WO2024090945A1 - 반도체 소자의 전극 형성 방법 - Google Patents

반도체 소자의 전극 형성 방법 Download PDF

Info

Publication number
WO2024090945A1
WO2024090945A1 PCT/KR2023/016538 KR2023016538W WO2024090945A1 WO 2024090945 A1 WO2024090945 A1 WO 2024090945A1 KR 2023016538 W KR2023016538 W KR 2023016538W WO 2024090945 A1 WO2024090945 A1 WO 2024090945A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
spraying
treatment
film layer
metal thin
Prior art date
Application number
PCT/KR2023/016538
Other languages
English (en)
French (fr)
Inventor
김영운
김수빈
박석진
이윤주
황철주
여승민
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Publication of WO2024090945A1 publication Critical patent/WO2024090945A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer

Definitions

  • the present invention relates to a method of forming an electrode of a semiconductor device, and more specifically, to a method of forming an electrode of a semiconductor device with improved electrical characteristics.
  • Electrodes of semiconductor devices they are formed by spraying a precursor containing a metal and depositing it on a substrate.
  • the precursor used to form an electrode contains at least one ligand among C (carbon), H (hydrogen), and O (oxygen).
  • these ligands act as impurities that increase the resistance of the electrode, thereby deteriorating the electrical properties of the semiconductor device.
  • Patent Document 1 Korean Registered Patent 10-0942958
  • the present invention relates to a method of forming an electrode for a semiconductor device that can lower the resistance of the electrode.
  • the present invention relates to a method of forming electrodes for semiconductor devices that can remove impurities.
  • An electrode forming method includes preparing a substrate; forming a metal thin film layer by spraying a precursor containing ruthenium (Ru) on the substrate; A first treatment step of spraying a first treatment gas containing oxygen (O 2 ) on the substrate; A purge step of spraying a purge gas after stopping spraying of the first treatment gas; And a second treatment step of annealing the metal thin film layer by spraying a second treatment gas containing at least one of hydrogen (H 2 ), argon (Ar), and helium (H 2 ) on the substrate.
  • the first treatment step may include a first plasma treatment step of forming oxygen (O 2 ) plasma on the substrate.
  • a first plasma treatment step of forming oxygen (O 2 ) plasma is performed after the first treatment step and may include a first plasma treatment step of forming oxygen (O 2 ) plasma on the substrate.
  • the first treatment step may include a first plasma treatment step of forming oxygen (O 2 ) plasma on the substrate.
  • the step of forming the metal thin film layer, the first treatment step, the purge step, and the second treatment step may be repeated multiple times.
  • the process temperature of the second treatment step may be adjusted to be higher than that of the first treatment step.
  • the pressure of the second treatment step may be 5 Torr to 7 Torr.
  • the substrate according to an embodiment of the present invention includes a trench recessed from the upper surface downward, and the method of forming an electrode according to an embodiment of the present invention exposes the substrate on which the metal thin film layer is formed to oxygen plasma, thereby forming the metal thin film layer.
  • the second treatment step of spraying a second treatment gas containing hydrogen (H 2 ) includes hydrogen (H 2 ) contained in the second treatment gas and the metal. It may include reacting the solid metal oxide contained in the thin film layer to reduce the solid metal oxide to metal.
  • the second treatment step may include generating hydrogen plasma using a second treatment gas containing hydrogen (H 2 ).
  • An electrode forming method includes preparing a substrate with an IGZO (Indium Gallium Zinc Oxide) thin film layer formed on one surface; Spraying a precursor containing ruthenium (Ru) on the IGZO thin film layer to form a metal thin film layer; Spraying a first treatment gas containing oxygen (O 2 ) to the substrate to be included in the metal thin film layer A first treatment step of removing impurities; A purge step of spraying a purge gas after stopping spraying of the first treatment gas; and a second treatment step of annealing the metal thin film layer by spraying a second treatment gas containing argon (Ar) on the substrate.
  • IGZO Indium Gallium Zinc Oxide
  • An electrode forming method includes preparing a substrate; A first process cycle step including forming a first metal thin film layer on the substrate; And a second process cycle step comprising forming a second metal thin film layer on the first metal thin film layer, wherein the first process cycle includes forming a precursor containing ruthenium (Ru) on the substrate. ) to form a first metal thin film layer; A first treatment step of spraying a first treatment gas containing oxygen (O 2 ) on the substrate; A purge step of spraying a purge gas after stopping spraying of the first treatment gas; And a second treatment step of spraying a second treatment gas containing argon (Ar) on the substrate,
  • the second process cycle includes forming a second metal thin film layer by spraying a precursor containing ruthenium (Ru) on the first metal thin film layer; A third treatment step of spraying a third treatment gas containing oxygen (O 2 ) on the first metal thin film layer; A purge step of spraying a purge gas after stopping spraying of the third treatment gas; and a fourth treatment step of spraying a fourth treatment gas containing hydrogen (H 2 ) on the first metal thin film layer.
  • ruthenium Ru
  • the fourth treatment step may include a step of including a gas containing argon (Ar) before spraying the fourth treatment gas.
  • an electrode can be formed from which ligand impurities resulting from a precursor containing at least one of ruthenium (Ru) and molybdenum (Mo) are removed. Therefore, an electrode with low resistance can be prepared.
  • step coverage can be improved by reducing the difference in thickness between the thickness of the thin film formed on the inner wall surface forming the trench and the thin film formed on the upper surface of the substrate.
  • Figure 1 is a diagram showing a state in which an electrode according to a first embodiment of the present invention is formed on a substrate.
  • Figure 2 is a conceptual diagram for explaining a method of forming an electrode by the method according to the first embodiment of the present invention.
  • Figure 3 is a process diagram conceptually showing a method of forming an electrode by the method according to the first embodiment of the present invention.
  • Figure 4 is a conceptual diagram showing a method of forming a metal thin film layer on a substrate by a method according to the second embodiment of the embodiment.
  • Figure 5 is a process diagram conceptually showing a method of forming an electrode by a method according to a third embodiment of the present invention.
  • Figure 6 is a conceptual diagram illustrating a method of forming an electrode by a method according to a third embodiment of the present invention.
  • Figure 7 is a conceptual diagram illustrating a method of forming an electrode by a method according to a fourth embodiment of the present invention.
  • Embodiments of the present invention relate to a method of forming an electrode of a semiconductor device, and more specifically, to a method of forming an electrode of a semiconductor device with improved electrical characteristics. More specifically, embodiments of the present invention relate to a method of forming electrodes of a semiconductor device, including a method of forming a low-resistance metal thin film layer.
  • the semiconductor device may be a NAND flash
  • the electrode may be a gate electrode of the NAND flash.
  • the electrode formed by the method according to the embodiments is not limited to the gate electrode and may be various components that require conductivity, for example, a word line of NAND flash.
  • the electrode formed by the method according to the embodiments is not limited to NAND flash, and can be applied to thin films that require conductivity in various semiconductor devices.
  • Figure 1 is a diagram showing a state in which an electrode according to a first embodiment of the present invention is formed on a substrate.
  • the electrode 100 may be formed on the substrate S.
  • the substrate S may be a wafer, and may be one of a Si wafer (Silicon wafer), a GaAs wafer (Gallium Aresenide wafer), and a SiGe wafer (Silicon Germanium wafer).
  • the electrode 100 may be a laminate formed by stacking a plurality of metal thin film layers 110. Additionally, each of the plurality of metal thin film layers 110 may be formed using a precursor raw material containing ruthenium (Ru), a low-resistance metal. Accordingly, the electrode 100 may be an electrode containing ruthenium (Ru) or an electrode made of ruthenium (Ru).
  • Ru ruthenium
  • Ru ruthenium
  • the metal thin film layer may be formed using a precursor raw material containing molybdenum (Mo).
  • the electrode 100 may be an electrode containing molybdenum (Mo).
  • the metal thin film layer may be formed using a precursor raw material containing ruthenium (Ru) and molybdenum (Mo), and the electrode may be an electrode containing ruthenium (Ru) and molybdenum (Mo).
  • FIGS. 1 to 3 a method of forming an electrode on a substrate according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • Figure 2 is a conceptual diagram for explaining a method of forming an electrode by the method according to the first embodiment of the present invention.
  • Figure 3 is a process diagram conceptually showing a method of forming an electrode by the method according to the first embodiment of the present invention.
  • 'on' may mean spraying raw materials for the process
  • 'off' may mean stopping or ending the spraying of raw materials.
  • the method of forming the electrode 100 includes spraying a precursor containing at least one of ruthenium (Ru) and molybdenum (Mo) toward the substrate S to form a metal thin film layer 110.
  • Forming a step (precursor injection step (P pr )), removing impurities from the metal thin film layer 110 by spraying a gas containing oxygen (O 2 ) (hereinafter, first treatment gas) (first treatment treatment step (P t1 )) and the temperature inside the chamber where the process is performed by spraying a gas containing at least one of hydrogen (H 2 ), argon (Ar), and helium (He) (hereinafter, second treatment gas)
  • the method of forming the electrode 100 may include spraying a purge gas. That is, the first purge step (P pu1 ) of spraying a purge gas between the precursor injection step (P pr ) and the impurity removal step (first treatment step (P t1 )), the impurity removal step (first treatment step ( After the second purge step ( pu2 ), which sprays a purge gas between the annealing step (P t1 )) and the annealing step (second treatment step (P t2 )), the annealing step (second treatment step (P t2 )) is completed. It may include a third purge step (P pu3 ) in which purge gas is sprayed.
  • the method of forming the electrode 100 described above includes a precursor injection step (P pr ), a first purge step (P pu1 ), an impurity removal step (first treatment step (P t1 )), and a second purge step ( P pu2 ), an annealing step (second treatment step (P t2 )), and a third purge step (P pu3 ).
  • the third purge step (P pu3 )' may be one process cycle (CY) for forming the metal thin film layer 110. Then, the above-described process cycle (CY) is repeated multiple times to deposit or stack a plurality of metal thin film layers 110 as shown in FIG. 1.
  • an electrode in which a plurality of metal thin film layers 110 are stacked or an electrode 100 of a semiconductor device including a plurality of metal thin film layers 110 is formed.
  • the number of repetitions of the process cycle (CY) may be adjusted according to the target thickness of the electrode 100 to be formed.
  • one process cycle (CY) includes all of the first to third purge steps (P pu1 , P pu2 , and P pu3 ). However, it is not limited to this, and only some of the first to third purge steps (P pu1 , P pu2 , and P pu3 ) may be performed and other parts may be omitted. At this time, it is preferable to perform the second purge step (P pu2 ) and omit at least one of the first and third purge steps (P pu1 and P pu3 ).
  • each metal thin film layer 110 is shown separately in order to distinguish the metal thin film layers formed through a plurality of process cycles (CY).
  • CY process cycles
  • the plurality of stacked metal thin film layers 110 may be integrated.
  • each 'step' included in one process cycle (CY) can be expressed as a 'process'.
  • the process cycle (CY) is 'precursor injection process (P pr ) - first purge process (P pu1 ) - impurity removal process (first treatment process (P t1 )) - second purge process (P pu2 ) - It can be described as including an annealing process (second treatment process - third purge process (P pu3 )).
  • step (P t1 ) of removing impurities by spraying the first treatment gas containing oxygen (O 2 ) will be described as ‘first treatment step (P t1 )’.
  • step (P t2 ) of annealing the metal thin film layer 110 by spraying a second treatment gas containing at least one of H 2 , Ar and He is named ‘second treatment step (P t2 )’.
  • a precursor raw material containing at least one of ruthenium (Ru) and molybdenum (Mo) is sprayed into the chamber in which the substrate (S) is loaded.
  • the precursor raw material containing Ru may be, for example, a raw material containing ethylcyclopentadienyl ruthenium ((EtCp) 2 Ru) (Bis(ethylcyclopentadienyl)ruthenium).
  • the precursor raw material containing molybdenum (Mo) may be, for example, a raw material containing at least one of molybdenum hexacarbonyl and molybdenum pentachloride.
  • the precursor raw material containing ruthenium (Ru) may be named 'source containing Ru (ruthenium)'
  • the precursor raw material containing molybdenum (Mo) may be named 'source containing molybdenum (Mo)'. It can be.
  • the precursor raw material containing at least one of ruthenium (Ru) and molybdenum (Mo) may be an organic material. And these precursor raw materials may be in solid or liquid form. Accordingly, before injection, the solid or liquid precursor is heated to convert it into gas, and then the gaseous precursor is injected onto the substrate (S). When the precursor is sprayed toward the substrate (S), the precursor or at least one of the metal elements contained in the precursor, that is, Ru (ruthenium) and molybdenum (Mo), is adsorbed to the substrate (S). Accordingly, a metal thin film layer 110 is formed on the substrate S as shown in Figure 3 (a). That is, a metal thin film layer 110 containing at least one of ruthenium (Ru) and molybdenum (Mo) is formed.
  • purge is performed by spraying a purge gas into the chamber (first purge step (P pu1 )).
  • a purge gas for example, Ar gas can be used as the purge gas.
  • the precursor raw material containing at least one of ruthenium (Ru) and molybdenum (Mo) may contain at least one ligand among C (carbon), H (hydrogen), and O (oxygen), depending on the type of the material. You can. Accordingly, the metal thin film layer 110 deposited by spraying a precursor raw material containing at least one of ruthenium (Ru) and molybdenum (Mo) contains at least one ligand of C (carbon), H (hydrogen), and O (oxygen) ( ligand) may be included. And ligands such as C (carbon), H (hydrogen), and O (oxygen) included in the metal thin film layer 110 act as impurities that increase resistance.
  • the metal thin film layer 110 by spraying the precursor, impurities that are at least one ligand among C (carbon), H (hydrogen), and O (oxygen) are removed from the metal thin film layer 110. That is, the first treatment step (P t1 ) is performed.
  • the first treatment step (P t1 ) is a step of removing impurities from the metal thin film layer 110 .
  • This first treatment step (P t1 ) includes spraying a first treatment gas containing oxygen (O 2 ) into the chamber.
  • the first treatment gas containing oxygen (O 2 ) may be, for example, pure oxygen (O 2 ) gas or air. Of course, it is not limited to this, and various gases containing oxygen (O 2 ) may be used as the first treatment gas.
  • the first treatment step (P t1 ) may be performed after the step of spraying the precursor (P pr ) and the step of spraying the purge gas (first purge step (P pu1 )) are completed.
  • the first treatment gas is sprayed to perform the first treatment.
  • Step (P t1 ) can be carried out
  • the inside of the chamber in which the substrate S is loaded or the process is performed is heated to a predetermined temperature or higher. That is, the inside of the chamber may be maintaining a process temperature for forming the metal thin film layer 110, for example, 200°C to 400°C. More specifically, the temperature inside the chamber can be controlled to be maintained at 250°C to 300°C.
  • a ligand included in the metal thin film layer 110 for example, a C (carbon) ligand, and oxygen (O 2 ) react. That is, a combustion reaction occurs between oxygen (O 2 ) and C (carbon) ligand contained in the first treatment gas, and C (carbon) is separated from the metal thin film layer 110.
  • the C (carbon) ligand bond contained in the precursor of the metal thin film layer 110 is broken and falls out of the metal thin film layer 110. Accordingly, the content of at least one ligand impurity among C (carbon), H (hydrogen), and O (oxygen) included in the metal thin film layer 110 may be reduced, or the ligand impurity may be removed from the metal thin film layer 110. .
  • the temperature inside the chamber is maintained at 200°C to 400°C, preferably 250°C to 300°C. Accordingly, the combustion reaction between oxygen (O 2 ) contained in the injected first treatment gas and the ligand can occur smoothly. That is, the combustion reaction between oxygen (O 2 ) contained in the first treatment gas and the ligand contained in the metal thin film layer 110 may occur smoothly due to the heat inside the chamber. Therefore, the combustion reaction between oxygen (O 2 ) contained in the first treatment gas and the ligand contained in the metal thin film layer 110 or the precursor can be explained as a reaction caused by heat.
  • the inside of the chamber is purged by spraying a purge gas (second purge step (P pu2 )).
  • the purge gas may be the same as the gas used in the first purge step (P pu1 ), for example, Ar gas may be used.
  • the second treatment step (P t2 ) may be a process of reducing voids by annealing the metal thin film layer 110.
  • This second treatment step (P t2 ) includes spraying the second treatment gas into the interior of the chamber, as shown in Figures 2 and 3 (c).
  • the second treatment gas may include spraying at least one of hydrogen (H 2 ), argon (Ar), and helium (He).
  • the injection is performed so that the pressure inside the chamber increases compared to before spraying the second treatment gas. At this time, it is preferable that the pressure inside the chamber rises to 5 torr to 7 torr, and the time for spraying the second treatment gas is maintained for 10 seconds or more.
  • the reason for spraying the second treatment gas to increase the pressure inside the chamber to 5 torr to 7 torr is to increase the temperature inside the chamber.
  • the temperature inside the chamber may be 250°C to 300°C.
  • the temperature inside the chamber can be increased to 350°C to 400°C.
  • the temperature inside the chamber may increase due to an increase in pressure caused by the injection of the second treatment gas.
  • the temperature inside the chamber in the second treatment step can be adjusted to be higher than that in the first treatment step.
  • the substrate S or the metal thin film layer 110 deposited on the substrate S may be annealed. Accordingly, the grains included in the metal thin film layer 110 expand, which may cause the voids between the grains to decrease or become smaller. As the voids are reduced by such annealing, the resistance of the metal thin film layer 110 or the electrode 100 may be reduced. That is, a metal thin film layer 110 or an electrode 100 with low resistance can be formed.
  • the grains of the metal thin film layer 110 may not expand or may lack expansion due to the low temperature inside the chamber.
  • the temperature inside the chamber is adjusted to 350°C to 400°C, and for this, the chamber pressure of 7 torr or less is sufficient.
  • the pressure inside the chamber is adjusted to be 5 torr to 7 torr.
  • the second treatment gas used in the second treatment step includes at least one of hydrogen (H 2 ), argon (Ar), and helium (He).
  • H 2 hydrogen
  • Ar argon
  • He helium
  • impurities remaining in the metal thin film layer 110 may be further removed in the second treatment step. That is, at least one ligand impurity among C (carbon), H (hydrogen), and O (oxygen) that was not removed in the first treatment step may remain in the metal thin film layer 110.
  • These ligand impurities can be further removed by hydrogen (H 2 ) included in the second treatment gas.
  • the ligand bond of at least one of C (carbon), H (hydrogen), and O (oxygen) contained in the metal thin film layer 110 is broken by hydrogen (H 2 ) contained in the second treatment gas. can be removed Accordingly, the content of at least one ligand impurity among C (carbon), H (hydrogen), and O (oxygen) contained in the metal thin film layer 110 may be reduced or removed.
  • the second treatment step (P t2 ) may include generating plasma. That is, the second treatment step (P t2 ) may include generating plasma using the second treatment gas while spraying the second treatment gas. More specifically, the second treatment gas is sprayed inside the chamber or toward the substrate S, and power for plasma generation is supplied. At this time, for example, RF (Radio Frequency) power is applied to at least one of the chamber, the susceptor on which the substrate S is seated inside the chamber, and the injection unit that sprays the second treatment gas into the chamber. Accordingly, plasma containing at least one of hydrogen (H 2 ), argon (Ar), and helium (He) may be generated inside the chamber.
  • RF Radio Frequency
  • Plasma may promote annealing of the metal thin film layer 110.
  • the annealing reaction can occur more quickly, shortening the time for annealing.
  • a purge gas is sprayed into the chamber to purge it (third purge step (P pu3 )).
  • the purge gas is used in the first and second purge stages (P pu1 ,
  • the same gas as that used in P pu2 ) can be used, for example, Ar gas can be used.
  • Figure 4 is a conceptual diagram showing a method of forming a metal thin film layer on a substrate by a method according to the second embodiment of the embodiment.
  • 'on' may mean spraying raw materials for a process or generating plasma.
  • 'off' may mean stopping or ending raw material injection or plasma generation.
  • the method according to the second embodiment has the same precursor injection step (P pr ), first to third purge steps (P pu1 to P pu3 ), and second treatment step (P t2 ) as the first embodiment. It may be different from 1 treatment step (P t1 ).
  • the first treatment step (P t1 ) may include generating plasma. That is, the first treatment step (P t1 ) may include spraying a first treatment gas as shown in FIG. 4 and generating oxygen plasma using the sprayed first treatment gas. . More specifically, the first treatment gas is sprayed inside the chamber or toward the substrate (S), and power for plasma generation is supplied. At this time, for example, RF (Radio Frequency) power is applied to at least one of the chamber, the susceptor on which the substrate S is seated inside the chamber, and the injection unit that sprays gas into the chamber. At this time, the power applied for plasma generation is preferably adjusted to 500 W to 1000 W (500 watts to 1000 watts). As a result, plasma is generated inside the chamber. At this time, since the first treatment gas contains oxygen (O 2 ), the plasma generated in the first treatment step may be 'oxygen plasma'.
  • RF Radio Frequency
  • a combustion reaction between the ligand impurities included in the metal thin film layer 110 and oxygen (O 2 ) may be promoted. That is, as the temperature inside the chamber is maintained at 250°C to 300°C, a combustion reaction between the ligand impurities and oxygen (O 2 ) occurs due to the heat inside the chamber. In addition, as oxygen plasma is generated, the ligand impurities and oxygen (O 2 ) occur. O 2 ) The combustion reaction in the liver can be promoted. Therefore, compared to the case of spraying only the first treatment gas, when generating plasma while spraying the first treatment gas, at least one of the amount and removal rate of impurities can be increased. Accordingly, ligand impurities resulting from the precursor can be removed more effectively.
  • the power applied in the first treatment step (P pr ) is less than 500 W, the effect of promoting the combustion reaction by oxygen plasma may be minimal.
  • the power applied in the first treatment step (P pr ) exceeds 1000 W, the amount by which the metal thin film layer 110 is converted into a gaseous or gaseous metal oxide, for example, RuO 4 (gas), by oxygen plasma. If there is a large amount, the metal thin film layer 110 may be etched in large quantities. Accordingly, when forming the electrode 100 by performing the process cycle (CY) multiple times and stacking a plurality of metal thin film layers 110, a problem may occur in that it takes a long time to form the electrode 100 to the target thickness. You can. Therefore, in the first treatment step (P pr ), a power of 500 W to 1000 W is applied to generate oxygen plasma.
  • Figure 5 is a process diagram conceptually showing a method of forming an electrode by a method according to a third embodiment of the present invention.
  • Figure 6 is a conceptual diagram illustrating a method of forming an electrode by a method according to a third embodiment of the present invention.
  • 'on' may mean spraying raw materials for a process or generating plasma.
  • 'off' may mean stopping or ending raw material injection or plasma generation.
  • the present invention is not limited to this, and the electrode 100 may be formed by depositing a metal thin film layer 110 on a substrate S on which a trench TR is provided, as shown in FIG. 5 .
  • the metal thin film layer 110 deposited on the inner wall forming the trench (TR) as shown in (a) of FIG. 5
  • the thickness (T 1 ) of the metal thin film layer 110 deposited on the upper surface of the substrate (S) is thicker than the thickness (T 2 , T 3 ).
  • the precursor spraying step (P pr ) and the first treatment process (P t1 ) are completed, the thickness of the metal thin film layer 110 deposited on the substrate S may vary depending on the location. At this time, as shown in (a) of FIG.
  • the thickness (T 1 ) deposited on the upper surface of the substrate (S) and the thickness (T 2 , T 3 ) deposited on the inner wall forming the trench (TR) may be different. Accordingly, when forming the electrode 100 by depositing the metal thin film layer 110 on the substrate S with the trench TR, it is necessary to reduce overhang or prevent the occurrence of overhang.
  • the overhang can be reduced or the occurrence of overhang can be prevented. That is, the thickness of the metal thin film layer 110 deposited on the inner wall forming the trench TR (T 2 , T 3 ) and the thickness of the metal thin film layer 110 deposited on the upper surface of the substrate S (T 1 ) By reducing the difference, step coverage can be improved.
  • the electrode forming method includes a precursor spraying step of forming a metal thin film layer 110 by spraying a precursor containing ruthenium (Ru) and molybdenum (Mo) toward the substrate S. (P pr ), a first treatment step (P t1 ) of removing impurities from the metal thin film layer 110 by spraying a first treatment gas containing oxygen (O 2 ), oxygen while spraying the first treatment gas
  • a first treatment step P t1
  • an etching step by spraying a second treatment gas containing hydrogen (H 2 ) (P It may include a step (P t2 ) of reducing metal oxide (solid) generated in plasma-1 ) to metal.
  • the second treatment gas containing hydrogen (H 2 ) is sprayed as in the first and second embodiments described above, so the 'second treatment step ( It is named ‘P t2 )’.
  • a step (P plasma-1 ) of generating plasma while spraying the first treatment gas to etch a portion of the metal thin film layer 110 deposited on the upper surface of the substrate S is performed. It is named ‘first plasma treatment step (P plasma-1 )’ (b) in Figure 5).
  • the electrode forming method according to the third embodiment includes a precursor injection step (P pr ), a first purge step (P pu1 ), a first treatment step (P t1 ), and a first plasma treatment step (P plasma-1 ), a second purge step (P pu2 ), a second treatment step (P t2 ), and a third purge step (P pu3 ).
  • one process cycle (CY) is 'precursor injection step (P pr ) - first purge step (P pu1 ) - first treatment step (P t1 ) - first It may include 1 plasma treatment step (P plasma-1 ) - 2nd purge step (P pu2 ) - 2nd treatment step (P t2 ) - 3rd purge step (P pu3 )', and this process cycle ( CY) can be repeated multiple times.
  • precursor injection step (P pr ) and the first to third purge steps (P pu1 to P pu3 ) are similar to the first and second embodiments, their description is omitted.
  • the first treatment step (P t1 ) according to the second embodiment described above includes a first treatment gas injection step and an oxygen plasma generation step. That is, as shown in FIG. 4, the first treatment step (P t1 ) according to the second embodiment continues to generate oxygen plasma while spraying the first treatment gas.
  • the first treatment step (P t1 ) according to the second embodiment continues to generate oxygen plasma while spraying the first treatment gas.
  • power for plasma generation is applied to the susceptor on which the substrate (S) is seated and to at least one of the injection units that spray the first treatment gas into the chamber (Radio Frequency RF).
  • Radio Frequency RF Radio Frequency
  • the first treatment step (P t1 ) includes the step of spraying the first treatment gas, and does not include the step of generating plasma.
  • the first plasma treatment step (P plasma-1 ) performed after the first treatment step (P t1 ) includes a first treatment injection step and a plasma generation step using the first treatment gas.
  • plasma is not generated for a first set time (first treatment step (P t1 )), and then, from the time the first set time elapses, the second set time is started. For a period of time, oxygen plasma is simultaneously generated while spraying the first treatment gas (first plasma treatment step (P plasma-1 )).
  • first treatment step (P t1 ) after the injection of the first treatment gas starts, power for plasma generation is not applied for a first set time (first treatment step (P t1 )), and then the first set time is From the time elapsed, during the second set time, the first treatment gas is sprayed and power for plasma generation is applied to generate oxygen plasma (first plasma treatment step (P plasma-1 )).
  • the step of simultaneously generating plasma while spraying the first treatment gas was defined as the first plasma treatment step (P plasma-1 ) in the third embodiment.
  • the metal thin film layer 110 formed on the substrate (S) is, for example, (a) in FIG. 5 ) may be the same as That is, the thickness (T 1 ) of the metal thin film layer deposited on the upper surface of the substrate (S) is greater than the thickness (T 2 , T 3 ) of the metal thin film layer 110 deposited on the inner wall forming the trench (TR). It may be thick.
  • the first plasma treatment step (P plasma-1 ) is performed. That is, a first plasma treatment step (P plasma-1 ) of generating plasma using the first treatment gas is performed while spraying the first treatment gas.
  • RF Radio Frequency
  • the first treatment gas containing oxygen (O 2 ) into the chamber RF (Radio Frequency) is applied to at least one of the susceptor on which the substrate (S) is seated and the injection unit that sprays gas into the chamber. ) Turn on the power. Accordingly, oxygen plasma is generated inside the chamber as shown in (b) of FIG. 5.
  • This etching mainly occurs on the metal thin film layer 110 deposited on the upper surface of the substrate S. This is because oxygen plasma is generated on the upper side of the substrate (S), and the metal thin film layer 110 formed on the upper surface of the substrate (S) is more oxygen than the metal thin film layer 110 formed on the inner wall surface forming the trench (TR). This is because it is closer to plasma. Accordingly, when oxygen plasma is generated, the etching speed and etching rate of the metal thin film layer 110 formed on the upper surface of the substrate are compared to the etching speed and etching thickness of the metal thin film layer 110 formed on the inner wall forming the trench TR. The thickness is large.
  • the thickness (T) of the metal thin film layer 110 formed on the inner wall forming the trench (TR) as shown in (c) of FIG. 5 2 , T 3 ) and the thickness (T 1 ) difference between the metal thin film layer 110 formed on the upper surface of the substrate (S) decreases.
  • the second treatment step (P t2 ) is a process carried out after the first plasma treatment step (P plasma-1 ), and the metal oxide generated in the first plasma treatment step (P plasma-1 ) is reduced to metal. It is a process that is done.
  • This second treatment step (P t2 ) includes spraying a second treatment gas containing hydrogen (H 2 ). When the second treatment gas containing hydrogen (H 2 ) is sprayed, the metal oxide in the metal thin film layer reacts with hydrogen and is reduced back to metal. For example, RuO 2 (Solid), a metal oxide generated during the first plasma treatment step (P plasma-1 ), reacts with hydrogen (H 2 ) and is reduced to Ru (ruthenium), a metal.
  • the second treatment step (P t2 ) may include spraying a second treatment gas and generating plasma using the second treatment gas.
  • the second treatment gas contains hydrogen (H 2 )
  • the plasma generated in the second treatment step (P t2 ) can be described as hydrogen plasma.
  • hydrogen plasma can promote the reaction that reduces metal oxides to metals. Accordingly, the reduction time of metal oxide to metal can be shortened.
  • the first plasma treatment step (P plasma-1 ) for generating metal oxide is performed before the second treatment step (P t2 ). Therefore, the first plasma treatment step (P plasma-1 ) may be called a 'pre-treatment step (P plasma-1 )' performed before the second treatment step (P t2 ).
  • Figure 7 is a conceptual diagram illustrating a method of forming an electrode by a method according to a fourth embodiment of the present invention.
  • 'on' may mean spraying raw materials for a process or generating plasma.
  • 'off' may mean stopping or ending raw material injection or plasma generation.
  • the fourth embodiment is similar to the third embodiment described above. However, in the fourth embodiment, as shown in FIG. 7, the first treatment step (P t1 ) is performed after the first plasma treatment step (P plasma-1 ). That is, the process cycle (CY) according to the fourth embodiment is 'precursor injection step (P pr ) - first purge step (P pu1 ) - first plasma treatment step (P plasma-1 ) - first treatment step. It is carried out in the following order: (P t1 ) - second purge step (P pu2 ) - second treatment step (P t2 ) - third purge step (P pu3 ).
  • the first treatment step (P t1 ) when performing the first treatment step (P t1 ) of spraying a gas containing oxygen (O 2 ) after performing the third treatment step (P t3) of forming oxygen plasma, the first treatment step (P t1 )
  • the time to remove ligand impurities from P t1 ) can be shortened. That is, compared to the third embodiment in which the first treatment step (P t1 ) is performed first and then the first plasma treatment step (P plasma-1 ), the first plasma treatment step (P plasma-1 ) is performed first.
  • the first treatment step (P t1 ) is performed first, the speed of removing ligand impurities is improved.
  • the third and fourth embodiments are used to form the metal thin film layer 110 on the substrate S on which the trench TR is provided.
  • it is not limited to this, and in forming the metal thin film layer 110 on the substrate S without the trench TR, that is, on a plane, any one of the third and fourth embodiments described above can be applied. .
  • the above description describes forming a metal thin film layer 110 containing at least one of ruthenium (Ru) and molybdenum (Mo) on the upper surface of the substrate S.
  • a predetermined thin film hereinafter referred to as an underlayer
  • a metal thin film layer 110 containing at least one of ruthenium (Ru) and molybdenum (Mo) is formed on the upper part of the underlayer.
  • the base layer may be, for example, an active layer of a semiconductor device.
  • the second treatment gas sprayed in the second treatment step (P t2 ) When the underlying layer is IGZO (Indium Gallium Zinc Oxide), it is preferable to use a gas that does not contain hydrogen (H 2 ) as the second treatment gas sprayed in the second treatment step (P t2 ). This is because when IGZO is exposed to hydrogen (H 2 ), the electrical properties of the base layer may deteriorate. Therefore, when the underlying layer is IGZO, it is preferable to perform the second treatment step (P t2 ) using a second treatment gas containing a gas that does not contain hydrogen (H 2 ), for example, argon (Ar). do.
  • a second treatment gas containing a gas that does not contain hydrogen (H 2 ) for example, argon (Ar). do.
  • post-treatment gas when the underlying layer is IGZO (Indium Gallium Zinc Oxide), after completing the second treatment step (P t2 ) of spraying the second treatment gas containing argon (Ar), hydrogen (H 2 ) A post-treatment step of spraying the gas containing the gas (hereinafter referred to as post-treatment gas) may be performed.
  • IGZO Indium Gallium Zinc Oxide
  • the process cycle (CY) is 'precursor injection step (P pr ) - first purge step (P pu1 ) - first treatment step (P t1 ) - It may be performed in the following order: second purge step (P pu2 ) - second treatment step (P t2 ) - post-treatment step - third purge step (P pu3 ).
  • the second treatment step (P t2 ) is a step of spraying a second treatment gas containing argon (Ar)
  • the post treatment step is a step of spraying a post treatment gas that is a gas containing hydrogen (H 2 ). This is the step.
  • post-treatment gas with hydrogen H 2
  • post-treatment step after spraying the second treatment gas containing argon (Ar), post-treatment gas with hydrogen (H 2 ) is sprayed (post-treatment step), thereby preventing damage to the underlying membrane caused by hydrogen (H 2 ). It can be suppressed.
  • the method of forming an electrode may include a first process cycle (CY 1 ) and a second process cycle (CY 2 ).
  • the first process cycle (CY 1 ) is a precursor spraying step (P pr) of forming a first metal thin film layer by spraying a precursor containing at least one of ruthenium (Ru) and molybdenum (Mo) toward the substrate S.
  • It may include a purge step (P pu2 ) of spraying, and a second treatment step (P t2 ) of spraying a second treatment gas containing argon (Ar).
  • the second process cycle (CY 2 ) is a precursor injection step (P pr ) of forming a second metal thin film layer by spraying a precursor containing at least one of ruthenium (Ru) and molybdenum (Mo) on the first metal thin film layer.
  • It includes a purge step (P pu2 ) of spraying a purge gas, and a fourth treatment step (P t4 ) of spraying a fourth treatment gas containing hydrogen (H 2 ) on the second metal thin film layer.
  • the third treatment gas used in the second process cycle (CY 2 ) is a gas containing oxygen (O 2 ) as described above, and is the same as the first treatment gas used in the first process cycle (CY 1 ). It could be gas.
  • the second process cycle (CY 2 ) may further include the step of injecting a gas containing argon (Ar) between the purge step (Ppu 2 ) and the fourth treatment step (P t4 ).
  • the electrode 100 with low resistance can be prepared.
  • the thickness of the metal thin film layer 110 formed on the inner wall forming the trench TR and the upper surface of the substrate S Step coverage can be improved by reducing the difference in thickness of the metal thin film layer 110 formed in .
  • an electrode can be formed from which ligand impurities resulting from a precursor containing at least one of ruthenium (Ru) and molybdenum (Mo) are removed. Therefore, an electrode with low resistance can be prepared.
  • step coverage can be improved by reducing the difference in thickness between the thickness of the thin film formed on the inner wall surface forming the trench and the thin film formed on the upper surface of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Led Devices (AREA)

Abstract

본 발명의 실시예에 따른 전극 형성 방법은 기판을 준비하는 단계, 기판 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 금속 박막층을 형성하는 단계, 기판 상에 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 제1트리트먼트 단계, 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계 및 기판 상에 수소(H2), 아르곤(Ar) 및 헬륨(H2) 중 적어도 하나를 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층을 어닐링하는 제2트리트먼트 단계를 포함할 수 있다. 따라서, 본 발명의 실시예들에 의하면 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체로부터 기인한 리간드 불순물을 제거한 전극을 형성할 수 있다. 따라서 저항이 낮은 전극을 마련할 수 있다. 또한, 트렌치가 있는 기판 상에 전극을 형성하는데 있어서, 트렌치를 형성하는 내벽면에 형성되는 박막의 두께와 기판의 상부면에 형성된 박막의 두께 차이를 줄여 스텝 커버리지를 향상시킬 수 있다.

Description

반도체 소자의 전극 형성 방법
본 발명은 반도체 소자의 전극 형성 방법에 관한 것으로, 보다 상세하게는 전기적 특성이 향상된 반도체 소자의 전극 형성 방법에 관한 것이다.
낸드 플래시(Nand flash) 등과 같은 반도체 소자의 전기적 특성을 향상시키기 위해서는, 전극의 저항을 낮출 필요가 있다.
반도체 소자의 전극을 형성하는데 있어서, 금속을 포함하는 전구체(precursor)를 분사하고 이를 기판에 증착시키는 방법으로 형성한다.
한편, 전극 형성을 위해 사용되는 전구체는 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드(ligand)를 포함하고 있다. 그런데 이러한 리간드들은 전극의 저항을 증가시키는 불순물로 작용하며, 이에 따라 반도체 소자의 전기적 특성이 저하되는 문제가 있다.
(선행기술문헌)
(특허문헌 1) 한국등록특허 10-0942958
본 발명은 전극의 저항을 낮출 수 있는 반도체 소자의 전극 형성 방법에 관한 것이다.
본 발명은 불순물을 제거할 수 있는 반도체 소자의 전극 형성 방법에 관한 것이다.
본 발명의 실시예에 따른 전극 형성 방법은 기판을 준비하는 단계; 상기 기판 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 금속 박막층을 형성하는 단계; 상기 기판 상에 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 제1트리트먼트 단계; 상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및 상기 기판 상에 수소(H2), 아르곤(Ar) 및 헬륨(H2) 중 적어도 하나를 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층을 어닐링하는 제2트리트먼트 단계;를 포함할 수 있다.
상기 제1트리트먼트 단계 이후에 실시되며, 상기 기판 상에 산소(O2) 플라즈마를 형성하는 제1플라즈마 트리트먼트 단계를 포함할 수 있다.
상기 제1트리트먼트 단계 이전에 실시되며, 상기 기판 상에 산소(O2) 플라즈마를 형성하는 제1플라즈마 트리트먼트 단계를 포함할 수 있다.
상기 금속 박막층을 형성하는 단계, 제1트리트먼트 단계, 퍼지 단계 및 제2트리트먼트 단계를 복수회 반복하여 실시할 수 있다.
상기 제2트리트먼트 단계는 상기 제1트리트먼트 단계보다 공정 온도가 더 높게 조절될 수 있다.
상기 제2트리트먼트 단계의 압력은 5 Torr 내지 7 Torr일 수 있다.
본 발명의 실시예에 따른 기판은 상부면으로부터 하측으로 함몰된 트렌치(trench)를 포함하고, 본 발명의 실시예에 따른 전극 형성 방법은 상기 금속 박막층이 형성된 기판을 산소 플라즈마에 노출시켜, 금속 박막층의 일부를 기상의 금속 산화물로 변환시켜, 상기 금속 박막층을 에칭하는 프리 트리트먼트 단계;를 포함하고, 상기 프리 트리트먼트 단계는, 상기 제1트리트먼트 단계와 퍼지 단계 사이에 실시하거나, 상기 금속 박막층 형성 단계와 상기 제1트리트먼트 단계 사이에 실시할 수 있다.
상기 프리 트리트먼트 단계에서 금속 박막층의 일부를 기상의 금속 산화물로 변환시킬 때, 금속 박막층의 다른 일부를 고상의 금속 산화물로 변환시키며, 상기 제2트리트먼트 단계에서 분사되는 상기 제2트리트먼트 가스는 수소(H2)를 포함하고,수소(H2)를 포함하는 제2트리트먼트 가스를 분사하는 상기 제2트리트먼트 단계는, 상기 제2트리트먼트 가스에 포함된 수소(H2)와 상기 금속 박막층에 포함된 고상의 금속 산화물을 반응시켜, 상기 고상의 금속 산화물을 금속으로 환원시키는 단계를 포함할 수 있다.
상기 제2트리트먼트 단계는, 수소(H2)를 포함하는 제2트리트먼트 가스를 이용하여 수소 플라즈마를 발생시키는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 전극 형성 방법은 일면에 IGZO(Indium Gallium Zinc Oxide) 박막층이 형성된 기판을 준비하는 단계; 상기 IGZO 박막층 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 금속 박막층을 형성하는 단계;상기 기판으로 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하여 상기 금속 박막층에 포함된 불순물을 제거하는 제1트리트먼트 단계; 상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및 상기 기판 상에 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층을 어닐링하는 제2트리트먼트 단계;를 포함할 수 있다.
상기 제2트리트먼트 단계 이후에 실시되며, 상기 기판 상에 수소(H2)를 포함하는 포스트 트리트먼트 가스를 분사하는 포스트 트리트먼트 단계를 포함할 수 있다.
본 발명의 실시예에 따른 전극 형성 방법은 기판을 준비하는 단계; 상기 기판 상에 제1금속 박막층을 형성하는 단계를 포함하는 제1공정 사이클 단계; 및 상기 제1금속 박막층 상에 제2금속 박막층을 형성하는 단계를 포함하는 제2공정 사이클 단계;를 포함하며, 상기 제1공정 사이클은, 상기 기판 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 제1금속 박막층을 형성하는 단계; 상기 기판 상에 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 제1트리트먼트 단계; 상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및 상기 기판 상에 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하는 제2트리트먼트 단계;를 포함하고,
상기 제2공정 사이클은, 상기 제1금속 박막층 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 제2금속 박막층을 형성하는 단계; 상기 제1금속 박막층 상에 산소(O2)를 포함하는 제3트리트먼트 가스를 분사하는 제3트리트먼트 단계; 상기 제3트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및 상기 제1금속 박막층 상에 수소(H2)를 포함하는 제4트리트먼트 가스를 분사하는 제4트리트먼트 단계;를 포함할 수 있다.
상기 제4트리트먼트 단계는, 제4트리트먼트 가스를 분사하기 전에 아르곤(Ar)을 포함하는 가스를 포함하는 단계를 포함할 수 있다.
본 발명의 실시예들에 의하면 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체로부터 기인한 리간드 불순물을 제거한 전극을 형성할 수 있다. 따라서 저항이 낮은 전극을 마련할 수 있다.
또한, 트렌치가 있는 기판 상에 전극을 형성하는데 있어서, 트렌치를 형성하는 내벽면에 형성되는 박막의 두께와 기판의 상부면에 형성된 박막의 두께 차이를 줄여 스텝 커버리지를 향상시킬 수 있다.
도 1은 본 발명의 제1실시예에 따른 전극이 기판 상에 형성된 상태를 도시한 도면이다.
도 2는 본 발명의 제1실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다.
도 3은 본 발명의 제1실시예에 따른 방법으로 전극을 형성하는 방법을 개념적으로 도시한 공정도이다.
도 4는 실시예의 제2실시예에 따른 방법으로 기판 상에 금속 박막층을 형성하는 방법을 나타낸 개념도이다.
도 5는 본 발명의 제3실시예에 따른 방법으로 전극을 형성하는 방법을 개념적으로 도시한 공정도이다.
도 6은 본 발명의 제3실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다.
도 7은 본 발명의 제4실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 구성요소를 지칭한다.
본 발명의 실시예들은 반도체 소자의 전극 형성 방법에 관한 것으로, 보다 상세하게는 전기적 특성이 향상된 반도체 소자의 전극 형성 방법에 관한 것이다. 더 구체적으로, 본 발명의 실시예들은 저 저항의 금속 박막층 형성 방법을 포함하는 반도체 소자의 전극 형성 방법에 관한 것이다.
구체적인 예로, 반도체 소자는 낸드 플래시(Nand flash)일 수 있고, 전극은 상기 낸드 플래시의 게이트 전극일 수 있다. 물론, 실시예들에 따른 방법으로 형성되는 전극은 게이트 전극에 한정되지 않으며 도전성이 필요한 다양한 구성 예를 들어 낸드 플래시의 워드라인(word line)일 수 있다. 그리고 실시예들에 따른 방법으로 형성되는 전극은 낸드 플래시에 한정되지 않으며, 다양한 반도체 소자에서 도전성이 필요한 박막에 적용될 수 있다.
[제1실시예]
도 1은 본 발명의 제1실시예에 따른 전극이 기판 상에 형성된 상태를 도시한 도면이다.
도 1을 참조하면, 전극(100)은 기판(S) 상에 형성될 수 있다. 여기서 기판(S)은 웨이퍼(wafer)일 수 있고, Si 웨이퍼(Silicon wafer), GaAs 웨이퍼(Gallium Aresenide wafer) 및 SiGe 웨이퍼(Silicon Germanium wafer) 중 어느 하나 일 수 있다.
전극(100)은 복수의 금속 박막층(110)이 적층되어 형성된 적층체일 수 있다. 그리고 복수의 금속 박막층(110) 각각은 저 저항의 금속인 루테늄(Ru)을 포함하는 전구체(precursor) 원료를 이용하여 형성된 것일 수 있다. 이에, 전극(100)은 루테늄(Ru)을 포함하는 전극이거나, 루테늄(Ru)으로 이루어진 전극일 수 있다.
또한, 금속 박막층은 몰리브덴(Mo)을 포함하는 전구체 원료를 이용하여 형성된 것일 수 있다. 이에 전극(100)은 몰리브덴(Mo)을 포함하는 전극일 수 있다.
그리고, 금속 박막층은 루테늄(Ru) 및 몰리브덴(Mo)을 포함하는 전구체 원료를 이용하여 형성될 수 있고, 이에 전극은 루테늄(Ru) 및 몰리브덴(Mo)을 포함하는 전극일 수 있다.
이하, 도 1 내지 도 3을 참조하여 본 발명의 제1실시예에 따른 방법으로 기판 상에 전극을 형성하는 방법을 설명한다.
도 2는 본 발명의 제1실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다. 도 3은 본 발명의 제1실시예에 따른 방법으로 전극을 형성하는 방법을 개념적으로 도시한 공정도이다.
도 2에서 'on'은 공정을 위한 원료를 분사한다는 의미일 수 있고, 'off'는 원료 분사를 중단 또는 종료한다는 의미일 수 있다.
도 2 및 도 3을 참조하면, 전극(100)을 형성하는 방법은, 기판(S)을 향해 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 어느 하나를 포함하는 전구체를 분사하여 금속 박막층(110)을 형성하는 단계(전구체 분사 단계(Ppr)), 산소(O2)를 포함하는 가스(이하, 제1트리트먼트 가스)를 분사하여 금속 박막층(110)으로부터 불순물을 제거하는 단계(제1트리트먼트 단계(Pt1)) 및 수소(H2), 아르곤(Ar) 및 헬륨(He) 중 적어도 하나를 포함하는 가스(이하, 제2트리트먼트 가스)를 분사하여 공정이 실시되는 챔버 내부의 온도를 상승시켜 금속 박막층(110)의 공극을 감소시키는 어닐링 단계(제2트리트먼트 단계(Pt2))을 포함한다.
또한, 전극(100)을 형성하는 방법은, 퍼지가스를 분사하는 단계를 포함할 수 있다. 즉, 전구체 분사 단계(Ppr)과 불순물 제거 단계(제1트리트먼트 단계(Pt1)) 사이에서 퍼지가스를 분사하는 제1퍼지 단계(Ppu1), 불순물 제거 단계(제1트리트먼트 단계(Pt1))과 어닐링 단계(제2트리트먼트 단계(Pt2)) 사이에서 퍼지가스를 분사하는 제2퍼지 단계(pu2), 어닐링 단계(제2트리트먼트 단계(Pt2))가 종료된 후에 퍼지가스를 분사하는 제3퍼지 단계(Ppu3)를 포함할 수 있다.
정리하면, 상술한 전극(100) 형성 방법은, 전구체 분사 단계(Ppr), 제1퍼지 단계(Ppu1), 불순물 제거 단계(제1트리트먼트 단계(Pt1)), 제2퍼지 단계(Ppu2), 어닐링 단계(제2트리트먼트 단계(Pt2)), 제3퍼지 단계(Ppu3)을 포함할 수 있다.
또한, 상술한 바와 같은 '전구체 분사 단계(Ppr) - 제1퍼지 단계(Ppu1) - 불순물 제거 단계(제1트리트먼트 단계(Pt1)) - 제2퍼지 단계(Ppu2) - 어닐링 단계(제2트리트먼트 단계(Pt2)) - 제3퍼지 단계(Ppu3)'를 금속 박막층(110)을 형성하기 위한 하나의 공정 사이클(cycle)(CY)로 할 수 있다. 그리고, 상술한 공정 사이클(CY)을 복수 번 반복하여 도 1과 같이 복수의 금속 박막층(110)을 증착 또는 적층한다. 이에, 복수의 금속 박막층(110)이 적층된 전극 또는 복수의 금속 박막층(110)을 포함하는 반도체 소자의 전극(100)이 형성된다. 이때, 공정 사이클(CY)의 반복 횟수는 형성하고자 하는 전극(100)의 목표 두께에 따라 조절될 수 있다.
상기에서는 하나의 공정 사이클(CY)이 제1 내지 제3퍼지 단계(Ppu1, Ppu2, Ppu3)을 모두 포함하는 것을 설명하였다. 그러나, 이에 한정되지 않고 제1 내지 제3퍼지 단계(Ppu1, Ppu2, Ppu3) 중 일부만을 실시하고 다른 일부를 생략할 수 있다. 이때, 제2퍼지 단계(Ppu2)을 실시하고, 제1 및 제3퍼지 단계(Ppu1, Ppu3) 중 적어도 하나를 생략하는 것이 바람직하다.
도 1에서는 복수의 공정 사이클(CY)에 의해 형성된 금속 박막층을 구분하기 위하여 각 금속 박막층(110)을 구분하여 나타내었지만, 적층된 복수의 금속 박막층(110)은 일체형일 수 있다.
그리고, 하나의 공정 사이클(CY)에 포함된 각 '단계'는 '과정'으로 표현될 수 있다. 즉, 공정 사이클(CY)이 '전구체 분사 과정(Ppr) - 제1퍼지 과정(Ppu1) - 불순물 제거 과정(제1트리트먼트 과정(Pt1)) - 제2퍼지 과정(Ppu2) - 어닐링 과정(제2트리트먼트 과정- 제3퍼지 과정(Ppu3)'을 포함하는 것으로 설명될 수 있다.
이하, 공정 사이클(CY)에 포함된 각 단계를 구체적으로 설명한다. 이때, 설명의 편의를 위하여, 산소(O2)를 포함하는 제1트리트먼트 가스를 분사여 불순물을 제거하는 단계(Pt1)를 '제1트리트먼트 단계(Pt1)'로 명명하여 설명한다. 또한, H2, Ar 및 He 중 적어도 하나를 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층(110)을 어닐링 하는 단계(Pt2)를 '제2트리트먼트 단계(Pt2)'로 명명하여 설명한다.
전구체(precursor)를 분사하는 단계(Ppr)에서는, Ru(루테늄) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체(precursor) 원료를 기판(S)이 장입되어 있는 챔버 내부로 분사한다.
Ru(루테늄)을 포함하는 전구체 원료는 예를 들어 에틸사이클로펜타디에닐 루테늄((EtCp)2Ru)(Bis(ethylcyclopentadienyl)ruthenium)를 포함하는 원료를 사용할 수 있다. 그리고, 몰리브덴(Mo)을 포함하는 전구체 원료는 예를 들어 몰리브덴 헥사카보닐(Molybdenum Hexacarbonyl), 몰리브덴펜타클로라이드(Molybdenum Pentachloride) 중 적어도 하나를 포함하는 원료를 사용할 수 있다. 여기서, 루테늄(Ru)을 포함하는 전구체 원료는 'Ru(루테늄)을 포함하는 소스'로 명명될 수 있고, 몰리브덴(Mo)을 포함하는 전구체 원료는 '몰리브덴(Mo)을 포함하는 소스'로 명명될 수 있다.
Ru(루테늄) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체 원료는 유기물일 수 있다. 그리고 이러한 전구체 원료는 고체상 또는 액상일 수 있다. 이에, 분사 전에 고체상 또는 액상 상태의 전구체를 가열하여 가스로 변환시킨 후, 가스 상태의 전구체를 기판(S)으로 분사시킨다. 전구체를 기판(S)을 향해 분사하면, 상기 전구체 또는 전구체에 포함된 금속 원소 즉, Ru(루테늄) 및 몰리브덴(Mo) 중 적어도 하나가 기판(S)으로 흡착된다. 이에, 도 3의 (a)와 같이 기판(S) 상에 금속 박막층(110)이 형성된다. 즉, 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 금속 박막층(110)이 형성된다.
전구체 분사 단계(Ppr)가 종료되면, 챔버 내부로 퍼지가스를 분사하여 퍼지한다(제1퍼지 단계(Ppu1)). 이때 퍼지가스로 예를 들어 Ar 가스를 사용할 수 있다.
한편, 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체 원료에는 그 재료의 종류에 따라 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드(ligand)가 포함될 수 있다. 이에, 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체 원료를 분사하여 증착된 금속 박막층(110)에는 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드(ligand)가 포함될 수 있다. 그리고 금속 박막층(110)에 포함된 C(탄소), H(수소) 및 O(산소)와 같은 리간드들은 저항을 증가시키는 불순물로 작용한다.
따라서 실시예에서는 전구체를 분사하여 금속 박막층(110)을 형성한 후에, 상기 금속 박막층(110)으로부터 불순물인 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드인 불순물을 제거하는 단계 즉, 제1트리트먼트 단계(Pt1)를 실시한다.
이하, 제1트리트먼트 단계(Pt1)에 대해 설명한다.
제1트리트먼트 단계(Pt1)는 금속 박막층(110)으로부터 불순물을 제거하는 단계이다. 이러한 제1트리트먼트 단계(Pt1)는 챔버 내부로 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 단계를 포함한다. 여기서 산소(O2)를 포함하는 제1트리트먼트 가스는 예를 들어 순수 산소(O2) 가스이거나, 공기(air)일 수 있다. 물론, 이에 한정되지 않고 산소(O2)를 포함하는 다양한 가스가 제1트리트먼트 가스로 사용될 수 있다.
제1트리트먼트 단계(Pt1)는 전구체를 분사하는 단계(Ppr) 및 퍼지가스를 분사하는 단계(제1퍼지 단계(Ppu1))가 종료된 후에 실시될 수 있다. 다른 말로 설명하면, 전구체를 분사하는 단계(Ppr) 및 퍼지가스를 분사하는 단계(제1퍼지 단계(Ppu1))를 순차적으로 진행한 후, 제1트리트먼트 가스를 분사하여 제1트리트먼트 단계(Pt1)를 실시할 수 있다
기판(S)이 장입되어 있는 또는 공정이 실시되는 챔버의 내부는 소정 온도 이상으로 가열된 상태이다. 즉, 챔버의 내부는 금속 박막층(110)을 형성하기 위한 공정 온도를 유지하고 있는 상태일 수 있고, 예를 들어 200℃ 내지 400℃ 일 수 있다. 더 구체적으로는 챔버의 내부는 그 온도가 250℃ 내지 300℃로 유지되게 조절될 수 있다. 챔버의 내부로 제1트리트먼트 가스를 분사하면, 금속 박막층(110)에 포함되어 있는 리간드 예를 들어 C(탄소) 리간드와 산소(O2)가 반응한다. 즉, 제1트리트먼트 가스에 포함된 산소(O2)와 C(탄소) 리간드 간의 연소 반응이 일어나, 금속 박막층(110)으로부터 C(탄소)가 떨어져 나간다. 다른 말로 설명하면, 금속 박막층(110)의 전구체에 포함되어 있는 C(탄소) 리간드 결합이 깨지면서 금속 박막층(110) 밖으로 떨어져 나간다. 이에 따라, 금속 박막층(110)에 포함된 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드 불순물의 함량이 감소하거나, 금속 박막층(110)으로부터 리간드 불순물이 제거될 수 있다.
상술한 바와 같이 제1트리트먼트 단계에서 챔버 내부의 온도는 200℃ 내지 400℃, 바람직하게는 250℃ 내지 300℃로 유지된다. 이에, 분사된 제1트리트먼트 가스에 포함된 산소(O2)와 리간드 간의 연소 반응이 원활이 일어날 수 있다. 즉, 챔버 내부의 열에 의해 제1트리트먼트 가스에 포함된 산소(O2)와 금속 박막층(110)에 포함된 리간드 간의 연소 반응이 원활이 일어날 수 있다. 따라서, 제1트리트먼트 가스에 포함된 산소(O2)와 금속 박막층(110) 또는 전구체에 포함된 리간드 간의 연소 반응은 열(Thermal)에 의한 반응인 것으로 설명될 수 있다.
제1트리트먼트 단계(Pt1)가 종료되면, 챔버 내부로 퍼지가스를 분사하여 퍼지한다(제2퍼지 단계(Ppu2)). 이때 퍼지가스는 제1퍼지 단계(Ppu1)에서 사용하는 가스와 동일한 가스를 사용할 수 있으며, 예를 들어 Ar 가스를 사용할 수 있다.
제2트리트먼트 단계(Pt2)는, 금속 박막층(110)을 어닐링하여 공극을 감소시키는 공정일 수 있다. 이러한 제2트리트먼트 단계(Pt2)는, 도 2 및 도 3의 (c)와 같이 챔버의 내부로 제2트리트먼트 가스를 분사하는 단계를 포함한다. 이때, 제2트리트먼트 가스는 수소(H2), 아르곤(Ar) 및 헬륨(He) 중 적어도 어느 하나의 가스를 분사하는 단계를 포함할 수 있다.
챔버의 내부로 제2트리트먼트 가스를 분사하는데 있어서, 제2트리트먼트 가스를 분사하기 전에 비해 챔버 내부의 압력이 상승되도록 분사한다. 이때, 챔버 내부의 압력이 5 torr 내지 7 torr가 되도록 상승하며, 제2트리트먼트 가스를 분사하는 시간은 10초 이상 유지되는 것이 바람직하다.
제2트리트먼트 가스를 분사하여 챔버 내부의 압력을 5 torr 내지 7 torr로 상승시키는 이유는, 챔버 내부의 온도를 상승시키기 위함이다. 예를 들어 설명하면, 제2트리트먼트 가스 분사 전 또는 제1트리트먼트 단계에서 챔버 내부의 온도는 250℃ 내지 300℃ 일 수 있다. 이후, 챔버 내부의 압력이 5 torr 내지 7 torr가 되도록 제2트리트먼트 가스를 분사하면, 챔버 내부의 온도는 350℃ 내지 400℃로 상승될 수 있다. 다시 말해 제2트리트먼트 가스 분사에 의한 압력 상승으로 챔버 내부의 온도가 상승될 수 있다. 그리고 이렇게 압력이 5 torr 내지 7 torr로 상승됨에 따라, 제2트리트먼트 단계에서의 챔버 내부의 온도는 제1트리트먼트 단계일 때에 비해 높게 조절될 수 있다.
챔버 내부의 온도가 상승됨에 따라 기판(S) 또는 상기 기판(S) 상에 증착된 금속 박막층(110)이 어닐링(annealing)될 수 있다. 이에, 금속 박막층(110)에 포함된 그레인(grain)이 팽창되며, 이로 인해 그레인(grain) 사이의 공극이 감소 또는 작아질 수 있다. 이러한 어닐링에 의해 공극이 감소함에 따라 금속 박막층(110) 또는 전극(100)의 저항이 감소될 수 있다. 즉, 저항이 낮은 금속 박막층(110) 또는 전극(100)을 형성할 수 있다.
한편, 제2트리트먼트 가스를 분사하는데 있어서 챔버 내부의 압력이 5 torr 미만으로 분사되는 경우, 챔버 내부의 온도가 낮아 금속 박막층(110)의 그레인(grain)이 팽창이 되지 않거나 팽창이 부족할 수 있다. 예를 들어, 챔버 내부의 온도가 350℃ 미만으로 낮아 금속 박막층(110)의 그레인(grain)이 팽창이 되지 않거나 팽창이 부족할 수 있다. 그리고, 금속 박막층(110)의 그레인(grain)을 팽창시키기 위해 챔버 내부의 온도를 350℃ 내지 400℃로 조절하는데, 이를 위한 챔버의 압력은 7 torr 이하이면 충분하다.
따라서, 제2트리트먼트 가스를 분사하는데 있어서 챔버 내부의 압력을 5 torr 내지 7 torr가 되도록 조절한다.
앞에서 설명한 바와 같이, 제2트리트먼트 단계에서 사용하는 제2트리트먼트 가스는 수소(H2), 아르곤(Ar) 및 헬륨(He) 중 적어도 어느 하나를 포함한다. 이때, 제2트리트먼트 가스로 수소(H2)를 포함하는 가스를 사용하는 경우, 제2트리트먼트 단계에서 금속 박막층(110)에 잔류하고 있는 불순물을 추가로 더 제거할 있다. 즉, 금속 박막층(110)에는 제1트리트먼트 단계에서 제거되지 못한 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드 불순물이 잔류하고 있을 수 있다. 이러한 리간드 불순물은 제2트리트먼트 가스에 포함된 수소(H2)에 의해 추가로 제거될 수 있다. 다시 말해, 제2트리트먼트 가스에 포함된 수소(H2)에 의해 금속 박막층(110)에 포함되어 있는 C(탄소), H(수소) 및 O(산소)의 중 적어도 하나의 리간드 결합이 깨지면서 제거될 수 있다. 이에 따라, 금속 박막층(110)에 함유된 C(탄소), H(수소) 및 O(산소) 중 적어도 하나의 리간드 불순물의 함량이 감소하거나, 제거될 수 있다.
제2트리트먼트 단계(Pt2)는 플라즈마를 발생시키는 단계를 포함할 수 있다. 즉, 제2트리트먼트 단계(Pt2)는 제2트리트먼트 가스를 분사하면서 제2트리트먼트 가스를 이용한 플라즈마를 발생시키는 단계를 포함할 수 있다. 보다 구체적으로 설명하면, 챔버 내부 또는 기판(S)을 향해 제2트리트먼트 가스를 분사하고, 플라즈마 발생을 위한 전원을 공급한다. 이때 예를 들어 챔버, 챔버 내부에서 기판(S)이 안착되어 있는 서셉터 및 챔버 내부로 제2트리트먼트 가스를 분사하는 분사부 중 적어도 하나에 RF(Radio Frequency) 전원을 인가한다. 이에, 챔버의 내부에 수소(H2), 아르곤(Ar) 및 헬륨(He) 중 적어도 하나를 포함하는 플라즈마가 생성될 수 있다.
플라즈마는 금속 박막층(110)의 어닐링을 촉진시킬 수 있다. 다시 말해 플라즈마를 발생시키지 않고 제2트리트먼트 가스를 분사하는 경우에 비해, 제2트리트먼트 가스를 분사하면서 플라즈마를 발생시키는 경우, 어닐링 반응이 보다 빨리 일어나 어닐링을 위한 시간을 단축시킬 수 있다.
제2트리트먼트 단계(Pt2)가 종료되면, 챔버 내부로 퍼지가스를 분사하여 퍼지한다(제3퍼지 단계(Ppu3)). 이때 퍼지가스는 제1 및 제2퍼지 단계(Ppu1, Ppu2)에서 사용하는 가스와 동일한 가스를 사용할 수 있으며, 예를 들어 Ar 가스를 사용할 수 있다.
이후, 상술한 바와 같은 '전구체 분사 단계(Ppr) - 제1퍼지 단계(Ppu1) - 제1트리트먼트 단계(Pt1) - 제2퍼지 단계(Ppu2) - 제2트리트먼트 단계(Pt2) - 제3퍼지 단계(Ppu3)'를 포함하는 공정 사이클(CY)을 복수회 반복하여 실시한다. 이에, 도 1과 같이 기판(S) 상에 복수의 금속 박막층(110)이 적층되어 형성되며, 이에 따라 소정 두께의 전극(100)이 형성된다.
[제2실시]
도 4는 실시예의 제2실시예에 따른 방법으로 기판 상에 금속 박막층을 형성하는 방법을 나타낸 개념도이다.
도 4에서 'on'은 공정을 위한 원료를 분사하거나, 플라즈마를 발생시킨다는 의미일 수 있다. 그리고 'off'는 원료 분사 또는 플라즈마 발생을 중단 또는 종료한다는 의미일 수 있다.
제2실시예에 따른 방법은 제1실시예와 전구체 분사 단계(Ppr), 제1 내지 제3퍼지 단계(Ppu1 내지 Ppu3), 제2트리트먼트 단계(Pt2)가 동일하고, 제1트리트먼트 단계(Pt1)와 상이할 수 있다.
*제2실시예에 따른 제1트리트먼트 단계(Pt1)는 플라즈마를 발생시키는 단계를 포함할 수 있다. 즉, 제1트리트먼트 단계(Pt1)는 도 4에 도시된 바와 같이 제1트리트먼트 가스를 분사하는 단계 및 분사 되는 제1트리트먼트 가스를 이용하여 산소 플라즈마를 발생시키는 단계를 포함할 수 있다. 보다 구체적으로 설명하면, 챔버 내부 또는 기판(S)을 향해 제1트리트먼트 가스를 분사하고, 플라즈마 발생을 위한 전원을 공급한다. 이때 예를 들어 챔버, 챔버 내부에서 기판(S)이 안착되어 있는 서셉터 및 챔버 내부로 가스를 분사하는 분사부 중 적어도 하나에 RF(Radio Frequency) 전원을 인가한다. 이때 플라즈마 발생을 위해 인가되는 전력은 500 W 내지 1000 W(500 와트 내지 1000 와트)로 조절되는 것이 바람직하다. 이에 챔버의 내부에 플라즈마가 발생된다. 이때, 제1트리트먼트 가스는 산소(O2)를 포함하므로, 제1트리트먼트 단계에서 발생되는 플라즈마는 '산소 플라즈마'일 수 있다.
제1트리트먼트 단계(Pt1)에서 산소 플라즈마가 발생되면, 금속 박막층(110)에 포함된 리간드 불순물과 산소(O2) 간의 연소 반응이 촉진될 수 있다. 즉, 챔버 내부의 온도가 250℃ 내지 300℃로 유지됨에 따라 챔버 내부의 열에 의해 리간드 불순물과 산소(O2) 간의 연소 반응이 일어나는데, 여기에 더해 산소 플라즈마를 발생시킴에 따라 리간드 불순물과 산소(O2) 간의 연소 반응이 촉진될 수 있다. 따라서, 제1트리트먼트 가스만을 분사하는 경우에 비해 제1트리트먼트 가스를 분사하면서 플라즈마를 발생시키는 경우, 불순물 제거량 및 제거 속도 중 적어도 하나를 증가시킬 수 있다. 이에 전구체로부터 기인한 리간드 불순물을 보다 효과적으로 제거할 수 있다.
한편, 제1트리트먼트 단계(Ppr)에서 인가되는 전력이 500 W 미만인 경우, 산소 플라즈마에 의한 연소 반응 촉진 효과가 미미할 수 있다. 그리고 제1트리트먼트 단계(Ppr)에서 인가되는 전력이 1000 W를 초과하는 경우, 산소 플라즈마에 의해 금속 박막층(110)이 기상 또는 가스 상인 금속 산화물 예를 들어 RuO4(gas)로 변환되는 양이 많아, 금속 박막층(110)이 다량 에칭될 수 있다. 이에, 공정 사이클(CY)을 복수회 실시하여 복수의 금속 박막층(110)을 적층하여 전극(100)을 형성하는데 있어서, 목표 두께로 전극(100)을 형성을 위한 시간이 장시간 소요되는 문제가 발생할 수 있다. 따라서, 제1트리트먼트 단계(Ppr)에서 산소 플라즈마를 발생시키는데 있어서 500 W 내지 1000 W의 전력을 인가한다.
[제3실시예]
도 5는 본 발명의 제3실시예에 따른 방법으로 전극을 형성하는 방법을 개념적으로 도시한 공정도이다. 도 6은 본 발명의 제3실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다.
도 6에서 'on'은 공정을 위한 원료를 분사하거나, 플라즈마를 발생시킨다는 의미일 수 있다. 그리고 'off'는 원료 분사 또는 플라즈마 발생을 중단 또는 종료한다는 의미일 수 있다.
상술한 제1 및 제2실시예에서는 평면의 기판(S) 상에 금속 박막층(110)을 증착하여 전극(100)을 형성하는 것을 설명하였다. 하지만 이에 한정되지 않고, 도 5와 같이 트렌치(TR)가 마련된 기판(S)에 금속 박막층(110)을 증착하여 전극(100)을 형성할 수 있다.
한편, 트렌치(TR)를 가지는 기판(S) 상에 금속 박막층(110)을 형성하는 경우, 도 5의 (a)와 같이 트렌치(TR)를 형성하는 내벽면에 증착된 금속 박막층(110)의 두께(T2, T3)에 비해 기판(S)의 상부면 상에 증착된 금속 박막층(110)의 두께(T1)가 두꺼운 오버행(over-hang)이 발생되는 문제가 있다. 다시 말해, 전구체를 분사하는 단계(Ppr) 및 제1처리 공정(Pt1)이 종료된 상태일 때, 기판(S) 상에 증착된 금속 박막층(110)의 두께가 위치별로 다를 수 있다. 이때, 도 5의 (a)와 같이 기판(S)의 상부면에 증착된 두께(T1)와 트렌치(TR)를 형성하는 내벽면에 증착된 두께(T2, T3)가 다를 수 있다. 이에, 트렌치(TR)가 있는 기판(S) 상에 금속 박막층(110)을 증착하여 전극(100)을 형성하는데 있어서, 오버행을 줄이거나 오버행 발생을 방지할 필요가 있다.
제3실시예에 따른 방법으로 금속 박막층(110)을 증착하는 경우, 오버행을 감소시키거나 오버행 발생을 방지할 수 있다. 즉, 트렌치(TR)를 형성하는 내벽면에 증착된 금속 박막층(110)의 두께(T2, T3)와 기판(S)의 상부면 상에 증착된 금속 박막층(110)의 두께(T1) 차이를 줄여, 스텝커버리지(step coverage)를 향상시킬 수 있다.
이하, 도 5 및 도 6을 참조하여 제3실시예에 따른 방법으로 전극을 형성하는 방법을 설명한다.
도 6을 참조하면, 제3실시예에 따른 전극 형성 방법은, 기판(S)을 향해 루테늄(Ru) 및 몰리브덴(Mo)을 포함하는 전구체를 분사하여 금속 박막층(110)을 형성하는 전구체 분사 단계(Ppr), 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하여 금속 박막층(110)으로부터 불순물을 제거하는 제1트리트먼트 단계(Pt1), 제1트리트먼트 가스를 분사하면서 산소 플라즈마를 발생시켜 기판(S)의 상부면 상에 증착된 금속 박막층의 일부를 에칭시키는 단계(Pplasma-1), 수소(H2)를 포함하는 제2트리트먼트 가스를 분사하여 에칭 단계(Pplasma-1)에서 생성된 금속 산화물(solid)를 금속으로 환원시키는 단계(Pt2)을 포함할 수 있다.
여기서, 금속 산화물(solid)를 금속으로 환원시키는 단계는, 상술한 제1 및 제2실시예와 같이 수소(H2)를 포함하는 제2트리트먼트 가스를 분사하므로, '제2트리트먼트 단계(Pt2)'으로 명명한다. 그리고, 이하에서는 설명의 편의를 위하여 제1트리트먼트 가스를 분사하면서 플라즈마를 발생시켜 기판(S)의 상부면 상에 증착된 금속 박막층(110)의 일부를 에칭시키는 단계(Pplasma-1)를 '제1플라즈마 트리트먼트 단계(Pplasma-1)'로 명명한다(도 5의 b)).
따라서, 제3실시예에 따른 전극 형성 방법은 전구체 분사 단계(Ppr), 제1퍼지 단계(Ppu1), 제1트리트먼트 단계(Pt1), 제1플라즈마 트리트먼트 단계(Pplasma-1), 제2퍼지 단계(Ppu2), 제2트리트먼트 단계(Pt2), 제3퍼지 단계(Ppu3)를 포함할 수 있다.
또한, 제3실시예에 따른 전극 형성 방법에 있어서 하나의 공정 사이클(CY)은 '전구체 분사 단계(Ppr) - 제1퍼지 단계(Ppu1) - 제1트리트먼트 단계(Pt1) - 제1플라즈마 트리트먼트 단계(Pplasma-1) - 제2퍼지 단계(Ppu2) - 제2트리트먼트 단계(Pt2) - 제3퍼지 단계(Ppu3)'를 포함할 수 있고, 이 공정 사이클(CY)을 복수회 반복하여 실시할 수 있다.
전구체 분사 단계(Ppr), 제1 내지 제3퍼지 단계(Ppu1 내지 Ppu3)은 제1 및 제2실시예와 유사하므로, 이에 대한 설명은 생략한다.
앞서 설명한 제2실시예에 따른 제1트리트먼트 단계(Pt1)는 제1트리트먼트 가스 분사 단계 및 산소 플라즈마 발생 단계를 포함한다. 즉, 도 4에 도시된 바와 같이 제2실시예에 따른 제1트리트먼트 단계(Pt1)는 제1트리트먼트 가스를 분사하는 동안 산소 플라즈마를 계속 발생시킨다. 다시 말해, 제1트리트먼트 가스를 분사하는 동안 플라즈마 발생을 위한 전력을 기판(S)이 안착되어 있는 서셉터 및 챔버 내부로 제1트리트먼트 가스를 분사하는 분사부 중 적어도 하나에 RF(Radio Frequency) 전원을 인가한다. 따라서 제1트리트먼트 가스를 분사하는 동안 챔버 내부에 산소(O2) 플라즈마가 발생된다.
그러나 제3실시예에 따른 제1트리트먼트 단계(Pt1)는 제1트리트먼트 가스를 분사하는 단계를 포함하고, 플라즈마를 발생시키는 단계는 포함하지 않는다. 그리고, 제1트리트먼트 단계(Pt1) 후에 실시되는 제1플라즈마 트리트먼트 단계(Pplasma-1)는 제1트리트먼트 분사 단계 및 제1트리트먼트 가스를 이용한 플라즈마 발생 단계를 포함한다. 다시 말해, 제1트리트먼트 가스의 분사가 시작된 후 제1설정 시간 동안은 플라즈마를 발생시키지 않다가(제1트리트먼트 단계(Pt1)), 상기 제1설정 시간이 경과되는 시점부터 제2설정 시간 동안은 제1트리트먼트 가스를 분사하면서 산소 플라즈마를 동시에 발생시킨다(제1플라즈마 트리트먼트 단계(Pplasma-1)). 이를 다른 말로 설명하면, 제1트리트먼트 가스의 분사가 시작된 후 제1설정 시간 동안은 플라즈마 발생을 위한 전력을 인가하지 않다가(제1트리트먼트 단계(Pt1)), 상기 제1설정 시간이 경과되는 시점부터 제2설정 시간 동안은 제1트리트먼트 가스를 분사하면서 플라즈마 발생을 위한 전력을 인가하여 산소 플라즈마를 발생시킨다(제1플라즈마 트리트먼트 단계(Pplasma-1)). 이렇게 제1트리트먼트 가스를 분사하면서 플라즈마를 동시에 발생시키는 단계를 제3실시예에서는 제1플라즈마 트리트먼트 단계(Pplasma-1)로 정의하였다.
이하, 도 5를 참조하여 제3실시예에 따른 방법을 보다 구체적으로 설명한다.
기판(S) 상에 전구체를 분사한 후 산소(O2)를 포함하는 제1트리트먼트 가스가 분사되었을 때, 기판(S) 상에 형성된 금속 박막층(110)은 예를 들어 도 5의 (a)와 같을 수 있다. 즉, 트렌치(TR)를 형성하는 내벽면에 증착된 금속 박막층(110)의 두께(T2, T3)에 비해 기판(S)의 상부면 상에 증착된 금속 박막층의 두께(T1)가 두꺼운 상태일 수 있다.
제1트리트먼트 가스를 분사하여 불순물을 제거하는 제1트리트먼트 단계(Pt1)가 종료되면, 제1플라즈마 트리트먼트 단계(Pplasma-1)를 실시한다. 즉, 제1트리트먼트 가스를 분사하면서 상기 제1트리트먼트 가스를 이용한 플라즈마를 발생시키는 제1플라즈마 트리트먼트 단계(Pplasma-1)를 실시한다. 이를 위해, 챔버 내부로 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하면서 기판(S)이 안착되어 있는 서셉터 및 챔버 내부로 가스를 분사하는 분사부 중 적어도 하나에 RF(Radio Frequency) 전원을 인가한다. 이에 챔버 내부에 도 5의 (b)와 같이 산소 플라즈마가 발생된다.
챔버 내부에 산소 플라즈마가 발생되면 금속 박막층(110)에 포함된 금속과 산소(O2) 간의 반응이 일어난다. 그리고 이 반응에 의해 고상(solid) 상태의 금속 산화물과 가스(gas) 상태의 금속 산화물이 생성된다. 예를 들어, 챔버 내부에 산소 플라즈마가 발생되면 금속 박막층(110)에 포함된 Ru(루테늄)과 산소(O2) 간의 반응이 일어난다. 이에, 고상인 RuO2(solid)와 기상인 RuO4(gas)가 생성된다(도 5의 (b) 참고). 이 중 고상인 RuO2(solid)은 금속 박막층(110)에 남아있게 되고, RuO4(gas)가 가스 상태로 금속 박막층(110)으로부터 제거된다. 즉, 금속 박막층(110)의 일부가 가스 상태의 금속 산화물 예컨대 RuO4로 변환되어 제거되는 에칭(etching) 반응이 일어난다.
이러한 에칭(etching)은 주로 기판(S)의 상부면에 증착된 금속 박막층(110)에서 일어난다. 이는 기판(S)의 상측에서 산소 플라즈마가 발생됨에 따라, 트렌치(TR)를 형성하는 내벽면에 형성된 금속 박막층(110)에 비해 기판(S)의 상부면에 형성된 금속 박막층(110)이 상기 산소 플라즈마와 더 가깝기 때문이다. 이에, 산소 플라즈마가 발생되면 트렌치(TR)를 형성하는 내벽면에 형성된 금속 박막층(110)이 에칭되는 속도 및 에칭되는 두께에 비해 기판의 상부면에 형성된 금속 박막층(110)이 에칭되는 속도 및 에칭 두께가 크다. 따라서, 산소 플라즈마를 발생시키는 제1플라즈마 트리트먼트 단계(Pplasma-1)를 실시하면 도 5의 (c)와 같이 트렌치(TR)를 형성하는 내벽면에 형성된 금속 박막층(110)의 두께(T2, T3)와 기판(S)의 상부면에 형성된 금속 박막층(110)의 두께(T1) 차이가 감소한다.
제2트리트먼트 단계(Pt2)는 제1플라즈마 트리트먼트 단계(Pplasma-1) 이후에 실시되는 공정으로서, 제1플라즈마 트리트먼트 단계(Pplasma-1)에서 생성된 금속 산화물을 금속으로 환원시키는 공정이다. 이러한 제2트리트먼트 단계(Pt2)는 수소(H2)를 포함하는 제2트리트먼트 가스를 분사하는 단계를 포함한다. 수소(H2)를 포함하는 제2트리트먼트 가스가 분사되면, 금속 박막층에 있는 금속 산화물이 수소와 반응하여 다시 금속으로 환원 된다. 예를 들어 설명하면 제1플라즈마 트리트먼트 단계(Pplasma-1) 시에 생성된 금속 산화물인 RuO2(Solid)가 수소(H2)와 반응하여 금속인 Ru(루테늄)으로 환원된다.
그리고 제2트리트먼트 단계(Pt2)을 실시하는데 있어서 플라즈마를 발생시킬 수 있다. 즉, 제2트리트먼트 단계(Pt2)는 제2트리트먼트 가스를 분사하는 단계 및 상기 제2트리트먼트 가스를 이용하여 플라즈마를 발생시키는 단계를 포함할 수 있다. 이때 제2트리트먼트 가스는 수소(H2)를 포함하므로, 제2트리트먼트 단계(Pt2)에서 발생되는 플라즈마는 수소 플라즈마인 것으로 설명될 수 있다. 그리고 수소 플라즈마는 금속 산화물을 금속으로 환원시키는 반응을 촉진시킬 수 있다. 이에, 금속 산화물을 금속으로 환원 시간을 단축시킬 수 있다.
상술한 바와 같이 금속 산화물을 생성시키는 제1플라즈마 트리트먼트 단계(Pplasma-1)는 제2트리트먼트 단계(Pt2) 이전에 실시된다. 따라서, 제1플라즈마 트리트먼트 단계(Pplasma-1)는 제2트리트먼트 단계(Pt2) 이전에 실시되는 '프리 트리트먼트 단계(Pplasma-1)'로 명명될 수 있다.
[제4실시예]
도 7은 본 발명의 제4실시예에 따른 방법으로 전극을 형성하는 방법을 설명하기 위한 개념도이다.
도 7에서 'on'은 공정을 위한 원료를 분사하거나, 플라즈마를 발생시킨다는 의미일 수 있다. 그리고 'off'는 원료 분사 또는 플라즈마 발생을 중단 또는 종료한다는 의미일 수 있다.
제4실시예는 상술한 제3실시예와 유사하다. 다만, 제4실시예는 도 7에 도시된 바와 같이 제1플라즈마 트리트먼트 단계(Pplasma-1)를 실시한 후에 제1트리트먼트 단계(Pt1)를 실시한다. 즉, 제4실시예에 따른 공정 사이클(CY)은 '전구체 분사 단계(Ppr) - 제1퍼지 단계(Ppu1) - 제1플라즈마 트리트먼트 단계(Pplasma-1) - 제1트리트먼트 단계(Pt1) - 제2퍼지 단계(Ppu2) - 제2트리트먼트 단계(Pt2) - 제3퍼지 단계(Ppu3)' 순서로 실시된다.
이처럼 산소 플라즈마를 형성하는 제3트리트먼트 단계(Pt3)를 실시한 후에 산소(O2)를 포함하는 가스를 분사하는 제1트리트먼트 단계(Pt1)를 실시하는 경우, 제1트리트먼트 단계(Pt1)에서 리간드 불순물을 제거하는 시간을 단축시킬 수 있다. 즉, 제1트리트먼트 단계(Pt1)를 먼저 실시한 후 제1플라즈마 트리트먼트 단계(Pplasma-1)를 실시하는 제3실시예에 비해, 제1플라즈마 트리트먼트 단계(Pplasma-1)를 먼저 실시한 후에 제1트리트먼트 단계(Pt1)를 실시하는 제4실시예가 리간드 불순물을 제거하는 속도가 향상된다.
상기에서는 제3 및 제4실시예를 트렌치(TR)가 마련된 기판(S) 상에 금속 박막층(110)을 형성하는데 사용하는 것을 설명하였다. 하지만 이에 한정되지 않고 트렌치(TR)가 없는 즉, 평면 상에 기판(S) 상에 금속 박막층(110)을 형성하는데 있어서 상술한 제3 및 제4실시예 중 어느 하나를 적용하여 형성할 수 있다.
그리고, 상기에서는 기판(S)의 상면에 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 금속 박막층(110)을 형성하는 것을 설명하였다. 하지만, 이에 한정되지 않고 기판(S) 상면에 소정의 박막(이하, 하지층)이 형성되고, 상기 하지층의 상부에 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 금속 박막층(110)을 형성할 수 있다. 이때 하지층은 예를 들어 반도체 소자의 활성층(Active layer)일 수 있다.
하지층이 IGZO(Indium Gallium Zinc Oxide)인 경우, 제2트리트먼트 단계(Pt2)에서 분사되는 제2트리트먼트 가스는 수소(H2)를 포함하지 않는 가스를 사용하는 것이 바람직하다. 이는, IGZO가 수소(H2)에 노출되는 경우 상기 하지층의 전기적 특성이 저하될 수 있기 때문이다. 따라서, 하지층이 IGZO인 경우 수소(H2)를 포함하지 않는 가스 예를 들어 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 사용하여 제2트리트먼트 단계(Pt2)를 실시하는 것이 바람직하다.
또한, 하지층이 IGZO(Indium Gallium Zinc Oxide)인 경우, 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하는 제2트리트먼트 단계(Pt2)를 종료한 후에, 수소(H2)를 포함하는 가스(이하, 포스트 트리트먼트 가스)를 분사하는 포스트 트리트먼트 단계를 실시할 수 있다.
정리하면, 하지층이 IGZO(Indium Gallium Zinc Oxide)인 경우, 공정 사이클(CY)은 '전구체 분사 단계(Ppr) - 제1퍼지 단계(Ppu1) - 제1트리트먼트 단계(Pt1) - 제2퍼지 단계(Ppu2) - 제2트리트먼트 단계(Pt2) - 포스트 트리트먼트 단계 - 제3퍼지 단계(Ppu3)' 순서로 실시될 수 있다. 여기서 제2트리트먼트 단계(Pt2)는 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하는 단계이며, 포스트 트리트먼트 단계는 수소(H2)를 포함하는 가스인 포스트 트리트먼트 가스를 분사하는 단계이다. 이처럼 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사한 후에 수소(H2)를 포스트 트리트먼트 가스를 분사(포스트 트리트먼트 단계)를 실시하므로, 수소(H2)에 의한 하지막 손상을 억제할 수 있다.
상술한 실시예에서는 동일한 단계를 포함하는 공정 사이클(CY)을 복수회 반복하는 것을 설명하였다. 하지만, 이에 한정되지 않고 서로 다른 가스를 사용하는 복수의 공정 사이클을 교대로 실시할 있다.
보다 구체적으로 설명하면, 전극을 형성하는 방법은 제1공정 사이클(CY1) 및 제2공정 사이클(CY2)을 포함할 수 있다. 여기서, 제1공정 사이클(CY1)은 기판(S)을 향해 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 어느 하나를 포함하는 전구체를 분사하여 제1금속 박막층을 형성하는 전구체 분사 단계(Ppr), 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하여 제1금속 박막층으로부터 불순물을 제거하는 제1트리트먼트 단계(Pt1), 제1트리트먼트 가스의 분사를 중단한 후 퍼지가스를 분사하는 퍼지 단계(Ppu2), 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하는 제2트리트먼트 단계(Pt2))를 포함할 수 있다. 그리고 제2공정 사이클(CY2)은 제1금속 박막층 상에 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 어느 하나를 포함하는 전구체를 분사하여 제2금속 박막층을 형성하는 전구체 분사 단계(Ppr), 산소(O2)를 포함하는 가스(이하, 제3트리트먼트 가스)를 분사하여 제2금속 박막층으로부터 불순물을 제거하는 제3트리트먼트 단계(Pt3), 제3트리트먼트 가스의 분사를 중단한 후 퍼지가스를 분사하는 퍼지 단계(Ppu2), 제2금속 박막층 상에 수소(H2)를 포함하는 제4트리트먼트 가스를 분사하는 제4트리트먼트 단계(Pt4))를 포함한다.
제2공정 사이클(CY2)에서 사용하는 제3트리트먼트 가스는 상술한 바와 같이 산소(O2)를 포함하는 가스로서, 제1공정 사이클(CY1)에서 사용하는 제1트리트먼트 가스와 동일한 가스일 수 있다.
그리고, 제2공정 사이클(CY2)은 퍼지 단계(Ppu2)와 제4트리트먼트 단계(Pt4) 사이에 아르곤(Ar)을 포함하는 가스를 분사하는 단계를 더 포함할 수 있다.
이와 같이 실시예들에 의하면 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체로부터 기인한 리간드 불순물을 제거한 전극을 형성할 수 있다. 따라서 저항이 낮은 전극(100)을 마련할 수 있다.
또한, 트렌치(TR)가 있는 기판(S) 상에 전극(100)을 형성하는데 있어서, 트렌치(TR)를 형성하는 내벽면에 형성되는 금속 박막층(110)의 두께와 기판(S)의 상부면에 형성된 금속 박막층(110)의 두께 차이를 줄여 스텝 커버리지를 향상시킬 수 있다.
본 발명의 실시예들에 의하면 루테늄(Ru) 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 전구체로부터 기인한 리간드 불순물을 제거한 전극을 형성할 수 있다. 따라서 저항이 낮은 전극을 마련할 수 있다.
또한, 트렌치가 있는 기판 상에 전극을 형성하는데 있어서, 트렌치를 형성하는 내벽면에 형성되는 박막의 두께와 기판의 상부면에 형성된 박막의 두께 차이를 줄여 스텝 커버리지를 향상시킬 수 있다.

Claims (13)

  1. 기판을 준비하는 단계;
    상기 기판 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 금속 박막층을 형성하는 단계;
    상기 기판 상에 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 제1트리트먼트 단계;
    상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및
    상기 기판 상에 수소(H2), 아르곤(Ar) 및 헬륨(H2) 중 적어도 하나를 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층을 어닐링하는 제2트리트먼트 단계;를 포함하는 전극 형성 방법.
  2. 청구항 1에 있어서,
    상기 제1트리트먼트 단계 이후에 실시되며, 상기 기판 상에 산소(O2) 플라즈마를 형성하는 제1플라즈마 트리트먼트 단계를 포함하는 전극 형성 방법.
  3. 청구항 1에 있어서,
    상기 제1트리트먼트 단계 이전에 실시되며, 상기 기판 상에 산소(O2) 플라즈마를 형성하는 제1플라즈마 트리트먼트 단계를 포함하는 전극 형성 방법.
  4. 청구항 1에 있어서,
    상기 금속 박막층을 형성하는 단계, 제1트리트먼트 단계, 퍼지 단계 및 제2트리트먼트 단계를 복수회 반복하는 전극 형성 방법.
  5. 청구항 1에 있어서,
    상기 제2트리트먼트 단계는 상기 제1트리트먼트 단계보다 공정 온도가 더 높은 전극 형성 방법.
  6. 청구항 1에 있어서,
    상기 제2트리트먼트 단계의 압력은 5 Torr 내지 7 Torr인 전극 형성 방법.
  7. 청구항 1에 있어서,
    상기 기판은 상부면으로부터 하측으로 함몰된 트렌치(trench)를 포함하고,
    상기 금속 박막층이 형성된 기판을 산소 플라즈마에 노출시켜, 금속 박막층의 일부를 기상의 금속 산화물로 변환시켜, 상기 금속 박막층을 에칭하는 프리 트리트먼트 단계;를 포함하고,
    상기 프리 트리트먼트 단계는, 상기 제1트리트먼트 단계와 퍼지 단계 사이에 실시하거나, 상기 금속 박막층 형성 단계와 상기 제1트리트먼트 단계 사이에 실시하는 전극 형성 방법.
  8. 청구항 7에 있어서,
    상기 프리 트리트먼트 단계에서 금속 박막층의 일부를 기상의 금속 산화물로 변환시킬 때, 금속 박막층의 다른 일부를 고상의 금속 산화물로 변환시키며,
    상기 제2트리트먼트 단계에서 분사되는 상기 제2트리트먼트 가스는 수소(H2)를 포함하고,
    수소(H2)를 포함하는 제2트리트먼트 가스를 분사하는 상기 제2트리트먼트 단계는, 상기 제2트리트먼트 가스에 포함된 수소(H2)와 상기 금속 박막층에 포함된 고상의 금속 산화물을 반응시켜, 상기 고상의 금속 산화물을 금속으로 환원시키는 단계를 포함하는 전극 형성 방법.
  9. 청구항 8에 있어서,
    상기 제2트리트먼트 단계는, 수소(H2)를 포함하는 제2트리트먼트 가스를 이용하여 수소 플라즈마를 발생시키는 단계를 포함하는 전극 형성 방법.
  10. 일면에 IGZO(Indium Gallium Zinc Oxide) 박막층이 형성된 기판을 준비하는 단계;
    상기 IGZO 박막층 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 금속 박막층을 형성하는 단계;
    상기 기판으로 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하여 상기 금속 박막층에 포함된 불순물을 제거하는 제1트리트먼트 단계;
    상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및
    상기 기판 상에 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하여 금속 박막층을 어닐링하는 제2트리트먼트 단계;를 포함하는 전극 형성 방법.
  11. 청구항 10에 있어서,
    상기 제2트리트먼트 단계 이후에 실시되며, 상기 기판 상에 수소(H2)를 포함하는 포스트 트리트먼트 가스를 분사하는 포스트 트리트먼트 단계를 포함하는 전극 형성 방법.
  12. 기판을 준비하는 단계;
    상기 기판 상에 제1금속 박막층을 형성하는 단계를 포함하는 제1공정 사이클 단계; 및
    상기 제1금속 박막층 상에 제2금속 박막층을 형성하는 단계를 포함하는 제2공정 사이클 단계;를 포함하며,
    상기 제1공정 사이클은,
    상기 기판 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 제1금속 박막층을 형성하는 단계;
    상기 기판 상에 산소(O2)를 포함하는 제1트리트먼트 가스를 분사하는 제1트리트먼트 단계;
    상기 제1트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및
    상기 기판 상에 아르곤(Ar)을 포함하는 제2트리트먼트 가스를 분사하는 제2트리트먼트 단계;를 포함하고,
    상기 제2공정 사이클은,
    상기 제1금속 박막층 상에 루테늄(Ru)을 포함하는 전구체(precursor)를 분사하여 제2금속 박막층을 형성하는 단계;
    상기 제1금속 박막층 상에 산소(O2)를 포함하는 제3트리트먼트 가스를 분사하는 제3트리트먼트 단계;
    상기 제3트리트먼트 가스의 분사를 중단한 한 후 퍼지가스를 분사하는 퍼지 단계; 및
    상기 제1금속 박막층 상에 수소(H2)를 포함하는 제4트리트먼트 가스를 분사하는 제4트리트먼트 단계;를 포함하는 전극 형성 방법.
  13. 청구항 12에 있어서,
    상기 제4트리트먼트 단계는, 제4트리트먼트 가스를 분사하기 전에 아르곤(Ar)을 포함하는 가스를 포함하는 단계를 포함하는 전극 형성 방법.
PCT/KR2023/016538 2022-10-25 2023-10-24 반도체 소자의 전극 형성 방법 WO2024090945A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0138373 2022-10-25
KR1020220138373A KR20240057762A (ko) 2022-10-25 2022-10-25 반도체 소자의 전극 형성 방법

Publications (1)

Publication Number Publication Date
WO2024090945A1 true WO2024090945A1 (ko) 2024-05-02

Family

ID=90831236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016538 WO2024090945A1 (ko) 2022-10-25 2023-10-24 반도체 소자의 전극 형성 방법

Country Status (2)

Country Link
KR (1) KR20240057762A (ko)
WO (1) WO2024090945A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082543A (ko) * 2008-01-28 2009-07-31 (주)디엔에프 신규 루테늄 화합물 및 이를 이용한 박막 증착 방법
KR20180117357A (ko) * 2017-04-19 2018-10-29 영남대학교 산학협력단 루테늄 박막 형성 방법
KR20190049587A (ko) * 2017-11-01 2019-05-09 (주)디엔에프 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
KR20210059791A (ko) * 2018-11-15 2021-05-25 엔테그리스, 아이엔씨. 루테늄 전구체를 사용하는 peald 공정
WO2022030348A1 (ja) * 2020-08-04 2022-02-10 嶺南大學校 産學協力團 ルテニウム薄膜の形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942958B1 (ko) 2006-09-29 2010-02-17 주식회사 하이닉스반도체 박막 형성방법 및 이를 이용한 반도체 소자의 커패시터형성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082543A (ko) * 2008-01-28 2009-07-31 (주)디엔에프 신규 루테늄 화합물 및 이를 이용한 박막 증착 방법
KR20180117357A (ko) * 2017-04-19 2018-10-29 영남대학교 산학협력단 루테늄 박막 형성 방법
KR20190049587A (ko) * 2017-11-01 2019-05-09 (주)디엔에프 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
KR20210059791A (ko) * 2018-11-15 2021-05-25 엔테그리스, 아이엔씨. 루테늄 전구체를 사용하는 peald 공정
WO2022030348A1 (ja) * 2020-08-04 2022-02-10 嶺南大學校 産學協力團 ルテニウム薄膜の形成方法

Also Published As

Publication number Publication date
KR20240057762A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2012018210A2 (ko) 사이클릭 박막 증착 방법
JPH04226025A (ja) シリコン半導体ウエーハ上にケイ化チタンの導電層を形成する方法
JP2001267316A (ja) 半導体素子で用いるアルミニウム酸化膜の製造方法
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2020134965A1 (zh) 阵列基板的制造方法、装置及阵列基板
WO2024090945A1 (ko) 반도체 소자의 전극 형성 방법
WO2011065665A2 (en) Method of manufacturing nitride semiconductor device
JP3038953B2 (ja) 配線形成方法
WO2020235823A1 (ko) 플라즈마와 증기를 이용한 건식 세정 방법
WO2023219400A1 (ko) 반도체 소자의 전극 형성 방법 및 반도체 소자의 전극
JP2002180250A (ja) 半導体装置の製造方法
JP2845160B2 (ja) 半導体装置
WO2023068466A1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
WO2012033299A2 (ko) 반도체 소자의 제조 방법
WO2023048455A1 (ko) 기판 처리 장치의 세정 방법
WO2022260476A1 (ko) 전력 반도체 소자의 제조방법
WO2023140552A1 (ko) 듀얼 고압 웨이퍼 처리설비를 이용한 웨이퍼 고압 처리 방법
WO2023167464A1 (ko) 붕소 화합물을 이용한 기판 처리 방법
WO2022245021A1 (ko) 박막 증착 방법
WO2022260478A1 (ko) 전력 반도체 소자의 제조방법
WO2024063588A1 (ko) 반도체 소자의 제조 방법
WO2024019392A1 (ko) 박막 제조방법, 박막, 및 기판처리장치
WO2024063579A1 (ko) 반도체 소자의 제조 방법
WO2022239948A1 (ko) 박막 형성 방법
WO2024010324A1 (ko) Dram 소자의 커패시터 및 그 제조 방법