WO2022158948A2 - 배터리 관리 장치 및 방법 - Google Patents

배터리 관리 장치 및 방법 Download PDF

Info

Publication number
WO2022158948A2
WO2022158948A2 PCT/KR2022/001330 KR2022001330W WO2022158948A2 WO 2022158948 A2 WO2022158948 A2 WO 2022158948A2 KR 2022001330 W KR2022001330 W KR 2022001330W WO 2022158948 A2 WO2022158948 A2 WO 2022158948A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
capacity
profile
degradation
Prior art date
Application number
PCT/KR2022/001330
Other languages
English (en)
French (fr)
Other versions
WO2022158948A3 (ko
Inventor
배윤정
차아밍
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/924,023 priority Critical patent/US20230179007A1/en
Priority to EP22742924.8A priority patent/EP4148950A4/en
Priority to JP2022563934A priority patent/JP2023524645A/ja
Priority to CN202280004339.1A priority patent/CN115699507A/zh
Publication of WO2022158948A2 publication Critical patent/WO2022158948A2/ko
Publication of WO2022158948A3 publication Critical patent/WO2022158948A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/40Modifications of instruments to indicate the maximum or the minimum value reached in a time interval, e.g. by maximum indicator pointer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management apparatus and method, and more particularly, to a battery management apparatus and method capable of setting an operating condition of a battery based on a deterioration state of the battery.
  • the battery deteriorates as the cycle is increased (as it is operated), and the performance of the battery may be deteriorated due to the deterioration.
  • an operating condition set for a battery in a beginning of life (BOL) state is applied to the degraded battery without considering the degradation degree of the battery, the degraded battery may be overdischarged and/or overcharged. If overdischarge and/or overcharge continues, there is a problem in that deterioration of the battery is accelerated or unexpected accidents such as ignition or explosion may occur.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a battery management apparatus and method for setting an operating condition of a battery based on a deterioration state of the battery.
  • a battery management apparatus obtains battery information on the capacity and voltage of a battery, and generates a differential profile indicating a corresponding relationship between a differential voltage and the capacity based on the capacity and the voltage. ; and obtaining the differential profile from the profile generator, detecting a plurality of peaks in the obtained differential profile, calculating the degree of degradation of the battery based on capacities corresponding to each of the detected peaks, and calculating the calculated degradation and a control unit configured to set an upper limit of a charge termination voltage for the battery according to a result of comparing the preset reference degree of degradation with the figure.
  • the control unit detects a first target peak and a second target peak from the differential profile, and calculates a capacity deviation between a first target capacity corresponding to the first target peak and a second target capacity corresponding to the second target peak. and calculating the degree of degradation based on the calculated capacity deviation and the reference capacity deviation with respect to a preset reference profile.
  • the control unit detects, as the first target peak, a peak included in a first dose section of the reference profile among the plurality of peaks, and selects a peak included in a second dose section of the reference profile from among the plurality of peaks and may be configured to detect with a second target peak.
  • the reference dose deviation is set as a dose deviation between a first reference dose of a first reference peak corresponding to the first target peak and a second reference dose of a second reference peak corresponding to the second target peak in the reference profile can be
  • the controller may be configured to set the upper limit of the charge termination voltage to a preset BOL voltage for the battery when the calculated degradation degree is less than a reference degradation degree.
  • the controller may be configured to set the upper limit of the charging termination voltage to be less than or equal to a preset reference voltage when the calculated degradation degree is equal to or greater than the reference degradation degree.
  • the reference voltage may be set to a voltage corresponding to a second reference peak corresponding to the second target peak in the reference profile.
  • the reference voltage may be set to a voltage corresponding to a second reference capacitance of the second reference peak.
  • the control unit calculates a degradation deviation between the calculated degree of degradation and the reference degree of degradation, and ends the charging with a voltage reduced in proportion to the degradation deviation from the reference voltage It may be configured to set the upper limit of the voltage.
  • the controller may be configured to diagnose the battery as an EOL state when the calculated deterioration deviation is equal to or greater than a preset threshold deviation.
  • a battery pack according to another aspect of the present invention may include the battery management apparatus according to an aspect of the present invention.
  • a battery management method comprises: a differential profile generating step of generating a differential profile representing a correspondence relationship between a differential voltage and the capacity based on a capacity and voltage of a battery; a plurality of peak detection steps of detecting a plurality of peaks in the differential profile; a battery degradation calculation step of calculating a degradation degree of the battery based on the capacity corresponding to each of the detected peaks; and setting an upper limit of the charging termination voltage for setting an upper limit of the charging termination voltage for the battery according to a result of comparing the calculated degradation degree with a preset reference degradation degree.
  • the upper limit of the charge termination voltage for the battery is appropriately set in consideration of the degree of deterioration of the battery, the deterioration of the battery is prevented from being accelerated and the life expectancy of the battery can be increased. have.
  • the upper limit of the charge termination voltage for the battery is set in a range that does not excessively limit the performance of the battery, the expected lifespan of the battery and performance efficiency can be improved.
  • FIG. 1 is a diagram schematically illustrating a battery management apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a differential profile and a reference profile according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating an exemplary configuration of a battery pack according to another embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a battery management method according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a battery management apparatus 100 according to an embodiment of the present invention.
  • the battery management apparatus 100 may include a profile generator 110 and a controller 120 .
  • the profile generator 110 may be configured to obtain battery information on the capacity and voltage of the battery.
  • the battery includes a negative terminal and a positive terminal, and means one physically separable cell.
  • a lithium ion battery or a lithium polymer battery may be considered a battery.
  • the profile generator 110 may obtain a battery profile indicating a correspondence relationship between the capacity and voltage of the battery. That is, the battery profile may include battery information to which the capacity and voltage of the battery are mapped.
  • the profile generator 110 may be configured to generate a differential profile Pd indicating a correspondence between the capacitance and a differential voltage based on the voltage and the capacitance.
  • the differential voltage is a value obtained by differentiating the voltage included in the battery information by the capacity, and may be expressed as “dV/dQ”. That is, the differential voltage may be a value representing an instantaneous rate of change of voltage with respect to capacity.
  • the differential profile Pd will be described with reference to the embodiment of FIG. 2 .
  • FIG. 2 is a diagram schematically illustrating a differential profile (Pd) and a reference profile (Pref) according to an embodiment of the present invention.
  • the profile generator 110 may generate a differential profile Pd indicating a correspondence between a capacity and a differential voltage, based on the obtained battery information.
  • the reference profile Pref may be a profile indicating a correspondence between a capacity and a differential voltage for a beginning of life (BOL) battery.
  • the capacity may be a relative capacity based on the capacity of the BOL battery.
  • the controller 120 may be configured to obtain the differential profile Pd from the profile generator 110 .
  • control unit 120 and the profile generating unit 110 may be connected to enable communication.
  • the profile generator 110 may transmit the generated differential profile Pd to the controller 120 , and the controller 120 may receive the differential profile Pd from the profile generator 110 .
  • the controller 120 may be configured to detect a plurality of peaks in the obtained differential profile Pd.
  • the peak may be a point having a downward convex opening in the differential profile Pd. That is, the peak is a point at which the rate of change of the differential voltage with respect to the capacity is 0. Based on the peak, the rate of change may be negative for the low capacity side, and the rate of change may be positive for the high capacity side, based on the peak.
  • the controller 120 may be configured to detect, as the first target peak TP1 , a peak included in the first capacity section RL of the reference profile Pref among the plurality of peaks.
  • the first capacity section RL may mean a low capacity section among all the capacity sections of the reference profile Pref.
  • a capacity interval of 0 or more and less than 0.5 may be preset as the first capacity interval RL.
  • the controller 120 may detect a peak having the largest corresponding capacity among a plurality of peaks included in the first capacity section RL as the first target peak TP1 .
  • the detected first target peak TP1 may be a peak corresponding to the first target capacitance TQ1 .
  • controller 120 may be configured to detect a peak included in the second capacity interval RH of the reference profile Pref among the plurality of peaks as the second target peak TP2 .
  • the second capacity section RH may mean a high capacity section among the entire capacity section of the reference profile Pref.
  • a capacity interval of 0.5 or more and 1 or less may be preset as the second capacity interval RH.
  • the controller 120 may detect a peak having the largest corresponding capacity among a plurality of peaks included in the second capacity section RH as the second target peak TP2 .
  • the detected second target peak TP2 may be a peak corresponding to the second target capacity TQ2 .
  • the capacity interval may be normalized to 0 to 1 based on the total capacity of the BOL battery. Accordingly, a capacity interval of 0 or more and less than 0.5 may be set as the first capacity interval RL as a low capacity interval, and a capacity interval of 0.5 or more and less than 1 may be set as the second capacity interval RH as a high capacity interval.
  • the controller 120 may be configured to calculate the degree of degradation of the battery based on the capacity corresponding to each of the detected peaks.
  • the controller 120 calculates a capacity deviation between the first target capacity TQ1 corresponding to the first target peak TP1 and the second target capacity TQ2 corresponding to the second target peak TP2 .
  • the controller 120 may calculate a capacity deviation between the first target capacity TQ1 and the second target capacity TQ2 by calculating the expression "TQ2-TQ1".
  • controller 120 may be configured to calculate the degree of degradation based on the calculated capacity deviation and the reference capacity deviation with respect to the preset reference profile Pref.
  • the reference capacity deviation is the first reference capacity RQ1 and the second target peak TP2 of the first reference peak RP1 corresponding to the first target peak TP1 in the reference profile Pref. It may be set as a capacity deviation between the second reference capacity RQ2 of the second reference peak RP2 corresponding to .
  • the reference profile Pref may include a first reference peak RP1 and a second reference peak RP2 .
  • the first reference peak RP1 is a peak for the BOL battery, and may be a peak corresponding to the first target peak TP1 .
  • the second reference peak RP2 is a peak for the BOL battery and may be a peak corresponding to the second target peak TP2 .
  • the controller 120 may obtain a preset reference capacity deviation or may directly calculate the reference capacity deviation based on the reference profile Pref. For example, the controller 120 may directly calculate the reference capacity deviation by calculating the equation of “RQ2-RQ1”.
  • the controller 120 may calculate a degree of deterioration of the battery by calculating a ratio of the capacity deviation to the reference capacity deviation. Specifically, the controller 120 may calculate the degradation degree of the battery based on Equation 1 below.
  • D is the deterioration degree of the battery
  • TD is the capacity deviation between the first target capacity TQ1 and the second target capacity TQ2
  • RD may be a reference dose deviation between the first reference dose RQ1 and the second reference dose RQ2.
  • 100 may be a constant multiplied to express the calculated unit of degradation as [%].
  • the dose deviation TD between the first target dose TQ1 and the second target dose TQ2 is 0.594
  • the first reference dose RQ1 and the second reference dose RQ2 is Assume that the reference capacity deviation (RD) is 0.607.
  • the controller 120 may calculate the degradation degree D of the battery as 2.14% by substituting the capacity deviation TD and the reference capacity deviation RD in Equation 1 above.
  • the controller 120 may be configured to set an upper limit of the charge termination voltage for the battery according to a result of comparing the calculated degradation degree with a preset reference degradation degree.
  • the upper limit of the charge termination voltage for the battery may be preset to a voltage corresponding to 100% of the state of charge (SOC) of the BOL battery.
  • the upper limit of the charging termination voltage of the battery may be preset to 4.2V.
  • overcharge may be repeated, and thus the lifespan of the battery may be rapidly reduced.
  • the battery management apparatus 100 appropriately sets the upper limit of the charge termination voltage for the battery based on the calculated degree of degradation of the battery and the reference degree of degradation, thereby accelerating the degradation of the battery. This has the advantage of increasing the life expectancy of the battery by preventing it.
  • control unit 120 provided in the battery management apparatus 100 is a processor, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, and registers known in the art to execute various control logics performed in the present invention.
  • ASIC application-specific integrated circuit
  • the controller 120 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the controller 120 .
  • the memory may be inside or outside the control unit 120 , and may be connected to the control unit 120 by various well-known means.
  • the battery management apparatus 100 may further include a storage unit 130 .
  • the storage unit 130 may store data necessary for each component of the battery management apparatus 100 to perform an operation and function, a program or data generated while an operation and a function are performed.
  • the storage unit 130 is not particularly limited in its type as long as it is a known information storage means capable of writing, erasing, updating and reading data.
  • the information storage means may include a RAM, a flash memory, a ROM, an EEPROM, a register, and the like.
  • the storage unit 130 may store program codes in which processes executable by the control unit 120 are defined.
  • the storage unit 130 may store battery information indicating a correspondence relationship between a voltage and a capacity of the battery. Also, the storage unit 130 may store BOL battery information indicating a correspondence relationship between voltage and capacity of the BOL battery. In addition, the profile generator 110 may access the storage 130 to obtain battery information, and generate a differential profile Pd for the battery based on the obtained battery information.
  • the storage unit 130 may store the differential profile Pd generated by the profile generation unit 110 .
  • the controller 120 may directly receive the differential profile Pd from the profile generator 110 , or may access the storage 130 to obtain the stored differential profile Pd. Also, the control unit 120 may access the storage unit 130 to obtain battery information and BOL battery information.
  • the controller 120 may be configured to set the upper limit of the charge termination voltage to a preset BOL voltage for the battery when the calculated degradation degree is less than a reference degradation degree.
  • the BOL voltage may be an upper limit of the charge termination voltage set for the BOL battery. That is, when the calculated degradation degree of the battery is less than the reference degradation degree, the controller 120 may not change the upper limit of the charge termination voltage for the battery in order to maximize the performance efficiency of the battery.
  • the controller 120 may not change the upper limit of the charging termination voltage for the battery. That is, the upper limit of the charging termination voltage of the battery may be maintained as the upper limit of the charging termination voltage of the BOL battery.
  • the control unit 120 may be configured to set the upper limit of the charging termination voltage to be less than or equal to a preset reference voltage when the calculated degradation degree is equal to or greater than the reference degradation degree.
  • the reference voltage may be less than the BOL voltage.
  • the reference voltage may be set to a voltage corresponding to a second reference peak RP2 corresponding to the second target peak TP2 in the reference profile Pref.
  • the reference voltage may be set to a voltage corresponding to the second reference capacitance RQ2 of the second reference peak RP2.
  • the controller 120 may set the upper limit of the charging termination voltage for the battery to a voltage corresponding to the second reference capacity RQ2 .
  • control unit 120 may obtain and store BOL battery information indicating a correspondence relationship between voltage and capacity of the BOL battery in advance, or may obtain it by accessing the storage unit 130 .
  • controller 120 may select a voltage corresponding to the second reference capacity RQ2 from the BOL battery information, and set the selected voltage as an upper limit of the charging termination voltage.
  • the second reference peak RP2 may be a point at which a phase transition of the BOL battery ends and a phase equilibrium begins.
  • the second target peak TP2 may be a point at which a phase transition of the current battery is terminated and a phase equilibrium begins.
  • the set upper limit of the charging termination voltage may be affected by overvoltage due to deterioration of the battery. That is, an error may exist between the voltage corresponding to the second target capacity TQ2 and the actual voltage at which the phase equilibrium of the MOL battery starts due to the overvoltage of the battery in the middle of life (MOL) state.
  • the voltage corresponding to the second reference capacitance RQ2 and the voltage corresponding to the second target capacitance TQ2 may be the same.
  • a voltage corresponding to the second target capacity TQ2 may be different from a voltage corresponding to the second reference capacity RQ2 .
  • a voltage corresponding to the second target capacitance TQ2 may be greater than a voltage corresponding to the second reference capacitance RQ2 . Therefore, when setting the upper limit of the charging termination voltage based on the second target capacity TQ2, the voltage corresponding to the current phase transition end point (phase equilibrium start point) is higher than that of the charging end voltage.
  • An upper limit may be set. That is, there is a possibility that the voltage at which phase equilibrium of the battery is in progress is set as the upper limit of the charge termination voltage. In this case, the battery may be charged up to a voltage at which phase equilibrium proceeds, and thus deterioration of the battery may be accelerated.
  • the controller 120 sets the upper limit of the charge termination voltage of the battery in consideration of the effect of overvoltage due to deterioration of the battery and increases the expected lifespan of the battery, the phase transition termination voltage (second reference capacity RQ2) of the BOL battery. voltage corresponding to ).
  • the battery management apparatus 100 sets the voltage corresponding to the second reference capacity RQ2 for the BOL battery as the upper limit of the charging end voltage of the battery, thereby preventing rapid deterioration of the battery. It is possible to maintain the performance efficiency of the battery to the maximum. That is, since the upper limit of the charge termination voltage for the battery is set in a range that does not excessively limit the performance of the battery, the expected lifespan of the battery and performance efficiency can be improved.
  • the second reference peak RP2 and the second target peak TP2 are not only when the content of nickel (Ni) included in the positive electrode material of the battery is high (eg, 80% or more) but also when the content of nickel is low. cases (eg, less than 80%).
  • the reference profile Pref is a profile indicating the correspondence between the capacitance Q and the differential voltage dV/dQ, and is a profile indicating the instantaneous rate of change of the voltage based on the capacitance.
  • the differential profile (Pd) and the reference profile (Pref) are profiles for a battery in which the content of nickel included in the positive electrode material is 60% and the negative electrode material is graphite.
  • the second reference peak (RP2) and the second A peak corresponding to the target peak TP2 may not appear.
  • the second reference peak RP2 and the second target peak TP2 do not appear, it is difficult to calculate the degradation degree of the battery, so the upper limit of the charge termination voltage for the battery may not be properly set.
  • the upper limit of the charge termination voltage for the battery may be appropriately set.
  • the controller 120 may be configured to calculate a degradation deviation between the calculated degree of degradation and the reference degree of degradation.
  • the controller 120 may calculate a difference between the calculated degree of degradation and the reference degree of degradation to calculate a degradation deviation.
  • DV is the degradation deviation
  • D is the degradation degree of the battery calculated by Equation 1
  • RD is the reference degradation degree.
  • the control unit 120 may be configured to set a voltage reduced in proportion to the degradation deviation from the reference voltage as an upper limit of the charge termination voltage.
  • the calculated degradation degree of the battery is 6%
  • the reference degradation degree is 5%
  • the reference voltage corresponding to the second reference capacity RQ2 is 4.0V.
  • the control unit 120 may calculate "degradation degree of the battery (6%)-standard degradation degree (5%)" and calculate the degradation deviation as 1%.
  • the controller 120 may set 3.96V, which is reduced in proportion to the degradation deviation (1%) from the reference voltage, as the upper limit of the charge termination voltage for the battery.
  • the controller 120 reduces the upper limit of the charge termination voltage as the battery deteriorates, thereby preventing the rapid deterioration of the battery and maintaining high performance efficiency of the battery.
  • the controller 120 may be configured to diagnose the battery as an end of life (EOL) state when the calculated deterioration deviation is equal to or greater than a preset threshold deviation.
  • EOL end of life
  • the threshold deviation may be set to 15%. That is, when the degradation degree of the battery is greater than or equal to the threshold deviation from the reference degradation degree, the controller 120 may diagnose the battery as an unused battery (EOL battery).
  • EOL battery unused battery
  • the battery management apparatus 100 diagnoses the battery as an EOL state when the battery is degraded by more than a threshold deviation from the BOL battery, so that ignition or Problems such as explosions can be prevented in advance.
  • the battery management apparatus 100 may be applied to a Battery Management System (BMS). That is, the BMS according to the present invention may include the above-described battery management apparatus 100 . In this configuration, at least some of each component of the battery management apparatus 100 may be implemented by supplementing or adding functions of the configuration included in the conventional BMS. For example, the profile generator 110 , the controller 120 , and the storage 130 of the battery management apparatus 100 may be implemented as components of the BMS.
  • BMS Battery Management System
  • the battery management apparatus 100 may be provided in a battery pack. That is, the battery pack according to the present invention may include the above-described battery management apparatus 100 and one or more battery cells. In addition, the battery pack may further include electrical equipment (relays, fuses, etc.) and a case.
  • FIG. 3 is a diagram schematically illustrating an exemplary configuration of a battery pack according to another embodiment of the present invention.
  • the measurement unit 200 may be connected to the first sensing line SL1 , the second sensing line SL2 , and the third sensing line SL3 .
  • the first sensing line SL1 may be connected to the positive electrode of the battery cell B and the measurement unit 200 .
  • the second sensing line SL2 may be connected to the negative electrode of the battery cell B and the measurement unit 200 .
  • the measurement unit 200 calculates the difference between the positive voltage of the battery cell B measured through the first sensing line SL1 and the negative voltage of the battery cell B measured through the second sensing line SL2. , the voltage of the battery cell B may be measured.
  • the measuring unit 200 may measure the charging current and/or the discharging current of the battery cell B through the current measuring unit A connected to the third sensing line SL3 .
  • the current measuring unit A may be a shunt resistor or an ammeter.
  • Battery information on the voltage and current of the battery cell B measured by the measurement unit 200 may be transmitted to the battery management apparatus 100 .
  • the profile generating unit 110 may receive battery information of the battery cell B from the measuring unit 200 .
  • the profile generator 110 may generate a differential profile Pd indicating a correspondence between the capacity of the battery cell B and the differential voltage based on the received voltage and current of the battery cell B .
  • battery information of the battery cell B measured by the measurement unit 200 may be stored in the storage unit 130 .
  • FIG. 4 is a diagram schematically illustrating a battery management method according to another embodiment of the present invention.
  • each step of the battery management method may be performed by the battery management apparatus 100 .
  • the battery management apparatus 100 Preferably, content overlapping with the previously described content will be omitted or briefly described.
  • the battery management method includes a differential profile (Pd) generation step (S100), a plurality of peak detection steps (S200), a battery degradation calculation step (S300), and an upper limit setting step of the charging end voltage (S400) may include.
  • the differential profile (Pd) generation step ( S100 ) is a step of generating a differential profile (Pd) indicating a correspondence between the differential voltage and the capacity based on the capacity and voltage of the battery, and may be performed by the profile generator 110 . have.
  • the profile generator 110 may generate a differential profile Pd indicating a correspondence between the battery capacity and the differential voltage.
  • the step of detecting a plurality of peaks ( S200 ) is a step of detecting a plurality of peaks in the differential profile Pd and may be performed by the controller 120 .
  • the controller 120 detects the first target peak TP1 in the first capacity section RL and detects the second target peak TP2 in the second capacity section RH can do.
  • the first dose interval RL may be a dose interval of 0 or more and less than 0.5 in the normalized capacity interval
  • the second capacity interval RH may be a dose interval of 0.5 or more and 1 or less in the normalized capacity interval.
  • the step of calculating the degree of degradation of the battery ( S300 ) is a step of calculating the degree of degradation of the battery based on the capacity corresponding to each of a plurality of detected peaks, and may be performed by the controller 120 .
  • the controller 120 controls the battery based on the first reference capacity RQ1, the second reference capacity RQ2, the first target capacity TQ1, and the second target capacity TQ2.
  • the degree of degradation can be calculated.
  • the control unit 120 controls the reference capacity deviation (the capacity deviation between the first reference capacity RQ1 and the second reference capacity RQ2) and the capacity deviation (the first target capacity TQ1 and the second reference capacity RQ2) in Equation 1 above.
  • the degree of deterioration of the battery may be calculated by substituting the capacity deviation between the target capacities TQ2 .
  • the step of setting the upper limit of the charging termination voltage is a step of setting the upper limit of the charging termination voltage for the battery according to a result of comparing the calculated degradation degree with a preset reference degradation degree, and may be performed by the controller 120 have.
  • the controller 120 may set the upper limit of the charging termination voltage for the battery as the upper limit of the charging termination voltage for the BOL battery.
  • the controller 120 may set the upper limit of the charge termination voltage for the battery to be less than or equal to the reference voltage.
  • the reference voltage may be a voltage corresponding to the second reference capacitance RQ2 .
  • the controller 120 may calculate a degradation deviation between the calculated degree of degradation and the reference degree of degradation.
  • the controller 120 may set the reduced voltage to be proportional to the degradation deviation from the reference voltage as the upper limit of the charge termination voltage.
  • control unit 120 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 관리 장치는 배터리의 용량 및 전압에 대한 배터리 정보를 획득하고, 상기 용량 및 상기 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로부터 상기 미분 프로파일을 획득하고, 획득된 미분 프로파일에서 복수의 피크를 검출하며, 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하고, 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하도록 구성된 제어부를 포함한다.

Description

배터리 관리 장치 및 방법
본 출원은 2021년 01월 25일 자로 출원된 한국 특허 출원번호 제10-2021-0010308호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 관리 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리의 퇴화 상태에 기반하여 배터리의 운용 조건을 설정할 수 있는 배터리 관리 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
다만, 이러한 배터리는 사이클이 증가될수록(운용될수록) 퇴화가 진행되며, 퇴화에 의해 배터리의 성능이 저하될 수 있다. 배터리의 퇴화도를 고려하지 않고, BOL(Beginning of life) 상태의 배터리에 대해 설정된 운용 조건을 퇴화된 배터리에 그대로 적용한다면, 퇴화된 배터리가 과방전 및/또는 과충전될 수 있다. 과방전 및/또는 과충전이 지속되는 경우, 배터리의 퇴화가 가속화되거나 발화 또는 폭발 등과 같은 예상치 못한 사고가 발생될 수 있는 문제가 있다.
따라서, 배터리의 기대 수명을 증가시키고, 예상치 못한 사고의 발생을 미연에 방지하기 위해서는, 배터리의 퇴화 상태를 고려하여 배터리에 대한 적절한 운용 조건을 설정하는 것이 필요하다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리의 퇴화 상태에 기반하여 배터리의 운용 조건을 설정하는 배터리 관리 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 관리 장치는 배터리의 용량 및 전압에 대한 배터리 정보를 획득하고, 상기 용량 및 상기 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로부터 상기 미분 프로파일을 획득하고, 획득된 미분 프로파일에서 복수의 피크를 검출하며, 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하고, 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하도록 구성된 제어부를 포함할 수 있다.
상기 제어부는, 상기 미분 프로파일에서 제1 타겟 피크 및 제2 타겟 피크를 검출하고, 상기 제1 타겟 피크에 대응되는 제1 타겟 용량과 상기 제2 타겟 피크에 대응되는 제2 타겟 용량 간의 용량 편차를 산출하며, 산출된 용량 편차와 미리 설정된 기준 프로파일에 대한 기준 용량 편차에 기반하여 상기 퇴화도를 산출하도록 구성될 수 있다.
상기 제어부는, 상기 복수의 피크 중 상기 기준 프로파일의 제1 용량 구간에 포함된 피크를 상기 제1 타겟 피크로 검출하고, 상기 복수의 피크 중 상기 기준 프로파일의 제2 용량 구간에 포함된 피크를 상기 제2 타겟 피크로 검출하도록 구성될 수 있다.
상기 기준 용량 편차는, 상기 기준 프로파일에서 상기 제1 타겟 피크에 대응되는 제1 기준 피크의 제1 기준 용량과 상기 제2 타겟 피크에 대응되는 제2 기준 피크의 제2 기준 용량 간의 용량 편차로 설정될 수 있다.
상기 제어부는, 상기 산출된 퇴화도가 기준 퇴화도 미만이면, 상기 충전 종료 전압의 상한을 상기 배터리에 대해 미리 설정된 BOL 전압으로 설정하도록 구성될 수 있다.
상기 제어부는, 상기 산출된 퇴화도가 상기 기준 퇴화도 이상이면, 상기 충전 종료 전압의 상한을 미리 설정된 기준 전압 이하로 설정하도록 구성될 수 있다.
상기 기준 전압은, 상기 기준 프로파일에서 상기 제2 타겟 피크에 대응되는 제2 기준 피크에 대응되는 전압으로 설정될 수 있다.
상기 기준 전압은, 상기 제2 기준 피크의 제2 기준 용량에 대응되는 전압으로 설정될 수 있다.
상기 제어부는, 상기 산출된 퇴화도가 상기 기준 퇴화도 이상인 경우, 상기 산출된 퇴화도와 상기 기준 퇴화도 간의 퇴화 편차를 산출하고, 상기 기준 전압으로부터 상기 퇴화 편차에 비례하도록 감소된 전압을 상기 충전 종료 전압의 상한으로 설정하도록 구성될 수 있다.
상기 제어부는, 상기 산출된 퇴화 편차가 미리 설정된 임계 편차 이상인 경우, 상기 배터리를 EOL 상태로 진단하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 배터리 관리 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 관리 방법은 배터리의 용량 및 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성하는 미분 프로파일 생성 단계; 상기 미분 프로파일에서 복수의 피크를 검출하는 복수의 피크 검출 단계; 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하는 배터리의 퇴화도 산출 단계; 및 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하는 충전 종료 전압의 상한 설정 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, 배터리의 퇴화도를 고려하여 배터리에 대한 충전 종료 전압의 상한이 적절하게 설정되기 때문에, 배터리의 퇴화가 가속되는 것이 방지되어 배터리의 기대 수명이 증가될 수 있는 장점이 있다.
또한, 배터리에 대한 충전 종료 전압의 상한이 배터리의 성능을 지나치게 제한하지 않는 범위에서 설정되기 때문에, 배터리의 기대 수명 증가 및 성능 효율이 향상될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 미분 프로파일 및 기준 프로파일을 개략적으로 도시한 도면이다.
도 3은 본 발명의 다른 실시예에 따른 배터리 팩의 예시적 구성을 개략적으로 도시한 도면이다.
도 4는 본 발명의 또 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치(100)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 프로파일 생성부(110) 및 제어부(120)를 포함할 수 있다.
프로파일 생성부(110)는 배터리의 용량 및 전압에 대한 배터리 정보를 획득하도록 구성될 수 있다.
여기서, 배터리는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 리튬 이온 전지 또는 리튬 폴리머 전지가 배터리로 간주될 수 있다.
예컨대, 프로파일 생성부(110)는 배터리의 용량과 전압 간의 대응 관계를 나타내는 배터리 프로파일을 획득할 수 있다. 즉, 배터리 프로파일에는 배터리의 용량과 전압이 맵핑된 배터리 정보가 포함될 수 있다.
프로파일 생성부(110)는 상기 용량 및 상기 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일(Pd)을 생성하도록 구성될 수 있다.
여기서, 미분 전압은 배터리 정보에 포함된 전압을 용량으로 미분한 값으로, "dV/dQ"로 표현될 수 있다. 즉, 미분 전압은 용량에 대한 전압의 순간 변화율을 나타내는 값일 수 있다. 미분 프로파일(Pd)은 도 2의 실시예를 통해 설명한다.
도 2는 본 발명의 일 실시예에 따른 미분 프로파일(Pd) 및 기준 프로파일(Pref)을 개략적으로 도시한 도면이다.
도 2의 실시예에서, 프로파일 생성부(110)는 획득된 배터리 정보에 기반하여, 용량과 미분 전압 간의 대응 관계를 나타내는 미분 프로파일(Pd)을 생성할 수 있다.
그리고, 도 2의 실시예에서, 기준 프로파일(Pref)은 BOL(Beginning of life) 배터리에 대한 용량과 미분 전압 간의 대응 관계를 나타내는 프로파일일 수 있다. 또한, 도 2의 실시예에서, 용량은 BOL 배터리의 용량을 기준으로 하는 상대 용량일 수 있다.
제어부(120)는 프로파일 생성부(110)로부터 상기 미분 프로파일(Pd)을 획득하도록 구성될 수 있다.
예컨대, 제어부(120)와 프로파일 생성부(110)는 통신 가능하도록 연결될 수 있다. 프로파일 생성부(110)는 생성한 미분 프로파일(Pd)을 제어부(120)로 송신하고, 제어부(120)는 프로파일 생성부(110)로부터 미분 프로파일(Pd)을 수신할 수 있다.
제어부(120)는 획득된 미분 프로파일(Pd)에서 복수의 피크를 검출하도록 구성될 수 있다.
여기서, 피크는 미분 프로파일(Pd)에서 아래로 볼록한 개형을 띠는 지점일 수 있다. 즉, 피크는 용량에 대한 미분 전압의 변화율이 0인 지점으로서, 피크를 기준으로 저용량 측은 상기 변화율이 음수이고, 고용량 측은 상기 변화율이 양수일 수 있다.
구체적으로, 제어부(120)는, 상기 복수의 피크 중 상기 기준 프로파일(Pref)의 제1 용량 구간(RL)에 포함된 피크를 상기 제1 타겟 피크(TP1)로 검출하도록 구성될 수 있다.
예컨대, 제1 용량 구간(RL)은 기준 프로파일(Pref)의 전체 용량 구간 중 저용량 구간을 의미할 수 있다. 도 2의 실시예에서, 0 이상 0.5 미만의 용량 구간이 제1 용량 구간(RL)으로 미리 설정될 수 있다. 그리고, 제어부(120)는 제1 용량 구간(RL)에 포함된 복수의 피크 중 대응되는 용량이 가장 큰 피크를 제1 타겟 피크(TP1)로 검출할 수 있다. 검출된 제1 타겟 피크(TP1)는 제1 타겟 용량(TQ1)에 대응되는 피크일 수 있다.
또한, 제어부(120)는, 상기 복수의 피크 중 상기 기준 프로파일(Pref)의 제2 용량 구간(RH)에 포함된 피크를 상기 제2 타겟 피크(TP2)로 검출하도록 구성될 수 있다.
예컨대, 제2 용량 구간(RH)은 기준 프로파일(Pref)의 전체 용량 구간 중 고용량 구간을 의미할 수 있다. 도 2의 실시예에서, 0.5 이상 1 이하의 용량 구간이 제2 용량 구간(RH)으로 미리 설정될 수 있다. 그리고, 제어부(120)는 제2 용량 구간(RH)에 포함된 복수의 피크 중 대응되는 용량이 가장 큰 피크를 제2 타겟 피크(TP2)로 검출할 수 있다. 검출된 제2 타겟 피크(TP2)는 제2 타겟 용량(TQ2)에 대응되는 피크일 수 있다.
즉, 도 2의 실시예에 포함된 미분 프로파일(Pd) 및 기준 프로파일(Pref)은 BOL 배터리의 전체 용량을 기준으로 용량 구간이 0 내지 1로 정규화될 수 있다. 따라서, 0 이상 0.5 미만의 용량 구간은 저용량 구간으로서 제1 용량 구간(RL)으로 설정되고, 0.5 이상 1 이하의 용량 구간은 고용량 구간으로서 제2 용량 구간(RH)으로 설정될 수 있다.
제어부(120)는 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하도록 구성될 수 있다.
구체적으로, 제어부(120)는 상기 제1 타겟 피크(TP1)에 대응되는 제1 타겟 용량(TQ1)과 상기 제2 타겟 피크(TP2)에 대응되는 제2 타겟 용량(TQ2) 간의 용량 편차를 산출하도록 구성될 수 있다. 예컨대, 도 2의 실시예에서, 제어부(120)는 "TQ2-TQ1"의 수식을 계산하여 제1 타겟 용량(TQ1)과 제2 타겟 용량(TQ2) 간의 용량 편차를 산출할 수 있다.
그리고, 제어부(120)는 산출된 용량 편차와 미리 설정된 기준 프로파일(Pref)에 대한 기준 용량 편차에 기반하여 상기 퇴화도를 산출하도록 구성될 수 있다.
여기서, 상기 기준 용량 편차는, 상기 기준 프로파일(Pref)에서 상기 제1 타겟 피크(TP1)에 대응되는 제1 기준 피크(RP1)의 제1 기준 용량(RQ1)과 상기 제2 타겟 피크(TP2)에 대응되는 제2 기준 피크(RP2)의 제2 기준 용량(RQ2) 간의 용량 편차로 설정될 수 있다.
예컨대, 도 2의 실시예에서, 기준 프로파일(Pref)에는 제1 기준 피크(RP1) 및 제2 기준 피크(RP2)가 포함될 수 있다. 제1 기준 피크(RP1)는 BOL 배터리에 대한 피크로서, 제1 타겟 피크(TP1)에 대응되는 피크일 수 있다. 제2 기준 피크(RP2)는 BOL 배터리에 대한 피크로서, 제2 타겟 피크(TP2)에 대응되는 피크일 수 있다.
그리고, 제어부(120)는 미리 설정된 기준 용량 편차를 획득하거나, 기준 프로파일(Pref)에 기반하여 기준 용량 편차를 직접 산출할 수 있다. 예컨대, 제어부(120)는 "RQ2-RQ1"의 수식을 계산하여 기준 용량 편차를 직접 산출할 수도 있다.
제어부(120)는 기준 용량 편차에 대한 용량 편차의 비율을 계산하여, 배터리의 퇴화도를 산출할 수 있다. 구체적으로, 제어부(120)는 아래의 수학식 1에 기반하여 배터리의 퇴화도를 산출할 수 있다.
[수학식 1]
D = {1-(TD÷RD)}×100
여기서, D는 배터리의 퇴화도이고, TD는 제1 타겟 용량(TQ1)과 제2 타겟 용량(TQ2) 간의 용량 편차이다. RD는 제1 기준 용량(RQ1)과 제2 기준 용량(RQ2) 간의 기준 용량 편차일 수 있다. 그리고, 100은 산출되는 퇴화도의 단위를 [%]로 나타내기 위하여 곱해지는 상수일 수 있다.
예컨대, 도 2의 실시예에서, 제1 타겟 용량(TQ1)과 제2 타겟 용량(TQ2) 간의 용량 편차(TD)가 0.594이고, 제1 기준 용량(RQ1)과 제2 기준 용량(RQ2) 간의 기준 용량 편차(RD)가 0.607이라고 가정한다. 제어부(120)는 상기 수학식 1에 용량 편차(TD)와 기준 용량 편차(RD)를 대입하여, 배터리의 퇴화도(D)를 2.14%로 산출할 수 있다.
제어부(120)는 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하도록 구성될 수 있다.
바람직하게, 배터리에 대한 충전 종료 전압의 상한은 BOL 배터리의 SOC(State of charge) 100%에 대응되는 전압으로 미리 설정될 수 있다. 예컨대, 배터리의 충전 종료 전압의 상한은 4.2V로 미리 설정될 수 있다. 다만, 배터리의 퇴화도를 고려하지 않고 충전 종료 전압의 상한이 4.2V로 유지된다면, 과충전이 반복됨으로써 배터리의 수명이 급격히 감소될 수 있다.
따라서, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 산출된 배터리의 퇴화도와 기준 퇴화도에 기반하여 배터리에 대한 충전 종료 전압의 상한을 적절하게 설정함으로써, 배터리의 퇴화가 가속되는 것을 방지하여 배터리의 기대 수명을 증가시킬 수 있는 장점이 있다.
한편, 배터리 관리 장치(100)에 구비된 제어부(120)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 제어부(120)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(120)에 의해 실행될 수 있다. 상기 메모리는 제어부(120) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(120)와 연결될 수 있다.
또한, 배터리 관리 장치(100)는 저장부(130)를 더 포함할 수 있다. 저장부(130)는 배터리 관리 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(130)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(130)는 제어부(120)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
예컨대, 저장부(130)는 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 정보를 저장할 수 있다. 또한, 저장부(130)는 BOL 배터리의 전압 및 용량 간의 대응 관계를 나타내는 BOL 배터리 정보를 저장할 수 있다. 그리고, 프로파일 생성부(110)는 저장부(130)에 접근하여 배터리 정보를 획득하고, 획득된 배터리 정보에 기반하여 배터리에 대한 미분 프로파일(Pd)을 생성할 수 있다.
또한, 저장부(130)는 프로파일 생성부(110)에 의해 생성된 미분 프로파일(Pd)을 저장할 수 있다. 제어부(120)는 프로파일 생성부(110)로부터 미분 프로파일(Pd)을 직접 수신할 수 있고, 저장부(130)에 접근하여 저장된 미분 프로파일(Pd)을 획득할 수도 있다. 또한, 제어부(120)는 저장부(130)에 접근하여 배터리 정보 및 BOL 배터리 정보도 획득할 수 있다.
제어부(120)는, 상기 산출된 퇴화도가 기준 퇴화도 미만이면, 상기 충전 종료 전압의 상한을 상기 배터리에 대해 미리 설정된 BOL 전압으로 설정하도록 구성될 수 있다.
여기서, BOL 전압은 BOL 배터리에 대해 설정된 충전 종료 전압의 상한일 수 있다. 즉, 제어부(120)는 산출된 배터리의 퇴화도가 기준 퇴화도 미만이면, 배터리의 성능 효율을 최대로 유지하기 위하여, 배터리에 대한 충전 종료 전압의 상한을 변경하지 않을 수 있다.
예컨대, 산출된 배터리의 퇴화도가 2%이고, 기준 퇴화도가 5%라고 가정한다. 이 경우, 제어부(120)는 배터리에 대한 충전 종료 전압의 상한을 변경하지 않을 수 있다. 즉, 배터리의 충전 종료 전압의 상한은 BOL 배터리의 충전 종료 전압의 상한으로 유지될 수 있다.
제어부(120)는 상기 산출된 퇴화도가 상기 기준 퇴화도 이상이면, 상기 충전 종료 전압의 상한을 미리 설정된 기준 전압 이하로 설정하도록 구성될 수 있다.
여기서, 기준 전압은 BOL 전압 미만일 수 있다. 구체적으로, 상기 기준 전압은, 상기 기준 프로파일(Pref)에서 상기 제2 타겟 피크(TP2)에 대응되는 제2 기준 피크(RP2)에 대응되는 전압으로 설정될 수 있다. 예컨대, 상기 기준 전압은, 상기 제2 기준 피크(RP2)의 제2 기준 용량(RQ2)에 대응되는 전압으로 설정될 수 있다.
예컨대, 산출된 배터리의 퇴화도가 5%이고, 기준 퇴화도가 5%라고 가정한다. 이 경우, 제어부(120)는 배터리에 대한 충전 종료 전압의 상한을 제2 기준 용량(RQ2)에 대응되는 전압으로 설정할 수 있다.
구체적으로, 제어부(120)는 BOL 배터리에 대한 전압과 용량 간의 대응 관계를 나타내는 BOL 배터리 정보를 미리 획득하여 저장하였거나, 저장부(130)에 접근하여 획득할 수 있다. 그리고, 제어부(120)는 BOL 배터리 정보로부터 제2 기준 용량(RQ2)에 대응되는 전압을 선택하고, 선택된 전압을 충전 종료 전압의 상한으로 설정할 수 있다.
도 2의 실시예에서, 제2 기준 피크(RP2)는 BOL 배터리의 상 전이(Phase transition)가 종료되고, 상 평형(Phase equilibrium)이 시작되는 지점일 수 있다. 마찬가지로, 제2 타겟 피크(TP2)는 현재 배터리의 상 전이가 종료되고, 상 평형이 시작되는 지점일 수 있다.
만약, 제2 타겟 용량(TQ2)을 기준으로 배터리의 충전 종료 전압의 상한을 설정하는 경우, 설정된 충전 종료 전압의 상한은 배터리의 퇴화에 따른 과전압에 영향을 받을 수 있다. 즉, MOL(Middle of life) 상태의 배터리에 대한 과전압에 의해, 제2 타겟 용량(TQ2)에 대응되는 전압과 MOL 배터리의 상 평형이 시작되는 실제 전압에는 오차가 존재할 수 있다.
예컨대, 도 2의 실시예에서, 이상적으로는 제2 기준 용량(RQ2)에 대응되는 전압과 제2 타겟 용량(TQ2)에 대응되는 전압이 동일할 수 있다. 하지만, 실제로 운용되는 배터리는 퇴화에 따른 과전압의 영향을 받기 때문에, 제2 타겟 용량(TQ2)에 대응되는 전압은 제2 기준 용량(RQ2)에 대응되는 전압과 상이할 수 있다. 구체적으로는, 제2 타겟 용량(TQ2)에 대응되는 전압이 제2 기준 용량(RQ2)에 대응되는 전압보다 클 수 있다. 따라서, 제2 타겟 용량(TQ2)을 기준으로 충전 종료 전압의 상한을 설정하는 경우, 현재 배터리의 상 전이가 종료되는 지점(상 평형이 시작되는 지점)에 대응되는 전압보다 고전압으로 충전 종료 전압의 상한이 설정될 수 있다. 즉, 배터리의 상 평형이 진행 중인 전압이 충전 종료 전압의 상한으로 설정될 가능성이 있다. 이 경우, 배터리는 상 평형이 진행되는 전압까지 충전될 수 있고, 이로 인해 배터리의 퇴화가 가속될 수 있다.
따라서, 제어부(120)는 배터리의 퇴화에 따른 과전압의 영향을 고려하며 배터리의 기대 수명을 증가시키기 위하여, 배터리의 충전 종료 전압의 상한을 BOL 배터리의 상 전이 종료 전압(제2 기준 용량(RQ2)에 대응되는 전압)으로 설정할 수 있다.
본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 BOL 배터리에 대한 제2 기준 용량(RQ2)에 대응되는 전압을 배터리의 충전 종료 전압의 상한으로 설정함으로써, 배터리에 대한 급격한 퇴화를 방지하면서 배터리의 성능 효율을 최대한으로 유지시킬 수 있다. 즉, 배터리에 대한 충전 종료 전압의 상한이 배터리의 성능을 지나치게 제한하지 않는 범위에서 설정되기 때문에, 배터리의 기대 수명 증가 및 성능 효율이 향상될 수 있다.
한편, 이러한 제2 기준 피크(RP2) 및 제2 타겟 피크(TP2)는 배터리의 양극재에 포함되는 니켈(Ni)의 함량이 높은 경우(예컨대, 80% 이상)뿐만 아니라, 니켈의 함량이 낮은 경우(예컨대, 80% 미만)에도 나타날 수 있다. 이는 기준 프로파일(Pref)이 용량(Q)과 미분 전압(dV/dQ) 간의 대응 관계를 나타내는 프로파일로서, 용량에 기반하여 전압의 순간 변화율을 나타내는 프로파일이기 때문이다.
예컨대, 도 2의 실시예에서, 미분 프로파일(Pd) 및 기준 프로파일(Pref)은 양극재에 포함된 니켈의 함량이 60%이고, 음극재는 흑연인 배터리에 대한 프로파일이다.
기준 프로파일(Pref)과 반대로, 전압(V)과 미분 용량(dQ/dV) 간의 대응 관계를 나타내는 프로파일에서는 니켈 함량이 낮은 경우(예컨대, 80% 미만), 제2 기준 피크(RP2) 및 제2 타겟 피크(TP2)에 대응되는 피크가 나타나지 않을 수 있다. 제2 기준 피크(RP2) 및 제2 타겟 피크(TP2)가 나타나지 않는 경우, 배터리의 퇴화도 산출에 어려움이 있기 때문에, 배터리에 대한 충전 종료 전압의 상한이 적절하게 설정되지 않을 수 있다.
따라서, 본 발명의 일 실시예에서는, 배터리의 양극재에 포함된 니켈 함량이 낮은 경우에도 배터리에 대한 충전 종료 전압의 상한을 적절하게 설정할 수 있다.
제어부(120)는 상기 산출된 퇴화도가 상기 기준 퇴화도 이상인 경우, 상기 산출된 퇴화도와 상기 기준 퇴화도 간의 퇴화 편차를 산출하도록 구성될 수 있다.
예컨대, 제어부(120)는 산출된 퇴화도와 기준 퇴화도 간의 차이를 계산하여, 퇴화 편차를 산출할 수 있다.
[수학식 2]
DV = D-RD
여기서, DV는 퇴화 편차이고, D는 수학식 1에 의해 산출된 배터리의 퇴화도이며, RD는 기준 퇴화도이다.
제어부(120)는 상기 기준 전압으로부터 상기 퇴화 편차에 비례하도록 감소된 전압을 상기 충전 종료 전압의 상한으로 설정하도록 구성될 수 있다.
예컨대, 산출된 배터리의 퇴화도가 6%이고, 기준 퇴화도는 5%이며, 제2 기준 용량(RQ2)에 대응되는 기준 전압은 4.0V라고 가정한다.
제어부(120)는 "배터리의 퇴화도(6%)-기준 퇴화도(5%)"를 계산하여, 퇴화 편차를 1%로 산출할 수 있다. 그리고, 제어부(120)는 기준 전압으로부터 퇴화 편차(1%)에 비례하도록 감소된 3.96V를 배터리에 대한 충전 종료 전압의 상한으로 설정할 수 있다.
즉, 제어부(120)는 배터리가 퇴화될수록 충전 종료 전압의 상한을 감소시킴으로써, 배터리의 퇴화가 급격히 진행되는 것을 방지하면서 배터리의 성능 효율을 높게 유지시킬 수 있다.
제어부(120)는 상기 산출된 퇴화 편차가 미리 설정된 임계 편차 이상인 경우, 상기 배터리를 EOL(End of life) 상태로 진단하도록 구성될 수 있다.
예컨대, 임계 편차는 15%로 설정될 수 있다. 즉, 배터리의 퇴화도가 기준 퇴화도보다 임계 편차 이상일 경우, 제어부(120)는 배터리를 불용 배터리(EOL 배터리)로 진단할 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 배터리가 BOL 배터리보다 임계 편차 이상으로 퇴화된 경우, 배터리를 EOL 상태로 진단함으로써, 퇴화된 배터리가 운용됨으로써 발생될 수 있는 발화 또는 폭발 등의 문제를 미연에 방지할 수 있다.
본 발명에 따른 배터리 관리 장치(100)는, BMS(Battery Management System)에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 배터리 관리 장치(100)를 포함할 수 있다. 이러한 구성에 있어서, 배터리 관리 장치(100)의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 배터리 관리 장치(100)의 프로파일 생성부(110), 제어부(120) 및 저장부(130)는 BMS의 구성요소로서 구현될 수 있다.
또한, 본 발명에 따른 배터리 관리 장치(100)는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 배터리 관리 장치(100) 및 하나 이상의 배터리 셀을 포함할 수 있다. 또한, 배터리 팩은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 배터리 팩의 예시적 구성을 개략적으로 도시한 도면이다.
측정부(200)는 제1 센싱 라인(SL1), 제2 센싱 라인(SL2) 및 제3 센싱 라인(SL3)과 연결될 수 있다.
구체적으로, 제1 센싱 라인(SL1)은 배터리 셀(B)의 양극과 측정부(200)에 연결될 수 있다. 또한, 제2 센싱 라인(SL2)은 배터리 셀(B)의 음극과 측정부(200)에 연결될 수 있다. 측정부(200)는 제1 센싱 라인(SL1)을 통해 측정된 배터리 셀(B)의 양극 전압과 제2 센싱 라인(SL2)을 통해 측정된 배터리 셀(B)의 음극 전압 간의 차이를 계산하여, 배터리 셀(B)의 전압을 측정할 수 있다.
또한, 측정부(200)는 제3 센싱 라인(SL3)과 연결된 전류 측정 유닛(A)을 통해서 배터리 셀(B)의 충전 전류 및/또는 방전 전류를 측정할 수 있다. 예컨대, 전류 측정 유닛(A)은 션트 저항 또는 전류계일 수 있다.
측정부(200)에 의해 측정된 배터리 셀(B)의 전압 및 전류에 대한 배터리 정보는 배터리 관리 장치(100)로 송신될 수 있다. 구체적으로, 프로파일 생성부(110)는 측정부(200)로부터 배터리 셀(B)의 배터리 정보를 수신할 수 있다. 그리고, 프로파일 생성부(110)는 수신한 배터리 셀(B)의 전압 및 전류에 기반하여 배터리 셀(B)의 용량과 미분 전압 간의 대응 관계를 나타내는 미분 프로파일(Pd)을 생성할 수 있다. 또한, 측정부(200)에 의해 측정된 배터리 셀(B)의 배터리 정보는 저장부(130)에 저장될 수도 있다.
도 4는 본 발명의 또 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
바람직하게, 배터리 관리 방법의 각 단계는 배터리 관리 장치(100)에 의해 수행될 수 있다. 이하에서는, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.
도 4를 참조하면, 배터리 관리 방법은 미분 프로파일(Pd) 생성 단계(S100), 복수의 피크 검출 단계(S200), 배터리의 퇴화도 산출 단계(S300) 및 충전 종료 전압의 상한 설정 단계(S400)를 포함할 수 있다.
미분 프로파일(Pd) 생성 단계(S100)는 배터리의 용량 및 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일(Pd)을 생성하는 단계로서, 프로파일 생성부(110)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 프로파일 생성부(110)는 배터리의 용량과 미분 전압 간의 대응 관계를 나타내는 미분 프로파일(Pd)을 생성할 수 있다.
복수의 피크 검출 단계(S200)는 상기 미분 프로파일(Pd)에서 복수의 피크를 검출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 제1 용량 구간(RL)에서 제1 타겟 피크(TP1)를 검출하고, 제2 용량 구간(RH)에서 제2 타겟 피크(TP2)를 검출할 수 있다. 여기서, 제1 용량 구간(RL)은 정규화된 용량 구간에서 0 이상 0.5 미만의 용량 구간이며, 제2 용량 구간(RH)은 정규화된 용량 구간에서 0.5 이상 1 이하의 용량 구간일 수 있다.
배터리의 퇴화도 산출 단계(S300)는 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 제1 기준 용량(RQ1), 제2 기준 용량(RQ2), 제1 타겟 용량(TQ1) 및 제2 타겟 용량(TQ2)에 기반하여 배터리의 퇴화도를 산출할 수 있다. 구체적으로, 제어부(120)는 상기 수학식 1에 기준 용량 편차(제1 기준 용량(RQ1)과 제2 기준 용량(RQ2) 간의 용량 편차)와 용량 편차(제1 타겟 용량(TQ1)과 제2 타겟 용량(TQ2) 간의 용량 편차)를 대입하여 배터리의 퇴화도를 산출할 수 있다.
충전 종료 전압의 상한 설정 단계(S400)는 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 산출된 퇴화도가 기준 퇴화도 미만인 경우, 제어부(120)는 배터리에 대한 충전 종료 전압의 상한을 BOL 배터리에 대한 충전 종료 전압의 상한으로 설정할 수 있다.
다른 예로, 산출된 퇴화도가 기준 퇴화도 이상인 경우, 제어부(120)는 배터리에 대한 충전 종료 전압의 상한을 기준 전압 이하로 설정할 수 있다. 도 2의 실시예에서, 기준 전압은 제2 기준 용량(RQ2)에 대응되는 전압일 수 있다.
또한, 제어부(120)는 산출된 퇴화도와 기준 퇴화도 간의 퇴화 편차를 산출할 수 있다. 그리고, 제어부(120)는 상기 기준 전압으로부터 퇴화 편차에 비례하도록 감소된 전압을 충전 종료 전압의 상한으로 설정할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
1: 배터리 팩
100: 배터리 관리 장치
110: 프로파일 생성부
120: 제어부
130: 저장부
200: 측정부

Claims (11)

  1. 배터리의 용량 및 전압에 대한 배터리 정보를 획득하고, 상기 용량 및 상기 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및
    상기 프로파일 생성부로부터 상기 미분 프로파일을 획득하고, 획득된 미분 프로파일에서 복수의 피크를 검출하며, 검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하고, 산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하도록 구성된 제어부를 포함하는 것을 특징으로 하는 배터리 관리 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 미분 프로파일에서 제1 타겟 피크 및 제2 타겟 피크를 검출하고, 상기 제1 타겟 피크에 대응되는 제1 타겟 용량과 상기 제2 타겟 피크에 대응되는 제2 타겟 용량 간의 용량 편차를 산출하며, 산출된 용량 편차와 미리 설정된 기준 프로파일에 대한 기준 용량 편차에 기반하여 상기 퇴화도를 산출하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 복수의 피크 중 상기 기준 프로파일의 제1 용량 구간에 포함된 피크를 상기 제1 타겟 피크로 검출하고, 상기 복수의 피크 중 상기 기준 프로파일의 제2 용량 구간에 포함된 피크를 상기 제2 타겟 피크로 검출하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  4. 제2항에 있어서,
    상기 기준 용량 편차는,
    상기 기준 프로파일에서 상기 제1 타겟 피크에 대응되는 제1 기준 피크의 제1 기준 용량과 상기 제2 타겟 피크에 대응되는 제2 기준 피크의 제2 기준 용량 간의 용량 편차로 설정된 것을 특징으로 하는 배터리 관리 장치.
  5. 제2항에 있어서,
    상기 제어부는,
    상기 산출된 퇴화도가 기준 퇴화도 미만이면, 상기 충전 종료 전압의 상한을 상기 배터리에 대해 미리 설정된 BOL 전압으로 설정하고,
    상기 산출된 퇴화도가 상기 기준 퇴화도 이상이면, 상기 충전 종료 전압의 상한을 미리 설정된 기준 전압 이하로 설정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  6. 제5항에 있어서,
    상기 기준 전압은,
    상기 기준 프로파일에서 상기 제2 타겟 피크에 대응되는 제2 기준 피크에 대응되는 전압으로 설정된 것을 특징으로 하는 배터리 관리 장치.
  7. 제6항에 있어서,
    상기 기준 전압은,
    상기 제2 기준 피크의 제2 기준 용량에 대응되는 전압으로 설정된 것을 특징으로 하는 배터리 관리 장치.
  8. 제5항에 있어서,
    상기 제어부는,
    상기 산출된 퇴화도가 상기 기준 퇴화도 이상인 경우, 상기 산출된 퇴화도와 상기 기준 퇴화도 간의 퇴화 편차를 산출하고, 상기 기준 전압으로부터 상기 퇴화 편차에 비례하도록 감소된 전압을 상기 충전 종료 전압의 상한으로 설정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  9. 제8항에 있어서,
    상기 제어부는,
    상기 산출된 퇴화 편차가 미리 설정된 임계 편차 이상인 경우, 상기 배터리를 EOL 상태로 진단하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 배터리 팩.
  11. 배터리의 용량 및 전압에 기반한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성하는 미분 프로파일 생성 단계;
    상기 미분 프로파일에서 복수의 피크를 검출하는 복수의 피크 검출 단계;
    검출된 복수의 피크 각각에 대응되는 용량에 기반하여 상기 배터리의 퇴화도를 산출하는 배터리의 퇴화도 산출 단계; 및
    산출된 퇴화도와 미리 설정된 기준 퇴화도를 비교한 결과에 따라 상기 배터리에 대한 충전 종료 전압의 상한을 설정하는 충전 종료 전압의 상한 설정 단계를 포함하는 것을 특징으로 하는 배터리 관리 방법.
PCT/KR2022/001330 2021-01-25 2022-01-25 배터리 관리 장치 및 방법 WO2022158948A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/924,023 US20230179007A1 (en) 2021-01-25 2022-01-25 Battery Management Apparatus and Method
EP22742924.8A EP4148950A4 (en) 2021-01-25 2022-01-25 BATTERY MANAGEMENT APPARATUS AND METHOD
JP2022563934A JP2023524645A (ja) 2021-01-25 2022-01-25 バッテリー管理装置及び方法
CN202280004339.1A CN115699507A (zh) 2021-01-25 2022-01-25 电池管理设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210010308A KR20220107549A (ko) 2021-01-25 2021-01-25 배터리 관리 장치 및 방법
KR10-2021-0010308 2021-01-25

Publications (2)

Publication Number Publication Date
WO2022158948A2 true WO2022158948A2 (ko) 2022-07-28
WO2022158948A3 WO2022158948A3 (ko) 2022-09-15

Family

ID=82548944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001330 WO2022158948A2 (ko) 2021-01-25 2022-01-25 배터리 관리 장치 및 방법

Country Status (6)

Country Link
US (1) US20230179007A1 (ko)
EP (1) EP4148950A4 (ko)
JP (1) JP2023524645A (ko)
KR (1) KR20220107549A (ko)
CN (1) CN115699507A (ko)
WO (1) WO2022158948A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293425B (zh) * 2023-11-24 2024-04-19 宁德时代新能源科技股份有限公司 电池模组、电池、用电装置及电池放电控制方法
CN117719345B (zh) * 2024-02-06 2024-05-17 湖北工业大学 一种基于ic曲线考虑老化的电池微短路量化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210010308A (ko) 2020-05-11 2021-01-27 (주) 에이앤티에스 이동통신용 안테나

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561859B2 (ja) * 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
WO2013157132A1 (ja) * 2012-04-20 2013-10-24 日立ビークルエナジー株式会社 二次電池システム、二次電池の劣化状態判断方法
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
JP6978723B2 (ja) * 2017-06-05 2021-12-08 三菱自動車工業株式会社 二次電池システム
KR102563753B1 (ko) * 2017-12-29 2023-08-04 삼성전자주식회사 배터리 충전 방법 및 장치
KR102259415B1 (ko) * 2018-08-29 2021-06-01 주식회사 엘지에너지솔루션 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210010308A (ko) 2020-05-11 2021-01-27 (주) 에이앤티에스 이동통신용 안테나

Also Published As

Publication number Publication date
CN115699507A (zh) 2023-02-03
US20230179007A1 (en) 2023-06-08
WO2022158948A3 (ko) 2022-09-15
KR20220107549A (ko) 2022-08-02
EP4148950A2 (en) 2023-03-15
JP2023524645A (ja) 2023-06-13
EP4148950A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2021080358A1 (ko) 병렬 연결된 배터리 팩의 밸런싱 장치 및 방법
WO2020213905A1 (ko) 배터리의 퇴화 상태를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 차량
WO2019177303A1 (ko) 과방전 방지 장치
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치
WO2019124877A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2019107982A1 (ko) 배터리 팩
WO2022103213A1 (ko) 배터리 진단 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2019107978A1 (ko) 배터리 팩
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
WO2022231150A1 (ko) 리튬 석출 검출 장치 및 방법
WO2022108344A1 (ko) 배터리 관리 장치 및 방법
WO2022114826A1 (ko) 배터리 관리 장치 및 방법
WO2022203367A1 (ko) 배터리 진단 장치 및 방법
WO2022085996A1 (ko) 배터리 관리 장치 및 방법
WO2024091041A1 (ko) 배터리 진단 장치 및 방법
WO2022173283A1 (ko) 배터리 관리 장치 및 방법
WO2023106752A1 (ko) 배터리 상태 추정 장치 및 방법
WO2022154441A1 (ko) 배터리 관리 장치 및 방법
WO2024096583A1 (ko) 배터리 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742924

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022563934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022742924

Country of ref document: EP

Effective date: 20221205

NENP Non-entry into the national phase

Ref country code: DE