light
  • the second sub-pixel P2 may be a blue sub-pixel (B) emitting blue light
  • the third sub-pixel P3 may be a green sub-pixel (G) emitting green light.
  • the shape of the sub-pixel may be a rectangle, a rhombus, a pentagon, or a hexagon
  • the three sub-pixels may be arranged in a horizontal parallel, vertical parallel, or in a triangular shape.
  • the pixel unit may include three sub-pixels, and the three sub-pixels may be arranged in a horizontal parallel, vertical parallel, square, or diamond shape, etc., which is not limited in the present disclosure.
  • the plurality of sub-pixels in the display area may form a plurality of pixel rows and a plurality of pixel columns
  • the pixel rows may include a plurality of sub-pixels sequentially arranged along a first direction X
  • the plurality of pixel rows may be sequentially arranged along a second direction Y
  • the pixel columns may include a plurality of sub-pixels sequentially arranged along the second direction Y
  • the plurality of pixel columns may be sequentially arranged along the first direction X.
  • the first direction X may be the direction of the pixel rows
  • the second direction Y may be the direction of the pixel columns
  • the first direction X and the second direction Y may be perpendicular to each other.
  • the number of sub-pixels in a plurality of pixel columns is different, the number of sub-pixels in the pixel column close to the side frame position is relatively small, and the number of sub-pixels in the pixel column located in the middle position of the display area is relatively large, that is, the number of sub-pixels in the pixel column gradually decreases along the direction close to the frame area, so that a first stepped display area boundary is formed on the side of the display area close to the frame area.
  • FIG4 is a schematic diagram of a cross-sectional structure of a display area in a display substrate, illustrating the structure of three sub-pixels in the display area.
  • the display substrate may include a driving circuit layer 102 disposed on a substrate 101, a light emitting structure layer 103 disposed on a side of the driving circuit layer 102 away from the substrate 101, and an encapsulation structure layer 104 disposed on a side of the light emitting structure layer 103 away from the substrate 101.
  • the display substrate may include other film layers, such as a touch structure layer, etc., which is not limited in the present disclosure.
  • the substrate 101 may be a flexible substrate, or may be a rigid substrate.
  • the driving circuit layer 102 may include a plurality of circuit units, and the circuit unit may include at least a pixel driving circuit.
  • the light-emitting structure layer 103 may include at least a plurality of light-emitting units, and the light-emitting unit may include at least an anode, an organic light-emitting layer and a cathode, and the organic light-emitting layer emits light of corresponding colors under the drive of the anode and the cathode.
  • the encapsulation structure layer 104 may include a first encapsulation layer, a second encapsulation layer and a third encapsulation layer stacked, the first encapsulation layer and the third encapsulation layer may be made of inorganic materials, the second encapsulation layer may be made of organic materials, and the second encapsulation layer is arranged between the first encapsulation layer and the third encapsulation layer to form an inorganic material/organic material/inorganic material stacked structure, which can ensure that external water and oxygen cannot enter the light-emitting structure layer 103.
  • FIG5 is a schematic diagram of an equivalent circuit of a pixel driving circuit.
  • the pixel driving circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C, 7T1C or 8T1C structure.
  • the pixel driving circuit may include 7 transistors (a first transistor T1 to a seventh transistor T7) and a storage capacitor C, and the pixel driving circuit is respectively connected to 6 signal lines (a data signal line D, a first scanning signal line S1, a second scanning signal line S2, a light emitting signal line E, an initial signal line INIT and a first power line VDD).
  • the pixel driving circuit may include a first node N1, a second node N2, and a third node N3.
  • the first node N1 is respectively connected to the first electrode of the third transistor T3, the second electrode of the fourth transistor T4, and the second electrode of the fifth transistor T5, the second node N2 is respectively connected to the second electrode of the first transistor, the first electrode of the second transistor T2, the gate electrode of the third transistor T3, and the second end of the storage capacitor C, and the third node N3 is respectively connected to the second electrode of the second transistor T2, the second electrode of the third transistor T3, and the first electrode of the sixth transistor T6.
  • a first end of the storage capacitor C is connected to the first power line VDD, and a second end of the storage capacitor C is connected to the second node N2 , ie, the second end of the storage capacitor C is connected to the gate electrode of the third transistor T3 .
  • the gate electrode of the first transistor T1 is connected to the second scan signal line S2, the first electrode of the first transistor T1 is connected to the initial signal line INIT, and the second electrode of the first transistor is connected to the second node N2.
  • the first transistor T1 transmits the initial voltage to the gate electrode of the third transistor T3 to initialize the charge amount of the gate electrode of the third transistor T3.
  • the gate electrode of the second transistor T2 is connected to the first scan signal line S1, the first electrode of the second transistor T2 is connected to the second node N2, and the second electrode of the second transistor T2 is connected to the third node N3.
  • the second transistor T2 connects the gate electrode of the third transistor T3 to the second electrode.
  • the gate electrode of the third transistor T3 is connected to the second node N2, that is, the gate electrode of the third transistor T3 is connected to the second end of the storage capacitor C, the first electrode of the third transistor T3 is connected to the first node N1, and the second electrode of the third transistor T3 is connected to the third node N3.
  • the third transistor T3 can be called a driving transistor, and the third transistor T3 determines the amount of driving current flowing between the first power line VDD and the second power line VSS according to the potential difference between its gate electrode and the first electrode.
  • the gate electrode of the fourth transistor T4 is connected to the first scan signal line S1, the first electrode of the fourth transistor T4 is connected to the data signal line D, and the second electrode of the fourth transistor T4 is connected to the first node N1.
  • the fourth transistor T4 can be called a switching transistor, a scan transistor, etc. When the on-level scan signal is applied to the first scan signal line S1, the fourth transistor T4 enables the data voltage of the data signal line D to be input to the pixel driving circuit.
  • the gate electrode of the fifth transistor T5 is connected to the light emitting signal line E, the first electrode of the fifth transistor T5 is connected to the first power line VDD, and the second electrode of the fifth transistor T5 is connected to the first node N1.
  • the gate electrode of the sixth transistor T6 is connected to the light emitting signal line E, the first electrode of the sixth transistor T6 is connected to the third node N3, and the second electrode of the sixth transistor T6 is connected to the first electrode of the light emitting unit EL.
  • the fifth transistor T5 and the sixth transistor T6 can be called light emitting transistors. When the on-level light emitting signal is applied to the light emitting signal line E, the fifth transistor T5 and the sixth transistor T6 form a driving current path between the first power line VDD and the second power line VSS to make the light emitting unit EL emit light.
  • the gate electrode of the seventh transistor T7 is connected to the second scan signal line S2, the first electrode of the seventh transistor T7 is connected to the initial signal line INIT, and the second electrode of the seventh transistor T7 is connected to the first electrode of the light emitting unit EL.
  • the seventh transistor T7 transmits the initial voltage to the first electrode of the light emitting unit EL to initialize or release the charge accumulated in the first electrode of the light emitting unit EL.
  • the light-emitting unit EL may be an OLED including a stacked first electrode (anode), an organic light-emitting layer, and a second electrode (cathode), or may be a QLED including a stacked first electrode (anode), a quantum dot light-emitting layer, and a second electrode (cathode).
  • the second electrode of the light emitting unit EL is connected to the second power line VSS, the signal of the second power line VSS is a continuously provided low level signal, and the signal of the first power line VDD is a continuously provided high level signal.
  • the first transistor T1 to the seventh transistor T7 may be a P-type transistor, or may be an N-type transistor. Using the same type of transistors in the pixel driving circuit can simplify the process flow, reduce the process difficulty of the display panel, and improve the yield of the product. In some possible implementations, the first transistor T1 to the seventh transistor T7 may include a P-type transistor and an N-type transistor.
  • the first transistor T1 to the seventh transistor T7 may be a low-temperature polysilicon thin film transistor, or an oxide thin film transistor, or a low-temperature polysilicon thin film transistor and an oxide thin film transistor.
  • the active layer of the low-temperature polysilicon thin film transistor is low-temperature polysilicon (LTPS), and the active layer of the oxide thin film transistor is oxide semiconductor (Oxide).
  • LTPS low-temperature polysilicon
  • Oxide oxide semiconductor
  • the low-temperature polysilicon thin film transistor has the advantages of high mobility and fast charging, and the oxide thin film transistor has the advantages of low leakage current.
  • the low-temperature polysilicon thin film transistor and the oxide thin film transistor are integrated on a display substrate to form a low-temperature polycrystalline oxide (LTPO) display substrate, which can take advantage of the advantages of both, realize low-frequency driving, reduce power consumption, and improve display quality.
  • LTPO low-temperature polycrystalline oxide
  • the operation process of the pixel driving circuit may include:
  • the signal of the second scanning signal line S2 is a low-level signal, and the signals of the first scanning signal line S1 and the light-emitting signal line E are high-level signals.
  • the signal of the second scanning signal line S2 is a low-level signal, which turns on the first transistor T1 and the seventh transistor T7.
  • the first transistor T1 is turned on so that the initial voltage of the initial signal line INIT is provided to the second node N2, the storage capacitor C is initialized, and the original data voltage in the storage capacitor is cleared.
  • the seventh transistor T7 is turned on so that the initial voltage of the initial signal line INIT is provided to the first electrode of the OLED, the first electrode of the OLED is initialized (reset), the pre-stored voltage inside it is cleared, and the initialization is completed.
  • the signals of the first scanning signal line S1 and the light-emitting signal line E are high-level signals, which turns off the second transistor T2, the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6. In this stage, the OLED does not emit light.
  • the signal of the first scanning signal line S1 is a low level signal
  • the signals of the second scanning signal line S2 and the light emitting signal line E are high level signals
  • the data signal line D outputs the data voltage.
  • the third transistor T3 since the second end of the storage capacitor C is at a low level, the third transistor T3 is turned on.
  • the signal of the first scanning signal line S1 is a low level signal, which turns on the second transistor T2 and the fourth transistor T4.
  • the second transistor T2 and the fourth transistor T4 are turned on so that the data voltage output by the data signal line D is provided to the second node N2 through the first node N1, the turned-on third transistor T3, the third node N3, and the turned-on second transistor T2, and the difference between the data voltage output by the data signal line D and the threshold voltage of the third transistor T3 is charged into the storage capacitor C, and the voltage of the second end (the second node N2) of the storage capacitor C is Vd-
  • the signal of the second scanning signal line S2 is a high level signal, which turns off the first transistor T1 and the seventh transistor T7.
  • the signal of the light emitting signal line E is a high level signal, which turns off the fifth transistor T5 and the sixth transistor T6.
  • the signal of the light-emitting signal line E is a low-level signal
  • the signals of the first scanning signal line S1 and the second scanning signal line S2 are high-level signals.
  • the signal of the light-emitting signal line E is a low-level signal, which turns on the fifth transistor T5 and the sixth transistor T6, and the power supply voltage output by the first power supply line VDD provides a driving voltage to the first electrode of the OLED through the turned-on fifth transistor T5, the third transistor T3 and the sixth transistor T6, thereby driving the OLED to emit light.
  • the driving current flowing through the third transistor T3 (driving transistor) is determined by the voltage difference between its gate electrode and the first electrode. Since the voltage of the second node N2 is Vd-
  • I is the driving current flowing through the third transistor T3, that is, the driving current driving the OLED
  • K is a constant
  • Vgs is the voltage difference between the gate electrode and the first electrode of the third transistor T3
  • Vth is the threshold voltage of the third transistor T3
  • Vd is the data voltage output by the data signal line D
  • Vdd is the power supply voltage output by the first power supply line VDD.
  • a display substrate with a rectangular rounded corner shape such as a wearable watch or other product, has a large area from the first corner to the fourth corner, so the number of sub-pixels in multiple pixel columns in the display area is different.
  • the number of sub-pixels in the pixel column gradually decreases, which makes the extension length of the data signal line in the display area vary greatly, resulting in differences in data voltage loads, affecting the display effect.
  • the existing structure usually adopts a compensation capacitor method, and reduces the difference in data voltage loads by setting a compensation capacitor in the border area to achieve optimized display effects.
  • the inventor of the present application has found that the existing compensation capacitor setting structure occupies a large area of the border area, resulting in an increase in the border width, which is not conducive to achieving a narrow border.
  • the exemplary embodiment of the present disclosure provides a display substrate.
  • the display substrate may include a display area and a frame area located outside the display area, the display area may include a plurality of sub-pixels forming a plurality of pixel rows and a plurality of pixel columns, along the direction close to the frame area, the number of sub-pixels in at least part of the pixel columns decreases, and a first stepped display area boundary is formed on the side of the display area close to the frame area;
  • the frame area at least includes a capacitor area, the capacitor area includes a plurality of compensation capacitors, and the plurality of compensation capacitors form a second stepped capacitor area boundary on the side away from the display area;
  • the display area boundary includes a plurality of first steps connected in sequence, the first step has a first step length and a first step width, the capacitor area boundary includes a plurality of second steps connected in sequence, the second step has
  • the display area includes a plurality of pixel column groups, at least one pixel column group includes n pixel columns arranged in sequence along the pixel row direction, at least two pixel columns in the pixel column group have the same number of sub-pixels, or each pixel column in the pixel column group has a different number of sub-pixels, and n is a positive integer greater than or equal to 2;
  • the border area includes a plurality of capacitor groups, at least one capacitor group includes n compensation capacitors arranged in sequence along the pixel row direction; the capacitor groups are arranged corresponding to the pixel column groups.
  • At least one compensation capacitor is in a strip shape extending along the pixel column direction.
  • At least one compensation capacitor in at least one capacitor group, includes at least a main portion and an extension portion connected to each other, wherein the main portion is in the shape of a strip extending along the pixel column direction, and the extension portion is in the shape of a strip extending along the pixel row direction.
  • the plurality of capacitor groups include at least a plurality of first capacitor groups and a plurality of second capacitor groups, and the plurality of first capacitor groups and the plurality of second capacitor groups are alternately arranged along an extension direction of a boundary of the display area.
  • At least one pixel column group includes a first pixel column, a second pixel column and a third pixel column arranged in sequence along the pixel row direction
  • at least one first capacitor group includes a first compensation capacitor, a second compensation capacitor and a third compensation capacitor arranged in sequence along the pixel row direction
  • the first compensation capacitor, the second compensation capacitor and the third compensation capacitor are respectively arranged on one side of the first pixel column, the second pixel column and the third pixel column in the pixel column direction
  • the display substrate has a baseline, and the baseline is a straight line that bisects the display area in the pixel column direction and extends along the pixel row direction
  • the ends of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor close to the baseline are roughly flush in the pixel row direction
  • the ends of the first compensation capacitor, the second compensation capacitor and the third compensation capacitor away from the baseline form a second stepped capacitor area boundary.
  • At least one second capacitor group includes a fourth compensation capacitor, a fifth compensation capacitor and a sixth compensation capacitor which are arranged in sequence along the pixel row direction, and the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor are respectively arranged on one side of the pixel column direction of the first pixel column, the second pixel column and the third pixel column; the ends of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor close to the baseline are roughly flush in the pixel row direction, and the ends of the fourth compensation capacitor, the fifth compensation capacitor and the sixth compensation capacitor away from the baseline form a second stepped capacitor area boundary.
  • At least one pixel column includes a data signal line and a first power line
  • at least one compensation capacitor includes a first plate and a second plate
  • the orthographic projection of the first plate on the display substrate at least partially overlaps with the orthographic projection of the second plate on the display substrate
  • the first plate is connected to the data signal line in the pixel column
  • the second plate is connected to the first power line in the pixel column.
  • the border area includes at least a first border and a second border arranged opposite to each other in the direction of the pixel row, a third border and a fourth border arranged opposite to each other in the direction of the pixel column, a first corner connecting the first border and the third border, a second corner connecting the second border and the third border, a third corner connecting the first border and the fourth border, and a fourth corner connecting the second border and the fourth border; the multiple compensation capacitors are arranged in any one or more of the first corner, the second corner, the third corner and the fourth corner.
  • the display substrate may include a display area 100 and a frame area 200 located around the display area 100.
  • the display area 100 may include at least a plurality of sub-pixels 10 forming a plurality of pixel rows and a plurality of pixel columns, the pixel rows may include a plurality of sub-pixels 10 sequentially arranged along a first direction X, the plurality of pixel rows may be sequentially arranged along a second direction Y, the pixel columns may include a plurality of sub-pixels 10 sequentially arranged along the second direction Y, the plurality of pixel columns may be sequentially arranged along the first direction X, and a pixel array is formed in the display area 100, the first direction X may be the direction of the pixel rows, the second direction Y may be the direction of the pixel columns, and the first direction X and the second direction Y may be per
  • the frame area 200 may include at least a first frame, a second frame, a third frame, a fourth frame, a first corner, a second corner, a third corner and a fourth corner.
  • the first frame and the second frame may be arranged relative to each other in the first direction X
  • the third frame and the fourth frame may be arranged relative to each other in the second direction Y
  • the first corner may be arranged between the first frame and the third frame, and respectively connected to the first frame and the third frame
  • the second corner may be arranged between the second frame and the third frame, and respectively connected to the second frame and the third frame
  • the third corner may be arranged between the first frame and the fourth frame, and respectively connected to the first frame and the fourth frame
  • the fourth corner may be arranged between the second frame and the fourth frame, and respectively connected to the second frame and the fourth frame
  • the edges of the first corner, the second corner, the third corner and the fourth corner close to the display area and the edges away from the display area are arc-shaped
  • Figure 6 illustrates
  • the compensation capacitor may include a first compensation plate and a second compensation plate stacked on a substrate, an orthographic projection of the second compensation plate on the substrate at least partially overlaps an orthographic projection of the first compensation plate on the substrate, the first compensation plate is configured to be connected to a data signal line in a display area, and the second compensation plate is configured to be connected to a first power line in the display area.
  • the first compensation plates of the plurality of compensation capacitors may be arranged at intervals, and the second compensation plates of the plurality of compensation capacitors may be an integrated structure connected to each other.
  • FIG. 7A and 7B are enlarged views of the capacitor region in FIG. 6
  • FIG. 7A illustrates the structure of the first compensation plate in the compensation capacitor
  • FIG. 7B illustrates the structure of the second compensation plate in the compensation capacitor.
  • the number of sub-pixels 10 in a plurality of pixel columns in the display area 100 may be different, and the number of sub-pixels 10 in the pixel column may gradually decrease along the direction of the frame area 200 , so that the display area boundary of the display area 100 close to the frame area 200 side forms a first step.
  • the first stepped display area boundary may include a plurality of first steps connected in sequence, the first step having a first step length JL1 and a first step width JM1, the first step length JL1 may be the size of the first step in the second direction Y (pixel column direction), and the first step width JM1 may be the size of the first step in the first direction X (pixel row direction).
  • the border area 200 may include at least a capacitor area 210, a circuit area 220 and a routing area 230 arranged in sequence along a direction away from the display area 100, the capacitor area 210 is provided with at least a plurality of compensation capacitors 20, the circuit area 220 is provided with at least a plurality of gate drive circuits 30, and the routing area 230 is provided with at least a low-voltage power routing 40.
  • the shape of the compensation capacitor 20 may be a strip extending along the second direction Y, and a plurality of compensation capacitors 20 may be respectively disposed on one side or both sides of the plurality of pixel columns in the second direction Y, and the compensation capacitor 20 is configured to provide compensation to the data signal line of the display area 100.
  • the plurality of compensation capacitors 20 disposed at the first corner the plurality of compensation capacitors 20 may be respectively disposed on one side of the plurality of pixel columns in the opposite direction of the second direction Y, and one compensation capacitor 20 is disposed on one side of one pixel column in the opposite direction of the second direction Y.
  • the gate driving circuit 30 may be rectangular in shape, and a plurality of gate driving circuits 30 may be sequentially arranged along the extension direction of the boundary of the display region, and the input terminals of the plurality of gate driving circuits 30 are respectively connected to the plurality of gate signal lines 31 through connecting lines, and the output terminals of the plurality of gate driving circuits 30 are respectively connected to the scanning signal lines and the light emitting signal lines in the plurality of pixel rows in the display region 100 through gate output lines 32, and the gate driving circuit 30 is configured to provide scanning signals and light emitting signals to the scanning signal lines and the light emitting signal lines of the display region 100.
  • the plurality of gate signal lines 31 may be strip-shaped extending along the extension direction of the boundary of the display region, and the plurality of gate signal lines 31 may be arranged on a side of the plurality of gate driving circuits 30 away from the display region.
  • the shape of the low-voltage power supply line 40 can be a strip shape extending along the extension direction of the boundary of the display area.
  • the low-voltage power supply line 40 can be set on the side of the multiple gate signal lines 31 away from the display area.
  • the low-voltage power supply line 40 is configured to provide a low-voltage power signal to the light-emitting device in the display area 100.
  • the positions of the plurality of compensation capacitors 20 in the capacitance region 210 are staggered, so that the capacitance region boundary of the plurality of compensation capacitors 20 away from the display region forms a second step shape.
  • the second stepped capacitance region boundary may include a plurality of second steps connected in sequence, the second step having a second step length JL2 and a second step width JM2, the second step length JL2 may be the size of the second step in the second direction Y (pixel column direction), and the second step width JM2 may be the size of the second step in the first direction X (pixel row direction).
  • the second step length JL2 may be less than or equal to the first step length JL1, and the second step width JM2 may be less than or equal to the first step width JM1, that is, relative to the second step at the display area boundary, the first step at the capacitor area boundary has a smaller step size.
  • the first step length JL1 may be the largest first step length among the plurality of first steps
  • the first step width JM1 may be the largest first step width among the plurality of first steps
  • the second step length JL2 may be the smallest second step length among the plurality of second steps
  • the second step width JM2 may be the smallest second step width among the plurality of second steps.
  • JL2 0.2*JL1 to 0.4*JL1
  • JM2 0.2*JM1 to 0.4*JM1.
  • the present disclosure can effectively reduce the occupied area of the capacitor region and the width of the frame region by forming a capacitor region boundary with a smaller step size, thereby achieving a narrow frame.
  • the plurality of pixel columns of the display area 100 may be divided into a plurality of pixel column groups 60, each pixel column group 60 may include n pixel columns sequentially arranged along the first direction X, the number of sub-pixels in the n pixel columns is the same, and n may be a positive integer greater than or equal to 2.
  • the plurality of compensation capacitors 20 of the frame area 200 may be divided into a plurality of capacitor groups 50, each capacitor group 50 may include n compensation capacitors 20 sequentially arranged along the first direction X, and the capacitance values of the n compensation capacitors 20 are substantially equal or approximately the same.
  • At least one capacitor group 50 is arranged corresponding to at least one pixel column group 60, and at least one capacitor group 50 may be arranged on one side or both sides of the second direction Y of at least one pixel column group 60.
  • one capacitor group 50 is arranged on one side of a pixel column group 60 in the opposite direction of the second direction Y.
  • the capacitance values of the compensation capacitors are substantially equal, which means that the areas of the first compensation plates in the compensation capacitors (or the areas of the orthographic projections on the substrate) are substantially the same.
  • n may be the number of sub-pixels included in a pixel unit.
  • a pixel column group 60 may include a first pixel column, a second pixel column, and a third pixel column sequentially arranged along the first direction X
  • the first pixel column may include a plurality of first sub-pixels arranged along the second direction Y
  • the second pixel column may include a plurality of second sub-pixels arranged along the second direction Y
  • the third pixel column may include a plurality of third sub-pixels arranged along the second direction Y
  • the number of sub-pixels in the first pixel column, the second pixel column, and the third pixel column is the same, that is, the edges of the three pixel columns on both sides of the second direction Y are substantially flush.
  • Fig. 8 is a schematic diagram of the arrangement of a capacitor group in an exemplary embodiment of the present disclosure.
  • the plurality of capacitor groups 50 may include at least a plurality of first capacitor groups 51 and a plurality of second capacitor groups 52, and the plurality of first capacitor groups 51 and the plurality of second capacitor groups 52 may be alternately arranged along the extension direction of the display area boundary, that is, a second capacitor group 52 is arranged between two adjacent first capacitor groups 51, and a first capacitor group 51 is arranged between two adjacent second capacitor groups 52.
  • the number of compensation capacitors included in the first capacitor group 51 may be the same as or different from the number of compensation capacitors included in the second capacitor group 52.
  • the present disclosure arranges the first capacitor group 51 and the second capacitor group 52 alternately, so that the edges of the plurality of capacitor groups away from the display area are substantially located on a straight line extending in the extension direction of the boundary of the display area.
  • FIG9 is a schematic diagram of the structure of a first capacitor group of an exemplary embodiment of the present disclosure.
  • the display substrate may have a reference line O, and the reference line O may be a straight line that bisects the display area in the second direction Y (pixel column direction) and extends along the first direction X (pixel row direction).
  • a pixel column group 60 may include a first pixel column 61, a second pixel column 62, and a third pixel column 63 sequentially arranged along the first direction X
  • a first capacitor group 51 may include a first compensation capacitor 21, a second compensation capacitor 22, and a third compensation capacitor 23 sequentially arranged along the first direction X
  • the first capacitor group 51 may be arranged on a side of the pixel column group 60 away from the reference line O.
  • the orthographic projection of the first compensation capacitor 21 on the reference line O may at least partially overlap with the orthographic projection of the first pixel column 61 on the reference line O
  • the orthographic projection of the second compensation capacitor 22 on the reference line O may at least partially overlap with the orthographic projection of the second pixel column 62 on the reference line O
  • the orthographic projection of the third compensation capacitor 23 on the reference line O may at least partially overlap with the orthographic projection of the third pixel column 63 on the reference line O.
  • the positional relationship and size parameters of the compensation capacitors in the present disclosure refer to the positional relationship and size parameters of the first compensation plates in the compensation capacitors.
  • the ends of the first compensation capacitor 21, the second compensation capacitor 22 and the third compensation capacitor 23 close to the reference line O can be roughly flush in the first direction X, and the ends of the first compensation capacitor 21, the second compensation capacitor 22 and the third compensation capacitor 23 away from the reference line O form a second stepped capacitance area boundary.
  • the first length L1 of the first compensation capacitor 21 may be smaller than the second length L2 of the second compensation capacitor 22, the second length L2 of the second compensation capacitor 22 may be smaller than the third length L3 of the third compensation capacitor 23, and the first length L1, the second length L2 and the third length L3 are respectively the maximum dimensions of the first compensation capacitor 21, the second compensation capacitor 22 and the third compensation capacitor 23 in the second direction Y.
  • the first width M1 of the first compensation capacitor 21 may be greater than the second width M2 of the second compensation capacitor 22, the second width M2 of the second compensation capacitor 22 may be greater than the third width M3 of the third compensation capacitor 23, and the first width M1, the second width M2 and the third width M3 are respectively the maximum dimensions of the first compensation capacitor 21, the second compensation capacitor 22 and the third compensation capacitor 23 in the first direction X.
  • the three compensation capacitors gradually increase in length and gradually decrease in width in the first direction X, so that the ends of the three compensation capacitors in the first capacitor group away from the reference line O form a step from low to high.
  • FIG10 is a schematic diagram of the structure of a first compensation capacitor according to an exemplary embodiment of the present disclosure.
  • the first compensation capacitor 21 may include at least a first main body portion 21-1 and a first extension portion 21-2.
  • the shape of the first main body portion 21-1 may be a strip shape extending along the second direction Y, the first end of the first main body portion 21-1 may be arranged on a side of the first pixel column 61 away from the reference line O, and the second end of the first main body portion 21-1 extends along the second direction Y in a direction away from the reference line O.
  • the shape of the first extension portion 21-2 may be a block shape or a strip shape extending along the first direction X, the first end of the first extension portion 21-2 is connected to a side of the first main body portion 21-1 away from the display area, and the second end of the first extension portion 21-2 extends along the first direction X in a direction away from the display area, so that the end of the first compensation capacitor 21 away from the display area forms a step shape.
  • the first extension portion 21-2 may include at least a first sub-portion 21-11 and a second sub-portion 21-12, and the first sub-portion 21-11 may be disposed on a side of the second sub-portion 21-12 close to the reference line O.
  • a first end of the first sub-portion 21-11 and a first end of the second sub-portion 21-12 are both connected to a side of the first main portion 21-1 away from the display area, and a second end of the first sub-portion 21-11 and a second end of the second sub-portion 21-12 extend in a direction away from the display area along the first direction X.
  • an extension length of the first sub-portion 21-11 may be greater than an extension length of the second sub-portion 21-12, so that an end of the first compensation capacitor 21 away from the reference line O (away from the display area) forms a step shape.
  • the first subsection 21-11 may be located at an end of at least two compensation capacitors in the second capacitor group away from the reference line O
  • the second subsection 21-12 may be located at an end of at least one compensation capacitor of the at least two compensation capacitors away from the reference line O.
  • the orthographic projection of the first main body portion 21-1 on the baseline O at least partially overlaps with the orthographic projection of the first pixel column 61 on the baseline O
  • the orthographic projection of the first extension portion 21-1 on the baseline O at least partially overlaps with the orthographic projections of the second pixel column 62 and the third pixel column 63 on the baseline O
  • the third pixel column 63 is an adjacent pixel column located on the side of the first pixel column 61 away from the display area
  • the second pixel column 62 is an adjacent pixel column located on the side of the third pixel column 63 away from the display area.
  • the orthographic projection of the first sub-portion 21-11 on the baseline O at least partially overlaps with the orthographic projections of the second pixel column 62 and the third pixel column 63 on the baseline O, while the orthographic projection of the second sub-portion 21-12 on the baseline O only at least partially overlaps with the orthographic projection of the third pixel column 63 on the baseline O.
  • the first main body portion 21-1 has a first main body width N1 in the first direction X and a first length L1 in the second direction Y
  • the first extension portion 21-2 has a first extension width K1 in the first direction X
  • the sum of the first main body width N1 of the first main body portion 21-1 and the first extension width K1 of the first extension portion 21-2 is the first width M1 of the first compensation capacitor 21.
  • the first body portion 21 - 1 , the first sub-portion 21 - 11 , and the second sub-portion 21 - 12 may be an integral structure connected to each other.
  • FIG11 is a schematic diagram of the structure of a second compensation capacitor of an exemplary embodiment of the present disclosure.
  • the second compensation capacitor 22 may include at least a second main body portion 22-1 and a second extension portion 22-2.
  • the shape of the second main body portion 22-1 may be a strip shape extending along the second direction Y, the first end of the second main body portion 22-1 may be arranged on a side of the second pixel column 62 away from the reference line O, and the second end of the second main body portion 22-1 extends along the second direction Y in a direction away from the reference line O.
  • the shape of the second extension portion 22-2 may be a block shape or a strip shape extending along the first direction X, the first end of the second extension portion 22-2 is connected to a side of the second main body portion 22-1 away from the display area, and the second end of the second extension portion 22-2 extends along the first direction X in a direction away from the display area, so that the end of the second compensation capacitor 22 away from the display area forms a step shape.
  • the orthographic projection of the second main body portion 22-1 on the baseline O at least partially overlaps with the orthographic projection of the second pixel column 62 on the baseline O
  • the orthographic projection of the second extension portion 22-2 on the baseline O at least partially overlaps with the orthographic projection of the first pixel column 61 on the baseline O
  • the first pixel column 61 is an adjacent pixel column located on the side of the second pixel column 62 away from the display area.
  • the first compensation capacitor 21 is located on a side of the second main body 22-1 away from the display area
  • the second extension portion 22-2 of the second compensation capacitor 22 can be located on a side of the first main body 21-1 in the first compensation capacitor 21 away from the reference line O
  • the orthographic projection of the second extension portion 22-2 on the reference line O at least partially overlaps with the orthographic projection of the first main body 21-1 on the reference line O.
  • an edge of the second expansion portion 22 - 2 away from the display area may be substantially flush with an edge of the first body portion 21 - 1 away from the display area.
  • the second main body portion 22-1 has a second main body width N2 in the first direction X and a second length L2 in the second direction Y
  • the second extension portion 22-2 has a second extension width K2 in the first direction X
  • the sum of the second main body width N2 of the second main body portion 22-1 and the second extension width K2 of the second extension portion 22-2 is the second width M2 of the second compensation capacitor 22.
  • the second length L2 of the second main body portion 22-1 may be greater than the first length L1 of the first main body portion 21-1
  • the second main body width N2 of the second main body portion 22-1 may be substantially equal to the first main body width N1 of the first main body portion 21-1
  • the second extended width K2 of the second extended portion 22-2 may be less than the first extended width K1 of the first extended portion 21-2.
  • the second expansion width K2 may be approximately 0.5*the first expansion width K1.
  • the shape and area of the second extension portion 22 - 2 in the second compensation capacitor 22 may be substantially the same as the shape and area of the second sub-portion 21 - 12 in the first compensation capacitor 21 .
  • the second body portion 22 - 1 and the second expansion portion 22 - 2 may be an integral structure connected to each other.
  • FIG12 is a schematic diagram of the structure of a third compensation capacitor of an exemplary embodiment of the present disclosure.
  • the third compensation capacitor 23 may include at least a third main body portion 23-1, the shape of the third main body portion 23-1 may be a strip shape extending along the second direction Y, the first end of the third main body portion 23-1 may be arranged on a side of the third pixel column 63 away from the reference line O, and the second end of the third main body portion 23-1 extends along the second direction Y in a direction away from the reference line O.
  • the third compensation capacitor 23 is not provided with an extension portion, or the extension width of the extension portion of the third compensation capacitor 23 is 0.
  • an orthographic projection of the third body portion 23 - 1 on the reference line O at least partially overlaps an orthographic projection of the third pixel column 63 on the reference line O. As shown in FIG.
  • the third body portion 23 - 1 has a third body width N3 in the first direction X and a third length L3 in the second direction Y.
  • the third body width N3 is the third width M3 of the third compensation capacitor 23 .
  • the third length L3 of the third body portion 23-1 may be greater than the second length L2 of the second body portion 22-1, and the third body width N2 of the third body portion 23-1 may be substantially equal to the second body width N2 of the second body portion 22-1.
  • a pixel column group 60 may include a first pixel column 61, a second pixel column 62, and a third pixel column 63 sequentially arranged along the first direction X
  • a second capacitor group 52 may include a fourth compensation capacitor 24, a fifth compensation capacitor 25, and a sixth compensation capacitor 26 sequentially arranged along the first direction X
  • the second capacitor group 52 may be arranged on a side of the pixel column group 60 away from the reference line O.
  • the orthographic projection of the fourth compensation capacitor 24 on the baseline O may at least partially overlap with the orthographic projection of the first pixel column 61 on the baseline O
  • the orthographic projection of the fifth compensation capacitor 25 on the baseline O may at least partially overlap with the orthographic projection of the second pixel column 62 on the baseline O
  • the orthographic projection of the sixth compensation capacitor 26 on the baseline O at least partially overlaps with the orthographic projection of the third pixel column 63 on the baseline O.
  • the ends of the fourth compensation capacitor 24, the fifth compensation capacitor 25 and the sixth compensation capacitor 26 close to the reference line O can be roughly flush in the first direction X, and the ends of the fourth compensation capacitor 24, the fifth compensation capacitor 25 and the sixth compensation capacitor 26 away from the reference line O form a second stepped capacitance area boundary.
  • the fourth length L4 of the fourth compensation capacitor 24 may be less than the fifth length L5 of the fifth compensation capacitor 25, the fifth length L5 of the fifth compensation capacitor 25 may be equal to the sixth length L6 of the sixth compensation capacitor 26, and the fourth length L4, the fifth length L5 and the sixth length L6 are respectively the maximum dimensions of the fourth compensation capacitor 24, the fifth compensation capacitor 25 and the sixth compensation capacitor 26 in the second direction Y.
  • the fourth width M4 of the fourth compensation capacitor 24 may be greater than the fifth width M5 of the fifth compensation capacitor 25, the fifth width M5 of the fifth compensation capacitor 25 may be equal to the sixth width M6 of the sixth compensation capacitor 26, and the fourth width M4, the fifth width M5 and the sixth width M6 are respectively the maximum dimensions of the fourth compensation capacitor 24, the fifth compensation capacitor 25 and the sixth compensation capacitor 26 in the first direction X.
  • the lengths of the three compensation capacitors gradually increase and the widths gradually decrease in the first direction X, so that the three compensation capacitors in the second capacitor group form a ladder shape from low to high on the side away from the reference line O.
  • FIG14 is a schematic diagram of the structure of a fourth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • the fourth compensation capacitor 24 may include at least a fourth main body 24-1 and a fourth extension 24-2.
  • the shape of the fourth main body 24-1 may be a strip shape extending along the second direction Y, the first end of the fourth main body 24-1 may be arranged on a side of the first pixel column 61 away from the reference line O, and the second end of the fourth main body 24-1 extends along the second direction Y in a direction away from the reference line O.
  • the shape of the fourth extension 24-2 may be a block shape or a strip shape extending along the first direction X, the first end of the fourth extension 24-2 is connected to a side of the fourth main body 24-1 away from the display area, and the second end of the fourth extension 24-2 extends along the first direction X in a direction away from the display area, so that the end of the fourth compensation capacitor 24 away from the display area forms a step shape.
  • the orthographic projection of the fourth main body portion 24-1 on the baseline O at least partially overlaps with the orthographic projection of the first pixel column 61 on the baseline O
  • the orthographic projection of the fourth extension portion 24-2 on the baseline O at least partially overlaps with the orthographic projection of the third pixel column 63 on the baseline O
  • the third pixel column 63 is an adjacent pixel column located on the side of the first pixel column 61 away from the display area.
  • the first capacitor group may be located on a side of the fourth main portion 24-1 away from the display area, and the fourth expansion portion 24-2 may be located on a side of at least one compensation capacitor in the first capacitor group away from the reference line O.
  • the fourth extension portion 24-2 of the fourth compensation capacitor 24 can be located on a side of the third main portion 23-1 in the third compensation capacitor 23 of the first capacitor group away from the reference line O, and the orthographic projection of the fourth extension portion 24-2 on the reference line O at least partially overlaps with the orthographic projection of the third main portion 23-1 on the reference line O.
  • an edge of the fourth expansion portion 24 - 2 away from the display area may be substantially flush with an edge of the third body portion 23 - 1 away from the display area.
  • the fourth main body portion 24-1 has a fourth main body width N4 in the first direction X and a fourth length L4 in the second direction Y
  • the fourth extension portion 24-2 has a fourth extension width K4 in the first direction X
  • the sum of the fourth main body width N4 of the fourth main body portion 24-1 and the fourth extension width K4 of the fourth extension portion 24-2 is the fourth width M4 of the fourth compensation capacitor 24.
  • the fourth body portion 24 - 1 and the fourth expansion portion 24 - 2 may be an integral structure connected to each other.
  • FIG15 is a schematic diagram of the structure of a fifth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • the fifth compensation capacitor 25 may include at least a fifth main body 25-1, the fifth main body 25-1 may be in the shape of a strip extending along the second direction Y, the first end of the fifth main body 25-1 may be arranged on a side of the second pixel column 62 away from the reference line O, and the second end of the fifth main body 25-1 extends along the second direction Y in a direction away from the reference line O.
  • the fifth compensation capacitor 25 is not provided with an extension portion, or the extension width of the extension portion of the fifth compensation capacitor 25 is 0.
  • an orthographic projection of the fifth body portion 25 - 1 on the reference line O at least partially overlaps an orthographic projection of the second pixel column 62 on the reference line O. As shown in FIG.
  • the fifth body portion 25 - 1 has a fifth body width N5 in the first direction X and a fifth length L5 in the second direction Y.
  • the fifth body width N5 is the fifth width M5 of the fifth compensation capacitor 25 .
  • the fifth length L5 of the fifth body portion 25-1 may be greater than the fourth length L4 of the fourth body portion 24-1, and the fifth body width N5 of the fifth body portion 25-1 may be substantially equal to the fourth body width N4 of the fourth body portion 24-1.
  • FIG16 is a schematic diagram of the structure of a sixth compensation capacitor according to an exemplary embodiment of the present disclosure.
  • the sixth compensation capacitor 26 may include at least a sixth main body 26-1, the shape of the sixth main body 26-1 may be a strip shape extending along the second direction Y, the first end of the sixth main body 26-1 may be arranged on a side of the third pixel column 63 away from the reference line O, and the second end of the sixth main body 26-1 extends along the second direction Y in a direction away from the reference line O.
  • the sixth compensation capacitor 26 is not provided with an extension portion, or the extension width of the extension portion of the sixth compensation capacitor 26 is 0.
  • an orthographic projection of the sixth body portion 26-1 on the reference line O at least partially overlaps an orthographic projection of the third pixel column 63 on the reference line O.
  • the sixth body portion 26 - 1 has a sixth body width N6 in the first direction X and a sixth length L6 in the second direction Y.
  • the third body width N3 is the sixth width M6 of the sixth compensation capacitor 26 .
  • the sixth length L6 of the sixth body portion 26 - 1 may be equal to the fifth length L5 of the fifth body portion 25 - 1
  • the third body width N2 of the sixth body portion 26 - 1 may be equal to the fifth body width N5 of the fifth body portion 25 - 1 .
  • Figure 17 is a schematic diagram of the arrangement of a compensation capacitor in an exemplary embodiment of the present disclosure.
  • the first capacitor group may include a first compensation capacitor 21, a second compensation capacitor 22, and a third compensation capacitor 23, and the second capacitor group may include a fourth compensation capacitor 24, a fifth compensation capacitor 25, and a sixth compensation capacitor 26.
  • a plurality of first capacitor groups and a plurality of second capacitor groups may be alternately arranged along the extension direction of the display area boundary, that is, the first compensation capacitor 21, the second compensation capacitor 22, the third compensation capacitor 23, the fourth compensation capacitor 24, the fifth compensation capacitor 25, and the sixth compensation capacitor 26 may be periodically arranged along the extension direction of the display area boundary.
  • ends of the compensation capacitors in each capacitor group close to the reference line O may be substantially aligned in the first direction X, and the compensation capacitors in each capacitor group away from the reference line O form a second stepped capacitance region boundary.
  • an orthographic projection of at least one first compensation capacitor 21 on the reference line O at least partially overlaps with an orthographic projection of a second compensation capacitor 22 adjacent to the first direction X on the reference line O, and a second extension portion of the second compensation capacitor 22 is disposed on a side of the first main body portion of the first compensation capacitor 21 away from the reference line O.
  • An orthographic projection of the second main body portion of the second compensation capacitor 22 on the reference line O does not overlap with an orthographic projection of the first main body portion of the first compensation capacitor 21 on the reference line O, and an orthographic projection of the second extension portion of the second compensation capacitor 22 on the reference line O at least partially overlaps with an orthographic projection of the first main body portion of the first compensation capacitor 21 on the reference line O.
  • an orthographic projection of at least one second compensation capacitor 22 on the reference line O does not overlap with an orthographic projection of a third compensation capacitor 23 adjacent to the first direction X on the reference line O.
  • an orthographic projection of at least one third compensation capacitor 23 on the reference line O at least partially overlaps with an orthographic projection of a fourth compensation capacitor 24 adjacent to the first direction X on the reference line O, and a fourth extension portion of the fourth compensation capacitor 24 is disposed on a side of the third main body portion of the third compensation capacitor 23 away from the reference line O.
  • an orthographic projection of the fourth main body portion of the fourth compensation capacitor 24 on the reference line O does not overlap with an orthographic projection of the third main body portion of the third compensation capacitor 23 on the reference line O, and an orthographic projection of the fourth extension portion of the fourth compensation capacitor 24 on the reference line O at least partially overlaps with an orthographic projection of the third main body portion of the third compensation capacitor 23 on the reference line O.
  • an orthographic projection of at least one fourth compensation capacitor 24 on the reference line O does not overlap with an orthographic projection of a fifth compensation capacitor 25 adjacent to the first direction X on the reference line O.
  • an orthographic projection of at least one fifth compensation capacitor 25 on the reference line O does not overlap with an orthographic projection of a sixth compensation capacitor 26 adjacent to the first direction X on the reference line O.
  • the orthographic projection of at least one fifth compensation capacitor 25 and the sixth compensation capacitor 26 on the reference line O at least partially overlaps with the orthographic projection of the first compensation capacitor 21 adjacent to the first direction X on the reference line O, and the first extension portion of the first compensation capacitor 21 is disposed on a side of the fifth compensation capacitor 25 and the sixth compensation capacitor 26 away from the reference line O.
  • the orthographic projection of the first main body of the first compensation capacitor 21 on the reference line O does not overlap with the orthographic projection of the fifth compensation capacitor 25 and the sixth compensation capacitor 26 on the reference line O, and the orthographic projection of the first extension portion of the first compensation capacitor 21 on the reference line O at least partially overlaps with the orthographic projection of the fifth compensation capacitor 25 and the sixth compensation capacitor 26 on the reference line O.
  • the orthographic projection of the first sub-portion of the first compensation capacitor 21 on the reference line O at least partially overlaps with the orthographic projections of the fifth compensation capacitor 25 and the sixth compensation capacitor 26 on the reference line O.
  • the orthographic projection of the second sub-portion of the first compensation capacitor 21 on the reference line O does not overlap with the orthographic projection of the fifth compensation capacitor 25 on the reference line O, and the orthographic projection of the second sub-portion of the first compensation capacitor 21 on the reference line O at least partially overlaps with the orthographic projection of the sixth compensation capacitor 26 on the reference line O.
  • the following is an exemplary explanation through the preparation process of the display substrate.
  • the "patterning process" mentioned in the present disclosure includes processes such as coating photoresist, mask exposure, development, etching, and stripping photoresist for metal materials, inorganic materials or transparent conductive materials, and includes processes such as coating organic materials, mask exposure and development for organic materials.
  • Deposition can be any one or more of sputtering, evaporation, and chemical vapor deposition
  • coating can be any one or more of spraying, spin coating and inkjet printing
  • etching can be any one or more of dry etching and wet etching, which are not limited in the present disclosure.
  • Thin film refers to a layer of thin film made by deposition, coating or other processes of a certain material on a substrate. If the "thin film” does not require a patterning process during the entire production process, the “thin film” can also be called a “layer”. If the "thin film” requires a patterning process during the entire production process, it is called a “thin film” before the patterning process and a “layer” after the patterning process. The “layer” after the patterning process contains at least one "pattern”.
  • the "A and B are arranged in the same layer” mentioned in the present disclosure means that A and B are formed simultaneously through the same patterning process, and the "thickness" of the film layer is the size of the film layer in the direction perpendicular to the display substrate.
  • the orthographic projection of A includes the orthographic projection of B means that the boundary of the orthographic projection of B falls within the boundary range of the orthographic projection of A, or the boundary of the orthographic projection of A overlaps with the boundary of the orthographic projection of B.
  • a process of preparing a display substrate may include the following operations.
  • Forming a semiconductor layer pattern may include: sequentially depositing a first insulating film and a semiconductor film on a substrate, patterning the semiconductor film through a patterning process, forming a first insulating layer covering the substrate and a semiconductor layer pattern disposed on the first insulating layer, the semiconductor layer pattern may be disposed in a display area, and the semiconductor layer pattern may include at least an active layer of a plurality of transistors in a pixel driving circuit.
  • forming the first conductive layer pattern may include: depositing a second insulating film and a first conductive film in sequence on the substrate on which the aforementioned pattern is formed, patterning the first conductive film through a patterning process, forming a second insulating layer covering the semiconductor layer pattern and a first conductive layer pattern disposed on the second insulating layer, wherein the first conductive layer may be referred to as a first gate metal (GATE1) layer.
  • GATE1 first gate metal
  • the first conductive layer pattern can be set in the display area and the border area
  • the first conductive layer in the display area can include at least the gate electrodes of multiple transistors in the pixel driving circuit and the first plate of the storage capacitor
  • the first conductive layer in the border area can include at least the first compensation plate 20A of the compensation capacitor, as shown in Figure 18.
  • a plurality of first compensation plates 20A may be arranged at intervals, and the shape of the first compensation plates 20A may be rectangular, and a first connection block 20-1 is arranged on a side of the first compensation plate 20A close to the display area.
  • the shape of the first connection block 20-1 may be a folded line, and a first end of the first connection block 20-1 is connected to the first compensation plate 20A, and a second end of the first connection block 20-1 extends toward the display area, and the first connection block 20-1 is configured to be connected to a data signal line formed subsequently.
  • forming the second conductive layer pattern may include: depositing a third insulating film and a second conductive film in sequence on the substrate on which the aforementioned pattern is formed, patterning the second conductive film through a patterning process, forming a third insulating layer covering the first conductive layer pattern and a second conductive layer pattern disposed on the third insulating layer, wherein the second conductive layer may be referred to as a second gate metal (GATE2) layer.
  • GATE2 second gate metal
  • the second conductive layer pattern can be set in the display area and the border area
  • the second conductive layer in the display area can include at least the second plate of the storage capacitor
  • the first plate and the second plate constitute the storage capacitor of the pixel driving circuit
  • the second conductive layer in the border area can include at least the second compensation plate 20B of the compensation capacitor, as shown in Figure 19.
  • the orthographic projection of the second compensation plate 20B on the substrate at least partially overlaps with the orthographic projection of the first compensation plate 20A on the substrate, and the first compensation plate 20A and the second compensation plate 20B form a compensation capacitor.
  • the second compensation plate 20B may be rectangular in shape, and a second connection block 20-2 is disposed on a side of the second compensation plate 20B close to the display area.
  • the second connection block 20-2 may be in a folded line shape, a first end of the second connection block 20-2 is connected to the second compensation plate 20B, a second end of the second connection block 20-2 extends toward the display area, and the second connection block 20-2 is configured to be connected to a first power line formed subsequently.
  • the plurality of second compensation plates 20B may be an integral structure connected to each other.
  • forming the fourth insulating layer and the third conductive layer pattern may include: first depositing a fourth insulating film on the substrate on which the aforementioned pattern is formed, patterning the fourth insulating film through a patterning process to form a fourth insulating layer covering the third conductive layer pattern, wherein a plurality of vias are provided on the fourth insulating layer, and the plurality of vias in the frame region include at least a first via exposing the first connection block 20-1 and a second via exposing the second connection block 20-2.
  • a third conductive film depositing a third conductive film, patterning the third conductive film through a patterning process to form a third conductive layer pattern provided on the fourth insulating layer, and the third conductive layer may be referred to as a first source-drain metal (SD1) layer.
  • SD1 first source-drain metal
  • the third conductive layer can be arranged in the display area and the frame area, and the third conductive layer can include at least a data signal line 81 and a first power line 82.
  • the data signal line 81 is connected to the first connecting block 20-1 through a first via hole
  • the first power line 82 is connected to the second connecting block 20-2 through a second via hole, so that one compensation plate of the compensation capacitor is connected to the data signal line 81, and the other compensation plate of the compensation capacitor is connected to the first power line 82, as shown in Figure 20.
  • FIG21 is a schematic diagram of a cross-sectional structure of a compensation capacitor according to an embodiment of the present disclosure.
  • the display substrate may include a substrate 101 and a first conductive layer, a second conductive layer, a third conductive layer and a fourth conductive layer sequentially arranged on the substrate 101 in a direction away from the substrate, and an insulating layer may be arranged between adjacent conductive layers.
  • the first compensation electrode 20A may be arranged in the first conductive layer
  • the second compensation electrode 20B may be arranged in the second conductive layer
  • the orthographic projection of the second compensation electrode 20B on the substrate at least partially overlaps the orthographic projection of the first compensation electrode 20A on the substrate
  • the first compensation electrode 20A and the second compensation electrode 20B constitute a compensation capacitor.
  • the data signal line 81 may be arranged in the third conductive layer
  • the first power line 82 may be arranged in the fourth conductive layer
  • the data signal line 81 is connected to the first compensation electrode 20A through a via
  • the first power line 82 is connected to the second compensation electrode 20B through a via.
  • the data signal line 81 can be arranged in the fourth conductive layer, the data signal line 81 can be connected to the second compensation plate 20B through a via, and the first power line 82 can be connected to the first compensation plate 20A through a via, which is not limited in the present disclosure.
  • the first compensation plate 20A can be set in one of the first to fourth conductive layers
  • the second compensation plate 20B can be set in another conductive layer among the first to fourth conductive layers
  • the first compensation plate 20A and the second compensation plate 20B are set in different conductive layers
  • the first compensation plate 20A can be connected to one of the data signal line 81 and the first power line 82
  • the second compensation plate 20B can be connected to the other of the data signal line 81 and the first power line 82, and the present disclosure is not limited here.
  • FIG22 is a schematic diagram of the cross-sectional structure of another compensation capacitor according to an embodiment of the present disclosure.
  • the display substrate may include a base 101 and a first conductive layer, a second conductive layer, a third conductive layer and a fourth conductive layer sequentially arranged on the base 101 in a direction away from the base, and an insulating layer may be arranged between adjacent conductive layers.
  • the first compensation plate 20A may be arranged in the first conductive layer
  • the second compensation plate 20B may be arranged in the second conductive layer
  • the third compensation plate 20C may be arranged in the third conductive layer
  • the data signal line 81 and the first power line 82 may be arranged in the fourth conductive layer
  • the data signal line 81 is connected to the second compensation plate 20B through a via
  • the first power line 82 is connected to the third compensation plate 20C through a via.
  • the compensation capacitor of this embodiment includes a first compensation plate 20A, a second compensation plate 20B, and a third compensation plate 20C.
  • the orthographic projection of the second compensation plate 20B on the substrate overlaps at least partially with the orthographic projection of the first compensation plate 20A on the substrate, and the first compensation plate 20A and the second compensation plate 20B constitute a first sub-capacitor.
  • the orthographic projection of the third compensation plate 20C on the substrate overlaps at least partially with the orthographic projection of the second compensation plate 20B on the substrate, and the second compensation plate 20B and the third compensation plate 20C constitute a second sub-capacitor.
  • the orthographic projection of the third compensation plate 20C on the substrate overlaps at least partially with the orthographic projection of the first compensation plate 20A on the substrate, and the third compensation plate 20C is connected to the first compensation plate 20A through a via, so that the first compensation plate 20A and the third compensation plate 20C have the same potential, and the first sub-capacitor and the second sub-capacitor in parallel structure constitute a compensation capacitor.
  • the data signal line 81 may be connected to the third compensation plate 20C through a via, and the first power line 82 may be connected to the second compensation plate 20B through a via, which is not limited in the present disclosure.
  • the first compensation electrode 20A may be disposed in the first conductive layer
  • the second compensation electrode 20B may be disposed in the second conductive layer
  • the third compensation electrode 20C may be disposed on a side of the second compensation electrode 20B away from the first compensation electrode 20A.
  • the first compensation electrode 20A may be disposed in the second conductive layer
  • the second compensation electrode 20B may be disposed in the third conductive layer
  • the third compensation electrode 20C may be disposed on a side of the first compensation electrode 20A away from the second compensation electrode 20B.
  • the first compensation electrode 20A may be disposed in the first conductive layer
  • the second compensation electrode 20B may be disposed in the third conductive layer
  • the third compensation electrode 20C may be disposed between the first compensation electrode 20A and the second compensation electrode 20B, which is not limited in the present disclosure.
  • the structures of the compensation capacitors shown in FIG. 18 to FIG. 22 are merely exemplary structures and may be configured into other structural forms according to actual conditions, and the present disclosure does not limit them herein.
  • FIG23 is a schematic diagram of the arrangement of a compensation capacitor of an existing display substrate.
  • the number of sub-pixels 10 in a plurality of pixel columns in the display area 100 may be different, and the number of sub-pixels 10 in the pixel column may gradually decrease along the direction of the frame area 200, so that the display area boundary of the display area 100 near the frame area 200 includes a plurality of first steps connected in sequence, and the first step has a first step length JL1 and a first step width JM1.
  • the plurality of compensation capacitors 20 in the capacitor area of the frame area are all in the shape of strips extending along the second direction Y, so that the capacitor area boundary of the plurality of compensation capacitors 20 away from the display area includes a plurality of second steps connected in sequence, and the second step has a second step length JL2 and a second step width JM2, and the first step length JL1 of the display area boundary is substantially equal to the second step length JL2 of the capacitor area boundary, and the first step width JM1 of the display area boundary is substantially equal to the second step width JM2 of the capacitor area boundary. Since the second step size of the capacitor zone boundary is large, more triangular clearance areas are generated in the capacitor zone. Limited by the position of the compensation capacitor, the gate drive circuit can only be arranged outside the compensation capacitor and the clearance area, resulting in a waste of layout space and a larger width of the capacitor zone.
  • the display substrate provided by the exemplary embodiment of the present disclosure can effectively reduce the width of the capacitor area by forming a capacitor area boundary with a smaller step, thereby reducing the width of the frame area and achieving the narrowing of the frame.
  • the present disclosure sets a main body and an extension part in part of the compensation capacitor.
  • the shape of the main body is similar to the existing structure.
  • the extension part is set on one side of the main body, that is, part of the compensation capacitor is moved and placed in the clearance area on one side of the main body. It does not reduce the compensation area of the compensation capacitor, but effectively reduces the overall length of the compensation capacitor.
  • the capacitor area boundary with a smaller step formed effectively reduces the clearance area.
  • the layout space is reduced, the width of the capacitor area is reduced, and the overall width of the frame area can be reduced by about 50 ⁇ m to 60 ⁇ m.
  • the preparation process of this exemplary embodiment can be implemented using existing mature preparation equipment, with little improvement on the existing process, and can be well compatible with the existing preparation process. The process is simple to implement, easy to implement, high production efficiency, low production cost, and high yield rate.
  • FIG24 is a schematic diagram of a planar structure of another display substrate of an exemplary embodiment of the present disclosure, illustrating the structure of the circuit area in the first corner.
  • the circuit area 220 of the first corner may include a first circuit area 221 and a second circuit area 222 located on a side of the first circuit area 221 away from the display area 100, that is, the first circuit area 221 and the second circuit area 222 are sequentially arranged in a direction away from the display area 100.
  • the first circuit area 221 is at least provided with a plurality of test circuits 70 and a plurality of test signal lines 71
  • the second circuit area 222 is at least provided with a plurality of gate drive circuits 30 and a plurality of gate signal lines 31, and the plurality of test circuits 70 and the plurality of gate drive circuits 30 may be sequentially arranged along the extension direction of the display area boundary.
  • the shape of the test circuit 70 can be rectangular, the input ends of the multiple test circuits 70 are respectively connected to the multiple test signal lines 71 through connecting lines, the output ends of the multiple test circuits 70 are respectively connected to the first compensation plates of the multiple compensation capacitors 20 through test output lines 72, and the test circuit 70 is configured to provide test signals to the data signal lines of the display area 100.
  • the first compensation plate of the compensation capacitor 20 is connected to the test output line 72 at one end adjacent to the test circuit 70, and is connected to the data signal line of the display area at the other end adjacent to the display area, that is, the test output line 72 of the test circuit 70 is connected to the data signal line of the display area through the first compensation plate of the compensation capacitor 20.
  • the shape of the multiple test signal lines 71 can be a strip shape extending along the extension direction of the boundary of the display area, and the multiple test signal lines 71 can be set on the side of the multiple test circuits 70 away from the display area, and located between the multiple test circuits 70 and the multiple gate driving circuits 30.
  • the gate driving circuit 30 may be in a rectangular shape, the input terminals of the plurality of gate driving circuits 30 are respectively connected to the plurality of gate signal lines 31 through connecting lines, the output terminals of the plurality of gate driving circuits 30 are respectively connected to the scanning signal lines and the light emitting signal lines in the plurality of pixel rows in the display area 100 through gate output lines 32, and the gate driving circuit 30 is configured to provide scanning signals and light emitting signals to the scanning signal lines and the light emitting signal lines of the display area 100.
  • the plurality of gate signal lines 31 may be in a strip shape extending along the extending direction of the boundary of the display area, and the plurality of gate signal lines 31 may be arranged on one side of the plurality of gate driving circuits 30 away from the display area.
  • the shape of the corner area in the border area is a fan-ring shape
  • the edge of the corner area close to the display area and the edge of the corner area away from the display area are arc-shaped, and thus the shapes of the first circuit area 221 and the second circuit area 222 of the present disclosure are both fan-ring shapes
  • multiple test circuits 70 are arranged in the first circuit area 221 in a rotational setting manner to form a ring arrangement of multiple test circuits 70
  • multiple gate drive circuits 30 are arranged in the second circuit area 222 in a rotational setting manner to form a ring arrangement of multiple gate drive circuits 30.
  • a third frame (upper frame) in the frame area 200 may be provided with a plurality of test circuits 70, and the plurality of test circuits 70 may be sequentially arranged along the first direction X, and the shapes and arrangement postures of the plurality of test circuits 70 may be substantially the same.
  • At least one test circuit 70 may have a first center line, and the first center line may be a straight line that bisects the test circuit 70 in the first direction X and extends along the second direction Y.
  • the arrangement postures of the plurality of test circuits 70 being substantially the same means that the angles between the first center lines of the plurality of test circuits 70 and the second direction Y are all about 0 degrees.
  • a plurality of gate drive circuits 30 may be disposed in the first frame (left frame) in the frame region 200, and the plurality of gate drive circuits 30 may be disposed sequentially along the second direction Y, and the shapes and arrangement postures of the plurality of gate drive circuits 30 are substantially the same.
  • At least one gate drive circuit 30 may have a second center line, and the second center line may be a straight line that bisects the gate drive circuit 30 in the second direction Y and extends along the first direction X.
  • the substantially same arrangement postures of the plurality of gate drive circuits 30 mean that the angles between the second center lines of the plurality of gate drive circuits 30 and the first direction X are all about 0 degrees.
  • a first corner (upper left corner region) between the first frame (left frame) and the third frame (upper frame) in the frame region 200 may be provided with a plurality of test circuits 70 and a plurality of gate drive circuits 30.
  • the shapes of the plurality of test circuits 70 in the first corner may be substantially the same, but the setting postures of the plurality of test circuits 70 are different, and along the direction away from the third frame (close to the first frame), the angle between the first center line of the plurality of test circuits 70 and the second direction Y gradually increases, that is, the rotation angle of the plurality of test circuits 70 gradually increases, so that the plurality of test circuits 70 form a ring arrangement.
  • the shapes of the plurality of gate drive circuits 30 in the first corner may be substantially the same, but the setting postures of the plurality of gate drive circuits 30 are different, and along the direction away from the first frame (close to the third frame), the angle between the second center line of the plurality of gate drive circuits 30 and the first direction X gradually increases, that is, the rotation angle of the plurality of gate drive circuits 30 gradually increases, so that the plurality of gate drive circuits 30 form a ring arrangement.
  • the shape of the test circuit 70 in the first corner may be substantially the same as the shape of the test circuit 70 in the third frame, and the shape of the gate drive circuit 30 in the first corner may be substantially the same as the shape of the gate drive circuit 30 in the first frame.
  • the edge of the multiple test circuits 70 arranged in a ring away from one side of the display area can form an arc-shaped first edge line
  • the edge of the multiple gate drive circuits 30 arranged in a ring close to one side of the display area can form an arc-shaped second edge line
  • the first distance between the first edge line and the boundary of the display area can be smaller than the second distance between the second edge line and the boundary of the display area
  • the first distance can be the minimum distance between the first edge line and the boundary of the display area
  • the second distance can be the minimum distance between the second edge line and the boundary of the display area.
  • the structure of the second corner portion may be substantially the same as the structure of the first corner portion, and the structure of the first corner portion and the structure of the second corner portion may be mirror-symmetrical with respect to the display area.
  • FIG25 and FIG26 are schematic diagrams of a planar structure of another display substrate of an exemplary embodiment of the present disclosure, illustrating the structure of the circuit area in the fourth frame 204 and the third corner 213.
  • no compensation capacitor is provided in the fourth frame 204 and the third corner 213, so the circuit area 220 can be provided on one side of the display area 100, and the circuit area 220 can at least include a first circuit area 221 and a second circuit area 222 located on a side of the first circuit area 221 away from the display area 100.
  • the first circuit area 221 is provided with at least a plurality of multiplexer (MUX) circuits 90, a plurality of selection signal lines 91 and a high-voltage power supply line 80
  • the second circuit area 222 is provided with at least a plurality of gate drive circuits 30 and a plurality of gate signal lines 31, and the plurality of multiplexer circuits 90 and the plurality of gate drive circuits 30 can be provided in sequence along the extension direction of the display area boundary.
  • MUX multiplexer
  • the shape of the multi-way selection circuit 90 can be rectangular, and the input ends of the multiple multi-way selection circuits 90 are respectively connected to the multiple selection signal lines 91 through connecting lines, and the output ends of the multiple multi-way selection circuits 90 are respectively connected to the multiple data signal lines of the display area 100 through selection output lines 92.
  • the plurality of selection signal lines 91 may be in the shape of a strip extending along the extension direction of the display region boundary, and the plurality of selection signal lines 91 may be disposed on a side of the plurality of multi-way selection circuits 90 away from the display region, and located between the plurality of multi-way selection circuits 90 and the plurality of gate driving circuits 30.
  • the high-voltage power supply wiring 80 may be in the shape of a strip extending along the extension direction of the display region boundary, and the high-voltage power supply wiring 80 may be disposed on a side of the plurality of multi-way selection circuits 90 close to the display region, and the high-voltage power supply wiring 80 is configured to be connected to the plurality of first power supply lines of the display region 100 in correspondence.
  • the shape, connection relationship and setting posture of the gate driving circuit 30 and the gate signal line 31 in the third corner 213 can be basically the same as those in the first corner, and multiple gate driving circuits 30 are arranged in a ring in the fan-ring-shaped third corner 213 by rotating.
  • a fourth frame (lower frame) 204 in the frame area 200 may be provided with a plurality of multi-way selection circuits 90, and the plurality of multi-way selection circuits 90 may be sequentially arranged along the first direction X, and the shapes and arrangement postures of the plurality of multi-way selection circuits 90 may be substantially the same.
  • At least one multi-way selection circuit 90 may have a third center line, and the third center line may be a straight line that bisects the multi-way selection circuit 90 in the first direction X and extends along the second direction Y.
  • the arrangement postures of the plurality of multi-way selection circuits 90 are substantially the same, which means that the angles between the third center lines of the plurality of multi-way selection circuits 90 and the second direction Y are all about 0 degrees.
  • a third corner (lower left corner region) 213 between the first frame (left frame) and the fourth frame 204 in the frame region 200 may be provided with a plurality of multi-way selection circuits 90 and a plurality of gate drive circuits 30.
  • the shapes of the plurality of multi-way selection circuits 90 in the third corner 213 may be substantially the same, but the arrangement postures of the plurality of multi-way selection circuits 90 are different, and along the direction away from the fourth frame 204 (close to the first frame), the angle between the third center line of the plurality of test circuits 70 and the second direction Y gradually increases, that is, the plurality of multi-way selection circuits 90 gradually increase the rotation angle, so that the plurality of multi-way selection circuits 90 form a ring arrangement.
  • the shapes of the plurality of gate drive circuits 30 in the third corner 213 may be substantially the same, but the arrangement postures of the plurality of gate drive circuits 30 are different, and along the direction away from the first frame (close to the fourth frame 204), the angle between the second center line of the plurality of gate drive circuits 30 and the first direction X gradually increases, that is, the plurality of gate drive circuits 30 gradually increase the rotation angle, so that the plurality of gate drive circuits 30 form a ring arrangement.
  • the edge of the plurality of multi-way selection circuits 90 arranged in a ring away from one side of the display area can form an arc-shaped third edge line
  • the edge of the plurality of gate driving circuits 30 arranged in a ring close to one side of the display area can form an arc-shaped fourth edge line
  • the third distance between the third edge line and the boundary of the display area can be smaller than the fourth distance between the fourth edge line and the boundary of the display area
  • the third distance can be the minimum distance between the third edge line and the boundary of the display area
  • the fourth distance can be the minimum distance between the fourth edge line and the boundary of the display area.
  • At least one dummy circuit 90A may be disposed in the third corner 213, and the dummy circuit 90A may be located in the first circuit area 221 and disposed between the multi-way selection circuits 90.
  • the shape and arrangement posture of the dummy circuit 90A may be substantially the same as those of the multi-way selection circuit 90, but the output end of the dummy circuit 90A is connected to the high-voltage power supply line 80 via the selection output line 92.
  • the present disclosure can ensure the uniformity of the etching process by arranging the dummy circuit in the clearance area that appears when the multi-way selection unit is rotated and arranged, and can avoid static electricity generated by floating the dummy circuit by connecting the dummy circuit to the high-voltage power supply line of the constant voltage signal, thereby improving the working stability of the multi-way selection circuit.
  • the circuit area 220 may also include multiple source output signal lines 93, the first ends of the source output signal lines 93 are connected to the integrated circuits in the binding area, and the second ends of the source output signal lines 93 extend to the circuit area 220 and are connected to the corresponding multi-way selection circuits 90.
  • the orthographic projection of at least one source output signal line 93 on the substrate and the orthographic projection of the plurality of selection signal lines 91 on the substrate have a first overlapping area
  • the orthographic projection of at least one source output signal line 93 on the substrate and the orthographic projection of the plurality of selection signal lines 91 on the substrate have a second overlapping area
  • the first overlapping area is substantially equal to the second overlapping area.
  • the first overlapping area may be approximately 0.9*the second overlapping area to 1.1*the second overlapping area
  • the second overlapping area may be approximately 0.9*the first overlapping area to 1.1*the first overlapping area.
  • the structure of the fourth corner portion may be substantially the same as the structure of the third corner portion, and the structure of the third corner portion and the structure of the fourth corner portion may be mirror-symmetrical with respect to the display area.
  • FIG27 is a schematic diagram of the arrangement of a multi-way selection circuit and a gate drive circuit of an existing display substrate.
  • a plurality of multi-way selection circuits 90 can be arranged in sequence along the first direction X, and in the third corner 213, a plurality of multi-way selection circuits 90 and a plurality of gate drive circuits 30 are arranged side by side, and a plurality of multi-way selection circuits 90 and a plurality of gate drive circuits 30 can be arranged alternately along the extension direction of the display area boundary, that is, the multi-way selection circuit 90 is arranged between the gate drive circuits 30.
  • the multi-way selection circuit 90 and the gate drive circuit 30 located at the third corner 213 are rotated, in order to provide sufficient rotation arrangement space, the multi-way selection circuit 90 needs to be elongated in the direction away from the display area and compressed in the extension direction of the display area boundary, so the multi-way selection circuit 90 arranged in the fourth frame 204 and the third corner 213 adopts two different layout structures, the multi-way selection circuit of the fourth frame 204 is a layout structure that is wide in the horizontal direction and low in the vertical direction, and the multi-way selection circuit of the third corner 213 is a layout structure that is narrow in the horizontal direction and high in the vertical direction.
  • the inventor of the present application has found through research that the structure of the existing substrate makes the parasitic capacitance generated by the two multiplexer selection circuits and other structural film layers different. Due to the difference in parasitic capacitance, the pixel columns controlled by the two multiplexer selection circuits have brightness differences, resulting in a defective wide white stripe in the middle.
  • the source output signal line 93 in the fourth frame 204 and the source output signal line 93 in the third corner 213 have different shapes and connection methods, the first overlapping area between the source output signal line 93 in the fourth frame 204 and the multiple selection signal lines 91 is different from the second overlapping area between the source output signal line 93 in the third corner 213 and the multiple selection signal lines 91, resulting in uneven parasitic capacitance, making the voltage of the source output signal line 93 unstable, and resulting in low grayscale vertical dark stripe defects.
  • the display substrate provided by the exemplary embodiment of the present disclosure can make the multi-way selection unit in the fourth frame area and the multi-way selection unit in the third corner adopt the same layout design by setting the circuit area of the frame area into the first circuit area and the second circuit area, setting the multi-way selection unit in the inner first circuit area, and setting the gate driving circuit in the outer second circuit area, so that the multi-way selection unit in the fourth frame area and the multi-way selection unit in the third corner adopt the same layout design, the shape of the multi-way selection unit in the two areas is basically the same, and the parasitic capacitance of the multi-way selection unit in the two areas is basically the same, eliminating the difference in parasitic capacitance, and effectively avoiding the defect of the middle wide white stripe in the existing display substrate.
  • the first overlapping area of the source output signal line and the multiple selection signal lines in the fourth frame is basically equal to the second overlapping area of the source output signal line and the multiple selection signal lines in the third corner, eliminating the problem of uneven parasitic capacitance, ensuring the stability of the voltage of the source output signal line, and effectively avoiding the defect of low grayscale vertical dark stripes in the existing display substrate.
  • the present invention can ensure the uniformity of the etching process by setting up a dummy unit in the clearance area that appears when the multi-way selection unit is rotated and arranged. By connecting the dummy circuit with the high-voltage power supply line of the constant voltage signal, static electricity generated by the floating connection of the dummy circuit can be avoided, thereby improving the working stability of the multi-way selection circuit.
  • the present disclosure also provides a method for preparing a display substrate to prepare the aforementioned display substrate.
  • the display substrate includes a display area and a frame area located outside the display area, the frame area at least includes a capacitor area, the display area includes a plurality of sub-pixels forming a plurality of pixel rows and a plurality of pixel columns, the number of sub-pixels in the pixel column gradually decreases along the direction close to the frame area, a first stepped display area boundary is formed on one side of the display area close to the frame area, the display area boundary includes a plurality of first steps connected in sequence, the first step has a first step length and a first step width; the preparation method includes:
  • a plurality of compensation capacitors are formed in the capacitor area, and a second stepped capacitor area boundary is formed on a side of the plurality of compensation capacitors away from the display area.
  • the capacitor area boundary includes a plurality of second steps connected in sequence, and the second steps have a second step length and a second step width.
  • the second step length is less than or equal to the first step length
  • the second step width is less than or equal to the first step width.
  • the first step length and the second step length are respectively the dimensions of the first step and the second step in the pixel column direction
  • the first step width and the second step width are respectively the dimensions of the pixel row direction.
  • the present disclosure also provides a display device, which includes the aforementioned display substrate.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc., and the present disclosure is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板和显示装置。显示基板包括显示区域(100)和边框区域(200),显示区域(100)靠近边框区域(200)的一侧形成第一阶梯状的显示区域边界,边框区域(200)至少包括电容区(210),电容区(210)包括多个补偿电容(20),多个补偿电容(20)在远离显示区域(100)的一侧形成第二阶梯状的电容区边界;显示区域边界包括多个依次连接的第一阶梯,第一阶梯具有第一阶梯长度和第一阶梯宽度,电容区边界包括多个依次连接的第二阶梯,第二阶梯具有第二阶梯长度和第二阶梯宽度,第二阶梯长度小于或等于第一阶梯长度,第二阶梯宽度小于或等于第一阶梯宽度。

Description

显示基板和显示装置 技术领域
本公开涉及但不限于显示技术领域,尤指一种显示基板和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)和量子点发光二极管(Quantum-dot Light Emitting Diodes,简称QLED)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度、轻薄、可弯曲和成本低等优点。随着显示技术的不断发展,以OLED或QLED为发光器件、由薄膜晶体管(Thin Film Transistor,简称TFT)进行信号控制的柔性显示装置(Flexible Display)已成为目前显示领域的主流产品。
随着OLED显示技术的发展,消费者对显示产品显示效果的要求越来越高,“屏占比”已经成为显示装置比较重要的性能参数,窄边框甚至全屏显示成为OLED显示产品发展的新趋势,因此边框的窄化甚至无边框设计在OLED显示产品设计中越来越受到重视。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开提供了一种显示基板,包括显示区域和位于所述显示区域外围的边框区域,所述显示区域包括形成多个像素行和多个像素列的多个子像素,沿着靠近所述边框区域的方向,至少部分像素列中子像素的数量减少,在所述显示区域靠近所述边框区域的一侧形成第一阶梯状的显示区域边界;所述边框区域至少包括电容区,所述电容区包括多个补偿电容,所述多个补偿电容在远离所述显示区域的一侧形成第二阶梯状的电容区边界;所述显示区域边界包括多个依次连接的第一阶梯,所述第一阶梯具有第一阶梯长 度和第一阶梯宽度,所述电容区边界包括多个依次连接的第二阶梯,所述第二阶梯具有第二阶梯长度和第二阶梯宽度,所述第二阶梯长度小于或等于所述第一阶梯长度,所述第二阶梯宽度小于或等于所述第一阶梯宽度,所述第一阶梯长度和第二阶梯长度分别为所述第一阶梯和第二阶梯在所述像素列方向的尺寸,所述第一阶梯宽度和第二阶梯宽度分别为所述第一阶梯和第二阶梯在所述像素行方向的尺寸。
在示例性实施方式中,所述显示区域包括多个像素列组,至少一个像素列组包括沿着所述像素行方向依次设置的n个像素列,所述像素列组中至少两个像素列的子像素数量相同,或者所述像素列组中每个像素列的子像素数量不同,n为大于或等于2的正整数;所述边框区域包括多个电容组,至少一个电容组包括沿着所述像素行方向依次设置的n个补偿电容;所述电容组与所述像素列组对应设置。
在示例性实施方式中,至少一个电容组中,至少一个补偿电容的形状为沿着所述像素列方向延伸的条形状。
在示例性实施方式中,至少一个电容组中,至少一个补偿电容至少包括相互连接的主体部和扩展部,所述主体部的形状为沿着所述像素列方向延伸的条形状,所述扩展部的形状为沿着所述像素行方向延伸的条形状。
在示例性实施方式中,所述多个电容组至少包括多个第一电容组和多个第二电容组,多个第一电容组和多个第二电容组沿着所述显示区域边界的延伸方向交替设置。
在示例性实施方式中,至少一个像素列组包括沿着所述像素行方向依次设置的第一像素列、第二像素列和第三像素列,至少一个第一电容组包括沿着所述像素行方向依次设置的第一补偿电容、第二补偿电容和第三补偿电容,所述第一补偿电容、第二补偿电容和第三补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述显示基板具有基准线,所述基准线为在所述像素列方向上平分所述显示区域且沿着所述像素行方向延伸的直线;所述第一补偿电容、第二补偿电容和第三补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第一补偿电容、第二补偿电容和第三补偿电容远离所述基准线的端部形成第二阶梯状的电容区边 界。
在示例性实施方式中,所述第一补偿电容的第一长度小于所述第二补偿电容的第二长度,所述第二补偿电容的第二长度小于所述第三补偿电容的第三长度,所述第一补偿电容的第一宽度大于所述第二补偿电容的第二宽度,所述第二补偿电容的第二宽度大于所述第三补偿电容的第三宽度;所述第一长度、第二长度和第三长度分别是所述第一补偿电容、第二补偿电容和第三补偿电容在所述像素列方向上的最大尺寸,所述第一宽度、第二宽度和第三宽度分别是所述第一补偿电容、第二补偿电容和第三补偿电容在所述像素行方向上的最大尺寸。
在示例性实施方式中,所述第一补偿电容至少包括第一主体部和第一扩展部,所述第一主体部的第一端设置在所述第一像素列远离所述基准线的一侧,所述第一主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第一扩展部的第一端与所述第一主体部远离所述显示区域的一侧连接,所述第一扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,使所述第一补偿电容远离所述显示区域的端部形成阶梯状。
在示例性实施方式中,所述第一扩展部至少包括第一子部和第二子部,所述第一子部设置在所述第二子部靠近所述基准线的一侧,所述第一子部和第二子部的第一端分别与所述第一主体部远离所述显示区域的一侧连接,所述第一子部和第二子部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第一子部的延伸长度大于所述第二子部的延伸长度,所述第一子部位于所述第二电容组中至少两个补偿电容远离所述基准线的一端,所述第二子部位于所述至少两个补偿电容中至少一个补偿电容远离所述基准线的一端。
在示例性实施方式中,所述第二补偿电容至少包括第二主体部和第二扩展部,所述第二主体部的第一端设置在所述第二像素列远离所述基准线的一侧,所述第二主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第二扩展部的第一端与所述第二主体部远离所述显示区域的一侧连接,所述第二扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第二扩展部位于所述第一补偿电容远离所述基准线的一 侧,所述第一补偿电容位于所述第二主体部远离所述显示区域的一侧,使所述第二补偿电容远离所述显示区域的端部形成阶梯状。
在示例性实施方式中,所述第三补偿电容至少包括第三主体部,所述第三主体部的第一端设置在所述第三像素列远离所述基准线的一侧,所述第二主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
在示例性实施方式中,至少一个像素列组包括沿着所述像素行方向依次设置的第一像素列、第二像素列和第三像素列,至少一个第二电容组包括沿着所述像素行方向依次设置的第四补偿电容、第五补偿电容和第六补偿电容,所述第四补偿电容、第五补偿电容和第六补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述显示基板具有基准线,所述基准线为在所述像素列方向上平分所述显示区域且沿着所述像素行方向延伸的直线;所述第四补偿电容、第五补偿电容和第六补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第四补偿电容、第五补偿电容和第六补偿电容远离所述基准线的端部形成第二阶梯状的电容区边界。
在示例性实施方式中,所述第四补偿电容的第四长度小于所述第五补偿电容的第五长度,所述第五补偿电容的第五长度等于所述第六补偿电容的第六长度,所述第四补偿电容的第四宽度大于所述第五补偿电容的第五宽度,所述第五补偿电容的第五宽度等于所述第六补偿电容的第六宽度;所述第四长度、第五长度和第六长度分别是所述第四补偿电容、第五补偿电容和第六补偿电容在所述像素列方向上的最大尺寸,所述第四宽度、第五宽度和第六宽度分别是所述第四补偿电容、第五补偿电容和第六补偿电容在所述像素行方向上的最大尺寸。
在示例性实施方式中,所述第四补偿电容至少包括第四主体部和第四扩展部,所述第四主体部的第一端设置在所述第一像素列远离所述基准线的一侧,所述第四主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第四扩展部的第一端与所述第四主体部远离所述显示区域的一侧连接,所述第四扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第四扩展部位于所述第一电容组中至少一个补偿电容远 离所述基准线的一侧,所述第一电容组中至少一个补偿电容位于所述第四主体部远离所述显示区域的一侧,使所述第四补偿电容远离所述显示区域的端部形成阶梯状。
在示例性实施方式中,所述第五补偿电容至少包括第五主体部,所述第五主体部的第一端设置在所述第二像素列远离所述基准线的一侧,所述第五主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
在示例性实施方式中,所述第六补偿电容至少包括第六主体部,所述第六主体部的第一端设置在所述第三像素列远离所述基准线的一侧,所述第六主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
在示例性实施方式中,所述边框区域至少包括在所述像素行方向上相对设置的第一边框和第二边框、在所述像素列方向上相对设置的第三边框和第四边框、连接所述第一边框和所述第三边框的第一角部、连接所述第二边框和所述第三边框的第二角部、连接所述第一边框和所述第四边框的第三角部、以及连接所述第二边框和所述第四边框的第四角部;所述多个补偿电容设置在所述第一角部、所述第二角部、所述第三角部和所述第四角部中的任意一个或多个中。
在示例性实施方式中,所述第一角部和第二角部中的至少一个还包括设置在所述电容区远离所述显示区域一侧的电路区,所述电路区至少包括第一电路区和位于所述第一电路区远离所述显示区域一侧的第二电路区,所述第一电路区至少设置有多个测试电路,所述第二电路区至少设置有多个栅极驱动电路,所述多个测试电路和所述多个栅极驱动电路沿着显示区域边界的延伸方向依次设置。
在示例性实施方式中,多个测试电路远离显示区域一侧的边缘形成弧形的第一边缘线,多个栅极驱动电路靠近显示区域一侧的边缘形成弧形的第二边缘线,所述第一边缘线与所述显示区域边界之间的第一距离小于所述第二边缘线与所述显示区域边界之间的第二距离,所述第一距离为所述第一边缘线与所述显示区域边界之间的最小距离,所述第二距离为所述第二边缘线与所述显示区域边界之间的最小距离。
在示例性实施方式中,所述第三角部和第四角部中的至少一个包括设置在所述显示区域一侧的电路区,所述电路区至少包括第一电路区和位于所述第一电路区远离所述显示区域一侧的第二电路区,所述第一电路区至少设置有多个多路选择单元,所述第二电路区至少设置有多个栅极驱动电路,所述多个多路选择单元和所述多个栅极驱动电路沿着显示区域边界的延伸方向依次设置。
在示例性实施方式中,多个多路选择电路远离显示区域一侧的边缘形成弧形的第三边缘线,多个栅极驱动电路靠近显示区域一侧的边缘形成弧形的第四边缘线,所述第三边缘线与所述显示区域边界之间的第三距离小于所述第四边缘线与所述显示区域边界之间的第四距离,所述第三距离为所述第三边缘线与所述显示区域边界之间的最小距离,所述第四距离为所述第四边缘线与所述显示区域边界之间的最小距离。
在示例性实施方式中,所述第四边框中至少设置有多个多路选择单元,位于所述第四边框中的所述多路选择单元的形状,与位于所述第三角部或者所述第四角部中的所述多路选择单元的形状大致相同。
在示例性实施方式中,所述第三角部、第四角部和第四边框中的至少一个还设置有至少一条源输出信号线和多条选择信号线,在所述第四边框,至少一条源输出信号线在显示基板平面上的正投影与多条选择信号线在显示基板平面上的正投影具有第一重叠面积,在所述第三角部,至少一条源输出信号线在显示基板平面上的正投影与多条选择信号线在显示基板平面上的正投影具有第二重叠面积,所述第一重叠面积为0.9*第二重叠面积至1.1*第二重叠面积,或者,所述第二重叠面积为0.9*第一重叠面积至1.1*第一重叠面积。
在示例性实施方式中,所述电路区还设置有至少一个虚设单元,所述虚设单元的形状与所述多路选择单元的形状大致相同,所述虚设单元与所述电路区中的高压电源走线连接。
另一方面,本公开还提供了一种显示基板,包括显示区域和位于所述显示区域外围的边框区域,所述显示区域包括形成多个像素行和多个像素列的多个子像素,至少一个像素列包括数据信号线和第一电源线,所述边框区域至少包括多个补偿电容,至少一个补偿电容包括第一补偿极板和第二补偿极 板,所述第一补偿极板在所述显示基板上的正投影与所述第二补偿极板在所述显示基板上的正投影至少部分交叠;在垂直于所述显示基板的平面上,所述显示基板包括基底以及在所述基底上依次设置的第一导电层、第二导电层、第三导电层和第四导电层,所述数据信号线设置在所述第三导电层或者所述第四导电层中,所述第一电源线设置在所述第四导电层中,所述第一补偿极板和第二补偿极板设置在所述第一导电层至所述第四导电层的其中两个导电层中,所述第一补偿极板与所述数据信号线和第一电源线中的一个连接,所述第二补偿极板与所述数据信号线和第一电源线中的另一个连接。
在示例性实施方式中,至少一个补偿电容还包括第三补偿极板,所述第三补偿极板在所述显示基板上的正投影与所述第一补偿极板在所述显示基板上的正投影至少部分交叠,所述第三补偿极板在所述显示基板上的正投影与所述第二补偿极板在所述显示基板上的正投影至少部分交叠;所述第三补偿极板设置在所述第一补偿极板和第二补偿极板之间,或者,所述第三补偿极板设置在所述第一补偿极板远离所述第二补偿极板的一侧,或者,所述第三补偿极板设置在所述第二补偿极板远离所述第一补偿极板的一侧。
又一方面,本公开还提供了一种显示装置,包括前述的显示基板。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为一种显示装置的结构示意图;
图2为一种显示基板的平面结构示意图;
图3为一种显示基板中显示区域的平面结构示意图;
图4为一种显示基板中显示区域的剖面结构示意图;
图5为一种像素驱动电路的等效电路示意图;
图6为本公开示例性实施例一种显示基板的平面结构示意图;
图7A和图7B为图6中电容区的放大图;
图8为本公开示例性实施例一种电容组的排布示意图;
图9为本公开示例性实施例一种第一电容组的结构示意图;
图10为本公开示例性实施例一种第一补偿电容的结构示意图;
图11为本公开示例性实施例一种第二补偿电容的结构示意图;
图12为本公开示例性实施例一种第三补偿电容的结构示意图;
图13为本公开示例性实施例一种第二电容组的结构示意图;
图14为本公开示例性实施例一种第四补偿电容的结构示意图;
图15为本公开示例性实施例一种第五补偿电容的结构示意图;
图16为本公开示例性实施例一种第六补偿电容的结构示意图;
图17为本公开示例性实施例一种补偿电容的排布示意图;
图18为本公开实施例显示基板形成第一导电层图案后的示意图;
图19为本公开实施例显示基板形成第二导电层图案后的示意图;
图20为本公开实施例显示基板形成第三导电层图案后的示意图;
图21为本公开实施例一种补偿电容的剖面结构示意图;
图22为本公开实施例另一种补偿电容的剖面结构示意图;
图23为现有显示基板一种补偿电容的排布示意图;
图24为本公开示例性实施例另一种显示基板的平面结构示意图;
图25和图26为本公开示例性实施例又一种显示基板的平面结构示意图;
图27为现有显示基板一种多路选择电路和栅极驱动电路的排布示意图。
附图标记说明:
10—子像素;           20—补偿电容;         20A—第一补偿极板;
20B—第二补偿极板;    20C—第三补偿极板;    21—第一补偿电容;
22—第二补偿电容;     23—第三补偿电容;     24—第四补偿电容;
25—第五补偿电容;     26—第六补偿电容;     30—栅极驱动电路;
31—栅极信号线;       32—栅极输出线;       40—低压电源走线;
50—电容组;           51—第一电容组;       52—第二电容组;
60—像素列组;         61—第一像素列;       62—第二像素列;
63—第三像素列;       70—测试电路;         71—测试信号线;
72—测试输出线;       80—高压电源走线;     81—数据信号线;
82—第一电源线;       90—多路选择电路;     90A—虚设电路;
91—选择信号线;       92—选择输出线;       93—源输出信号线;
100—显示区域;        101—基底;            102—驱动电路层;
103—发光结构层;      104—封装结构层;      200—边框区域;
201—第一边框;        202—第二边框;        203—第三边框;
204—第四边框;        210—电容区;          211—第一角部;
212—第二角部;        213—第三角部;        214—第四角部;
220—电路区;          221—第一电路区;      222—第二电路区;
230—走线区。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示基板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的 混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换,“源端”和“漏端”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种显示装置的结构示意图。如图1所示,显示装置可以包括时序控制器、数据驱动器、扫描驱动器、发光驱动器和像素阵列,时序控制器分别与数据驱动器、扫描驱动器和发光驱动器连接,数据驱动器分别与多个数据信号线(D1到Dn)连接,扫描驱动器分别与多个扫描信号线(S1到Sm)连接,发光驱动器分别与多个发光信号线(E1到Eo)连接。像素阵列可以包括多个子像素10xij,i和j可以是自然数,至少一个子像素10xij可以包括电路单元和与电路单元连接的发光单元,电路单元可以至少包括像素驱动电路,像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接。在示例性实施方式中,时序控制器可以将适合于数据驱动器的规格的灰度值和控制信号提供到数据驱动器,可以将适合于扫描驱动器的规格的时钟信号、扫描起始信号等提供到扫描驱动器,可以将适合于发光驱动器的规格的时钟信号、发射停止信号等提供到发光驱动器。数据驱动器可以利用从时序控制器接收的灰度值和控制信号来产生将提供到数据信号线D1、D2、D3、……和Dn的数据电压。例如,数据驱动器可以利用时钟信号对灰度值进行采样,并且以像素行为单位将与灰度值对应的数据电压施加到数据信号线D1至Dn,n可以是自然数。扫描驱动器可以通过从时序控制器接收时钟信号、扫描起始信号等来产生将提供到扫描信号线S1、S2、S3、……和Sm的扫描信号。例如,扫描驱动器可以将具有导通电平脉冲的扫描信号顺序地提供到扫描信号线S1至Sm。例如,扫描驱动器可以被构造为移位寄存器的形式,并且可 以在时钟信号的控制下顺序地将以导通电平脉冲形式提供的扫描起始信号传输到下一级电路的方式产生扫描信号,m可以是自然数。发光驱动器可以通过从时序控制器接收时钟信号、发射停止信号等来产生将提供到发光信号线E1、E2、E3、……和Eo的发射信号。例如,发光驱动器可以将具有截止电平脉冲的发射信号顺序地提供到发光信号线E1至Eo。例如,发光驱动器可以被构造为移位寄存器的形式,并且可以以在时钟信号的控制下顺序地将以截止电平脉冲形式提供的发射停止信号传输到下一级电路的方式产生发射信号,o可以是自然数。
图2为一种显示基板的平面结构示意图,示意了一种矩形倒圆角形状的显示基板。如图2所示,在平行于显示基板的平面上,显示基板可以包括显示区域100和位于显示区域100周边的边框区域200。在示例性实施方式中,显示区域100可以包括在第一方向X上相对设置的第一边缘(左边缘)和第二边缘(右边缘),以及在第二方向Y上相对设置的第三边缘(上边缘)和第四边缘(下边缘),相邻边缘之间通过弧形的倒角连接,形成倒圆角的四边形状,第一方向X和第二方向Y交叉。
在示例性实施方式中,显示区域100可以是平坦的区域,包括组成像素阵列的多个子像素,多个子像素配置为显示动态图片或静止图像,显示区域100可以称为有效区域(AA)。在示例性实施方式中,显示基板可以是可变形的,例如卷曲、弯曲、折叠或卷起。
在示例性实施方式中,边框区域200可以至少包括在第一方向X上相对设置的第一边框(左边框)201和第二边框(右边框)202,在第二方向Y上相对设置的第三边框(上边框)203和第四边框(下边框)204,以及连接第一边框201和第三边框203的第一角部211、连接第二边框202和第三边框203的第二角部212、连接第一边框201和第四边框204的第三角部213、以及连接第二边框202和第四边框204的第四角部214。
在示例性实施方式中,第四边框204可以称为绑定边框,可以包括沿着远离显示区域100的方向依次设置的引线区、驱动芯片区和绑定引脚区。引线区可以至少包括多条数据传输线,多条数据传输线连接显示区域的数据信号线。驱动芯片区可以至少包括集成电路(Integrated Circuit,简称IC),被 配置为与多条数据传输线连接。绑定引脚区可以至少包括多个绑定引脚(Bonding Pad),被配置为与外部的柔性线路板(Flexible Printed Circuit,简称FPC)绑定连接。
在示例性实施方式中,第一边框201和第二边框202可以称为侧边框,可以至少包括级联的多个栅极驱动电路,多个栅极驱动电路可以分别与显示区域100中的扫描信号线和发光信号线连接。第三边框203可以称为上边框,可以至少包括多个检测电路,多个检测电路分别与显示区域100中的数据信号线连接。
在示例性实施方式中,第一角部211和第二角部212可以包括多个栅极驱动电路,或者可以包括多个检测电路,或者可以包括多个栅极驱动电路和多个检测电路,本公开在此不做限定。
在示例性实施方式中,边框区域200还可以设置第一隔离坝和第二隔离坝,第一隔离坝和第二隔离坝可以沿着平行于显示区域边界的方向延伸,形成环绕显示区域100的环形结构,显示区域边界可以是显示区域靠近边框区域一侧的边缘。
图3为一种显示基板中显示区域的平面结构示意图。如图3所示,显示区域可以包括以矩阵方式排布的多个像素单元P,至少一个像素单元P可以包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2和出射第三颜色光线的第三子像素P3。每个子像素可以均包括电路单元和发光单元,电路单元可以至少包括像素驱动电路,像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接,像素驱动电路被配置为在扫描信号线和发光信号线的控制下,接收数据信号线传输的数据电压,向发光单元输出相应的电流。每个子像素中的发光单元分别与所在子像素的像素驱动电路连接,发光单元被配置为响应所连接的像素驱动电路输出的电流发出相应亮度的光。
在示例性实施方式中,第一子像素P1可以是出射红色光线的红色子像素(R),第二子像素P2可以是出射蓝色光线的蓝色子像素(B),第三子像素P3可以是出射绿色光线的绿色子像素(G)。在示例性实施方式中,子像素的形状可以是矩形状、菱形、五边形或六边形,三个子像素可以采用水 平并列、竖直并列或品字等方式排列。在一些示例性实施方式中,像素单元可以包括三个子像素,三个子像素可以采用水平并列、竖直并列、正方形或者钻石形等方式排列,本公开在此不做限定。
在示例性实施方式中,以像素单元包括采用水平并列方式排列的三个子像素为例,显示区域的多个子像素可以形成多个像素行和多个像素列,像素行可以包括沿着第一方向X依次排布的多个子像素,多个像素行可以沿着第二方向Y依次排布,像素列可以包括沿着第二方向Y依次排布的多个子像素,多个像素列可以沿着第一方向X依次排布。在示例性实施方式中,第一方向X可以是像素行的方向,第二方向Y可以是像素列的方向,第一方向X和第二方向Y可以相互垂直。
在示例性实施方式中,对于矩形倒圆角形状的显示基板,多个像素列中子像素的数量不同,靠近侧边框位置的像素列中子像素的数量较少,位于显示区域中部位置的像素列中子像素的数量较多,即沿着靠近边框区域的方向,像素列中子像素的数量逐渐减少,使得显示区域靠近边框区域的一侧形成第一阶梯状的显示区域边界。
图4为一种显示基板中显示区域的剖面结构示意图,示意了显示区域中三个子像素的结构。如图4所示,在垂直于显示基板的平面上,显示基板可以包括设置在基底101上的驱动电路层102、设置在驱动电路层102远离基底101一侧的发光结构层103以及设置在发光结构层103远离基底101一侧的封装结构层104。在一些可能的实现方式中,显示基板可以包括其它膜层,如触控结构层等,本公开在此不做限定。
在示例性实施方式中,基底101可以是柔性基底,或者可以是刚性基底。驱动电路层102可以包括多个电路单元,电路单元可以至少包括像素驱动电路。发光结构层103可以至少多个发光单元,发光单元可以至少包括阳极、有机发光层和阴极,有机发光层在阳极和阴极的驱动下出射相应颜色的光线。封装结构层104可以包括叠设的第一封装层、第二封装层和第三封装层,第一封装层和第三封装层可以采用无机材料,第二封装层可以采用有机材料,第二封装层设置在第一封装层和第三封装层之间,形成无机材料/有机材料/无机材料叠层结构,可以保证外界水氧无法进入发光结构层103。
图5为一种像素驱动电路的等效电路示意图。在示例性实施方式中,像素驱动电路可以是3T1C、4T1C、5T1C、5T2C、6T1C、7T1C或8T1C结构。如图5所示,像素驱动电路可以包括7个晶体管(第一晶体管T1到第七晶体管T7)和1个存储电容C,像素驱动电路分别与6个信号线(数据信号线D、第一扫描信号线S1、第二扫描信号线S2、发光信号线E、初始信号线INIT和第一电源线VDD)连接。
在示例性实施方式中,像素驱动电路可以包括第一节点N1、第二节点N2和第三节点N3。其中,第一节点N1分别与第三晶体管T3的第一极、第四晶体管T4的第二极和第五晶体管T5的第二极连接,第二节点N2分别与第一晶体管的第二极、第二晶体管T2的第一极、第三晶体管T3的栅电极和存储电容C的第二端连接,第三节点N3分别与第二晶体管T2的第二极、第三晶体管T3的第二极和第六晶体管T6的第一极连接。
在示例性实施方式中,存储电容C的第一端与第一电源线VDD连接,存储电容C的第二端与第二节点N2连接,即存储电容C的第二端与第三晶体管T3的栅电极连接。
第一晶体管T1的栅电极与第二扫描信号线S2连接,第一晶体管T1的第一极与初始信号线INIT连接,第一晶体管的第二极与第二节点N2连接。当导通电平扫描信号施加到第二扫描信号线S2时,第一晶体管T1将初始电压传输到第三晶体管T3的栅电极,以使第三晶体管T3的栅电极的电荷量初始化。
第二晶体管T2的栅电极与第一扫描信号线S1连接,第二晶体管T2的第一极与第二节点N2连接,第二晶体管T2的第二极与第三节点N3连接。当导通电平扫描信号施加到第一扫描信号线S1时,第二晶体管T2使第三晶体管T3的栅电极与第二极连接。
第三晶体管T3的栅电极与第二节点N2连接,即第三晶体管T3的栅电极与存储电容C的第二端连接,第三晶体管T3的第一极与第一节点N1连接,第三晶体管T3的第二极与第三节点N3连接。第三晶体管T3可以称为驱动晶体管,第三晶体管T3根据其栅电极与第一极之间的电位差来确定在第一电源线VDD与第二电源线VSS之间流动的驱动电流的量。
第四晶体管T4的栅电极与第一扫描信号线S1连接,第四晶体管T4的第一极与数据信号线D连接,第四晶体管T4的第二极与第一节点N1连接。第四晶体管T4可以称为开关晶体管、扫描晶体管等,当导通电平扫描信号施加到第一扫描信号线S1时,第四晶体管T4使数据信号线D的数据电压输入到像素驱动电路。
第五晶体管T5的栅电极与发光信号线E连接,第五晶体管T5的第一极与第一电源线VDD连接,第五晶体管T5的第二极与第一节点N1连接。第六晶体管T6的栅电极与发光信号线E连接,第六晶体管T6的第一极与第三节点N3连接,第六晶体管T6的第二极与发光单元EL的第一极连接。第五晶体管T5和第六晶体管T6可以称为发光晶体管。当导通电平发光信号施加到发光信号线E时,第五晶体管T5和第六晶体管T6通过在第一电源线VDD与第二电源线VSS之间形成驱动电流路径而使发光单元EL发光。
第七晶体管T7的栅电极与第二扫描信号线S2连接,第七晶体管T7的第一极与初始信号线INIT连接,第七晶体管T7的第二极与发光单元EL的第一极连接。当导通电平扫描信号施加到第二扫描信号线S2时,第七晶体管T7将初始电压传输到发光单元EL的第一极,以使发光单元EL的第一极中累积的电荷量初始化或释放发光单元EL的第一极中累积的电荷量。
在示例性实施方式中,发光单元EL可以是OLED,包括叠设的第一极(阳极)、有机发光层和第二极(阴极),或者可以是QLED,包括叠设的第一极(阳极)、量子点发光层和第二极(阴极)。
在示例性实施方式中,发光单元EL的第二极与第二电源线VSS连接,第二电源线VSS的信号为持续提供的低电平信号,第一电源线VDD的信号为持续提供的高电平信号。
在示例性实施方式中,第一晶体管T1到第七晶体管T7可以是P型晶体管,或者可以是N型晶体管。像素驱动电路中采用相同类型的晶体管可以简化工艺流程,减少显示面板的工艺难度,提高产品的良率。在一些可能的实现方式中,第一晶体管T1到第七晶体管T7可以包括P型晶体管和N型晶体管。
在示例性实施方式中,第一晶体管T1到第七晶体管T7可以采用低温多晶硅薄膜晶体管,或者可以采用氧化物薄膜晶体管,或者可以采用低温多晶硅薄膜晶体管和氧化物薄膜晶体管。低温多晶硅薄膜晶体管的有源层采用低温多晶硅(Low Temperature Poly-Silicon,简称LTPS),氧化物薄膜晶体管的有源层采用氧化物半导体(Oxide)。低温多晶硅薄膜晶体管具有迁移率高、充电快等优点,氧化物薄膜晶体管具有漏电流低等优点,将低温多晶硅薄膜晶体管和氧化物薄膜晶体管集成在一个显示基板上,形成低温多晶氧化物(Low Temperature Polycrystalline Oxide,简称LTPO)显示基板,可以利用两者的优势,可以实现低频驱动,可以降低功耗,可以提高显示品质。
下面以7个晶体管均为P型晶体管为例,像素驱动电路的工作过程可以包括:
第一阶段(可以称为复位阶段),第二扫描信号线S2的信号为低电平信号,第一扫描信号线S1和发光信号线E的信号为高电平信号。第二扫描信号线S2的信号为低电平信号使第一晶体管T1和第七晶体管T7导通。第一晶体管T1导通使得初始信号线INIT的初始电压提供至第二节点N2,对存储电容C进行初始化,清除存储电容中原有数据电压。第七晶体管T7导通使得初始信号线INIT的初始电压提供至OLED的第一极,对OLED的第一极进行初始化(复位),清空其内部的预存电压,完成初始化。第一扫描信号线S1和发光信号线E的信号为高电平信号,使第二晶体管T2、第四晶体管T4、第五晶体管T5和第六晶体管T6断开,此阶段OLED不发光。
第二阶段(可以称为数据写入阶段或者阈值补偿阶段),第一扫描信号线S1的信号为低电平信号,第二扫描信号线S2和发光信号线E的信号为高电平信号,数据信号线D输出数据电压。此阶段由于存储电容C的第二端为低电平,因此第三晶体管T3导通。第一扫描信号线S1的信号为低电平信号使第二晶体管T2和第四晶体管T4导通。第二晶体管T2和第四晶体管T4导通使得数据信号线D输出的数据电压经过第一节点N1、导通的第三晶体管T3、第三节点N3、导通的第二晶体管T2提供至第二节点N2,并将数据信号线D输出的数据电压与第三晶体管T3的阈值电压之差充入存储电容C,存储电容C的第二端(第二节点N2)的电压为Vd-|Vth|,Vd为数据信号线 D输出的数据电压,Vth为第三晶体管T3的阈值电压。第二扫描信号线S2的信号为高电平信号,使第一晶体管T1和第七晶体管T7断开。发光信号线E的信号为高电平信号,使第五晶体管T5和第六晶体管T6断开。
第三阶段(可以称为发光阶段),发光信号线E的信号为低电平信号,第一扫描信号线S1和第二扫描信号线S2的信号为高电平信号。发光信号线E的信号为低电平信号,使第五晶体管T5和第六晶体管T6导通,第一电源线VDD输出的电源电压通过导通的第五晶体管T5、第三晶体管T3和第六晶体管T6向OLED的第一极提供驱动电压,驱动OLED发光。
在像素驱动电路驱动过程中,流过第三晶体管T3(驱动晶体管)的驱动电流由其栅电极和第一极之间的电压差决定。由于第二节点N2的电压为Vd-|Vth|,因而第三晶体管T3的驱动电流为:
I=K*(Vgs-Vth) 2=K*[(Vdd-Vd+|Vth|)-Vth] 2=K*[Vdd-Vd] 2
其中,I为流过第三晶体管T3的驱动电流,也就是驱动OLED的驱动电流,K为常数,Vgs为第三晶体管T3的栅电极和第一极之间的电压差,Vth为第三晶体管T3的阈值电压,Vd为数据信号线D输出的数据电压,Vdd为第一电源线VDD输出的电源电压。
一种矩形倒圆角形状的显示基板,如穿戴类手表等产品,由于第一角部至第四角部区域较大,因而显示区域中多个像素列中子像素的数量不同,沿着靠近边框区域的方向,像素列中子像素的数量逐渐减少,使得显示区域中数据信号线的延伸长度差异较大,导致数据电压负载存在差异,影响显示效果。为了减小显示区域中数据电压负载的差异,现有结构通常采用补偿电容的方式,通过在边框区域设置补偿电容来减小数据电压负载的差异,实现显示效果优化。经本申请发明人研究发现,现有补偿电容的设置结构占据了边框区域的较大面积,导致边框宽度增加,不利于实现窄边框。
为了有效减小补偿电容占据边框区域的面积,实现边框的窄化,本公开示例性实施例提供了一种显示基板。在示例性实施方式中,显示基板可以包括显示区域和位于所述显示区域外围的边框区域,所述显示区域可以包括形成多个像素行和多个像素列的多个子像素,沿着靠近所述边框区域的方向, 至少部分像素列中子像素的数量减少,在所述显示区域靠近所述边框区域的一侧形成第一阶梯状的显示区域边界;所述边框区域至少包括电容区,所述电容区包括多个补偿电容,所述多个补偿电容在远离所述显示区域的一侧形成第二阶梯状的电容区边界;所述显示区域边界包括多个依次连接的第一阶梯,所述第一阶梯具有第一阶梯长度和第一阶梯宽度,所述电容区边界包括多个依次连接的第二阶梯,所述第二阶梯具有第二阶梯长度和第二阶梯宽度,所述第二阶梯长度小于或等于所述第一阶梯长度,所述第二阶梯宽度小于或等于所述第一阶梯宽度,所述第一阶梯长度和第二阶梯长度分别为所述第一阶梯和第二阶梯在所述像素列方向的尺寸,所述第一阶梯宽度和第二阶梯宽度分别为所述第一阶梯和第二阶梯在所述像素行方向的尺寸。
在示例性实施方式中,所述显示区域包括多个像素列组,至少一个像素列组包括沿着所述像素行方向依次设置的n个像素列,所述像素列组中至少两个像素列的子像素数量相同,或者所述像素列组中每个像素列的子像素数量不同,n为大于或等于2的正整数;所述边框区域包括多个电容组,至少一个电容组包括沿着所述像素行方向依次设置的n个补偿电容;所述电容组与所述像素列组对应设置。
在示例性实施方式中,至少一个电容组中,至少一个补偿电容的形状为沿着所述像素列方向延伸的条形状。
在示例性实施方式中,至少一个电容组中,至少一个补偿电容至少包括相互连接的主体部和扩展部,所述主体部的形状为沿着所述像素列方向延伸的条形状,所述扩展部的形状为沿着所述像素行方向延伸的条形状。
在示例性实施方式中,所述多个电容组至少包括多个第一电容组和多个第二电容组,多个第一电容组和多个第二电容组沿着所述显示区域边界的延伸方向交替设置。
在示例性实施方式中,至少一个像素列组包括沿着所述像素行方向依次设置的第一像素列、第二像素列和第三像素列,至少一个第一电容组包括沿着所述像素行方向依次设置的第一补偿电容、第二补偿电容和第三补偿电容,所述第一补偿电容、第二补偿电容和第三补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述显示基板具有基 准线,所述基准线为在所述像素列方向上平分所述显示区域且沿着所述像素行方向延伸的直线;所述第一补偿电容、第二补偿电容和第三补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第一补偿电容、第二补偿电容和第三补偿电容远离所述基准线的端部形成第二阶梯状的电容区边界。
在示例性实施方式中,至少一个第二电容组包括沿着所述像素行方向依次设置的第四补偿电容、第五补偿电容和第六补偿电容,所述第四补偿电容、第五补偿电容和第六补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述第四补偿电容、第五补偿电容和第六补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第四补偿电容、第五补偿电容和第六补偿电容远离所述基准线的端部形成第二阶梯状的电容区边界。
在示例性实施方式中,至少一个像素列包括数据信号线和第一电源线,至少一个补偿电容包括第一极板和第二极板,所述第一极板在所述显示基板上的正投影与所述第二极板在所述显示基板上的正投影至少部分交叠,所述第一极板与所述像素列中的所述数据信号线连接,所述第二极板与所述像素列中的所述第一电源线连接。
在示例性实施方式中,所述边框区域至少包括在所述像素行方向上相对设置的第一边框和第二边框、在所述像素列方向上相对设置的第三边框和第四边框、连接所述第一边框和所述第三边框的第一角部、连接所述第二边框和所述第三边框的第二角部、连接所述第一边框和所述第四边框的第三角部、以及连接所述第二边框和所述第四边框的第四角部;所述多个补偿电容设置在所述第一角部、所述第二角部、所述第三角部和所述第四角部中的任意一个或多个中。
图6为本公开示例性实施例一种显示基板的平面结构示意图。在示例性实施方式中,显示基板可以包括显示区域100和位于显示区域100周边的边框区域200。在示例性实施方式中,显示区域100可以至少包括形成多个像素行和多个像素列的多个子像素10,像素行可以包括沿着第一方向X依次排布的多个子像素10,多个像素行可以沿着第二方向Y依次排布,像素列可以 包括沿着第二方向Y依次排布的多个子像素10,多个像素列可以沿着第一方向X依次排布,在显示区域100形成像素阵列,第一方向X可以是像素行的方向,第二方向Y可以是像素列的方向,第一方向X和第二方向Y可以相互垂直。在示例性实施方式中,边框区域200可以至少包括第一边框、第二边框、第三边框、第四边框、第一角部、第二角部、第三角部和第四角部,第一边框和第二边框可以在第一方向X上相对设置,第三边框和第四边框可以在第二方向Y上相对设置,第一角部可以设置在第一边框和第三边框之间,且分别与第一边框和第三边框连接,第二角部可以设置在第二边框和第三边框之间,且分别与第二边框和第三边框连接,第三角部可以设置在第一边框和第四边框之间,且分别与第一边框和第四边框第四角部可以设置在第二边框和第四边框之间,且分别与第二边框和第四边框连接,第一角部、第二角部、第三角部和第四角部中靠近显示区域一侧的边缘和远离显示区域一侧的边缘为弧形状,图6示意了第一角部中设置补偿电容的结构。
在示例性实施方式中,补偿电容可以包括在基底上叠设的第一补偿极板和第二补偿极板,第二补偿极板在基底上的正投影与第一补偿极板在基底上的正投影至少部分交叠,第一补偿极板被配置为与显示区域中的数据信号线连接,第二补偿极板被配置为与显示区域中的第一电源线连接。在示例性实施方式中,多个补偿电容的第一补偿极板可以间隔设置,多个补偿电容的第二补偿极板可以为相互连接的一体结构。
图7A和图7B为图6中电容区的放大图,图7A示意了补偿电容中第一补偿极板的结构,图7B示意了补偿电容中第二补偿极板的结构。如图6、图7A和图7B所示,显示区域100中多个像素列的子像素10的数量可以不同,沿着边框区域200的方向,像素列中子像素10的数量可以逐渐减少,因而显示区域100靠近边框区域200一侧的显示区域边界形成第一阶梯状。在示例性实施方式中,第一阶梯状的显示区域边界可以包括多个依次连接的第一阶梯,第一阶梯具有第一阶梯长度JL1和第一阶梯宽度JM1,第一阶梯长度JL1可以为第一阶梯在第二方向Y(像素列方向)上的尺寸,第一阶梯宽度JM1可以为第一阶梯在第一方向X(像素行方向)上的尺寸。
在示例性实施方式中,边框区域200可以至少包括沿着远离显示区域100 方向依次设置的电容区210、电路区220和走线区230,电容区210至少设置有多个补偿电容20,电路区220至少设置有多个栅极驱动电路30,走线区230至少设置有低压电源走线40。
在示例性实施方式中,补偿电容20的形状可以为沿着第二方向Y延伸的条形状,多个补偿电容20可以分别设置在多个像素列第二方向Y的一侧或者两侧,补偿电容20被配置为向显示区域100的数据信号线提供补偿。对于设置在第一角部的多个补偿电容20,多个补偿电容20可以分别设置在多个像素列第二方向Y的反方向的一侧,一个像素列第二方向Y的反方向的一侧设置有一个补偿电容20。
在示例性实施方式中,栅极驱动电路30的形状可以为矩形状,多个栅极驱动电路30可以沿着显示区域边界的延伸方向依次设置,多个栅极驱动电路30的输入端分别通过连接线与多条栅极信号线31连接,多个栅极驱动电路30的输出端分别通过栅极输出线32与显示区域100中多个像素行中的扫描信号线和发光信号线连接,栅极驱动电路30被配置为向显示区域100的扫描信号线和发光信号线提供扫描信号和发光信号。在示例性实施方式中,多条栅极信号线31的形状可以为沿着显示区域边界的延伸方向延伸的条形状,多条栅极信号线31可以设置在多个栅极驱动电路30远离显示区域的一侧。
在示例性实施方式中,低压电源走线40的形状可以为沿着显示区域边界的延伸方向延伸的条形状,低压电源走线40可以设置在多条栅极信号线31远离显示区域的一侧,低压电源走线40被配置为向显示区域100的发光器件提供低压电源信号。
在示例性实施方式中,电容区210中多个补偿电容20的位置错位设置,因而多个补偿电容20远离显示区域一侧的电容区边界形成第二阶梯状。在示例性实施方式中,第二阶梯状的电容区边界可以包括多个依次连接的第二阶梯,第二阶梯具有第二阶梯长度JL2和第二阶梯宽度JM2,第二阶梯长度JL2可以为第二阶梯在第二方向Y(像素列方向)上的尺寸,第二阶梯宽度JM2可以为第二阶梯在第一方向X(像素行方向)上的尺寸。
在示例性实施方式中,第二阶梯长度JL2可以小于或等于第一阶梯长度JL1,第二阶梯宽度JM2可以小于或等于第一阶梯宽度JM1,即相对于显示 区域边界的第二阶梯,电容区边界的第一阶梯具有较小的阶梯尺寸。在示例性实施方式中,第一阶梯长度JL1可以是多个第一阶梯中最大的第一阶梯长度,第一阶梯宽度JM1可以是多个第一阶梯中最大的第一阶梯宽度,第二阶梯长度JL2可以是多个第二阶梯中最小的第二阶梯长度,第二阶梯宽度JM2可以是多个第二阶梯中最小的第二阶梯宽度。
在示例性实施方式中,JL2=0.2*JL1至0.4*JL1,JM2=0.2*JM1至0.4*JM1。例如,JL2=JL1/3,JM2=JM1/3。本公开通过形成较小阶梯尺寸的电容区边界,可以有效减小电容区的占用面积,可以有效减小边框区域的宽度,可以实现边框窄化。
在示例性实施方式中,显示区域100的多个像素列可以划分为多个像素列组60,每个像素列组60可以包括沿着第一方向X依次设置的n个像素列,n个像素列中子像素的数量相同,n可以为大于或等于2的正整数。边框区域200的多个补偿电容20可以划分为多个电容组50,每个电容组50可以包括沿着第一方向X依次设置的n个补偿电容20,n个补偿电容20的电容值基本上相等或者大致相同。在示例性实施方式中,至少一个电容组50与至少一个像素列组60对应设置,至少一个电容组50可以设置在至少一个像素列组60第二方向Y的一侧或者两侧。对于补偿电容设置在第一角部,一个像素列组60第二方向Y的反方向的一侧设置有一个电容组50。在示例性实施方式中,补偿电容的电容值基本上相等,是指补偿电容中第一补偿极板的面积(或者在基底上的正投影的面积)基本上相同。
在示例性实施方式中,n可以为一个像素单元中包括子像素的个数。例如,一个像素单元包括第一子像素、第二子像素和第三子像素,则一个像素列组60可以包括沿着第一方向X依次设置的第一像素列、第二像素列和第三像素列,第一像素列可以包括沿着第二方向Y排布的多个第一子像素,第二像素列可以包括沿着第二方向Y排布的多个第二子像素,第三像素列可以包括沿着第二方向Y排布的多个第三子像素,第一像素列、第二像素列和第三像素列中子像素的个数相同,即三个像素列的第二方向Y两侧的边缘大致平齐。
图8为本公开示例性实施例一种电容组的排布示意图。如图8所示,在 示例性实施方式中,多个电容组50可以至少包括多个第一电容组51和多个第二电容组52,多个第一电容组51和多个第二电容组52可以沿着显示区域边界的延伸方向交替设置,即相邻的两个第一电容组51之间设置有一个第二电容组52,相邻的两个第二电容组52之间设置有一个第一电容组51。
在示例性实施方式中,第一电容组51中包含补偿电容的个数与第二电容组52中包含补偿电容的个数可以相同,或者可以不同。本公开通过设置第一电容组51和第二电容组52交替设置,可以使得多个电容组远离显示区域一侧的边缘基本上位于一条沿着显示区域边界的延伸方向延伸的直线上。
图9为本公开示例性实施例一种第一电容组的结构示意图。在示例性实施方式中,显示基板可以具有基准线O,基准线O可以是在第二方向Y(像素列方向)上平分显示区域且沿着第一方向X(像素行方向)延伸的直线。如图9所示,一个像素列组60可以包括沿着第一方向X依次设置的第一像素列61、第二像素列62和第三像素列63,一个第一电容组51可以包括沿着第一方向X依次设置的第一补偿电容21、第二补偿电容22和第三补偿电容23,第一电容组51可以设置在像素列组60远离基准线O的一侧。
在示例性实施方式中,第一补偿电容21在基准线O上的正投影与第一像素列61在基准线O上的正投影可以至少部分交叠,第二补偿电容22在基准线O上的正投影与第二像素列62在基准线O上的正投影可以至少部分交叠,第三补偿电容23在基准线O上的正投影与第三像素列63在基准线O上的正投影至少部分交叠。在示例性实施方式中,本公开中补偿电容的位置关系和尺寸参数是指补偿电容中第一补偿极板的位置关系和尺寸参数。
在示例性实施方式中,第一补偿电容21、第二补偿电容22和第三补偿电容23靠近基准线O的端部可以在第一方向X上大致平齐,第一补偿电容21、第二补偿电容22和第三补偿电容23远离基准线O的端部形成第二阶梯状的电容区边界。
在示例性实施方式中,第一补偿电容21的第一长度L1可以小于第二补偿电容22的第二长度L2,第二补偿电容22的第二长度L2可以小于第三补偿电容23的第三长度L3,第一长度L1、第二长度L2和第三长度L3分别是第一补偿电容21、第二补偿电容22和第三补偿电容23在第二方向Y上的最 大尺寸。
在示例性实施方式中,第一补偿电容21的第一宽度M1可以大于第二补偿电容22的第二宽度M2,第二补偿电容22的第二宽度M2可以大于第三补偿电容23的第三宽度M3,第一宽度M1、第二宽度M2和第三宽度M3分别是第一补偿电容21、第二补偿电容22和第三补偿电容23在第一方向X上的最大尺寸。
在示例性实施方式中,通过三个补偿电容在第一方向X上长度逐渐增加,宽度逐渐减小,使得第一电容组中三个补偿电容远离基准线O的端部形成从低到高的阶梯状,
图10为本公开示例性实施例一种第一补偿电容的结构示意图。如图9和图10所示,在示例性实施方式中,第一补偿电容21可以至少包括第一主体部21-1和第一扩展部21-2。第一主体部21-1的形状可以为沿着第二方向Y延伸的条形状,第一主体部21-1的第一端可以设置在第一像素列61远离基准线O的一侧,第一主体部21-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。第一扩展部21-2的形状可以为块形状或者沿着第一方向X延伸的条形状,第一扩展部21-2的第一端与第一主体部21-1远离显示区域的一侧连接,第一扩展部21-2的第二端沿着第一方向X向着远离显示区域的方向延伸,使第一补偿电容21远离显示区域的端部形成阶梯状。
在示例性实施方式中,第一扩展部21-2可以至少包括第一子部21-11和第二子部21-12,第一子部21-11可以设置在第二子部21-12靠近基准线O的一侧。第一子部21-11的第一端和第二子部21-12的第一端均与第一主体部21-1远离显示区域的一侧连接,第一子部21-11的第二端和第二子部21-12的第二端均沿着第一方向X向着远离显示区域的方向延伸。在示例性实施方式中,沿着第一方向X,第一子部21-11的延伸长度可以大于第二子部21-12的延伸长度,使得第一补偿电容21远离基准线O(远离显示区域)的端部形成阶梯状。
在示例性实施方式中,第一子部21-11可以位于第二电容组中至少两个补偿电容远离基准线O的一端,第二子部21-12可以位于至少两个补偿电容中至少一个补偿电容远离基准线O的一端。
在示例性实施方式中,第一主体部21-1在基准线O上的正投影与第一像素列61在基准线O上的正投影至少部分交叠,第一扩展部21-1在基准线O上的正投影与第二像素列62和第三像素列63在基准线O上的正投影至少部分交叠,第三像素列63是位于第一像素列61远离显示区域一侧的相邻像素列,第二像素列62是位于第三像素列63远离显示区域一侧的相邻像素列。
在示例性实施方式中,由于第一子部21-11的延伸长度大于第二子部21-12的延伸长度,因而第一子部21-11在基准线O上的正投影与第二像素列62和第三像素列63在基准线O上的正投影至少部分交叠,而第二子部21-12在基准线O上的正投影仅与第三像素列63在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第一主体部21-1在第一方向X上具有第一主体宽度N1,在第二方向Y上具有第一长度L1,第一扩展部21-2在第一方向X上具有第一扩展宽度K1,第一主体部21-1的第一主体宽度N1与第一扩展部21-2的第一扩展宽度K1之和为第一补偿电容21的第一宽度M1。
在示例性实施方式中,第一主体部21-1、第一子部21-11和第二子部21-12可以为相互连接的一体结构。
图11为本公开示例性实施例一种第二补偿电容的结构示意图。如图9和图11所示,在示例性实施方式中,第二补偿电容22可以至少包括第二主体部22-1和第二扩展部22-2。第二主体部22-1的形状可以为沿着第二方向Y延伸的条形状,第二主体部22-1的第一端可以设置在第二像素列62远离基准线O的一侧,第二主体部22-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。第二扩展部22-2的形状可以为块形状或者沿着第一方向X延伸的条形状,第二扩展部22-2的第一端与第二主体部22-1远离显示区域的一侧连接,第二扩展部22-2的第二端沿着第一方向X向着远离显示区域的方向延伸,使第二补偿电容22远离显示区域的端部形成阶梯状。
在示例性实施方式中,第二主体部22-1在基准线O上的正投影与第二像素列62在基准线O上的正投影至少部分交叠,第二扩展部22-2在基准线O上的正投影与第一像素列61在基准线O上的正投影至少部分交叠,第一像素列61是位于第二像素列62远离显示区域一侧的相邻像素列。
在示例性实施方式中,第一补偿电容21位于第二主体部22-1远离显示区域的一侧,第二补偿电容22的第二扩展部22-2可以位于第一补偿电容21中第一主体部21-1远离基准线O的一侧,第二扩展部22-2在基准线O上的正投影与第一主体部21-1在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第二扩展部22-2远离显示区域一侧的边缘与第一主体部21-1远离显示区域一侧的边缘可以基本上平齐。
在示例性实施方式中,第二主体部22-1在第一方向X上具有第二主体宽度N2,在第二方向Y上具有第二长度L2,第二扩展部22-2在第一方向X上具有第二扩展宽度K2,第二主体部22-1的第二主体宽度N2与第二扩展部22-2的第二扩展宽度K2之和为第二补偿电容22的第二宽度M2。
在示例性实施方式中,第二主体部22-1的第二长度L2可以大于第一主体部21-1的第一长度L1,第二主体部22-1的第二主体宽度N2与第一主体部21-1的第一主体宽度N1可以基本上相等,第二扩展部22-2的第二扩展宽度K2可以小于第一扩展部21-2的第一扩展宽度K1。
在示例性实施方式中,第二扩展宽度K2可以约为0.5*第一扩展宽度K1。
在示例性实施方式中,第二补偿电容22中第二扩展部22-2的形状和面积与第一补偿电容21中第二子部21-12的形状和面积可以基本上相同。
在示例性实施方式中,第二主体部22-1和第二扩展部22-2可以为相互连接的一体结构。
图12为本公开示例性实施例一种第三补偿电容的结构示意图。如图9和图12所示,在示例性实施方式中,第三补偿电容23可以至少包括第三主体部23-1,第三主体部23-1的形状可以为沿着第二方向Y延伸的条形状,第三主体部23-1的第一端可以设置在第三像素列63远离基准线O的一侧,第三主体部23-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。在示例性实施方式中,第三补偿电容23没有设置扩展部,或者第三补偿电容23的扩展部的扩展宽度为0。
在示例性实施方式中,第三主体部23-1在基准线O上的正投影与第三像素列63在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第三主体部23-1在第一方向X上具有第三主体宽度N3,在第二方向Y上具有第三长度L3,第三主体宽度N3即为第三补偿电容23的第三宽度M3。
在示例性实施方式中,第三主体部23-1的第三长度L3可以大于第二主体部22-1的第二长度L2,第三主体部23-1的第三主体宽度N2与第二主体部22-1的第二主体宽度N2可以基本上相等。
图13为本公开示例性实施例一种第二电容组的结构示意图。如图13所示,一个像素列组60可以包括沿着第一方向X依次设置的第一像素列61、第二像素列62和第三像素列63,一个第二电容组52可以包括沿着第一方向X依次设置的第四补偿电容24、第五补偿电容25和第六补偿电容26,第二电容组52可以设置在像素列组60远离基准线O的一侧。
在示例性实施方式中,第四补偿电容24在基准线O上的正投影与第一像素列61在基准线O上的正投影可以至少部分交叠,第五补偿电容25在基准线O上的正投影与第二像素列62在基准线O上的正投影可以至少部分交叠,第六补偿电容26在基准线O上的正投影与第三像素列63在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第四补偿电容24、第五补偿电容25和第六补偿电容26靠近基准线O的端部可以在第一方向X上大致平齐,第四补偿电容24、第五补偿电容25和第六补偿电容26远离基准线O的端部形成第二阶梯状的电容区边界。
在示例性实施方式中,第四补偿电容24的第四长度L4可以小于第五补偿电容25的第五长度L5,第五补偿电容25的第五长度L5可以等于第六补偿电容26的第六长度L6,第四长度L4、第五长度L5和第六长度L6分别是第四补偿电容24、第五补偿电容25和第六补偿电容26在第二方向Y上的最大尺寸。
在示例性实施方式中,第四补偿电容24的第四宽度M4可以大于第五补偿电容25的第五宽度M5,第五补偿电容25的第五宽度M5可以等于第六补偿电容26的第六宽度M6,第四宽度M4、第五宽度M5和第六宽度M6 分别是第四补偿电容24、第五补偿电容25和第六补偿电容26在第一方向X上的最大尺寸。
在示例性实施方式中,通过三个补偿电容在第一方向X上长度逐渐增加,宽度逐渐减小,使得第二电容组中三个补偿电容远离基准线O的一侧形成从低到高的阶梯状。
图14为本公开示例性实施例一种第四补偿电容的结构示意图。如图13和图14所示,在示例性实施方式中,第四补偿电容24可以至少包括第四主体部24-1和第四扩展部24-2。第四主体部24-1的形状可以为沿着第二方向Y延伸的条形状,第四主体部24-1的第一端可以设置在第一像素列61远离基准线O的一侧,第四主体部24-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。第四扩展部24-2的形状可以为块形状或者沿着第一方向X延伸的条形状,第四扩展部24-2的第一端与第四主体部24-1远离显示区域的一侧连接,第四扩展部24-2的第二端沿着第一方向X向着远离显示区域的方向延伸,使第四补偿电容24远离显示区域的端部形成阶梯状。
在示例性实施方式中,第四主体部24-1在基准线O上的正投影与第一像素列61在基准线O上的正投影至少部分交叠,第四扩展部24-2在基准线O上的正投影与与第三像素列63在基准线O上的正投影至少部分交叠,第三像素列63是位于第一像素列61远离显示区域一侧的相邻像素列。
在示例性实施方式中,第一电容组可以位于第四主体部24-1远离显示区域的一侧,第四扩展部24-2可以位于第一电容组中至少一个补偿电容远离基准线O的一侧。
在示例性实施方式中,第四补偿电容24的第四扩展部24-2可以位于第一电容组的第三补偿电容23中第三主体部23-1远离基准线O的一侧,第四扩展部24-2在基准线O上的正投影与第三主体部23-1在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第四扩展部24-2远离显示区域一侧的边缘与第三主体部23-1远离显示区域一侧的边缘可以基本上平齐。
在示例性实施方式中,第四主体部24-1在第一方向X上具有第四主体 宽度N4,在第二方向Y上具有第四长度L4,第四扩展部24-2在第一方向X上具有第四扩展宽度K4,第四主体部24-1的第四主体宽度N4与第四扩展部24-2的第四扩展宽度K4之和为第四补偿电容24的第四宽度M4。
在示例性实施方式中,第四主体部24-1和第四扩展部24-2可以为相互连接的一体结构。
图15为本公开示例性实施例一种第五补偿电容的结构示意图。如图13和图15所示,在示例性实施方式中,第五补偿电容25可以至少包括第五主体部25-1,第五主体部25-1的形状可以为沿着第二方向Y延伸的条形状,第五主体部25-1的第一端可以设置在第二像素列62远离基准线O的一侧,第五主体部25-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。在示例性实施方式中,第五补偿电容25没有设置扩展部,或者第五补偿电容25的扩展部的扩展宽度为0。
在示例性实施方式中,第五主体部25-1在基准线O上的正投影与第二像素列62在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第五主体部25-1在第一方向X上具有第五主体宽度N5,在第二方向Y上具有第五长度L5,第五主体宽度N5即为第五补偿电容25的第五宽度M5。
在示例性实施方式中,第五主体部25-1的第五长度L5可以大于第四主体部24-1的第四长度L4,第五主体部25-1的第五主体宽度N5与第四主体部24-1的第四主体宽度N4可以基本上相等。
图16为本公开示例性实施例一种第六补偿电容的结构示意图。如图13和图16所示,在示例性实施方式中,第六补偿电容26可以至少包括第六主体部26-1,第六主体部26-1的形状可以为沿着第二方向Y延伸的条形状,第六主体部26-1的第一端可以设置在第三像素列63远离基准线O的一侧,第六主体部26-1的第二端沿着第二方向Y向着远离基准线O的方向延伸。在示例性实施方式中,第六补偿电容26没有设置扩展部,或者第六补偿电容26的扩展部的扩展宽度为0。
在示例性实施方式中,第六主体部26-1在基准线O上的正投影与第三 像素列63在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第六主体部26-1在第一方向X上具有第六主体宽度N6,在第二方向Y上具有第六长度L6,第三主体宽度N3即为第六补偿电容26的第六宽度M6。
在示例性实施方式中,第六主体部26-1的第六长度L6可以等于第五主体部25-1的第五长度L5,第六主体部26-1的第三主体宽度N2可以等于第五主体部25-1的第五主体宽度N5。
图17为本公开示例性实施例一种补偿电容的排布示意图。在示例性实施方式中,第一电容组可以包括第一补偿电容21、第二补偿电容22和第三补偿电容23,第二电容组可以包括第四补偿电容24、第五补偿电容25和第六补偿电容26,多个第一电容组和多个第二电容组可以沿着显示区域边界的延伸方向交替设置,即第一补偿电容21、第二补偿电容22、第三补偿电容23、第四补偿电容24、第五补偿电容25和第六补偿电容26可以沿着显示区域边界的延伸方向周期性排布。
在示例性实施方式中,每个电容组中的多个补偿电容靠近基准线O的端部可以在第一方向X上基本上平齐,每个电容组中的多个补偿电容远离基准线O的一侧形成第二阶梯状的电容区边界。
在示例性实施方式中,至少一个第一补偿电容21在基准线O上的正投影与第一方向X上相邻的第二补偿电容22在基准线O上的正投影至少部分交叠,第二补偿电容22的第二扩展部设置在第一补偿电容21的第一主体部远离基准线O的一侧。第二补偿电容22的第二主体部在基准线O上的正投影与第一补偿电容21的第一主体部在基准线O上的正投影没有交叠,第二补偿电容22的第二扩展部在基准线O上的正投影与第一补偿电容21的第一主体部在基准线O上的正投影至少部分交叠。
在示例性实施方式中,至少一个第二补偿电容22在基准线O上的正投影与第一方向X上相邻的第三补偿电容23在基准线O上的正投影没有交叠。
在示例性实施方式中,至少一个第三补偿电容23在基准线O上的正投影与第一方向X上相邻的第四补偿电容24在基准线O上的正投影至少部分 交叠,第四补偿电容24的第四扩展部设置在第三补偿电容23的第三主体部远离基准线O的一侧。在示例性实施方式中,第四补偿电容24的第四主体部在基准线O上的正投影与第三补偿电容23的第三主体部在基准线O上的正投影没有交叠,第四补偿电容24的第四扩展部在基准线O上的正投影与第三补偿电容23的第三主体部在基准线O上的正投影至少部分交叠。
在示例性实施方式中,至少一个第四补偿电容24在基准线O上的正投影与第一方向X上相邻的第五补偿电容25在基准线O上的正投影没有交叠。
在示例性实施方式中,至少一个第五补偿电容25在基准线O上的正投影与第一方向X上相邻的第六补偿电容26在基准线O上的正投影没有交叠。
在示例性实施方式中,至少一个第五补偿电容25和第六补偿电容26在基准线O上的正投影与第一方向X上相邻的第一补偿电容21在基准线O上的正投影至少部分交叠,第一补偿电容21的第一扩展部设置在第五补偿电容25和第六补偿电容26远离基准线O的一侧。在示例性实施方式中,第一补偿电容21的第一主体部在基准线O上的正投影与第五补偿电容25和第六补偿电容26在基准线O上的正投影没有交叠,第一补偿电容21的第一扩展部在基准线O上的正投影与第五补偿电容25和第六补偿电容26在基准线O上的正投影至少部分交叠。
在示例性实施方式中,第一补偿电容21的第一子部在基准线O上的正投影与第五补偿电容25和第六补偿电容26在基准线O上的正投影至少部分交叠。第一补偿电容21的第二子部在基准线O上的正投影与第五补偿电容25在基准线O上的正投影没有交叠,第一补偿电容21的第二子部在基准线O上的正投影与第六补偿电容26在基准线O上的正投影至少部分交叠。
下面通过显示基板的制备过程进行示例性说明。本公开所说的“图案化工艺”,对于金属材料、无机材料或透明导电材料,包括涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,对于有机材料,包括涂覆有机材料、掩模曝光和显影等处理。沉积可以采用溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用喷涂、旋涂和喷墨打印中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种,本公开不做限定。“薄膜”是指将某一种材料在基底上利用沉积、涂覆或其它工艺制作出的一层薄膜。若在整个 制作过程当中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成,膜层的“厚度”为膜层在垂直于显示基板方向上的尺寸。本公开示例性实施例中,“A的正投影包含B的正投影”,是指B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。
在示例性实施方式中,一种显示基板的制备过程可以包括如下操作。
(1)形成半导体层图案。在示例性实施方式中,形成半导体层图案可以包括:在基底上依次沉积第一绝缘薄膜和半导体薄膜,通过图案化工艺对半导体薄膜进行图案化,形成覆盖基底的第一绝缘层以及设置在第一绝缘层上的半导体层图案,半导体层图案可以设置在显示区域,半导体层图案可以至少包括像素驱动电路中多个晶体管的有源层。
(2)形成第一导电层图案。在示例性实施方式中,形成第一导电层图案可以包括:在形成前述图案的基底上,依次沉积第二绝缘薄膜和第一导电薄膜,通过图案化工艺对第一导电薄膜进行图案化,形成覆盖半导体层图案的第二绝缘层以及设置在第二绝缘层上的第一导电层图案,第一导电层可以称为第一栅金属(GATE1)层。
在示例性实施方式中,第一导电层图案可以设置在显示区域和边框区域,显示区域的第一导电层可以至少包括像素驱动电路中多个晶体管的栅电极和存储电容的第一极板,边框区域的第一导电层可以至少包括补偿电容的第一补偿极板20A,如图18所示。
在示例性实施方式中,多个第一补偿极板20A可以间隔设置,第一补偿极板20A的形状可以为矩形状,第一补偿极板20A靠近显示区域的一侧设置有第一连接块20-1。第一连接块20-1的形状可以为折线状,第一连接块20-1的第一端与第一补偿极板20A连接,第一连接块20-1的第二端向着显示区域的方向延伸,第一连接块20-1被配置为与后续形成的数据信号线连接。
(3)形成第二导电层图案。在示例性实施方式中,形成第二导电层图案 可以包括:在形成前述图案的基底上,依次沉积第三绝缘薄膜和第二导电薄膜,通过图案化工艺对第二导电薄膜进行图案化,形成覆盖第一导电层图案的第三绝缘层以及设置在第三绝缘层上的第二导电层图案,第二导电层可以称为第二栅金属(GATE2)层。
在示例性实施方式中,第二导电层图案可以设置在显示区域和边框区域,显示区域的第二导电层可以至少包括存储电容的第二极板,第一极板和第二极板构成像素驱动电路的存储电容,边框区域的第二导电层可以至少包括补偿电容的第二补偿极板20B,如图19所示。
在示例性实施方式中,第二补偿极板20B在基底上的正投影与第一补偿极板20A在基底上的正投影至少部分交叠,第一补偿极板20A和第二补偿极板20B构成补偿电容。
在示例性实施方式中,第二补偿极板20B的形状可以为矩形状,第二补偿极板20B靠近显示区域的一侧设置有第二连接块20-2。第二连接块20-2的形状可以为折线状,第二连接块20-2的第一端与第二补偿极板20B连接,第二连接块20-2的第二端向着显示区域的方向延伸,第二连接块20-2被配置为与后续形成的第一电源线连接。
在示例性实施方式中,多个第二补偿极板20B可以为相互连接的一体结构。
(4)形成第四绝缘层和第三导电层图案。在示例性实施方式中,形成第四绝缘层和第三导电层图案可以包括:在形成前述图案的基底上,先沉积第四绝缘薄膜,通过图案化工艺对第四绝缘薄膜进行图案化,形成覆盖第三导电层图案的第四绝缘层,第四绝缘层上设置有多个过孔,边框区域的多个过孔至少包括暴露出第一连接块20-1的第一过孔和暴露出第二连接块20-2的第二过孔。随后,沉积第三导电薄膜,通过图案化工艺对第三导电薄膜进行图案化,形成设置在第四绝缘层上的第三导电层图案,第三导电层可以称为第一源漏金属(SD1)层。
在示例性实施方式中,第三导电层可以设置在显示区域和边框区域,第三导电层可以至少包括数据信号线81和第一电源线82,数据信号线81通过 第一过孔与第一连接块20-1连接,第一电源线82通过第二过孔与第二连接块20-2连接,实现了补偿电容的一个补偿极板与数据信号线81连接,补偿电容的另一个补偿极板与第一电源线82连接,如图20所示。
图21为本公开实施例一种补偿电容的剖面结构示意图。如图21所示,显示基板可以包括基底101以及在基底101沿着远离基底方向依次设置的第一导电层、第二导电层、第三导电层和第四导电层,相邻的导电层之间可以设置有绝缘层。在示例性实施方式中,第一补偿极板20A可以设置在第一导电层中,第二补偿极板20B可以设置在第二导电层中,第二补偿极板20B在基底上的正投影与第一补偿极板20A在基底上的正投影至少部分交叠,第一补偿极板20A和第二补偿极板20B构成补偿电容。在示例性实施方式中,数据信号线81可以设置在第三导电层中,第一电源线82可以设置在第四导电层中,数据信号线81通过过孔与第一补偿极板20A连接,第一电源线82通过过孔与第二补偿极板20B连接。
在一种示例性实施方式中,数据信号线81可以设置在第四导电层中,数据信号线81可以通过过孔与第二补偿极板20B连接,第一电源线82可以通过过孔与第一补偿极板20A连接,本公开在此不做限定。
在另一种示例性实施方式中,第一补偿极板20A可以设置在第一导电层至第四导电层中的一个导电层中,第二补偿极板20B可以设置在第一导电层至第四导电层中的另一个导电层中,第一补偿极板20A和第二补偿极板20B设置在不同的导电层中,第一补偿极板20A可以与数据信号线81和第一电源线82中的一个连接,第二补偿极板20B可以与数据信号线81和第一电源线82中的另一个连接,本公开在此不做限定。
图22为本公开实施例另一种补偿电容的剖面结构示意图。如图22所示,显示基板可以包括基底101以及在基底101沿着远离基底方向依次设置的第一导电层、第二导电层、第三导电层和第四导电层,相邻的导电层之间可以设置有绝缘层。在示例性实施方式中,第一补偿极板20A可以设置在第一导电层中,第二补偿极板20B可以设置在第二导电层中,第三补偿极板20C可以设置在第三导电层中,数据信号线81和第一电源线82可以设置在第四导电层中,数据信号线81通过过孔与第二补偿极板20B连接,第一电源线82 通过过孔与第三补偿极板20C连接。
在示例性实施方式中,本实施例补偿电容包括第一补偿极板20A、第二补偿极板20B和第三补偿极板20C。第二补偿极板20B在基底上的正投影与第一补偿极板20A在基底上的正投影至少部分交叠,第一补偿极板20A和第二补偿极板20B构成第一子电容。第三补偿极板20C在基底上的正投影与第二补偿极板20B在基底上的正投影至少部分交叠,第二补偿极板20B和第三补偿极板20C构成第二子电容。第三补偿极板20C在基底上的正投影与第一补偿极板20A在基底上的正投影至少部分交叠,且第三补偿极板20C通过过孔与第一补偿极板20A连接,使得第一补偿极板20A和第三补偿极板20C具有相同的电位,并联结构的第一子电容和第二子电容构成补偿电容。
在一种示例性实施方式中,数据信号线81可以通过过孔与第三补偿极板20C连接,第一电源线82可以通过过孔与第二补偿极板20B连接,本公开在此不做限定。
在另一种示例性实施方式中,第一补偿极板20A可以设置在第一导电层中,第二补偿极板20B可以设置在第二导电层中,第三补偿极板20C可以设置在第二补偿极板20B远离第一补偿极板20A的一侧。或者,第一补偿极板20A可以设置在第二导电层中,第二补偿极板20B可以设置在第三导电层中,第三补偿极板20C可以设置在第一补偿极板20A远离第二补偿极板20B的一侧。或者,第一补偿极板20A可以设置在第一导电层中,第二补偿极板20B可以设置在第三导电层中,第三补偿极板20C可以设置在第一补偿极板20A与第二补偿极板20B之间,本公开在此不做限定。
在示例性实施方式中,图18至图22所示补偿电容的结构仅仅是示例性结构,可以根据实际情况设置成其它结构形式,本公开在此不做限定。
图23为现有显示基板一种补偿电容的排布示意图。如图23所示,显示区域100中多个像素列的子像素10的数量可以不同,沿着边框区域200的方向,像素列中子像素10的数量可以逐渐减少,因而显示区域100靠近边框区域200一侧的显示区域边界包括多个依次连接的第一阶梯,第一阶梯具有第一阶梯长度JL1和第一阶梯宽度JM1。边框区域的电容区中多个补偿电容20均为沿着第二方向Y延伸的条形状,因而多个补偿电容20远离显示区域一 侧的电容区边界包括多个依次连接的第二阶梯,第二阶梯具有第二阶梯长度JL2和第二阶梯宽度JM2,显示区域边界的第一阶梯长度JL1与电容区边界的第二阶梯长度JL2基本上相等,显示区域边界的第一阶梯宽度JM1与电容区边界的第二阶梯宽度JM2基本上相等。由于电容区边界的第二阶梯尺寸较大,因而电容区产生了较多三角形的净空区域,受补偿电容的位置限制,栅极驱动电路只能布置在补偿电容和净空区域的外侧,造成布局空间浪费,导致电容区的宽度较大。
通过以上描述的显示基板的结构和制备流程可以看出,本公开示例性实施例所提供的显示基板,通过形成较小阶梯的电容区边界,可以有效减小电容区的宽度,进而减小了边框区域的宽度,实现了边框的窄化。本公开通过在部分补偿电容中设置主体部和扩展部,主体部的形状与现有结构相近,扩展部设置在主体部一侧,即将补偿电容的部分移动放置到主体部一侧的净空区域内,既没有减小补偿电容的补偿面积,又有效减小了补偿电容的整体长度,所形成较小阶梯的电容区边界有效减少了净空区域,在保证补偿电容补偿面积的前提下,减小了布局空间,减小了电容区的宽度,边框区域的整体宽度可以减小约50μm至60μm左右。本示例性实施例的制备工艺可以利用现有成熟的制备设备实现,对现有工艺改进较小,可以很好地与现有制备工艺兼容,工艺实现简单,易于实施,生产效率高,生产成本低,良品率高。
图24为本公开示例性实施例另一种显示基板的平面结构示意图,示意了第一角部中电路区的结构。如图24所示,在示例性实施方式中,第一角部的电路区220可以包括第一电路区221和位于第一电路区221远离显示区域100一侧的第二电路区222,即第一电路区221和第二电路区222沿着远离显示区域100的方向依次设置。在示例性实施方式中,第一电路区221至少设置有多个测试电路70和多条测试信号线71,第二电路区222至少设置有多个栅极驱动电路30和多条栅极信号线31,多个测试电路70和多个栅极驱动电路30可以沿着显示区域边界的延伸方向依次设置。
在示例性实施方式中,测试电路70的形状可以为矩形状,多个测试电路70的输入端分别通过连接线与多条测试信号线71连接,多个测试电路70的的输出端分别通过测试输出线72与多个补偿电容20的第一补偿极板对应连 接,测试电路70被配置为向显示区域100的数据信号线提供测试信号。
在示例性实施方式中,补偿电容20的第一补偿极板邻近测试电路70的一端连接测试输出线72,邻近显示区域的另一端连接显示区域的数据信号线,即测试电路70的测试输出线72通过补偿电容20的第一补偿极板与显示区域的数据信号线连接。
在示例性实施方式中,多条测试信号线71的形状可以为沿着显示区域边界的延伸方向延伸的条形状,多条测试信号线71可以设置在多个测试电路70远离显示区域的一侧,且位于多个测试电路70与多个栅极驱动电路30之间。
在示例性实施方式中,栅极驱动电路30的形状可以为矩形状,多个栅极驱动电路30的输入端分别通过连接线与多条栅极信号线31连接,多个栅极驱动电路30的输出端分别通过栅极输出线32与显示区域100中多个像素行中的扫描信号线和发光信号线对应连接,栅极驱动电路30被配置为向显示区域100的扫描信号线和发光信号线提供扫描信号和发光信号。多条栅极信号线31的形状可以为沿着显示区域边界的延伸方向延伸的条形状,多条栅极信号线31可以设置在多个栅极驱动电路30远离显示区域的一侧。
在示例性实施方式中,由于边框区域中角部区域的形状为扇环形状,角部区域中靠近显示区域一侧的边缘和远离显示区域一侧的边缘为弧形状,因而本公开的第一电路区221和第二电路区222的形状均为扇环形状,多个测试电路70采用旋转设置方式设置在第一电路区221中,形成多个测试电路70的环形布置,多个栅极驱动电路30采用旋转设置方式设置在第二电路区222中,形成多个栅极驱动电路30的环形布置。
在示例性实施方式中,边框区域200中第三边框(上边框)可以设置有多个测试电路70,多个测试电路70可以沿着第一方向X依次设置,多个测试电路70的形状和设置姿态可以基本上相同。至少一个测试电路70可以具有第一中心线,第一中心线可以是在第一方向X上平分测试电路70且沿着第二方向Y延伸的直线,多个测试电路70的设置姿态基本上相同是指,多个测试电路70的第一中心线与第二方向Y的夹角均为0度左右。
在示例性实施方式中,边框区域200中第一边框(左边框)可以设置有多个栅极驱动电路30,多个栅极驱动电路30可以沿着第二方向Y依次设置,多个栅极驱动电路30的形状和设置姿态基本上相同。至少一个栅极驱动电路30可以具有第二中心线,第二中心线可以是在第二方向Y上平分栅极驱动电路30且沿着第一方向X延伸的直线,多个栅极驱动电路30的设置姿态基本上相同是指,多个栅极驱动电路30的第二中心线与第一方向X的夹角均为0度左右。
在示例性实施方式中,边框区域200中位于第一边框(左边框)和第三边框(上边框)之间的第一角部(左上角部区域)可以设置有多个测试电路70和多个栅极驱动电路30。在示例性实施方式中,第一角部的多个测试电路70的形状可以基本上相同,但多个测试电路70的设置姿态不同,沿着远离第三边框(靠近第一边框)的方向,多个测试电路70的第一中心线与第二方向Y的夹角逐渐增加,即多个测试电路70逐渐增加旋转角度,使得多个测试电路70形成环形布置。在示例性实施方式中,第一角部的多个栅极驱动电路30的形状可以基本上相同,但多个栅极驱动电路30的设置姿态不同,沿着远离第一边框(靠近第三边框)的方向,多个栅极驱动电路30的第二中心线与第一方向X的夹角逐渐增加,即多个栅极驱动电路30逐渐增加旋转角度,使得多个栅极驱动电路30形成环形布置。
在示例性实施方式中,第一角部中测试电路70的形状与第三边框中测试电路70的形状可以基本上相同,第一角部中栅极驱动电路30的形状与第一边框中栅极驱动电路30的形状可以基本上相同。
在示例性实施方式中,环形布置的多个测试电路70远离显示区域一侧的边缘可以形成弧形的第一边缘线,环形布置的多个栅极驱动电路30靠近显示区域一侧的边缘可以形成弧形的第二边缘线,第一边缘线与显示区域边界之间的第一距离可以小于第二边缘线与显示区域边界之间的第二距离,第一距离可以是第一边缘线与显示区域边界之间的最小距离,第二距离可以是第二边缘线与显示区域边界之间的最小距离。
在示例性实施方式中,第二角部的结构可以与第一角部的结构基本上相同,第一角部的结构与第二角部的结构可以相对于显示区域镜像对称。
图25和图26为本公开示例性实施例又一种显示基板的平面结构示意图,示意了第四边框204和第三角部213中电路区的结构。如图25和图26所示,在示例性实施方式中,第四边框204和第三角部213中没有设置补偿电容,因而电路区220可以设置在显示区域100的一侧,电路区220可以至少包括第一电路区221和位于第一电路区221远离显示区域100一侧的第二电路区222。在示例性实施方式中,第一电路区221至少设置有多个多路选择(MUX)电路90、多条选择信号线91和高压电源走线80,第二电路区222至少设置有多个栅极驱动电路30和多条栅极信号线31,多个多路选择电路90和多个栅极驱动电路30可以沿着显示区域边界的延伸方向依次设置。
在示例性实施方式中,多路选择电路90的形状可以为矩形状,多个多路选择电路90的输入端分别通过连接线与多条选择信号线91连接,多个多路选择电路90的输出端分别通过选择输出线92与显示区域100的多条数据信号线对应连接。
在示例性实施方式中,多条选择信号线91的形状可以为沿着显示区域边界的延伸方向延伸的条形状,多条选择信号线91可以设置在多个多路选择电路90远离显示区域的一侧,且位于多个多路选择电路90与多个栅极驱动电路30之间。高压电源走线80的形状可以为沿着显示区域边界的延伸方向延伸的条形状,高压电源走线80可以设置在多个多路选择电路90靠近显示区域的一侧,高压电源走线80被配置为与显示区域100的多条第一电源线对应连接。
在示例性实施方式中,第三角部213中栅极驱动电路30和栅极信号线31的形状、连接关系和设置姿态可以与第一角部基本上相同,多个栅极驱动电路30在扇环形状的第三角部213中通过旋转设置方式形成环形布置。
在示例性实施方式中,边框区域200中第四边框(下边框)204可以设置有多个多路选择电路90,多个多路选择电路90可以沿着第一方向X依次设置,多个多路选择电路90的形状和设置姿态可以基本上相同。至少一个多路选择电路90可以具有第三中心线,第三中心线可以是在第一方向X上平分多路选择电路90且沿着第二方向Y延伸的直线,多个多路选择电路90的设置姿态基本上相同是指,多个多路选择电路90的第三中心线与第二方向Y 的夹角均为0度左右。
在示例性实施方式中,边框区域200中位于第一边框(左边框)和第四边框204之间的第三角部(左下角部区域)213可以设置有多个多路选择电路90和多个栅极驱动电路30。在示例性实施方式中,第三角部213的多个多路选择电路90的形状可以基本上相同,但多个多路选择电路90的设置姿态不同,沿着远离第四边框204(靠近第一边框)的方向,多个测试电路70的第三中心线与第二方向Y的夹角逐渐增加,即多个多路选择电路90逐渐增加旋转角度,使得多个多路选择电路90形成环形布置。在示例性实施方式中,第三角部213的多个栅极驱动电路30的形状可以基本上相同,但多个栅极驱动电路30的设置姿态不同,沿着远离第一边框(靠近第四边框204)的方向,多个栅极驱动电路30的第二中心线与第一方向X的夹角逐渐增加,即多个栅极驱动电路30逐渐增加旋转角度,使得多个栅极驱动电路30形成环形布置。
在示例性实施方式中,环形布置的多个多路选择电路90远离显示区域一侧的边缘可以形成弧形的第三边缘线,环形布置的多个栅极驱动电路30靠近显示区域一侧的边缘可以形成弧形的第四边缘线,第三边缘线与显示区域边界之间的第三距离可以小于第四边缘线与显示区域边界之间的第四距离,第三距离可以是第三边缘线与显示区域边界之间的最小距离,第四距离可以是第四边缘线与显示区域边界之间的最小距离。
在示例性实施方式中,第三角部213中可以设置有至少一个虚设电路90A,虚设电路90A可以位于第一电路区221,设置在多路选择电路90之间,虚设电路90A的形状和设置姿态可以与多路选择电路90基本上相同,但虚设电路90A的输出端通过选择输出线92与高压电源走线80连接。本公开通过在多路选择单元旋转布置时出现的净空区域设置虚设电路,可以保证刻蚀工艺的均匀性,通过虚设电路与恒压信号的高压电源走线连接,可以避免因虚设电路浮接产生的静电,提高了多路选择电路的工作稳定性。
在示例性实施方式中,电路区220还可以包括多条源输出信号线93,源输出信号线93的第一端与绑定区域的集成电路连接,源输出信号线93的第二端延伸到电路区220后,与相应的多路选择电路90连接。
在示例性实施方式中,在第四边框204,至少一条源输出信号线93在基底上的正投影与多条选择信号线91在基底上的正投影具有第一重叠面积,在第三角部213,至少一条源输出信号线93在基底上的正投影与多条选择信号线91在基底上的正投影具有第二重叠面积,第一重叠面积与第二重叠面积基本上相等。例如,第一重叠面积可以约为0.9*第二重叠面积至1.1*第二重叠面积,或者第二重叠面积可以约为0.9*第一重叠面积至1.1*第一重叠面积。
在示例性实施方式中,第四角部的结构可以与第三角部的结构基本上相同,第三角部的结构与第四角部的结构可以相对于显示区域镜像对称。
图27为现有显示基板一种多路选择电路和栅极驱动电路的排布示意图。如图27所示,在第四边框204,多个多路选择电路90可以沿着第一方向X依次设置,在第三角部213,多个多路选择电路90和多个栅极驱动电路30并排设置,多个多路选择电路90和多个栅极驱动电路30可以沿着显示区域边界的延伸方向交替设置,即多路选择电路90设置在栅极驱动电路30之间。当位于第三角部213的多路选择电路90和栅极驱动电路30进行旋转布置时,为了提供足够的旋转布置空间,需要将多路选择电路90沿着远离显示区域的方向拉长、沿着显示区域边界的延伸方向压缩,因而在第四边框204和第三角部213设置的多路选择电路90采用两种不同的版图(layout)结构,第四边框204的多路选择电路为水平方向宽、竖直方向低的版图结构,第三角部213的多路选择电路为水平方向窄、竖直方向高的版图结构。经本申请发明人研究发现,现有基板这种结构使得两种多路选择电路与其它结构膜层产生的寄生电容不同,由于寄生电容的差异,使得两种多路选择电路所控制的像素列产生亮度差异,形成了中间宽白条的不良。此外,由于第四边框204中的源输出信号线93与第三角部213中的源输出信号线93的形状和连接方式不同,使得第四边框204中源输出信号线93与多条选择信号线91的第一重叠面积不同于第三角部213中源输出信号线93与多条选择信号线91的第二重叠面积,导致寄生电容不均一,使得源输出信号线93电压不稳定,出现低灰阶竖向暗纹不良。
本公开示例性实施例所提供的显示基板,通过将边框区域的电路区设置成第一电路区和第二电路区,将多路选择单元设置在内侧的第一电路区,将 栅极驱动电路设置在外侧的第二电路区,可以使得第四边框区的多路选择单元和第三角部的多路选择单元采用相同的版图设计,两个区域中多路选择单元的形状基本上相同,两个区域中多路选择单元的寄生电容基本上相同,消除了寄生电容差异,有效避免了现有显示基板出现的中间宽白条的不良。由于第四边框区的多路选择单元和第三角部的多路选择单元采用相同的版图设计,因而第四边框中源输出信号线与多条选择信号线的第一重叠面积基本上等于第三角部中源输出信号线与多条选择信号线的第二重叠面积,消除了寄生电容不均一的问题,保证了源输出信号线电压的稳定性,有效避免了现有显示基板出现低灰阶竖向暗纹的不良。本公开通过在多路选择单元旋转布置时出现的净空区域设置虚设单元,可以保证刻蚀工艺的均匀性,通过虚设电路与恒压信号的高压电源走线连接,可以避免因虚设电路浮接产生的静电,提高了多路选择电路的工作稳定性。
本公开前述所示结构及其制备过程仅仅是一种示例性说明,在示例性实施方式中,可以根据实际需要变更相应结构,本公开在此不做限定。
本公开还提供一种显示基板的制备方法,以制备前述的显示基板。在示例性实施方式中,所述显示基板包括显示区域和位于所述显示区域外围的边框区域,所述边框区域至少包括电容区,所述显示区域包括形成多个像素行和多个像素列的多个子像素,沿着靠近所述边框区域的方向,所述像素列中子像素的数量逐渐减少,显示区域靠近所述边框区域的一侧形成第一阶梯状的显示区域边界,所述显示区域边界包括多个依次连接的第一阶梯,所述第一阶梯具有第一阶梯长度和第一阶梯宽度;所述制备方法包括:
在所述电容区形成多个补偿电容,所述多个补偿电容远离所述显示区域的一侧形成第二阶梯状的电容区边界,所述电容区边界包括多个依次连接的第二阶梯,所述第二阶梯具有第二阶梯长度和第二阶梯宽度,所述第二阶梯长度小于或等于所述第一阶梯长度,所述第二阶梯宽度小于或等于所述第一阶梯宽度,所述第一阶梯长度和第二阶梯长度分别为所述第一阶梯和第二阶梯所述像素列方向的尺寸,所述第一阶梯宽度和第二阶梯宽度分别为所述像素行方向的尺寸。
本公开还提供一种显示装置,显示装置包括前述的显示基板。显示装置 可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开并不以此为限。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本发明。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (28)

  1. 一种显示基板,包括显示区域和位于所述显示区域外围的边框区域,所述显示区域包括形成多个像素行和多个像素列的多个子像素,沿着靠近所述边框区域的方向,至少部分像素列中子像素的数量减少,在所述显示区域靠近所述边框区域的一侧形成第一阶梯状的显示区域边界;所述边框区域至少包括电容区,所述电容区包括多个补偿电容,所述多个补偿电容在远离所述显示区域的一侧形成第二阶梯状的电容区边界;所述显示区域边界包括多个依次连接的第一阶梯,所述第一阶梯具有第一阶梯长度和第一阶梯宽度,所述电容区边界包括多个依次连接的第二阶梯,所述第二阶梯具有第二阶梯长度和第二阶梯宽度,所述第二阶梯长度小于或等于所述第一阶梯长度,所述第二阶梯宽度小于或等于所述第一阶梯宽度,所述第一阶梯长度和第二阶梯长度分别为所述第一阶梯和第二阶梯在所述像素列方向的尺寸,所述第一阶梯宽度和第二阶梯宽度分别为所述第一阶梯和第二阶梯在所述像素行方向的尺寸。
  2. 根据权利要求1所述的显示基板,其中,所述显示区域包括多个像素列组,至少一个像素列组包括沿着所述像素行方向依次设置的n个像素列,所述像素列组中至少两个像素列的子像素数量相同,或者所述像素列组中每个像素列的子像素数量不同,n为大于或等于2的正整数;所述边框区域包括多个电容组,至少一个电容组包括沿着所述像素行方向依次设置的n个补偿电容;所述电容组与所述像素列组对应设置。
  3. 根据权利要求2所述的显示基板,其中,至少一个电容组中,至少一个补偿电容的形状为沿着所述像素列方向延伸的条形状。
  4. 根据权利要求2所述的显示基板,其中,至少一个电容组中,至少一个补偿电容至少包括相互连接的主体部和扩展部,所述主体部的形状为沿着所述像素列方向延伸的条形状,所述扩展部的形状为沿着所述像素行方向延伸的条形状。
  5. 根据权利要求2所述的显示基板,其中,所述多个电容组至少包括多个第一电容组和多个第二电容组,多个第一电容组和多个第二电容组沿着所 述显示区域边界的延伸方向交替设置。
  6. 根据权利要求5所述的显示基板,其中,至少一个像素列组包括沿着所述像素行方向依次设置的第一像素列、第二像素列和第三像素列,至少一个第一电容组包括沿着所述像素行方向依次设置的第一补偿电容、第二补偿电容和第三补偿电容,所述第一补偿电容、第二补偿电容和第三补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述显示基板具有基准线,所述基准线为在所述像素列方向上平分所述显示区域且沿着所述像素行方向延伸的直线;所述第一补偿电容、第二补偿电容和第三补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第一补偿电容、第二补偿电容和第三补偿电容远离所述基准线的端部形成第二阶梯状的电容区边界。
  7. 根据权利要求6所述的显示基板,其中,所述第一补偿电容的第一长度小于所述第二补偿电容的第二长度,所述第二补偿电容的第二长度小于所述第三补偿电容的第三长度,所述第一补偿电容的第一宽度大于所述第二补偿电容的第二宽度,所述第二补偿电容的第二宽度大于所述第三补偿电容的第三宽度;所述第一长度、第二长度和第三长度分别是所述第一补偿电容、第二补偿电容和第三补偿电容在所述像素列方向上的最大尺寸,所述第一宽度、第二宽度和第三宽度分别是所述第一补偿电容、第二补偿电容和第三补偿电容在所述像素行方向上的最大尺寸。
  8. 根据权利要求6所述的显示基板,其中,所述第一补偿电容至少包括第一主体部和第一扩展部,所述第一主体部的第一端设置在所述第一像素列远离所述基准线的一侧,所述第一主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第一扩展部的第一端与所述第一主体部远离所述显示区域的一侧连接,所述第一扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,使所述第一补偿电容远离所述显示区域的端部形成阶梯状。
  9. 根据权利要求8所述的显示基板,其中,所述第一扩展部至少包括第一子部和第二子部,所述第一子部设置在所述第二子部靠近所述基准线的一侧,所述第一子部和第二子部的第一端分别与所述第一主体部远离所述显示 区域的一侧连接,所述第一子部和第二子部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第一子部的延伸长度大于所述第二子部的延伸长度,所述第一子部位于所述第二电容组中至少两个补偿电容远离所述基准线的一端,所述第二子部位于所述至少两个补偿电容中至少一个补偿电容远离所述基准线的一端。
  10. 根据权利要求6所述的显示基板,其中,所述第二补偿电容至少包括第二主体部和第二扩展部,所述第二主体部的第一端设置在所述第二像素列远离所述基准线的一侧,所述第二主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第二扩展部的第一端与所述第二主体部远离所述显示区域的一侧连接,所述第二扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第二扩展部位于所述第一补偿电容远离所述基准线的一侧,所述第一补偿电容位于所述第二主体部远离所述显示区域的一侧,使所述第二补偿电容远离所述显示区域的端部形成阶梯状。
  11. 根据权利要求6所述的显示基板,其中,所述第三补偿电容至少包括第三主体部,所述第三主体部的第一端设置在所述第三像素列远离所述基准线的一侧,所述第二主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
  12. 根据权利要求5所述的显示基板,其中,至少一个像素列组包括沿着所述像素行方向依次设置的第一像素列、第二像素列和第三像素列,至少一个第二电容组包括沿着所述像素行方向依次设置的第四补偿电容、第五补偿电容和第六补偿电容,所述第四补偿电容、第五补偿电容和第六补偿电容分别设置在所述第一像素列、第二像素列和第三像素列所述像素列方向的一侧;所述显示基板具有基准线,所述基准线为在所述像素列方向上平分所述显示区域且沿着所述像素行方向延伸的直线;所述第四补偿电容、第五补偿电容和第六补偿电容靠近所述基准线的端部在所述像素行方向上大致平齐,所述第四补偿电容、第五补偿电容和第六补偿电容远离所述基准线的端部形成第二阶梯状的电容区边界。
  13. 根据权利要求12所述的显示基板,其中,所述第四补偿电容的第四长度小于所述第五补偿电容的第五长度,所述第五补偿电容的第五长度等于 所述第六补偿电容的第六长度,所述第四补偿电容的第四宽度大于所述第五补偿电容的第五宽度,所述第五补偿电容的第五宽度等于所述第六补偿电容的第六宽度;所述第四长度、第五长度和第六长度分别是所述第四补偿电容、第五补偿电容和第六补偿电容在所述像素列方向上的最大尺寸,所述第四宽度、第五宽度和第六宽度分别是所述第四补偿电容、第五补偿电容和第六补偿电容在所述像素行方向上的最大尺寸。
  14. 根据权利要求12所述的显示基板,其中,所述第四补偿电容至少包括第四主体部和第四扩展部,所述第四主体部的第一端设置在所述第一像素列远离所述基准线的一侧,所述第四主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸,所述第四扩展部的第一端与所述第四主体部远离所述显示区域的一侧连接,所述第四扩展部的第二端沿着所述像素行方向向着远离所述显示区域的方向延伸,所述第四扩展部位于所述第一电容组中至少一个补偿电容远离所述基准线的一侧,所述第一电容组中至少一个补偿电容位于所述第四主体部远离所述显示区域的一侧,使所述第四补偿电容远离所述显示区域的端部形成阶梯状。
  15. 根据权利要求12所述的显示基板,其中,所述第五补偿电容至少包括第五主体部,所述第五主体部的第一端设置在所述第二像素列远离所述基准线的一侧,所述第五主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
  16. 根据权利要求12所述的显示基板,其中,所述第六补偿电容至少包括第六主体部,所述第六主体部的第一端设置在所述第三像素列远离所述基准线的一侧,所述第六主体部的第二端沿着所述像素列方向向着远离所述基准线的方向延伸。
  17. 根据权利要求1至16任一项所述的显示基板,其中,所述边框区域至少包括在所述像素行方向上相对设置的第一边框和第二边框、在所述像素列方向上相对设置的第三边框和第四边框、连接所述第一边框和所述第三边框的第一角部、连接所述第二边框和所述第三边框的第二角部、连接所述第一边框和所述第四边框的第三角部、以及连接所述第二边框和所述第四边框的第四角部;所述多个补偿电容设置在所述第一角部、所述第二角部、所述 第三角部和所述第四角部中的任意一个或多个中。
  18. 根据权利要求17所述的显示基板,其中,所述第一角部和第二角部中的至少一个还包括设置在所述电容区远离所述显示区域一侧的电路区,所述电路区至少包括第一电路区和位于所述第一电路区远离所述显示区域一侧的第二电路区,所述第一电路区至少设置有多个测试电路,所述第二电路区至少设置有多个栅极驱动电路,所述多个测试电路和所述多个栅极驱动电路沿着显示区域边界的延伸方向依次设置。
  19. 根据权利要求18所述的显示基板,其中,多个测试电路远离显示区域一侧的边缘形成弧形的第一边缘线,多个栅极驱动电路靠近显示区域一侧的边缘形成弧形的第二边缘线,所述第一边缘线与所述显示区域边界之间的第一距离小于所述第二边缘线与所述显示区域边界之间的第二距离,所述第一距离为所述第一边缘线与所述显示区域边界之间的最小距离,所述第二距离为所述第二边缘线与所述显示区域边界之间的最小距离。
  20. 根据权利要求17所述的显示基板,其中,所述第三角部和第四角部中的至少一个包括设置在所述显示区域一侧的电路区,所述电路区至少包括第一电路区和位于所述第一电路区远离所述显示区域一侧的第二电路区,所述第一电路区至少设置有多个多路选择单元,所述第二电路区至少设置有多个栅极驱动电路,所述多个多路选择单元和所述多个栅极驱动电路沿着显示区域边界的延伸方向依次设置。
  21. 根据权利要求20所述的显示基板,其中,多个多路选择电路远离显示区域一侧的边缘形成弧形的第三边缘线,多个栅极驱动电路靠近显示区域一侧的边缘形成弧形的第四边缘线,所述第三边缘线与所述显示区域边界之间的第三距离小于所述第四边缘线与所述显示区域边界之间的第四距离,所述第三距离为所述第三边缘线与所述显示区域边界之间的最小距离,所述第四距离为所述第四边缘线与所述显示区域边界之间的最小距离。
  22. 根据权利要求20所述的显示基板,其中,所述第四边框中至少设置有多个多路选择单元,位于所述第四边框中的所述多路选择单元的形状,与位于所述第三角部或者所述第四角部中的所述多路选择单元的形状大致相同。
  23. 根据权利要求22所述的显示基板,其中,所述第三角部、第四角部和第四边框中的至少一个还设置有至少一条源输出信号线和多条选择信号线,在所述第四边框,至少一条源输出信号线在显示基板平面上的正投影与多条选择信号线在显示基板平面上的正投影具有第一重叠面积,在所述第三角部,至少一条源输出信号线在显示基板平面上的正投影与多条选择信号线在显示基板平面上的正投影具有第二重叠面积,所述第一重叠面积为0.9*第二重叠面积至1.1*第二重叠面积,或者,所述第二重叠面积为0.9*第一重叠面积至1.1*第一重叠面积。
  24. 根据权利要求20所述的显示基板,其中,所述电路区还设置有至少一个虚设单元,所述虚设单元的形状与所述多路选择单元的形状大致相同,所述虚设单元与所述电路区中的高压电源走线连接。
  25. 一种显示基板,包括显示区域和位于所述显示区域外围的边框区域,所述显示区域包括形成多个像素行和多个像素列的多个子像素,至少一个像素列包括数据信号线和第一电源线,所述边框区域至少包括多个补偿电容,至少一个补偿电容包括第一补偿极板和第二补偿极板,所述第一补偿极板在所述显示基板上的正投影与所述第二补偿极板在所述显示基板上的正投影至少部分交叠;在垂直于所述显示基板的平面上,所述显示基板包括基底以及在所述基底上依次设置的第一导电层、第二导电层、第三导电层和第四导电层,所述数据信号线设置在所述第三导电层或者所述第四导电层中,所述第一电源线设置在所述第四导电层中,所述第一补偿极板和第二补偿极板设置在所述第一导电层至所述第四导电层的其中两个导电层中,所述第一补偿极板与所述数据信号线和第一电源线中的一个连接,所述第二补偿极板与所述数据信号线和第一电源线中的另一个连接。
  26. 根据权利要求25所述的显示基板,其中,至少一个补偿电容还包括第三补偿极板,所述第三补偿极板在所述显示基板上的正投影与所述第一补偿极板在所述显示基板上的正投影至少部分交叠,所述第三补偿极板在所述显示基板上的正投影与所述第二补偿极板在所述显示基板上的正投影至少部分交叠;所述第三补偿极板设置在所述第一补偿极板和第二补偿极板之间,或者,所述第三补偿极板设置在所述第一补偿极板远离所述第二补偿极板的 一侧,或者,所述第三补偿极板设置在所述第二补偿极板远离所述第一补偿极板的一侧。
  27. 一种显示装置,包括如权利要求1至24中任一项所述的显示基板。
  28. 一种显示装置,包括如权利要求25或26所述的显示基板。
PCT/CN2022/128723 2022-10-31 2022-10-31 显示基板和显示装置 WO2024092436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128723 WO2024092436A1 (zh) 2022-10-31 2022-10-31 显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128723 WO2024092436A1 (zh) 2022-10-31 2022-10-31 显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2024092436A1 true WO2024092436A1 (zh) 2024-05-10

Family

ID=90929241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128723 WO2024092436A1 (zh) 2022-10-31 2022-10-31 显示基板和显示装置

Country Status (1)

Country Link
WO (1) WO2024092436A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221536A (zh) * 2017-05-25 2017-09-29 上海天马微电子有限公司 阵列基板、异形显示器及显示装置
CN112086065A (zh) * 2020-09-24 2020-12-15 京东方科技集团股份有限公司 显示面板及其显示装置和制造方法
CN112310166A (zh) * 2019-07-29 2021-02-02 三星显示有限公司 显示装置
CN112310163A (zh) * 2019-07-29 2021-02-02 三星显示有限公司 显示设备
CN113554969A (zh) * 2021-07-16 2021-10-26 上海天马有机发光显示技术有限公司 显示面板及显示装置
CN114464644A (zh) * 2020-11-09 2022-05-10 京东方科技集团股份有限公司 显示基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221536A (zh) * 2017-05-25 2017-09-29 上海天马微电子有限公司 阵列基板、异形显示器及显示装置
CN112310166A (zh) * 2019-07-29 2021-02-02 三星显示有限公司 显示装置
CN112310163A (zh) * 2019-07-29 2021-02-02 三星显示有限公司 显示设备
CN112086065A (zh) * 2020-09-24 2020-12-15 京东方科技集团股份有限公司 显示面板及其显示装置和制造方法
CN114464644A (zh) * 2020-11-09 2022-05-10 京东方科技集团股份有限公司 显示基板和显示装置
CN113554969A (zh) * 2021-07-16 2021-10-26 上海天马有机发光显示技术有限公司 显示面板及显示装置

Similar Documents

Publication Publication Date Title
JP2024056691A (ja) アレイ基板、表示パネル、スプライシング表示パネル、及び表示駆動方法
WO2023241490A1 (zh) 显示基板和显示装置
US11847964B2 (en) Display panel and display device
WO2023221762A9 (zh) 显示基板及其驱动方法和制备方法、显示装置
WO2023000125A1 (zh) 显示基板及其制备方法、显示装置
WO2023206339A1 (zh) 显示基板及显示装置
WO2024012329A1 (zh) 显示基板及显示装置
WO2024027669A1 (zh) 显示基板及其制备方法、显示装置
WO2023004763A1 (zh) 显示基板及其制备方法、显示装置
WO2022160492A1 (zh) 显示基板及其制备方法、显示装置
WO2024082964A1 (zh) 显示基板及其制备方法、显示装置
WO2024092436A1 (zh) 显示基板和显示装置
CN115440747A (zh) 显示基板及其制备方法、显示装置
US11997897B2 (en) Display substrate including connection line and power line surrounding display area, preparation method thereof, and display device
WO2022110015A1 (zh) 显示基板、显示面板、显示装置
WO2024036629A1 (zh) 显示基板及其驱动方法、显示装置
WO2024092434A1 (zh) 显示基板及其制备方法、显示装置
WO2023226050A1 (zh) 显示基板及其制备方法、显示装置
WO2023115463A1 (zh) 显示装置
WO2023205997A1 (zh) 显示基板及其制备方法、显示装置
WO2024050839A1 (zh) 显示基板、显示装置
WO2024036574A1 (zh) 显示基板及其制备方法、显示装置
WO2024021002A1 (zh) 显示基板及其制备方法、显示装置
WO2024021001A1 (zh) 显示基板及其制备方法、显示装置
WO2024065388A1 (zh) 像素电路及其驱动方法、显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963756

Country of ref document: EP

Kind code of ref document: A1