WO2024091048A1 - 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩 - Google Patents

이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩 Download PDF

Info

Publication number
WO2024091048A1
WO2024091048A1 PCT/KR2023/016810 KR2023016810W WO2024091048A1 WO 2024091048 A1 WO2024091048 A1 WO 2024091048A1 KR 2023016810 W KR2023016810 W KR 2023016810W WO 2024091048 A1 WO2024091048 A1 WO 2024091048A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
discharging
secondary battery
capacity
charge
Prior art date
Application number
PCT/KR2023/016810
Other languages
English (en)
French (fr)
Inventor
김혜진
김기웅
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024091048A1 publication Critical patent/WO2024091048A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging and discharging method for a secondary battery, a battery management system, and a battery pack including the same.
  • Lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (LNCMO), and lithium iron phosphate (LFP) are used as positive electrode active materials for lithium secondary batteries.
  • Lithium iron phosphate batteries have a lower operating voltage range than the widely used lithium nickel cobalt manganese oxide batteries, but because lithium iron phosphate has an olivine structure, it is more stable than lithium transition metal oxides with a layered or spinel structure. It has the advantage of having operational characteristics.
  • FIG. 1 shows the profile of the open circuit voltage according to the depth of charge (SOC; State of Charge) of the lithium nickel cobalt manganese oxide battery
  • Figure 2 shows the profile of the open circuit voltage according to the depth of charge of the lithium iron phosphate battery.
  • the lithium nickel cobalt manganese-based oxide battery has a graph in which the voltage increases as the depth of charge increases, so the depth of charge can be estimated through open circuit voltage measurements.
  • a flat graph is shown where the voltage change is 0 or close to 0 even as the charging depth increases, and this section is called a Plateau section. In this plateau section, the depth of charge cannot be accurately determined due to the open circuit voltage of the battery.
  • the split charging and discharging method for charging and discharging the charge depth section of SOC a to SOC b is specifically, when charging the secondary battery, with the voltage value corresponding to SOC a and the voltage value corresponding to SOC b known in advance. While charging the secondary battery, charging is terminated when the voltage of the secondary battery reaches the voltage value corresponding to SOC b. When discharging the secondary battery, the secondary battery is discharged and the voltage of the secondary battery corresponds to SOC a. When the voltage value is reached, the discharge is terminated.
  • it is easier to measure voltage than to measure SOC so charging and discharging are generally terminated based on the voltage measurement value.
  • a method of terminating discharge based on capacity can be proposed as an alternative, but since this does not reflect capacity degradation as the charge and discharge cycle progresses, the charge and discharge section may not be maintained consistently when charge and discharge are repeated.
  • the present invention seeks to provide a charging and discharging method that repeats charging and discharging while maintaining a constant charging and discharging section during divided charging and discharging of a lithium iron phosphate battery.
  • the present invention seeks to provide a charging and discharging method that reflects capacity degradation during divided charging and discharging of the lithium iron phosphate battery.
  • the split charging and discharging method of a secondary battery is a split charging and discharging method of charging and discharging a secondary battery in the charge depth section of SOC a to SOC b. procedure; and a discharging process of discharging the secondary battery charged by the charging process, and repeating this charging and discharging process.
  • the charging process includes charging when the measured voltage value of the secondary battery reaches the charging end reference voltage.
  • the discharging process is characterized in that discharging is terminated when the measured discharge capacity reaches the value obtained by multiplying the capacity Qc charged in the charging process by the coulombic efficiency.
  • the secondary battery is a secondary battery containing lithium iron phosphate as a positive electrode active material.
  • the coulombic efficiency may be a value calculated by substituting the charging capacity and discharging capacity measured in an arbitrary charging and discharging cycle for the secondary battery to be charged and discharged into Equation 1 below.
  • the SOC a may be set within the charging depth range of the plateau section where the rate of change in voltage (dV/dQ) relative to the change in capacity of the secondary battery is O.
  • the SOC b may be set outside the charging depth range of the plateau section.
  • the charging end reference voltage may be set to a voltage value corresponding to SOC b in the voltage profile according to the depth of charge of the secondary battery to be charged and discharged.
  • the charging process and the discharging process may further include measuring one or more of voltage, current, temperature, capacity, and resistance of the secondary battery.
  • a battery management system includes a sensing unit that measures one or more of voltage, current, temperature, capacity, and resistance of a secondary battery; and a control unit that controls charging and discharging of the secondary battery according to the mounted charging and discharging control algorithm.
  • the charge and discharge control algorithm repeatedly charges and discharges the secondary battery through the charge depth section of SOC a to SOC b, but when the measured voltage value of the secondary battery reaches the charging end reference voltage, during charging, When charging is terminated and discharging occurs, the discharge is terminated when the measured discharge capacity reaches the value obtained by multiplying the capacity Qc charged in the charging process by the coulombic efficiency.
  • the coulombic efficiency may be a value calculated by substituting the charging capacity and discharging capacity measured in an arbitrary charging and discharging cycle for the secondary battery to be charged and discharged into Equation 1 below.
  • the battery management system may further include a memory unit that stores the coulombic efficiency of the secondary battery, the charging termination reference voltage, and the measurement value measured by the sensing unit.
  • the charge/discharge control algorithm may be configured such that the SOC a is set within the charge depth range of the plateau section where the rate of change (dV/dQ) of voltage relative to the change in capacity of the secondary battery is O. You can.
  • the charge/discharge control algorithm may be configured such that the SOC b is set outside the charge depth range of the plateau section.
  • the charging end reference voltage may be set to a voltage value corresponding to SOC b in the voltage profile according to the depth of charge of the secondary battery to be charged and discharged.
  • the battery management system according to the present invention may further include a switching unit that turns on and off the electrical connection between the secondary battery and the charger.
  • a battery pack according to an embodiment of the present invention includes a battery management system according to the present invention; and a plurality of secondary batteries containing lithium iron phosphate as a positive electrode active material.
  • the split charging/discharging method, battery management system, and battery pack according to the present invention have the effect of repeating charging and discharging while maintaining a constant charging and discharging section during split charging and discharging of a lithium iron phosphate battery.
  • the split charging/discharging method, battery management system, and battery pack of the present invention can charge and discharge by reflecting capacity degradation during split charging and discharging of a lithium iron phosphate battery.
  • Figure 1 is a diagram showing the profile of open circuit voltage according to the depth of charge (SOC; State of Charge) of a lithium nickel cobalt manganese-based oxide battery.
  • Figure 2 is a diagram showing the profile of open circuit voltage according to the depth of charge of a lithium iron phosphate battery.
  • Figure 3 is a graph showing the capacity maintenance rate and coulombic efficiency according to the charge and discharge cycle of a lithium iron phosphate battery.
  • Figure 4 is a diagram for explaining the concept of the split charging and discharging method according to the present invention.
  • Figure 5 is a flowchart of a split charging and discharging method according to an embodiment of the present invention.
  • Figure 6 is a conceptual diagram to explain the concept of capacity being discharged during the discharge process according to the present invention.
  • Figure 7 is a diagram illustrating the configuration of a battery pack including a battery management system according to an embodiment of the present invention.
  • FIG. 8 is a block diagram schematically showing a battery management system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a battery pack including a battery management system according to another embodiment of the present invention.
  • control unit refers to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • the plateau section is defined as the section of charging depth for the change in capacity of the secondary battery. It also includes a section of charging depth where the rate of change (dV/dQ) is close to 0.
  • FIG. 4 is a diagram for explaining the concept of the split charging and discharging method according to the present invention.
  • the dotted line in FIG. 4 represents a charging and discharging method that repeats the charging and discharging process of fully charging a secondary battery with SOC 0% until it reaches SOC 100% and fully discharging the fully charged secondary battery until it reaches SOC 0%. It is showing.
  • the solid line in FIG. 4 is the charge depth section of the secondary battery from SOC a to SOC b (where a ⁇ b, where a is a value between 0% and less than 100%, and b is a value between 0% and 100%). It shows a method of repeatedly charging and discharging.
  • the charging and discharging method according to the solid line in FIG. 4 when charging, when the depth of charge of the secondary battery reaches SOC b, charging is terminated, and when discharging, the depth of charge of the secondary battery reaches SOC a. It is a charging and discharging method that terminates the discharge when it reaches the point, but repeats this charging and discharging process. This charging and discharging method is called split charging and discharging.
  • Secondary batteries are used by repeatedly charging and discharging. In order to use secondary batteries for a long time, it is known that it is advantageous to repeat split charging and discharging as described above rather than repeating full charging and discharging.
  • this split charging and discharging method not only needs to be set as a charging and discharging condition for evaluating the performance of the secondary battery, but also needs to be set so that the secondary battery is charged and discharged according to the split charging and discharging method even after the product is shipped.
  • the present invention seeks to propose a discharge termination standard during the discharge process when separately charging and discharging a secondary battery having a positive electrode containing lithium iron phosphate.
  • the secondary battery to which the split charge/discharge method according to the present invention is applied includes lithium iron phosphate as a positive electrode active material.
  • the lithium iron phosphate may be a compound of formula 1 below.
  • M is any one or two or more elements selected from the group consisting of Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y. and, x ⁇ 0.5)
  • the lithium iron phosphate may be LiFePO 4 .
  • FIG. 5 is a flowchart of a split charging and discharging method according to an embodiment of the present invention.
  • the split charging and discharging method of a secondary battery according to the present invention includes a charging process of charging and discharging the secondary battery in a charge depth section of SOC a to SOC b and charging the secondary battery; and a discharging process of discharging the secondary battery charged by the charging process.
  • This charging and discharging process is repeated, and the charging process includes charging when the measured voltage value of the secondary battery reaches the charging end reference voltage.
  • the discharging process is characterized in that discharging is terminated when the measured discharge capacity reaches the value obtained by multiplying the capacity Qc charged in the charging process by the coulombic efficiency.
  • the charging process is a process of charging the secondary battery until the depth of charge of the secondary battery reaches SOC b.
  • the charging process of the present invention is configured to end charging when the voltage measured during charging of the secondary battery reaches the charging end reference voltage.
  • the charging end reference voltage may be set to a voltage value corresponding to SOC b in the voltage profile according to the depth of charge of the secondary battery to be charged and discharged.
  • This charging end reference voltage may be a value set from a voltage profile according to the depth of charge obtained while previously charging and discharging the secondary battery to be charged and discharged. That is, the charging process of the present invention charges the secondary battery, monitors the voltage measurement value of the secondary battery, and ends charging when the voltage measurement value reaches a preset charging end reference voltage.
  • the charging process of the present invention includes a process of comparing a voltage measurement value with a preset charging end reference voltage, it may include a process of measuring the voltage of the secondary battery in real time or periodically during the charging process.
  • the SOC b is preferably set within a charging depth range in which the rate of change in voltage (dV/dQ) relative to the change in capacity of the secondary battery is not 0. This is because if SOC b is set within a range of charging depth where the rate of change in voltage (dV/dQ) relative to the change in capacity of the secondary battery is 0, charging can be terminated before reaching the target SOC b.
  • the charging depth section where the rate of change in voltage (dV/dQ) relative to the change in capacity of the secondary battery is 0 refers to the above-mentioned plateau section where the rate of change in voltage relative to the change in capacity of the secondary battery (dV/dQ) is 0.
  • the section of the charging depth other than the plateau section refers to the section of the charging depth other than the plateau section.
  • the rest period refers to leaving the secondary battery unattended without charging or discharging.
  • the rest period can be 20 minutes to 2 hours.
  • the duration of this rest period can be selected within an appropriate range considering the charging and discharging characteristics of the battery and the purpose of charging and discharging. there is.
  • the discharging process is a process of discharging the secondary battery, which has reached a depth of charge of SOC b through the charging process, until the depth of charge reaches SOC a.
  • the SOC a is within the charge depth range of the plateau section where the rate of change (dV/dQ) of voltage relative to the change in capacity of the secondary battery is O.
  • the rate of change (dV/dQ) of voltage relative to the change in capacity of the secondary battery is O.
  • the present invention reflects capacity degradation due to accumulation of charge and discharge cycles during the discharge process, while maintaining a constant charge and discharge depth section and repeating charge and discharge.
  • the measured discharge capacity is determined by the charging process. Discharging is terminated when the value obtained by multiplying the charged capacity Qc by the coulombic efficiency is reached. That is, the discharging process is terminated when the capacity Qc charged in the charging process is discharged to a capacity equal to the Coulombic efficiency.
  • Figure 3 is a graph showing the capacity maintenance rate and coulombic efficiency according to the charge and discharge cycle of a lithium iron phosphate battery. Referring to FIG. 3, it can be seen that as the number of charge/discharge cycles accumulates, the discharge capacity gradually decreases due to degradation. On the other hand, it can be seen that the coulombic efficiency remains constant even if the number of charge and discharge cycles is accumulated.
  • discharging is terminated when the discharge capacity of the secondary battery measured during the discharging process reaches the value obtained by multiplying the coulombic efficiency by the capacity Qc charged in the previous charging process. By ending the discharge in this way, one charge/discharge cycle is performed. In order to proceed with the next charge/discharge cycle, the charging process may be performed again for the secondary battery, and a rest period may be taken between the discharging and charging processes.
  • Figure 6 is a conceptual diagram to explain the concept of capacity being discharged during the discharge process according to the present invention. As described above, even if the number of charge/discharge cycles is accumulated, the coulombic efficiency remains constant, so the capacity Qd to be discharged by the discharging process is the charge capacity charged by the previous charging process (charging) It is set as Qc) multiplied by the Coulombic efficiency.
  • the discharging process of the present invention may further include measuring the discharged capacity of the secondary battery while discharging the secondary battery in order to discharge as much as the discharge capacity of the Qd.
  • a method of measuring the capacity discharged by the discharge process can use various known technical methods.
  • the coulombic efficiency can be set before performing the charging and discharging method of the present invention, and the coulombic efficiency is the measured charging capacity and discharging capacity measured in an arbitrary charging and discharging cycle for the secondary battery to be charged and discharged, It may be a value calculated by substituting it into Equation 1 above.
  • the discharging end point is determined based on the capacity corresponding to the coulombic efficiency of the previous charging capacity rather than the voltage, so discharging can be terminated when the target charging depth is reached. .
  • the split charging/discharging method of the present invention may include a process of comparing the voltage measurement value of the secondary battery with a preset charging end reference voltage in order to end charging. Additionally, in order to end discharging, the process may include comparing the measured discharge capacity of the secondary battery with the value obtained by multiplying the capacity charged in the previous charging process by the coulombic efficiency.
  • the split charging and discharging method of the present invention requires the voltage measurement value and the discharge capacity measurement value to determine the end point of the charging process and the discharging process. Accordingly, the charging process and the discharging process may further include measuring one or more of voltage, current, temperature, capacity, and resistance of the secondary battery.
  • temperature is a factor to correct the difference in voltage or capacity due to temperature difference, and current and resistance are measured to calculate voltage or capacity through the measured values of current and resistance when it is difficult to measure voltage or capacity directly. It can be.
  • FIG. 7 is a diagram illustrating the configuration of a battery pack including a battery management system according to an embodiment of the present invention
  • FIG. 8 is a block diagram schematically showing a battery management system according to an embodiment of the present invention. am.
  • the battery pack 1000 may be provided to be installed in an electrical system (eg, an electric vehicle).
  • the battery management system 100 is electrically connected to a battery module 10 containing a plurality of secondary batteries 11 and charges each of the plurality of secondary batteries according to the charging and discharging control algorithm of the present invention. Discharge can be controlled.
  • the battery management system 100 may be included in the battery pack 1000 together with the battery module 10.
  • Figure 7 shows an example in which the battery pack 1000 includes one battery module 10 and one battery management system 100, but the battery module 10 and the battery management system included in the battery pack 1000
  • the number of (100) is not limited to the number shown in Figure 7.
  • the number of secondary batteries 11 included in the battery module 10 is not limited to the number shown in FIG. 7 .
  • the secondary battery included in the battery module and battery pack of the present invention contains lithium iron phosphate as a positive electrode active material. Since the detailed explanation for this has been described previously, it will be omitted.
  • the battery management system 100 may include a sensing unit 110, a memory unit 120, and a control unit 130.
  • the sensing unit 110 may be configured to measure one or more of voltage, current, temperature, capacity, and resistance of the secondary battery. That is, the sensing unit 110 may be configured to measure one or more of the voltage, current, temperature, capacity, and resistance of each secondary battery 11 included in the battery module 10.
  • the voltage when each is charged can be measured.
  • the sensing unit 110 measures the voltage of the first secondary battery (C1) through the first sensing line (SL1) and the second sensing line (SL2), and the second sensing line (SL2) and the third sensing line (SL2).
  • the voltage of the second secondary battery C2 can be measured through the line SL3.
  • the sensing unit 110 measures the voltage of the third secondary battery (C3) through the third sensing line (SL3) and the fourth sensing line (SL4), and the fourth sensing line (SL4) and the fifth sensing line
  • the voltage of the fourth secondary battery (C4) can be measured through (SL5).
  • the sensing unit 110 may include a voltage sensor (not shown).
  • the voltage sensor is electrically connected to the positive and negative terminals of the secondary battery 11.
  • the voltage sensor may be installed in the charging/discharging path of the secondary battery.
  • the sensing unit 110 may further include a current sensor and a resistance sensor (not shown). These current and resistance sensors may be configured to measure the current of the secondary battery at predetermined times while the secondary battery is being charged or discharged.
  • the memory unit 120 may be operably coupled to the sensing unit 110.
  • the memory unit 120 is configured to store the coulombic efficiency of the secondary battery subject to charging and discharging, the charging end reference voltage, and the measurement value measured by the sensing unit.
  • the coulombic efficiency may be a value calculated by substituting the charging capacity and discharging capacity measured in an arbitrary charging and discharging cycle for the secondary battery to be charged and discharged into Equation 1 below.
  • the charging end reference voltage may be a voltage value corresponding to SOC b in the voltage profile according to the depth of charge of the secondary battery to be charged and discharged.
  • the measurement value measured by the sensing unit may be any one or more of voltage, current, capacity, temperature, and resistance measured by the sensing unit during charging and discharging performed according to a charging/discharging control algorithm. These measured values are data necessary to determine the depth of charge of the secondary battery subject to charging and discharging.
  • the type of the memory unit 120 is a flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), and multimedia card micro.
  • type multimedia card micro type
  • random access memory RAM
  • static random access memory SRAM
  • read-only memory ROM
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read memory
  • the control unit 130 is equipped with a charging and discharging control algorithm and controls charging and discharging of the secondary battery according to the charging and discharging control algorithm.
  • the charging and discharging control algorithm repeatedly charges and discharges the secondary battery through the charging depth section of SOC a to SOC b.
  • charging is terminated when the measured voltage value of the secondary battery reaches the charging end reference voltage.
  • discharging the discharge is terminated when the measured discharge capacity reaches the value obtained by multiplying the capacity Qc charged in the charging process by the coulombic efficiency.
  • the charge/discharge control algorithm of the present invention may be configured so that the SOC a is set within the charge depth range of the plateau section where the rate of change (dV/dQ) of voltage relative to the change in capacity of the secondary battery is O.
  • the charge/discharge control algorithm may be configured so that the SOC b is set outside the charge depth range of the plateau section.
  • the control unit 130 may receive coulombic efficiency, charging end reference voltage, and measured values from the memory unit 120 in order to determine the charging end point and the discharge end point.
  • the control unit 130 may be configured to exchange electrical signals with the memory unit 120 within the battery management system 100.
  • the control unit 130 may be configured to calculate the discharge capacity (Qd), which is the standard for the discharge capacity to be discharged during the discharge process. That is, the control unit 130 receives the charge capacity (Qc) charged in the previous charging process and the coulombic efficiency from the memory unit 120, and calculates the capacity Qd to be discharged in the discharge process by substituting it in Equation 2 below. can do.
  • Qd discharge capacity
  • the control unit 130 includes a processor, an application-specific integrated circuit (ASIC), another chipset, and a logic circuit known in the art to execute various control logics performed in the battery management system 100 according to an embodiment of the present invention. , registers, communication modems, data processing devices, etc. may optionally be included. Additionally, when the control logic is implemented as software, the control unit 130 may be implemented as a set of program modules. At this time, the program module may be stored in the memory unit and executed by the processor.
  • ASIC application-specific integrated circuit
  • the battery management system 200 may further include a switching unit 240 and an interface unit 250 that turn on and off the electrical connection between the secondary battery 11 and the charger. there is.
  • the switching unit 240 may include a switch 241 and a switch driver 242.
  • the switch 241 is installed in the current path for charging and discharging the secondary battery 11. While the switch 241 is turned on, charging and discharging of the secondary battery 11 is possible.
  • the switch 241 may be a mechanical relay that is turned on-off by the magnetic force of the coil, or a semiconductor switch such as a metal oxide semiconductor field effect transistor (MOSFET). While the switch 241 is turned off, charging and discharging of the secondary battery 11 is stopped.
  • the switch 241 may be turned on in response to a first control signal and turned off in response to a second control signal.
  • the switch driver 242 may be electrically connected to the switch 241 and the control unit 230 and selectively sends a first control signal or a second control signal to the switch 241 in response to a command from the control unit 230. It is configured to output as . When at least one of predetermined events occurs, the control unit 230 may command the switch driver 242 to turn on or turn off the switch 241.
  • the interface unit 250 is configured to support wired or wireless communication between the control unit 230 and the upper controller 2 (eg, ECU: Electronic Control Unit) of the electric system 1.
  • Wired communication may be, for example, CAN (Controller Area Network) communication
  • wireless communication may be, for example, ZigBee or Bluetooth communication.
  • the type of communication protocol is not particularly limited as long as it supports wired and wireless communication between the control unit 230 and the upper controller 2.
  • the interface unit 250 is an output device (not shown) such as a display or speaker that provides the results of the process regarding the charging and discharging state of the secondary battery 11 performed by the control unit 230 in a form recognizable to the user. may include.
  • the interface unit 250 may include an input device (not shown) such as a mouse or keyboard that can receive data from the user.
  • the embodiment of the present invention described above is not implemented only through the battery management system 100 and method, but is implemented through a program that realizes the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded. It may be possible, and such implementation can be easily implemented by an expert in the technical field to which the present invention belongs based on the description of the embodiments described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명에 따른 분할 충방전 방법은, 이차전지에 대해, SOC a 내지 SOC b의 충전 심도 구간을 충방전하는 방법으로서, 이차전지를 충전하는 충전 과정; 및 상기 충전 과정에 의해 충전된 이차전지를 방전하는 방전 과정을 포함하고, 이러한 충전 및 방전 과정을 반복하며, 상기 충전 과정은, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고, 상기 방전 과정은, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하는 것을 특징으로 한다. (단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)

Description

이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩
본 출원은 2022.10.28. 출원한 한국 특허 출원 제10-2022-0141689호에 기초한 우선권의 이익을 주장한다.
본 발명의 이차전지의 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩에 관한 것이다.
보다 상세하게는, 양극재로써 리튬 인산철이 적용된 이차전지에 대해 특정 범위의 충/방전 심도 구간을 반복하여 충방전 할 때에, 충방전 심도 구간을 일정하게 유지하며 충방전을 반복하는 이차전지의 사이클 평가방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩에 관한 것이다.
전기 자동차, 에너지 저장 시스템(Energy Storage System, ESS)에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 코발트계 산화물(LCO), 리튬 니켈코발트망간계 산화물(LNCMO), 리튬 인산철(LFP) 등이 사용되고 있다. 리튬 인산철 전지는 기존에 널리 사용하고 있던 리튬 니켈코발트 망간계 산화물 전지 등에 비해 작동 전압대가 낮지만, 리튬 인산철은 올리빈 구조를 가지기 때문에, 층상 구조 또는 스피넬 구조의 리튬 전이금속 산화물에 비해 안정된 동작 특성을 갖는 장점이 있다.
도 1은 리튬 니켈코발트 망간계 산화물 전지의 충전 심도(SOC; State Of Charge)에 따른 개방 회로 전압의 프로파일을, 도 2는 리튬 인산철 전지의 충전 심도에 따른 개방 회로 전압의 프로파일을 도시하고 있다. 이들 도면을 참조하면, 리튬 니켈코발트 망간계 산화물 전지는 충전 심도가 증가함에 따라, 전압도 증가하는 그래프 개형을 가져, 개방 회로 전압 측정값을 통해 충전 심도를 추산할 수 있다. 반면, 리튬 인산철 전지의 경우, 특정 충전 심도 구간에서는, 충전 심도가 증가함에도 전압 변화량이 0이거나 0에 가까운 평탄한 그래프 개형을 나타내며, 이러한 구간을 플라토(Plateau) 구간이라 한다. 이러한 플라토 구간에서는 전지의 개방 회로 전압으로 충전 심도를 정확히 알 수가 없다.
한편, 이차전지의 사이클 특성을 평가하거나 이차전지의 구동 시, 가령 SOC 50% 내지 SOC 100%와 같이, 특정 범위의 충전(방전) 심도 구간을 반복하여 충방전하는 경우가 종종 있으며, 이를 분할 충방전이라 한다. SOC a 내지 SOC b의 충전 심도 구간을 충방전하는 분할 충방전 방법은 구체적으로, 사전에 SOC a에 대응하는 전압값과, SOC b에 대응하는 전압값을 알고 있는 상태에서, 이차전지의 충전 시에는, 이차전지를 충전하다가, 이차전지의 전압이 SOC b에 대응하는 전압값에 도달하면 충전을 종료하고, 이차전지의 방전 시에는, 이차전지를 방전하다가, 이차전지의 전압이 SOC a에 대응하는 전압값에 도달하면, 방전을 종료하는 것이다. 이차전지의 충방전 중, SOC를 측정하는 것 보다는 전압을 측정하는 것이 용이하기 때문에, 일반적으로 전압 측정값을 기준으로 충전 및 방전을 종료한다.
그런데, 리튬 인산철 전지의 분할 충방전 시에는, 플라토 구간에서 전압 측정값으로 SOC를 정확히 추산할 수 없으므로, 전압값을 기준으로 방전을 종료할 경우, 설정된 SOC a에 도달하기 이전에 방전을 종료할 수 있다. 도 2를 참조하면, 구간 충방전의 충전 심도 구간이 SOC 70% 내지 SOC 100% 라 가정할 경우, 방전 시, SOC 70%까지 방전해야 하는데, SOC 70% 내지 SOC 95%의 구간에서 측정된 전압값이 유사하므로, SOC 80% 까지만 방전하고 방전이 종료될 수 있는 것이다.
이에 용량을 기준으로 방전를 종료하는 방법을 대안으로 제시할 수 있으나, 이는 충방전 사이클의 진행에 따른 용량 퇴화를 반영하지 못하므로, 충방전 반복 시, 충방전 구간이 일정하게 유지되지 않을 수 있다.
따라서, 리튬 인산철 전지의 분할 충방전 시, 충방전 구간을 일정하게 유지하면서, 충방전을 반복할 수 있는 기술 개발이 필요한 실정이다.
본 발명은, 리튬 인산철 전지의 분할 충방전 시, 충방전 구간을 일정하게 유지하면서, 충방전을 반복하는 충방전 방법을 제공하고자 한다.
또한 본 발명의 리튬 인산철 전지의 분할 충방전 시, 용량 퇴화를 반영한 충방전 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 이차전지의 분할 충방전 방법은, 이차전지에 대해, SOC a 내지 SOC b의 충전 심도 구간을 충방전하는 이차전지의 분할 충방전 방법으로서, 이차전지를 충전하는 충전 과정; 및 상기 충전 과정에 의해 충전된 이차전지를 방전하는 방전 과정을 포함하고, 이러한 충전 및 방전 과정을 반복하며, 상기 충전 과정은, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고, 상기 방전 과정은, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하는 것을 특징으로 한다.
(단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)
본 발명의 일 실시예에서, 상기 이차전지는, 양극의 양극 활물질로서 리튬 인산철을 포함하는 이차전지이다.
본 발명의 일 실시예에서, 상기 쿨롱 효율은, 충방전 대상 이차전지에 대해서 임의의 충방전 사이클에서 측정한 충전 용량 및 방전 용량을, 하기 식 1에 대입하여 산출한 값일 수 있다.
식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
본 발명의 일 실시예에서, 상기 SOC a는, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정될 수 있다.
본 발명의 일 실시예에서, 상기 SOC b는, 상기 플라토 구간의 충전 심도 범위 밖에서 설정될 수 있다.
본 발명의 일 실시예에서, 상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값으로 설정될 수 있다.
본 발명의 일 실시예에서, 상기 충전 과정 및 방전 과정은 각각, 이차전지의 전압, 전류, 온도, 용량 및 저항 중 하나 이상을 측정하는 과정을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 배터리 관리 시스템은, 이차전지의 전압, 전류, 온도, 용량 및 저항 중 어느 하나 이상을 측정하는 센싱부; 및 탑재된 충방전 제어 알고리즘에 따라 이차전지를 충방전하도록 제어하는 제어부; 를 포함하고, 상기 충방전 제어 알고리즘은, 이차전지에 대해 SOC a 내지 SOC b의 충전 심도 구간을 반복하여 충방전하되, 충전 시에는, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고, 방전 시에는, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하도록 구성된다.
본 발명의 일 실시예에서, 상기 쿨롱 효율은, 충방전 대상 이차전지에 대해서 임의의 충방전 사이클에서 측정한 충전 용량 및 방전 용량을, 하기 식 1에 대입하여 산출한 값일 수 있다.
식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
본 발명의 일 실시예에 따른 배터리 관리 시스템은, 이차전지의 쿨롱 효율, 충전 종료 기준 전압 및 상기 센싱부에 의해 측정된 측정값을 저장하는 메모리부를 더 포함할 수 있다.
본 발명의 일 실시예에서, 상기 충방전 제어 알고리즘은, 상기 SOC a가, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정되도록 구성될 수 있다.
본 발명의 일 실시예에서, 상기 충방전 제어 알고리즘은, 상기 SOC b가, 상기 플라토 구간의 충전 심도 범위 밖에서 설정되도록 구성될 수 있다.
본 발명의 일 실시예에서, 상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값으로 설정될 수 있다.
본 발명에 따른 배터리 관리 시스템은, 이차전지와 충전기 간의 전기적 연결을 온-오프(on-off)하는 스위칭부를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 배터리 팩은, 본 발명에 따른 배터리 관리 시스템; 및 양극의 양극 활물질로서 리튬 인산철을 포함하는 이차전지를 복수 개 포함한다.
본 발명에 따른 분할 충방전 방법, 배터리 관리 시스템 및 배터리 팩은, 리튬 인산철 전지의 분할 충방전 시, 충방전 구간을 일정하게 유지하면서, 충방전을 반복할 수 있는 효과가 있다.
또한 본 발명의 분할 충방전 방법, 배터리 관리 시스템 및 배터리 팩은, 리튬 인산철 전지의 분할 충방전 시, 용량 퇴화를 반영하여 충방전할 수 있다.
도 1은 리튬 니켈코발트 망간계 산화물 전지의 충전 심도(SOC; State Of Charge)에 따른 개방 회로 전압의 프로파일을 도시한 도면이다.
도 2는 리튬 인산철 전지의 충전 심도에 따른 개방 회로 전압의 프로파일을 도시한 도면이다.
도 3은 리튬 인산철 전지의 충방전 사이클에 따른 용량 유지율 및 쿨롱 효율을 나타낸 그래프이다.
도 4는 본 발명에 따른 분할 충방전 방법의 개념을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 분할 충방전 방법의 순서도이다.
도 6은 본 발명에 따른 방전 과정에서, 방전되는 용량의 개념을 설명하기 위한 개념도이다.
도 7는 본 발명의 일 실시예에 따른 배터리 관리 시스템을 포함하는 배터리 팩의 구성을 예시적으로 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 배터리 관리 시스템을 개략적으로 도시한 블록도이다.
도 9는 본 발명의 다른 실시예에 따른 배터리 관리 시스템을 포함하는 배터리 팩의 개략도이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
또한, 명세서에 기재된 제어부와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
본 명세서, '플라토 구간'을 정의하는 데 있어서, 서술 기법 상 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 0인 충전 심도의 구간으로 정의하나, 플라토 구간은 용량 변화에 대한 전압의 변화율(dV/dQ)이 0에 가까운 충전 심도의 구간도 포함한다.
도 4는 본 발명에 따른 분할 충방전 방법의 개념을 설명하기 위한 도면이다. 도 4의 점선은, SOC 0%의 이차전지를 SOC 100%에 도달할 때까지 만충전하고, 만충전된 이차전지를 SOC 0%에 도달할 때까지 만방전하는 충방전 과정을 반복하는 충방전 방법을 나타내고 있다.
도 4의 실선은, 이차전지를 SOC a 내지 SOC b의(단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임) 충전 심도 구간을 반복하여 충방전하는 방법을 나타내고 있다. 도 4의 실선에 따른 충방전 방법은, 충전 시에는, 충전에 의해 이차전지의 충전 심도가 SOC b에 도달하면, 충전을 종료하고, 방전 시에는 방전에 의해 이차전지의 충전 심도가 SOC a에 도달하면, 방전을 종료하되, 이 같은 충방전을 반복하는 충방전 방법이다. 이러한 충방전 방법을 분할 충방전이라 한다.
이차전지는 충방전을 반복하며 사용하는데, 이차전지를 오래 사용하기 위해서는 만충전 및 만방전을 반복하는 것보다는, 위와 같이 분할 충방전을 반복하는 것이 유리한 것으로 알려져 있다.
따라서, 이러한 분할 충방전 방법은, 이차전지의 성능 평가를 위한 충방전 조건으로 설정될 뿐만 아니라, 제품의 출하 후에도 이차전지가 분할 충방전 방법에 따라 충방전 되도록 설정될 필요가 있다.
그런데, 전술한 바와 같이, 양극의 양극 활물질로서 리튬 인산철을 포함하는 이차전지에 대해 분할 충방전을 수행하는 경우에는, 플라토 구간의 존재로 인해 전압 측정값을 통해 전지의 충전 심도를 정확하게 파악하기 어려우므로, 전압 측정값을 기준으로 방전을 종료할 경우, 의도했던 충전 심도에 도달하기 이전에 방전을 종료할 수 있는 문제가 있었다.
이에 본 발명은, 리튬 인산철을 포함하는 양극을 구비한 이차전지를 분할 충방전 함에 있어서, 방전 과정에서의 방전 종료 기준을 제시하고자 한다.
본 발명에 따른 분할 충방전 방법이 적용되는 이차전지는, 양극 활물질로서 리튬 인산철을 포함한다. 상기 리튬 인산철은 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
Li1+aFe1-xMx(PO4-b)Xb
(상기 화학식 1에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, X는 F, S 및 N 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고, a, b, x는 각각 -0.5≤a≤0.5, 0≤b≤0.1, 0≤x≤0.5이다)
예를 들어, 상기 리튬 인산철은 LiFePO4일 수 있다.
도 5는 본 발명의 일 실시예에 따른 분할 충방전 방법의 순서도이다. 도 5를 참조하면, 본 발명에 따른 이차전지의 분할 충방전 방법은, 이차전지에 대해, SOC a 내지 SOC b의 충전 심도 구간을 충방전하고, 이차전지를 충전하는 충전 과정; 및 상기 충전 과정에 의해 충전된 이차전지를 방전하는 방전 과정을 포함하며, 이러한 충전 및 방전 과정을 반복하고, 상기 충전 과정은, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고, 상기 방전 과정은, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하는 것을 특징으로 한다.
(단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)
상기 충전 과정은, 충전에 의해 이차전지의 충전 심도가 SOC b에 도달할 때까지, 이차전지를 충전하는 과정이다. 본 발명의 충전 과정은, 이차전지의 충전 중 측정한 전압이 충전 종료 기준 전압에 도달하면, 충전을 종료하도록 구성된다.
하나의 구체적 예에서, 상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값으로 설정될 수 있다.
도 2를 참조하여 구체적으로 설명한다. 예컨대 SOC b가 SOC 100%라 가정하면, 도 2에 도시된 충전 심도에 따른 전압의 프로파일에서, SOC 100%에 대응하는 전압은 약 3.35V이고, 따라서 충전 종료 기준 전압은 3.35V가 되는 것이며, 충전 과정에서 측정한 이차전지의 전압이 3.35V가 되면 충전을 종료한다.
이러한 충전 종료 기준 전압은, 사전에 충방전 대상 이차전지에 대해 충방전을 수행하면서 수득한 충전 심도에 따른 전압의 프로파일로부터 설정된 값일 수 있다. 즉, 본 발명의 충전 과정은, 이차전지를 충전하며, 이차전지의 전압 측정값을 모니터링 하면서, 전압 측정값이 기 설정된 충전 종료 기준 전압에 도달하면, 충전을 종료한다.
또한, 본 발명의 충전 과정은, 전압 측정값과 기 설정된 충전 종료 기준 전압을 비교하는 과정을 포함하므로, 충전 과정 중에 이차전지의 전압을 실시간 또는 주기적으로 측정하는 과정을 포함할 수 있다.
상기 SOC b는, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 0이 아닌 충전 심도 범위 내에서 설정되는 것이 바람직하다. SOC b가 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 0인 충전 심도의 구간 내에서 설정된다면, 목표했던 SOC b에 도달하기 이전에, 충전을 종료할 수 있기 때문이다. 여기서, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 0인 충전 심도의 구간이란, 전술한 플라토 구간을, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 0이 아닌 충전 심도의 구간이란, 플라토 구간 이외의 충전 심도 구간을 의미한다.
이와 같이 충전 과정을 수행한 후에는, 방전 과정을 수행하게 되며, 충전 후 방전의 사이에 휴지기를 가질 수 있다. 휴지기는 충전 및 방전을 수행하지 않고 이차전지를 방치하는 것으로, 휴지기는 20분 내지 2시간일 수 있으며, 이러한 휴지기의 지속 시간은 전지의 충방전 특성, 충방전 목적을 고려하여 적절한 범위로 선택할 수 있다.
상기 방전 과정은, 상기 충전 과정에 의해 SOC b의 충전 심도에 도달했던 이차전지를, 충전 심도가 SOC a가 될 때까지 방전하는 과정이다.
SOC a 내지 SOC b의 충전 심도 구간을 충방전하는 분할 충방전 방법에 있어서, 상기 SOC a가, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정되는 경우, 상기 충전 과정과 동일하게 전압을 기준으로 방전 종료 시점을 설정하게 되면, SOC b에 도달하기 이전에, 방전을 종료할 수 있다. 이에 방전 과정에서는, 이전의 충전 과정에서 충전된 용량 만큼 방전하는 방법을 고려할 수도 있으나, 이는 충방전 사이클의 누적에 따른 퇴화를 반영하지 못하는 문제가 있다.
본 발명은, 방전 과정에서 충방전 사이클의 누적에 따른 용량 퇴화를 반영하면서도, 충방전 심도 구간을 일정하게 유지하며 충방전을 반복하기 위해, 상기 방전 과정에서, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료한다. 즉 상기 방전 과정은, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값의 용량만큼 방전되면, 방전을 종료한다.
도 3은 리튬 인산철 전지의 충방전 사이클에 따른 용량 유지율 및 쿨롱 효율을 나타낸 그래프이다. 도 3을 참조하면, 충방전 사이클의 횟수가 누적됨에 따라, 퇴화에 의해 방전 용량은 점차 감소하는 것을 확인할 수 있다. 반면, 쿨롱 효율은, 충방전 사이클의 횟수가 누적되어도, 일정하게 유지하고 있음을 알 수 있다.
분할 충방전 방법의 방전 과정에서, 이전의 충전 과정에서 충전된 용량만큼 이차전지를 방전하면, 충방전 사이클의 누적에 따른 용량 퇴화를 반영할 수 없다. 따라서, 본 발명에 따른 분할 충방전 방법은, 방전 과정에서 측정한 이차전지의 방전 용량이, 이전의 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료한다. 이렇게 방전을 종료함으로써 1회의 충방전 사이클을 수행하게 된다. 그리고, 그 다음의 충방전 사이클을 진행하기 위해, 이차전지에 대해 상기 충전 과정을 다시 수행할 수 있으며, 방전과 충전 과정의 사이에 휴지기를 가질 수 있다.
도 6은 본 발명에 따른 방전 과정에서, 방전되는 용량의 개념을 설명하기 위한 개념도이다. 전술한 바와 같이, 충방전 사이클의 횟수가 누적되어도, 쿨롱 효율은 일정하게 유지되므로, 방전 과정(discharging)에 의해 방전되어야 할 용량 Qd는, 이전의 충전 과정(charging)에 의해 충전된 충전 용량(Qc)에 쿨롱 효율을 곱한 값으로 설정된다.
본 발명의 방전 과정은, 상기 Qd의 방전 용량만큼 방전하기 위해, 이차전지를 방전하면서, 이차전지의 방전되는 용량을 측정하는 과정을 더 포함할 수 있다. 방전 과정에 의해 방전된 용량을 측정하는 방법은 공지된 다양한 기술적 방법을 이용할 수 있다.
상기 쿨롱 효율은, 본 발명의 충방전 방법을 수행하기 이전에, 설정될 수 있으며, 쿨롱 효율은, 충방전 대상 이차전지에 대해서 임의의 충방전 사이클에서 측정한 측정한 충전 용량 및 방전 용량을, 상기 식 1에 대입하여 산출한 값일 수 있다.
식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
본 발명의 분할 충방전 방법은, 방전 시, 전압이 아닌 직전 충전 용량의 쿨롱 효율에 해당하는 용량을 기준으로, 방전 종료 시점을 정하므로, 목표했던 충전 심도에 도달하였을 때 방전을 종료할 수 있다.
또한, 충방전 사이클이 누적됨에 따라, 이차전지의 용량은 감소하더라도, 이차전지의 쿨룡 효율은 일정하게 유지되는 바, 방전 과정에서 방전되어야 하는 방전 용량 Qd를, 쿨롱 효율을 이용하여 산출하므로, 충방전 반복에 따른 용량 퇴화를 반영할 수 있으며, 그 결과 충방전 구간을 일정하게 유지하며 충방전을 반복할 수 있다.
본 발명의 분할 충방전 방법은, 충전을 종료하기 위해, 이차전지의 전압 측정값과 기 설정된 충전 종료 기준 전압을 비교하는 과정을 포함할 수 있다. 또한 방전을 종료하기 위해, 이차전지의 방전 용량 측정값과 이전의 충전 과정에서 충전된 용량에 쿨롱 효율을 곱한 값을 비교하는 과정을 포함할 수 있다.
이와 같이 본 발명의 분할 충방전 방법은, 충전 과정 및 방전 과정의 종료 시점을 결정하기 위해, 상기 전압 측정값, 방전 용량 측정값을 필요로 한다. 따라서 상기 충전 과정 및 방전 과정은 각각, 이차전지의 전압, 전류, 온도, 용량 및 저항 중 하나 이상을 측정하는 과정을 더 포함할 수 있다.
여기서 온도는 온도 차이에 따른 전압 또는 용량의 차이를 보정하기 위한 인자이며, 전류 및 저항은, 전압 또는 용량을 직접적으로 측정하기 어려울 때 전류 및 저항의 측정값을 통해 전압 또는 용량을 산출하기 위해 측정될 수 있다.
이하, 본 발명의 다른 실시예에 따른 배터리 관리 시스템에 대해 설명한다.
도 7는 본 발명의 일 실시예에 따른 배터리 관리 시스템을 포함하는 배터리 팩의 구성을 예시적으로 나타낸 도면이고, 도 8은 본 발명의 일 실시예에 따른 배터리 관리 시스템을 개략적으로 도시한 블록도이다.
도 2를 참조하면, 배터리 팩(1000)은, 전기 시스템(예, 전기 자동차)에 설치 가능하도록 제공될 수 있다. 본 발명에 따른 배터리 관리 시스템(100)은, 복수의 이차전지(11)가 포함된 배터리 모듈(10)과 전기적으로 연결되어 복수의 이차전지 각각에 대하여, 본 발명의 충방전 제어 알고리즘에 따라 충방전을 제어할 수 있다.
또한, 본 발명에 따른 배터리 관리 시스템(100)은, 상기 배터리 모듈(10)과 함께 배터리 팩(1000)에 포함될 수 있다. 도 7은 배터리 팩(1000)에 하나의 배터리 모듈(10)과 하나의 배터리 관리 시스템(100)이 포함된 예시를 도시하였으나, 배터리 팩(1000)에 포함된 배터리 모듈(10) 및 배터리 관리 시스템(100)의 개수는 도 7에 도시된 개수에 국한되지 않는다. 마찬가지로 배터리 모듈(10)에 포함된 이차전지(11)의 개수도 도 7에 도시된 개수에 국한되지 않는다.
본 발명의 배터리 모듈 및 배터리 팩에 포함되는 이차전지는 전술한 바와 같이, 양극 활물질로서 리튬 인산철을 포함한다. 이에 대한 상세한 설명은 앞서 설명하였으므로, 생략하기로 한다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 배터리 관리 시스템(100)은 센싱부(110), 메모리부(120) 및 제어부(130)를 포함할 수 있다.
센싱부(110)는, 이차전지의 전압, 전류, 온도, 용량 및 저항 중 어느 하나 이상을 측정하도록 구성될 수 있다. 즉 센싱부(110)는 배터리 모듈(10)에 포함된 이차전지(11)의 각각의 전압, 전류, 온도, 용량 및 저항 중 어느 하나 이상을 측정하도록 구성될 수 있다.
예컨대, 도 7에 도시한 실시예에서, 배터리 모듈(10)에 포함된 제1 이차전지(C1), 제2 이차전지(C2), 제3 이차전지(C3) 및 제4 이차전지(C4)가 충전될 때의 전압을 각각 측정할 수 있다. 구체적으로, 센싱부(110)는 제1 센싱 라인(SL1) 및 제2 센싱 라인(SL2)을 통해 제1 이차전지(C1)의 전압을 측정하고, 제2 센싱 라인(SL2) 및 제3 센싱 라인(SL3)을 통해 제2 이차전지(C2)의 전압을 측정할 수 있다. 또한, 센싱부(110)는 제3 센싱 라인(SL3) 및 제4 센싱 라인(SL4)을 통해 제3 이차전지(C3)의 전압을 측정하고, 제4 센싱 라인(SL4) 및 제5 센싱 라인(SL5)을 통해 제4 이차전지(C4)의 전압을 측정할 수 있다.
센싱부(110)는 전압 센서(미도시)를 포함할 수 있다. 전압 센서는 이차전지(11)의 양극 단자 및 음극 단자에 전기적으로 연결된다. 전압 센서는, 이차전지의 충방전 경로에 설치될 수 있다. 또한 센싱부(110)는, 전류 센서와 저항 센서(미도시)를 더 포함할 수도 있다. 이들 전류 및 저항 센서는 이차전지가 충전 또는 방전되는 동안에, 이차전지의 전류를 소정 시간마다 측정하도록 구성될 수 있다.
상기 메모리부(120)는, 상기 센싱부(110)에 동작 가능하게 결합될 수 있다. 메모리부(120)는, 충방전 대상이 되는 이차전지의 쿨롱 효율, 충전 종료 기준 전압 및 상기 센싱부에 의해 측정된 측정값을 저장하도록 구성된다.
상기 쿨롱 효율은, 충방전 대상 이차전지에 대하서 임의의 충방전 사이클에서 측정한 충전 용량 및 방전 용량을, 하기 식 1에 대입하여 산출한 값일 수 있다.
식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값일 수 있다.
상기 센싱부에 의해 측정된 측정값은, 충방전 제어 알고리즘에 따라 수행되는 충방전시, 센싱부에 의해 측정된, 전압, 전류, 용량, 온도 및 저항 중 어느 하나 이상의 측정값일 수 있다. 이러한 측정값들은, 충방전 대상 이차전지의 충전 심도를 파악하기 위해 필요한 데이터이다.
메모리부(120)는, 데이터를 기록, 소거 및 갱신할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 메모리부(120)는, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.
상기 제어부(130)는, 충방전 제어 알고리즘을 탑재하고 있으며, 충방전 제어 알고리즘에 따라 이차전지를 충방전하도록 제어한다.
상기 충방전 제어 알고리즘은, 이차전지에 대해 SOC a 내지 SOC b의 충전 심도 구간을 반복하여 충방전하되, 충전 시에는, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고, 방전 시에는, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하도록 구성된다.
(단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)
본 발명의 충방전 제어 알고리즘은, 상기 SOC a가, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정되도록 구성될 수 있다.
또한 상기 충방전 제어 알고리즘은, 상기 SOC b가, 상기 플라토 구간의 충전 심도 범위 밖에서 설정되도록 구성될 수 있다.
상기 제어부(130)는, 충전 종료 시점과 방전 종료 시점을 결정하기 위해, 상기 메모리부(120)로부터, 쿨롱 효율, 충전 종료 기준 전압 및 측정값들을 수신받을 수 있다. 제어부(130)는 배터리 관리 시스템(100) 내부에서 메모리부(120))와 전기적 신호를 주고받을 수 있도록 구성될 수 있다.
상기 제어부(130)는, 방전 과정에서 방전되어야 할 방전 용량의 기준이 되는 방전 용량(Qd)를 연산하도록 구성될 수 있다. 즉, 제어부(130)는 메모리부(120)로부터, 이전의 충전 과정에서 충전된 충전 용량(Qc)과, 쿨롱 효율을 수신받아, 방전 과정에서의 방전될 용량 Qd를 하기 식 2에 대입하여 연산할 수 있다.
식 2: Qd = Qc × 쿨롱 효율
제어부(130)는, 본 발명의 일 실시예에 따른 배터리 관리 시스템(100)에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(Application-Specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(130)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리부에 저장될 수 있고, 프로세서에 의해 실행될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 배터리 관리 시스템을 포함하는 배터리 팩의 개략도이다. 도 9를 참조하면, 배터리 관리 시스템(200)은, 이차전지(11)와 충전기 간의 전기적 연결을 온-오프(on-off)하는 스위칭부(240)와 인터페이스부(250)를 더 포함할 수 있다.
스위칭부(240)는, 스위치(241) 및 스위치 드라이버(242)를 포함할 수 있다. 스위치(241)는, 이차전지(11)의 충방전을 위한 전류의 경로에 설치된다. 스위치(241)가 턴-온되어 있는 동안, 이차전지(11)의 충방전이 가능하다. 스위치(241)는, 코일의 자기력에 의해 온-오프(on-off)되는 기계식 릴레이거나, MOSFET(Metal Oxide Semiconductor Field Effect transistor)과 같은 반도체 스위치일 수 있다. 스위치(241)가 턴-오프되어 있는 동안 이차전지(11)의 충방전은 중단된다. 스위치(241)는 제1 제어 신호에 응답하여 턴-온될 수 있고, 제2 제어 신호에 응답하여, 턴-오프될 수 있다.
스위치 드라이버(242)는, 스위치(241) 및 제어부(230)에 전기적으로 연결될 수 있으며, 제어부(230)로부터의 명령에 응답하여 제1 제어 신호 또는 제2 제어 신호를 상기 스위치(241)에게 선택적으로 출력하도록 구성된다. 제어부(230)는 소정의 이벤트들 중 적어도 하나가 발생한 경우, 스위치(241)를 턴-온 또는 턴-오프 시킬 것을 스위치 드라이버(242)에게 명령할 수 있다.
인터페이스부(250)는, 제어부(230)와 전기 시스템(1)의 상위 컨트롤러(2)(예, ECU: Electronic Control Unit) 간의 유선 통신 또는 무선 통신을 지원하도록 구성된다. 유선 통신은 예컨대 캔(CAN: Controller Area Network) 통신일 수 있고, 무선 통신은 예컨대 지그비나 블루투스 통신일 수 있다. 물론 제어부(230)와 상위 컨트롤러(2) 간의 유무선 통신을 지원하는 것이라면, 통신 프로토콜의 종류는 특별히 한정되지 것은 아니다.
인터페이스부(250)는, 제어부(230)에 의해 수행되는 이차전지(11)의 충방전 상태에 관한 프로세스의 결과를 사용자가 인식 가능한 형태로 제공하는 디스플레이나, 스피커 등과 같은 출력 장치(미도시)를 포함할 수 있다. 인터페이스부(250)는, 사용자로부터의 데이터를 입력 받을 수 있는 마우스, 키보드 등과 같은 입력 장치(미도시)를 포함할 수 있다.
이상에서 설명한 본 발명의 실시예는 배터리 관리 시스템(100) 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
[부호의 설명]
1: 전기 시스템
2: 상위 컨트롤러
10: 배터리 모듈
11: 이차전지
1000: 배터리 팩
100, 200: 배터리 관리 시스템
110. 210: 센싱부
120, 220: 메모리부
130, 230: 제어부
240: 스위칭부
250: 인터페이스부

Claims (15)

  1. 이차전지에 대해, SOC a 내지 SOC b의 충전 심도 구간을 충방전하는 이차전지의 분할 충방전 방법으로서,
    이차전지를 충전하는 충전 과정; 및 상기 충전 과정에 의해 충전된 이차전지를 방전하는 방전 과정을 포함하고, 이러한 충전 및 방전 과정을 반복하며,
    상기 충전 과정은, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고,
    상기 방전 과정은, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하는 것을 특징으로 하는,
    이차전지의 분할 충방전 방법.
    (단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)
  2. 청구항 1에 있어서,
    상기 이차전지는, 양극의 양극 활물질로서 리튬 인산철을 포함하는 이차전지의 분할 충방전 방법.
  3. 청구항 1에 있어서,
    상기 쿨롱 효율은, 충방전 대상 이차전지에 대해서 임의의 충방전 사이클에서 측정한 충전 용량 및 방전 용량을, 하기 식 1에 대입하여 산출한 값인 이차전지의 분할 충방전 방법.
    식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
  4. 청구항 1에 있어서,
    상기 SOC a는, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정되는 이차전지의 분할 충방전 방법.
  5. 청구항 1에 있어서,
    상기 SOC b는, 상기 플라토 구간의 충전 심도 범위 밖에서 설정되는 이차전지의 분할 충방전 방법.
  6. 청구항 1에 있어서,
    상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값으로 설정되는 이차전지의 분할 충방전 방법.
  7. 청구항 1에 있어서,
    상기 충전 과정 및 방전 과정은 각각,
    이차전지의 전압, 전류, 온도, 용량 및 저항 중 하나 이상을 측정하는 과정을 더 포함하는 이차전지의 분할 충방전 방법.
  8. 이차전지의 전압, 전류, 온도, 용량 및 저항 중 어느 하나 이상을 측정하는 센싱부;
    탑재된 충방전 제어 알고리즘에 따라 이차전지를 충방전하도록 제어하는 제어부; 를 포함하고,
    상기 충방전 제어 알고리즘은,
    이차전지에 대해 SOC a 내지 SOC b의 충전 심도 구간을 반복하여 충방전하되,
    충전 시에는, 이차 전지의 측정 전압값이, 충전 종료 기준 전압에 도달하면 충전을 종료하고,
    방전 시에는, 측정된 방전 용량이, 상기 충전 과정에서 충전된 용량 Qc에, 쿨롱 효율을 곱한 값에 도달하면, 방전을 종료하도록 구성된,
    배터리 관리 시스템.
    (단 a<b이고, 상기 a는 0% 이상 100% 미만의 값이고, 상기 b는 0% 초과 100% 이하의 값임)
  9. 청구항 8에 있어서,
    상기 쿨롱 효율은, 충방전 대상 이차전지에 대해서 임의의 충방전 사이클에서 측정한 충전 용량 및 방전 용량을, 하기 식 1에 대입하여 산출한 값인, 배터리 관리 시스템.
    식 1: 쿨롱 효율 = (방전 용량 × 100) / 충전 용량
  10. 청구항 8에 있어서,
    이차전지의 쿨롱 효율, 충전 종료 기준 전압 및 상기 센싱부에 의해 측정된 측정값을 저장하는 메모리부를 더 포함하는 배터리 관리 시스템.
  11. 청구항 8에 있어서,
    상기 충방전 제어 알고리즘은,
    상기 SOC a가, 이차전지의 용량 변화에 대한 전압의 변화율(dV/dQ)이 O인 플라토 구간의 충전 심도 범위 내에서 설정되도록 구성된 배터리 관리 시스템.
  12. 청구항 8에 있어서,
    상기 충방전 제어 알고리즘은,
    상기 SOC b가, 상기 플라토 구간의 충전 심도 범위 밖에서 설정되도록 구성된 배터리 관리 시스템.
  13. 청구항 8에 있어서,
    상기 충전 종료 기준 전압은, 충방전 대상 이차전지의 충전 심도에 따른 전압의 프로파일에서, SOC b에 대응하는 전압값으로 설정되는 배터리 관리 시스템.
  14. 청구항 8에 있어서,
    이차전지와 충전기 간의 전기적 연결을 온-오프(on-off)하는 스위칭부를 더 포함하는 배터리 관리 시스템.
  15. 청구항 8에 따른 배터리 관리 시스템; 및
    양극의 양극 활물질로서 리튬 인산철을 포함하는 이차전지를 복수 개 포함하는 배터리 팩.
PCT/KR2023/016810 2022-10-28 2023-10-27 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩 WO2024091048A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220141689A KR20240060273A (ko) 2022-10-28 2022-10-28 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩
KR10-2022-0141689 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024091048A1 true WO2024091048A1 (ko) 2024-05-02

Family

ID=90831366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016810 WO2024091048A1 (ko) 2022-10-28 2023-10-27 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩

Country Status (2)

Country Link
KR (1) KR20240060273A (ko)
WO (1) WO2024091048A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255854A (ja) * 1997-03-11 1998-09-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池の充放電方法
JP2000164260A (ja) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd 二次電池の充放電制御方法
JP2001074279A (ja) * 1999-08-31 2001-03-23 Daikin Ind Ltd 蓄電空気調和機システムにおける二次電池充放電制御方法およびその装置
JP2009181910A (ja) * 2008-01-31 2009-08-13 Panasonic Corp アルカリ蓄電池の充放電制御方法および充放電制御システム
KR20110022556A (ko) * 2008-06-12 2011-03-07 파나소닉 주식회사 리튬 이온 이차전지의 충전 방법 및 충방전 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351852U (ko) 1986-09-24 1988-04-07

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255854A (ja) * 1997-03-11 1998-09-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池の充放電方法
JP2000164260A (ja) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd 二次電池の充放電制御方法
JP2001074279A (ja) * 1999-08-31 2001-03-23 Daikin Ind Ltd 蓄電空気調和機システムにおける二次電池充放電制御方法およびその装置
JP2009181910A (ja) * 2008-01-31 2009-08-13 Panasonic Corp アルカリ蓄電池の充放電制御方法および充放電制御システム
KR20110022556A (ko) * 2008-06-12 2011-03-07 파나소닉 주식회사 리튬 이온 이차전지의 충전 방법 및 충방전 방법

Also Published As

Publication number Publication date
KR20240060273A (ko) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2021045387A1 (ko) 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2019050330A1 (ko) 배터리 충전 상태 추정 장치 및 방법
WO2010016661A2 (ko) 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2021118311A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2020226441A1 (ko) 배터리 컨트롤러, 무선 배터리 제어 시스템, 배터리 팩 및 배터리 밸런싱 방법
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2021080161A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2020213905A1 (ko) 배터리의 퇴화 상태를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 차량
WO2020231086A1 (ko) 배터리의 퇴화도를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2015056846A1 (ko) 이차전지의 충전량 유지 장치 및 방법
WO2021080358A1 (ko) 병렬 연결된 배터리 팩의 밸런싱 장치 및 방법
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2019009530A1 (ko) 이차 전지의 용량유지율을 추정하는 장치 및 방법
WO2019107982A1 (ko) 배터리 팩
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2022039505A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2019107978A1 (ko) 배터리 팩