WO2024090931A1 - 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기 - Google Patents

모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기 Download PDF

Info

Publication number
WO2024090931A1
WO2024090931A1 PCT/KR2023/016484 KR2023016484W WO2024090931A1 WO 2024090931 A1 WO2024090931 A1 WO 2024090931A1 KR 2023016484 W KR2023016484 W KR 2023016484W WO 2024090931 A1 WO2024090931 A1 WO 2024090931A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
impeller
compressed gas
motor
gas inlet
Prior art date
Application number
PCT/KR2023/016484
Other languages
English (en)
French (fr)
Inventor
김경수
Original Assignee
㈜티앤이코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜티앤이코리아 filed Critical ㈜티앤이코리아
Publication of WO2024090931A1 publication Critical patent/WO2024090931A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/16Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a turbocompressor, and more particularly to a turbocompressor capable of rapidly cooling heat-generating components of a power conversion device using relatively low-temperature cooling gas sucked from a compressed gas inlet.
  • a turbo compressor or turbo blower is a centrifugal pump that sucks in external air or gas by rotating an impeller at high speed, compresses it, and then blows it to the outside. It is used to transport powder. It is widely used for aeration in sewage treatment plants, etc., and has recently been used for industrial processes and automobile installations.
  • This turbo compressor (1) relates to an air blower for a vehicle, and includes a volute housing (200) and an impeller ( 240), a motor 300 that drives the impeller, and a motor 300 that is coupled to one side of the volute housing, the motor is mounted inside, and an inverter control module 400 is provided on one side of the motor housing 500. It has a configuration in which a coolant cover (600) through which coolant can rotate and flow is coupled to one side.
  • the conventional turbo compressor 1 uses coolant to cool the inverter control module 400 and the motor 300, a separate coolant supply system is required, and a module accommodating the inverter control module 400 is required.
  • the part 520 and the motor receiving part 510 that accommodates the motor require a sealed design to prevent water leakage.
  • the conventional turbo compressor 1 requires a complex-shaped coolant passage 611 to be formed in the coolant cover 600, which makes the manufacturing process difficult and increases the overall manufacturing cost.
  • the present invention was devised to solve the above problem, and its purpose is to provide a turbo compressor with an improved structure so that the heat-generating components of the power conversion device can be quickly cooled using relatively low-temperature cooling gas sucked from the compressed gas inlet. It is intended to provide.
  • a turbo compressor capable of compressing gas and supplying it to the outside, comprising: a compressed gas inlet through which the gas is sucked; an impeller that compresses gas introduced through the compressed gas inlet; a compressed gas outlet through which the gas compressed by the impeller is discharged to the outside; A compression unit including a compressed gas flow path connected from the compressed gas inlet to the compressed gas outlet; A motor having a rotating shaft at one end coupled to the impeller to rotate the impeller; a housing having a motor accommodating space for accommodating the motor; A cooler provided to allow the cooling gas contained therein to flow; A device for controlling the motor, comprising: a power conversion device having a heat generating component therein; A thermally conductive member for cooling the heat-generating part of the power conversion device, one end of which is in contact with the heat-generating part, and the other end of which is a cooling member exposed to the motor accommodation space, wherein the compressed gas inlet is the It is disposed at the front end
  • the power conversion device has a case capable of accommodating heat generating components in an internal space
  • the cooler includes a fifth cooling system that starts from the compressed gas intake port and reaches the impeller through the internal space of the case. It is preferable that the gas sucked from the compressed gas intake port by the suction force of the impeller cools the heat-generating component of the power conversion device while passing through the fifth cooling passage.
  • At least one first through hole is formed at the front end of the housing to allow gas sucked from the compressed gas inlet to flow into the motor accommodation space, and at the rear end of the housing, the motor is accommodated. It is preferable that at least one second through hole is formed to allow gas contained in the space to flow into the impeller.
  • At least one of the first through hole and the second through hole is preferably arranged in plural numbers spaced apart from each other by a predetermined distance along the circumferential direction of the rotation axis.
  • the fourth cooler preferably starts from the compressed gas inlet and sequentially passes through the first through hole, the other end of the cooling member, and the second through hole to reach the impeller.
  • the fifth cooler preferably starts from the compressed gas intake port, sequentially passes through the first through hole, the inner space of the case, and the second through hole to reach the impeller.
  • a plurality of cooling fins are provided at the other end of the cooling member.
  • the cooling fins are preferably protruded toward the rotating shaft, extend along the longitudinal direction of the rotating shaft, and are arranged along the circumferential direction of the rotating shaft while being spaced apart from each other.
  • the distal ends of the cooling fins are provided so as to contact the outer surface of the stator of the motor or to be closely disposed within a predetermined distance.
  • the power conversion device is provided with a case capable of accommodating an internal heating component, and the case includes a metal material and is coupled to one end of the cooling member to exchange heat with the cooling member. It is desirable.
  • a compressed gas intake port through which the gas is sucked; an impeller that compresses gas introduced through the compressed gas inlet; a compressed gas outlet through which the gas compressed by the impeller is discharged to the outside;
  • a compression unit including a compressed gas flow path connected from the compressed gas inlet to the compressed gas outlet;
  • a motor having a rotating shaft at one end coupled to the impeller to rotate the impeller;
  • a housing having a motor accommodating space for accommodating the motor;
  • a device for controlling the motor comprising: a cooling device configured to allow the cooling gas contained therein to flow, the device comprising: a power conversion device having a heating element therein; A thermally conductive member for cooling the heat-generating part of the power conversion device, one end of which is in contact with the heat-generating part, and the other end of which is a cooling member exposed to the motor accommodation space, wherein the compressed gas inlet is the It is disposed at the front end of the housing, the impeller is disposed at the rear end of the housing, the motor is disposed between the
  • the heating components of the device are cooled, the heating components of the power conversion device can be quickly cooled using the relatively low temperature cooling gas sucked from the compressed gas inlet.
  • FIG. 1 is a cross-sectional view of a turbo compressor according to an embodiment of the present invention.
  • Figure 2 is a partially enlarged view of the turbo compressor shown in Figure 1.
  • Figure 3 is a partial enlarged view of the front end of the turbo compressor shown in Figure 2.
  • Figure 4 is a partial enlarged view of the rear end of the turbo compressor shown in Figure 2.
  • Figure 5 is a cross-sectional view of the rotation axis shown in Figure 1 and its surroundings.
  • FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIG. 1.
  • Figure 7 is a cross-sectional view of a conventional turbo compressor.
  • Figure 1 is a cross-sectional view of a turbo compressor according to an embodiment of the present invention
  • Figure 2 is a partially enlarged view of the turbo compressor shown in Figure 1.
  • Figure 3 is a partial enlarged view of the front end of the turbo compressor shown in Figure 2.
  • the turbo compressor 100 is a centrifugal pump that sucks in and compresses external gas by rotating an impeller at high speed and then blows it to the outside.
  • This turbocompressor 100 includes a housing 10, a compression unit 20, a motor 30, a cooling furnace, a cooling member 50, and a power conversion device 60.
  • the gas to be compressed is air.
  • the housing 10 is a metal housing, a cylindrical member having a motor accommodation space 13 therein, and has a cross-section with the first central axis C1 as the center of a circle. 1 It extends along the central axis (C1).
  • the motor accommodation space 13 is a space with a shape corresponding to the motor 30 so as to accommodate the motor 30, which will be described later.
  • the impeller 21 of the compression unit 20 is disposed, as shown in FIG. 2.
  • the housing 10 is manufactured separately into a plurality of components for mounting the motor 30.
  • the first housing 10a, the second housing 10b, and the third housing 10c are included.
  • a fourth housing (10d) is included.
  • the first housing 10a is a cylindrical member having a cross-section with the first central axis C1 as the center of the circle.
  • At least one second through hole 12 is formed at the rear end of the first housing 10a to allow gas contained in the motor accommodation space 13 to flow into the impeller 21.
  • a plurality of second through holes 12 are provided and arranged at a predetermined distance along the circumferential direction of the rotation axis 31, which will be described later.
  • the second through hole 12 may be a circular hole, a slit-shaped hole extending along the radial direction of the rotation axis 31, a fan-shaped hole whose width becomes narrower as it approaches the rotation axis 31, etc. It can be formed in various shapes.
  • the second through hole 12 is in communication with the inside of the gas guide member 22, which will be described later.
  • an opening 16 through which the cooling fins 52 of the cooling member 50, which will be described later, can pass is formed at the upper end of the first housing 10a.
  • the second housing 10b is a disc-shaped member detachably attached to the front end of the first housing 10a, and as shown in FIG. 3, a journal bearing 34 and a thrust bearing 35 to be described later are used. It is provided in a shape that allows mounting of the and rotation shaft 31.
  • the second housing 10b is provided in a shape that allows the front end of the first housing 10a to be closed.
  • the third housing 10c is a disc-shaped member detachably attached to the front end of the second housing 10b, and as shown in FIG. 3, it is used for the thrust bearing 35 and the rotation shaft 31, which will be described later. It is provided in a shape that allows installation.
  • the third housing 10c is provided so that the thrust bearing runner 311 and the thrust bearing 35, which will be described later, do not escape forward.
  • a circular hole 14 having a diameter large enough to insert the rotation shaft 31 is formed.
  • the second housing 10b and the third housing 10c are provided so that the gas sucked from the compressed gas inlet 24 can flow into the motor accommodation space 13. 1 At least one through hole 11 is formed.
  • the first through holes 11 are provided in plural numbers and are arranged at a predetermined distance apart along the circumferential direction of the rotation axis 31.
  • the first through hole 11 may be a circular hole, a slit-shaped hole extending along the radial direction of the rotation axis 31, a fan-shaped hole whose width becomes narrower as it approaches the rotation axis 31, etc. It can be formed in various shapes.
  • At least one third through hole 15 is formed in the third housing 10c to allow gas sucked from the compressed gas inlet 24 to flow into the thrust bearing 35.
  • the third through hole 15 includes a circular hole 14 formed in the third housing 10c, as shown in FIG. 3, and a rotation shaft 31, which will be described later, disposed in the circular hole 14. ) includes circular ring-shaped holes 15 that are formed in cooperation with each other.
  • the fourth housing 10d is a disk-shaped member as shown in FIG. 1, and is a member that closes the rear end of the gas guide member 22, which will be described later.
  • the compression unit 20 is a device that sucks in and compresses external air, and includes an impeller 21 and a gas guiding member 22.
  • the impeller 21 is a main component of a centrifugal pump and is a wheel with a plurality of curved blades, and is mounted to enable high-speed rotation.
  • the gas guiding member 22 is a metal member disposed in front of the impeller 21, and is a member that guides the air to be compressed by flowing into the impeller 21 and the air compressed by the impeller 21. .
  • the gas guiding member 22 is provided to close the rear end of the first housing 10a.
  • the gas guiding member 22 is provided in the form of a scroll casing with a flow path formed to allow air passing through the impeller 21 to flow in a spiral shape, as shown in FIG. 1.
  • the impeller 21 compresses air introduced through the compressed gas inlet 24, which will be described later, and the air compressed by the impeller 21 is discharged to the outside through the compressed gas outlet 25.
  • the compressed gas inlet 24 is a member that sucks in external air to be compressed, and is disposed at the front end of the housing 10. In this embodiment, it is detachable from the front end of the second housing 10b. are tightly combined.
  • the air sucked into the compressed gas inlet 24 is compressed while moving along the compressed gas flow path 26 connected from the compressed gas inlet 24 to the compressed gas outlet 25.
  • the motor 30 is an electric motor that generates rotational force and is a device for supplying high-speed rotational force to the impeller 21.
  • This motor 30 includes a rotating shaft 31, a stator 32, a rotor 33, a journal bearing 34, and a thrust bearing 35.
  • the rotation shaft 31 is a rod member extending along the first central axis C1, and its rear end is coupled to the impeller 21 so as not to rotate relative to it in order to rotate the impeller 21.
  • the rotation axis 31 includes a hollow H extending along the first central axis C1, which is the longitudinal direction of the rotation axis 31.
  • a thrust bearing runner 311 having a position and shape corresponding to the thrust bearing 35 is provided at the front end of the rotating shaft 31.
  • the thrust bearing runner 311 is a general disk-shaped runner.
  • a gas inlet hole 312 is formed that is in communication with the hollow H of the rotating shaft 31.
  • the gas inlet hole 312 is a hole that guides air flowing into the compressed gas inlet 24 into the hollow H.
  • the gas inlet hole 312 is located inside the circular hole 14 of the third housing 10c.
  • a gas outflow hole 313 is formed, which is in communication with the hollow H of the rotating shaft 31.
  • the gas outlet hole 313 is a hole that guides air flowing into the hollow H of the rotating shaft 31 to reach the impeller 21.
  • a plurality of gas outlet holes 313 are arranged and spaced apart from each other by a predetermined distance along the circumferential direction of the rotation axis 31.
  • the gas outlet hole 313 is located between the stator 32 of the motor 30 and the impeller 21, as shown in FIG. 1, and the gas outlet hole 313 of the gas guide member 22 It is placed inside.
  • the stator 32 is a stator around which a field coil is wound, and is fixedly mounted in the motor accommodation space 13.
  • the rotor 33 is a rotor including a permanent magnet and is coupled to the middle portion of the rotation shaft 31.
  • the journal bearing 34 is a journal foil air bearing that rotatably supports the rotating shaft 31 in order to reduce friction generated by high-speed rotation, and is located at the front end of the rotating shaft 31. They are provided at the front and rear ends, respectively.
  • journal bearings 34 the journal bearing 34 disposed at the front end of the rotating shaft 31 is disposed rearward of the thrust bearing 35.
  • the thrust bearing 35 is a thrust foil air bearing, and a pair is provided and disposed on both sides of the thrust bearing runner 311, respectively.
  • the thrust bearing 35 is disposed at the front of the housing 10, as shown in FIG. 1.
  • the motor 30 is disposed between the compressed gas inlet 24 and the impeller 21.
  • the cooling passage is formed so that the cooling gas contained therein can flow, and includes a first cooling passage (41), a second cooling passage (42), a third cooling passage (43), and a fourth cooling passage (44). and a fifth cooling furnace 45.
  • the cooling gas is air as a compressed gas sucked from the compressed gas inlet 24 by the suction force of the impeller 51.
  • the first cooling passage 41 is a cooling passage that starts from the compressed gas inlet 24, passes through the outer peripheral surface of the rotating shaft 31, and reaches the impeller 21, as shown in FIG. 2.
  • the first cooling passage 41 starts from the compressed gas inlet 24 as shown in FIG. 2, and extends to the first through hole 11 and the front end of the motor receiving space 13. It sequentially passes through the part, the space between the stator 32 and the outer peripheral surface of the rotating shaft 31, and the second through hole 12 to reach the impeller 21.
  • the first cooling furnace 41 can quickly cool the stator 32 of the motor 30.
  • the first cooling passage 41 passes through the space where the thrust bearing runner 311 is accommodated in the process of penetrating the first through hole 11, as shown in FIG. It is provided to cool the thrust bearing (35).
  • the second cooling passage 42 is a cooling passage that starts from the compressed gas inlet 24, as shown in FIG. 2, and reaches the impeller 21 through the hollow H of the rotating shaft 31. am.
  • the second cooling passage 42 starts from the compressed gas inlet 24 as shown in FIG. 2, the gas inlet hole 312, and the hollow H of the rotation shaft 31. , sequentially passes through the gas outlet hole 313 and reaches the impeller 21.
  • the second cooling furnace 42 can quickly cool the rotor 33 of the motor 30.
  • the third cooling passage 43 is a cooling passage starting from the compressed gas inlet 24 and reaching the impeller 21 via the thrust bearing 35.
  • the third cooling path 43 starts from the compressed gas inlet 24 as shown in FIG. 3, and includes the thrust bearing 35, the journal bearing 34, and the motor accommodation space. It sequentially passes through the front end of (13), the space between the stator (32) and the outer peripheral surface of the rotating shaft (31), and the second through hole (12) to reach the impeller (21).
  • the third cooling passage 43 can quickly cool the thrust bearing 35 and the journal bearing 34.
  • the third cooling passage 43 joins the first cooling passage 41 at the rear end of the motor accommodation space 13, as shown in FIG. 3.
  • the fourth cooling passage 44 is a cooling passage that starts from the compressed gas inlet 24, passes through the other end of the cooling member 50, and reaches the impeller 21.
  • the fourth cooling path 44 starts from the compressed gas inlet 24, includes the first through hole 11, the cooling fin 52 of the cooling member 50, and the second It sequentially passes through the through hole 12 and reaches the impeller 21.
  • the fourth cooling path 44 is formed by the surface of the cooling fins 52, the outer surface of the stator 32, and the inner surface of the opening 16 cooperating with each other. Includes two cooling crossroads.
  • the fourth cooling path 44 can quickly cool the power conversion device 60 by cooling the cooling fins 52.
  • the fourth cooling passage 44 joins the first cooling passage 41 and the third cooling passage 43 at the rear end of the motor accommodation space 13, as shown in FIG. do.
  • the fifth cooling passage 45 is a cooling passage that starts from the compressed gas intake port 24 and reaches the impeller 21 through the internal space of the case 61 of the power conversion device 60, which will be described later.
  • the fifth cooling passage 45 starts from the compressed gas inlet 24 as shown in FIG. 1, and includes the first through hole 11, the internal space of the case 61, It sequentially passes through the second through hole 12 and reaches the impeller 21.
  • the fifth cooling passage 45 allows air introduced through the compressed gas inlet 24 to directly enter the internal space of the case 61, thereby quickly cooling the heating components of the power conversion device 60. It has a structure that can be cooled.
  • the fifth cooling passage 45 is connected to the first cooling passage 41, the third cooling passage 43, and the third cooling passage 43 at the rear end of the motor accommodation space 13, as shown in FIG. 3. 4 It joins the cooling passage (44).
  • the cooling passages 41, 42, 43, 44, and 45 are disposed at the front end of the compressed gas flow path 26, and flow the compressed gas from upstream of the impeller 21 toward the impeller 21.
  • the compressed air flowing along the flow path 26 functions as a cooling gas.
  • the cooling member 50 is a heat conductive cooling member (heat sink) for cooling the heat-generating components of the power conversion device 60, and includes a main body 51 and cooling fins 52.
  • the main body 51 is a square plate-shaped metal member and is provided at one end of the cooling member 50.
  • the main body 51 is disposed in the inner space of the case 61 in a state in contact with the heating component of the power conversion device 60.
  • the cooling fin 52 is a member for increasing heat exchange efficiency with the cooling gas flowing through the fourth cooling passage 44, and is disposed at the other end of the cooling member 50.
  • cooling fins 52 There are a plurality of cooling fins 52, and as shown in FIG. 2, they are arranged to be inserted into the motor accommodation space 13 through the opening 16 of the first housing 10a.
  • the cooling fins 52 protrude toward the rotation axis 31, as shown in FIG. 2, and extend along the longitudinal direction C1 of the rotation axis 31, as shown in FIG. 6. As shown, they are arranged along the circumferential direction of the rotation axis 31 while being spaced apart from each other.
  • cooling fins 52 contact the outer surface of the stator 32 of the motor 30 or are disposed closely within a predetermined distance.
  • all distal ends of the cooling fins 52 are in contact with the outer surface of the stator 32 of the motor 30, as shown in FIG. 6.
  • the power conversion device 60 is a device that converts electricity to control the motor 30, and changes direct current (DC) components into alternating current (AC) components or, conversely, converts alternating current (AC) components into direct current (DC). It is a device that converts and supplies it to the motor 30.
  • This power conversion device 60 includes a case 61, a switching module 62, a cover 63, and a through hole 64.
  • the case 61 is a metal container capable of accommodating various heating components in an internal space, and has an airtight structure to prevent the flame from leaking to the outside even if the various heating components inside are burned out and a flame occurs. It is desirable.
  • the case 61 is disposed at the upper end of the first housing 10a, and has an outer peripheral surface of the first housing 10a as shown in FIG. 1 so as to exchange heat with the housing 10. It remains in contact with.
  • the case 61 is coupled in contact with the main body 51 of the cooling member 50 so as to exchange heat with the main body 51.
  • At least one pore is formed on the bottom of the case 61 so that air flowing along the fifth cooling passage 45 can be introduced and then discharged.
  • one or more pores are provided at the front and rear of the cooling member 50, respectively, as shown in FIG. 2, and are located at the opening 16 of the first housing 10a and The internal spaces of the case 61 are communicated with each other.
  • the switching module 62 is a main heating component of the power conversion device 60 and includes an insulated/isolated gate bi-polar transistor (IGBT).
  • IGBT insulated/isolated gate bi-polar transistor
  • the power conversion device 60 includes various heat-generating parts such as a controller that controls the overall operation of the motor 30, such as controlling the rotation speed of the motor 30. Contains.
  • the switching module 62 is disposed near the bottom of the case 61 and is coupled to the upper surface of the main body 51 of the cooling member 50 in close contact.
  • the switching module 62 is a core component of an inverter that changes direct current (DC) components into alternating current (AC) components.
  • the inverter is also called a power inverter, and obtains desired voltage and frequency output values through an appropriate conversion method, switching element, or control circuit.
  • the cover 63 is a metal plate-shaped member, and is a member for detachably closing the open upper part of the case 61, as shown in FIG. 2.
  • the through hole 64 is a rectangular hole formed in the bottom surface of the case 61, and is provided in a shape through which the cooling fin 52 of the cooling member 50 can penetrate.
  • the through hole 64 has a size and shape that the main body 51 of the cooling member 50 cannot penetrate.
  • the impeller 21 rotates, and the air sucked from the compressed gas inlet 24 by the suction force of the impeller 21 is the first cooling. As it flows through the passage 41, the second cooling passage 42, the third cooling passage 43, the fourth cooling passage 44, and the fifth cooling passage 45, the motor 30 is cooled.
  • the air that cools the motor 30 is introduced into the gas guiding member 22, compressed by the impeller 21, and then discharged to the outside through the compressed gas outlet 25.
  • the air flowing through the first cooling passage 41, the second cooling passage 42, the third cooling passage 43, the fourth cooling passage 44, and the fifth cooling passage 45 is compressed. Starting from the gas inlet 24, it flows in one direction to the impeller 21, and does not recirculate toward the compressed gas inlet 24.
  • the air flowing along the first cooling passage 41 starts from the compressed gas inlet 24, as shown in FIG. 2, and flows through the first through hole 11 and the motor receiving space 13.
  • the space between the stator 32 and the outer peripheral surface of the rotating shaft 31, and the second through hole 12 to reach the impeller 21, the stator 32 and the rotating shaft The outer peripheral surface of (31) can be cooled quickly.
  • the air flowing along the second cooling passage 42 starts from the compressed gas inlet 24, as shown in FIG. 2, and flows through the gas inlet hole 312 and the hollow H of the rotating shaft 31. ), sequentially passing through the gas outlet hole 313 and reaching the impeller 21, the rotor 33 and the hollow H of the rotating shaft 31 can be quickly cooled.
  • the air flowing along the third cooling passage 43 starts from the compressed gas inlet 24, as shown in FIG. 3, and flows through the thrust bearing 35, the journal bearing 34, and the motor accommodation.
  • the thrust bearing (35) and journal bearing (34) can be cooled quickly.
  • the air flowing along the fourth cooling passage 44 starts from the compressed gas inlet 24, as shown in FIG. 2, and cools the first through hole 11 and the cooling member 50.
  • the cooling fins 52 of the cooling member 50 can be quickly cooled.
  • the air flowing along the fifth cooling passage 45 starts from the compressed gas inlet 24, as shown in FIG. 2, and flows through the first through hole 11 and the internal space of the case 61. , By sequentially passing through the second through hole 12 and reaching the impeller 21, the heating components of the power conversion device 60 can be directly and quickly cooled.
  • the turbo compressor 100 of the above-described configuration is a turbo compressor capable of compressing gas and supplying it to the outside, and includes a compressed gas inlet 24 through which the gas is sucked; An impeller (21) that compresses the gas introduced through the compressed gas inlet (24); a compressed gas outlet (25) through which the gas compressed by the impeller (21) is discharged to the outside; A compression unit (20) having a compressed gas flow path (26) connected from the compressed gas inlet (24) to the compressed gas outlet (25); In order to rotate the impeller 21, a motor 30 having a rotating shaft 31, one end of which is coupled to the impeller 21; A housing (10) having a motor accommodation space (13) for accommodating the motor (30); A device for controlling the motor 30, comprising: a cooling device configured to allow the cooling gas contained therein to flow; a power conversion device 60 having a heating element therein; A thermally conductive member for cooling the heating component of the power conversion device 60, one end of which is in contact with the heating component, and the other end of which is exposed to the motor accommodation
  • It includes a fourth cooling passage 44 that reaches up to Since the heating components of the power conversion device 60 are cooled, the advantage is that the heating components of the power conversion device 60 can be quickly cooled using the relatively low temperature cooling gas sucked from the compressed gas inlet 24. there is.
  • the turbo compressor 100 includes a case 61 in which the power conversion device 60 can accommodate heating components in an internal space, and the cooler starts from the compressed gas inlet 24. It includes a fifth cooling passage 45 that reaches the impeller 21 through the internal space of the case 61, and is sucked in from the compressed gas inlet 24 by the suction force of the impeller 21. Since the gas cools the heating components of the power conversion device 60 while passing through the fifth cooling passage 45, the air introduced through the compressed gas inlet 24 enters the internal space of the case 61. There is an advantage in that the heating components of the power conversion device 60 can be cooled by direct entry.
  • the turbo compressor 100 has a first through hole provided at the front end of the housing 10 to allow gas sucked from the compressed gas inlet 24 to flow into the motor accommodation space 13 ( 11) is formed at least one, and at the rear end of the housing 10, a second through hole 12 is provided so that the gas contained in the motor accommodation space 13 can flow into the impeller 21. Since at least one of these is formed, there is an advantage that it is easy to provide a structure through which the cooling gas flows into the motor accommodation space 13 and then flows out.
  • turbo compressor 100 has a plurality of at least one of the first through hole 11 and the second through hole 12 spaced apart by a predetermined distance along the circumferential direction of the rotation shaft 31. Since they are lined up, there is an advantage in that the flow rate and streamline shape of the air entering the inside of the motor accommodation space 13 can be easily adjusted.
  • the turbocompressor 100 includes the fourth cooling passage 44 starting from the compressed gas inlet 24, the first through hole 11, the other end of the cooling member 50, and the fourth cooling passage 44. Since it sequentially passes through the second through hole 12 and reaches the impeller 21, there is an advantage in that the motor 30 and the power conversion device 60 can be cooled simultaneously.
  • turbocompressor 100 has the fifth cooling passage 45 starting from the compressed gas inlet 24, the first through hole 11, the internal space of the case 61, and the first through hole 11. 2 Since it sequentially passes through the through holes 12 and reaches the impeller 21, it has the advantage of simultaneously implementing indirect cooling through the cooling member 50 and direct cooling through entering the inside of the case 61. .
  • turbo compressor 100 has a plurality of cooling fins 52 provided at the other end of the cooling member 50, so the heat exchange efficiency between the cooling gas and the cooling member 50 is greatly increased. .
  • turbo compressor 100 extends along the longitudinal direction C1 of the rotation shaft 31 with the cooling fins 52 protruding toward the rotation shaft 31 as shown in FIG. 6. Since they are arranged along the circumferential direction of the rotating shaft 31 while being spaced apart from each other, heat exchange efficiency can be increased under circumstances that do not interfere with the flow of air flowing along the fourth cooling passage 44. There is an advantage.
  • the distal ends of the cooling fins 52 are in contact with the outer surface of the stator 32 of the motor 30 or are closely within a predetermined distance, as shown in FIG. 6. Since it is arranged so that it can be arranged so that the protrusion length of the cooling fin 52 can be maximized, there is also the advantage of being able to conduct some of the heat generated by the stator 32 to the cooling member 50. .
  • the turbo compressor 100 includes a case 61 in which the power conversion device 60 can accommodate internal heating components, and the case 61 includes a metal material, and the cooling Since it is coupled to one end of the cooling member 50 so as to exchange heat with the member 50, through heat transfer from the cooling member 50 to the case 61, the case 61 acts as a second thermoelectric member. It has the advantage of functioning as a conductive cooling member (heat sink).
  • the turbo compressor 100 has the cooling passages 41, 42, 43, 44, and 45 such that the cooling gas flows in one direction starting from the compressed gas inlet 24 to the impeller 21. Since it is formed so as not to recirculate, it does not have an “eddy flow” in which the air used for cooling flows back into the upstream side of the impeller after being heated and is recompressed, which has the advantage of excellent compression efficiency of the impeller 21. .
  • the stator ( 32) since the first cooling passage 41 is formed to cool the stator 32 of the motor 30, the stator ( 32) has the advantage of being able to cool it quickly.
  • the amount of air flowing through the first cooler 41 can be easily adjusted by adjusting the size or number of the first through holes 11 and the second through holes 12.
  • the second cooling path 42 is formed to cool the rotor 33 of the motor 30, so that the There is an advantage in that the electrons 33 can be cooled quickly.
  • the amount of air flowing through the second cooler 42 can be easily adjusted by adjusting the size or number of the gas inlet hole 312, the hollow H, and the gas outlet hole 313.
  • turbo compressor 100 includes a thrust bearing 35 disposed at the front end of the rotating shaft 31, and starts from the compressed gas inlet 24 and passes through the thrust bearing 35 to the impeller. Since it includes a third cooling passage 43 that reaches up to (21), there is an advantage in that the thrust bearing 35 can be quickly cooled using a relatively low temperature cooling gas.
  • the turbo compressor 100 has a third through hole 15 provided at the front end of the housing 10 to allow gas sucked from the compressed gas inlet 24 to flow into the thrust bearing 35. ) is formed, there is an advantage that the flow rate and streamline shape of the air flowing along the third cooling passage 43 can be easily adjusted.
  • the turbo compressor 100 is configured such that the third through hole 15 has a circular hole 14 formed in the front end of the housing 10 and the rotation shaft 31 disposed in the circular hole 14. Since the front end includes a circular ring-shaped hole 15 formed in cooperation, there is an advantage in that the third through hole 15 can be easily formed without complex cutting processing.
  • the turbo compressor 100 includes a gas inlet hole 312 in which the rotation shaft 31 communicates with the hollow H of the rotation shaft 31 and is formed at the front end of the rotation shaft 31; It is in communication with the hollow H of the rotation shaft 31 and includes a gas outlet hole 313 formed at the rear end of the rotation shaft 31, and the gas outlet hole 313 is connected to the motor 30.
  • a gas inlet hole 312 in which the rotation shaft 31 communicates with the hollow H of the rotation shaft 31 and is formed at the front end of the rotation shaft 31; It is in communication with the hollow H of the rotation shaft 31 and includes a gas outlet hole 313 formed at the rear end of the rotation shaft 31, and the gas outlet hole 313 is connected to the motor 30.
  • ) is disposed between the stator 32 and the impeller 21, so the air flowing along the second cooling passage 42 is not mixed with the air flowing along the other cooling passages 41 and 43. This has the advantage of being able to immediately reach the impeller 21. In this way, it is very easy to individually adjust the flow rate of air flowing along the
  • cooling fins 41, 42, 43, and 45 there are no separate cooling fins inside the coolers 41, 42, 43, and 45, but of course, separate cooling fins may be provided inside the coolers.
  • the cooling fins may be formed integrally with the housing 10, or may be processed as a separate member and then joined by a method such as press fitting.
  • the bearings 34 and 35 are foil air bearings, but of course other types of air bearings or various other bearings may be used.
  • a separate sealing means for airtightness is not described, but of course, various types of sealing means may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 터보 압축기에 관한 것으로서, 임펠러를 회전시키기 위하여, 일단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 내부에 수용된 냉각용 기체가 유동 가능하도록 마련되어 있는 냉각 기로; 상기 모터를 제어하기 위한 장치로서, 내부에 발열 부품을 구비하는 전력 변환 장치; 상기 전력 변환 장치의 발열 부품을 냉각하기 위한 열전도성 부재로서, 일단부는 상기 발열 부품에 접촉하고 있으며, 타단부는 상기 모터 수용 공간에 노출되어 있는 냉각 부재;를 포함하며, 상기 압축 기체 흡입구는 하우징의 전단부에 배치되어 있고, 상기 임펠러는 상기 하우징의 후단부에 배치되어 있으며, 상기 모터는, 상기 압축 기체 흡입구와 상기 임펠러 사이에 배치되어 있으며, 상기 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여 상기 냉각 부재의 타단부를 거쳐서 상기 임펠러까지 도달하는 제4 냉각 기로;를 포함하며, 상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제4 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키는 것을 특징으로 한다. 본 발명에 따르면, 상기 압축 기체 흡입구로부터 흡입되는 비교적 저온의 냉각용 기체를 이용하여 상기 전력 변환 장치의 발열 부품을 신속하게 냉각할 수 있는 효과가 있다.

Description

모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기
본 발명은 터보 압축기에 관한 것으로서, 특히 압축 기체 흡입구로부터 흡입되는 비교적 저온의 냉각용 기체를 이용하여 전력 변환 장치의 발열 부품을 신속하게 냉각할 수 있는 터보 압축기에 관한 것이다.
터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 공기나 가스를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 분체(powder) 이송용이나 하수 처리장 등에서 폭기(爆氣)용으로 많이 사용되고 있으며, 최근에는 산업 공정용과 자동차 탑재용으로도 사용이 되고 있다.
이러한 터보 압축기에서는, 임펠러의 고속 회전으로 인하여 모터와 베어링에서 마찰에 의한 고열이 발생하고, 상기 모터에 전력을 공급하는 전력 변환 장치에서도 고열이 발생할 수밖에 없는 바, 주요 발열부(heat source)인 모터와 베어링과 전력 변환 장치에 대한 냉각이 필요하다.
종래의 터보 압축기의 일례가 도 7에 개시되어 있는데, 이 터보 압축기(1)는 차량용 공기 블로워에 관한 것으로서, 볼루트하우징(200)과, 상기 볼루트하우징 내부에 장착되어 공기를 압축하는 임펠러(240)와, 상기 임펠러를 구동시키는 모터(300), 및 상기 볼루트하우징의 일측에 결합되고 상기 모터가 내부에 장착되며 일측에 인버터제어모듈(400)이 구비되며, 상기 모터하우징(500)의 일측에 냉각수가 선회하여 유동할 수 있는 냉각수커버(600)가 결합되어 있는 구성을 가집니다.
그러나 상기 종래의 터보 압축기(1)는 냉각수를 사용하여 인버터제어모듈(400) 및 모터(300)를 냉각하기 때문에, 별도의 냉각수 공급 시스템이 필요하며, 인버터제어모듈(400)을 수용하는 모듈수용부(520) 및 모터를 수용하는 모터수용부(510)는 누수 방지를 위한 밀폐 설계가 필요하다는 문제점이 있다.
또한 상기 종래의 터보 압축기(1)는, 냉각수커버(600)에 복잡한 형상의 냉각수유로(611)가 형성되어야 하므로, 제작 공정이 어려워지고 전체적인 제작 비용이 상승하는 문제점도 있다.
본 발명은 상기 문제를 해결하기 위해 안출된 것으로서, 그 목적은 압축 기체 흡입구로부터 흡입되는 비교적 저온의 냉각용 기체를 이용하여 전력 변환 장치의 발열 부품을 신속하게 냉각할 수 있도록 구조가 개선된 터보 압축기를 제공하기 위함이다.
상기 목적을 달성하기 위하여 본 발명에 따른 터보 압축기는, 기체를 압축하여 외부로 공급할 수 있는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 임펠러를 회전시키기 위하여, 일단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 내부에 수용된 냉각용 기체가 유동 가능하도록 마련되어 있는 냉각 기로; 상기 모터를 제어하기 위한 장치로서, 내부에 발열 부품을 구비하는 전력 변환 장치; 상기 전력 변환 장치의 발열 부품을 냉각하기 위한 열전도성 부재로서, 일단부는 상기 발열 부품에 접촉하고 있으며, 타단부는 상기 모터 수용 공간에 노출되어 있는 냉각 부재;를 포함하며, 상기 압축 기체 흡입구는 상기 하우징의 전단부에 배치되어 있고, 상기 임펠러는 상기 하우징의 후단부에 배치되어 있으며, 상기 모터는, 상기 압축 기체 흡입구와 상기 임펠러 사이에 배치되어 있으며, 상기 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여 상기 냉각 부재의 타단부를 거쳐서 상기 임펠러까지 도달하는 제4 냉각 기로;를 포함하며, 상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제4 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키는 것을 특징으로 한다.
여기서, 상기 전력 변환 장치는, 내부 공간에 발열 부품을 수용할 수 있는 케이스를 구비하며, 상기 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여 상기 케이스의 내부 공간을 거쳐서 상기 임펠러까지 도달하는 제5 냉각 기로;를 포함하며, 상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제5 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키는 것이 바람직하다.
여기서, 상기 하우징의 전단부에는, 상기 압축 기체 흡입구로부터 흡입되는 기체가 상기 모터 수용 공간으로 유입될 수 있도록 마련되어 있는 제1 관통공이 적어도 하나 이상 형성되어 있으며, 상기 하우징의 후단부에는, 상기 모터 수용 공간에 수용된 기체가 상기 임펠러로 유입될 수 있도록 마련되어 있는 제2 관통공이 적어도 하나 이상 형성되어 있는 것이 바람직하다.
여기서, 상기 제1 관통공과 상기 제2 관통공 중 적어도 하나는, 상기 회전축의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 복수 개 나열되어 있는 것이 바람직하다.
여기서, 상기 제4 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여, 상기 제1 관통공, 상기 냉각 부재의 타단부, 상기 제2 관통공을 순차적으로 거쳐서 상기 임펠러까지 도달하는 것이 바람직하다.
여기서, 상기 제5 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여, 상기 제1 관통공, 상기 케이스의 내부 공간, 상기 제2 관통공을 순차적으로 거쳐서 상기 임펠러까지 도달하는 것이 바람직하다.
여기서, 상기 냉각 부재의 타단부에는 다수 개의 냉각핀이 마련되어 있는 것이 바람직하다.
여기서, 상기 냉각핀은, 상기 회전축을 향하여 돌출된 상태로, 상기 회전축의 길이 방향을 따라 연장되어 있으며, 서로 이격된 상태로 상기 회전축의 원주 방향을 따라 나열되어 있는 것이 바람직하다.
여기서, 상기 냉각핀의 말단부 중 적어도 일부는, 상기 모터의 고정자의 외부 표면에 접촉하거나 미리 정한 거리 이내로 밀접하게 배치될 수 있게 마련되어 있는 것이 바람직하다.
여기서, 상기 전력 변환 장치는, 내부의 발열 부품을 수용할 수 있는 케이스를 구비하며, 상기 케이스는, 금속 재질을 포함하며, 상기 냉각 부재와 열교환할 수 있도록 상기 냉각 부재의 일단부와 결합되어 있는 것이 바람직하다.
본 발명에 따르면, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 임펠러를 회전시키기 위하여, 일단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 내부에 수용된 냉각용 기체가 유동 가능하도록 마련되어 있는 냉각 기로;를 포함하며, 상기 모터를 제어하기 위한 장치로서, 내부에 발열 부품을 구비하는 전력 변환 장치; 상기 전력 변환 장치의 발열 부품을 냉각하기 위한 열전도성 부재로서, 일단부는 상기 발열 부품에 접촉하고 있으며, 타단부는 상기 모터 수용 공간에 노출되어 있는 냉각 부재;를 포함하며, 상기 압축 기체 흡입구는 상기 하우징의 전단부에 배치되어 있고, 상기 임펠러는 상기 하우징의 후단부에 배치되어 있으며, 상기 모터는, 상기 압축 기체 흡입구와 상기 임펠러 사이에 배치되어 있으며, 상기 냉각 기로는, 상기 압축 기체 흡입구로부터 시작하여 상기 냉각 부재의 타단부를 거쳐서 상기 임펠러까지 도달하는 제4 냉각 기로;를 포함하며, 상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제4 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키므로, 상기 압축 기체 흡입구로부터 흡입되는 비교적 저온의 냉각용 기체를 이용하여 상기 전력 변환 장치의 발열 부품을 신속하게 냉각할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이다.
도 2는 도 1에 도시된 터보 압축기의 부분확대도이다.
도 3은 도 2에 도시된 터보 압축기의 전단부 부분확대도이다.
도 4는 도 2에 도시된 터보 압축기의 후단부 부분확대도이다.
도 5는 도 1에 도시된 회전축 및 그 주변의 단면도이다.
도 6은 도 1에 도시된 VI-VI선 단면도이다.
도 7은 종래의 터보 압축기의 단면도이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이며, 도 2는 도 1에 도시된 터보 압축기의 부분확대도이다. 도 3은 도 2에 도시된 터보 압축기의 전단부 부분확대도이다.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 터보 압축기(100)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 기체를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 소위 터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)로도 불린다. 이 터보 압축기(100)는, 하우징(10)과 압축 유닛(20)과 모터(30)와 냉각 기로와 냉각 부재(50)와 전력 변환 장치(60)를 포함하여 구성된다. 이하에서 압축 대상인 기체가 공기인 것을 전제로 한다.
상기 하우징(10)은, 금속 재질의 하우징(housing)으로서, 모터 수용 공간(13)을 내부에 구비하는 통형 부재로서, 제1 중심축(C1)을 원의 중심으로 하는 단면을 가지며, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 모터 수용 공간(13)은, 후술할 상기 모터(30)를 수용할 수 있도록 상기 모터(30)와 대응되는 형상을 가진 공간이다.
상기 하우징(10)의 후단부에는, 도 2에 도시된 바와 같이 상기 압축 유닛(20)의 임펠러(21)가 배치되어 있다.
상기 하우징(10)은, 상기 모터(30)의 장착을 위하여 복수 개의 구성품으로 분리 제작되어 있는데, 본 실시예에서는 제1 하우징(10a)과, 제2 하우징(10b)과, 제3 하우징(10c)과, 제4 하우징(10d)을 포함한다.
상기 제1 하우징(10a)은, 제1 중심축(C1)을 원의 중심으로 하는 단면을 가지는 원통형 부재이다.
상기 제1 하우징(10a)의 후단부에는, 상기 모터 수용 공간(13)에 수용된 기체가 상기 임펠러(21)로 유입될 수 있도록 마련되어 있는 제2 관통공(12)이 적어도 하나 이상 형성되어 있다.
본 실시예에서 상기 제2 관통공(12)은, 복수 개 마련되어, 후술할 회전축(31)의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 나열되어 있다.
상기 제2 관통공(12)은, 원형 구멍, 상기 회전축(31)의 반경 방향을 따라 연장된 슬릿(slit)형 구멍, 상기 회전축(31)으로 근접할 수록 폭이 좁아지도록 형성된 부채꼴형 구멍등 다양한 형태로 형성될 수 있다.
본 실시예에서 상기 제2 관통공(12)은, 후술할 기체 유도 부재(22)의 내부와 연통되어 있다.
상기 제1 하우징(10a)의 상단부에는, 도 1 및 도 6에 도시된 바와 같이 후술할 상기 냉각 부재(50)의 냉각핀(52)이 관통할 수 있는 개구부(16)가 형성되어 있다.
상기 제2 하우징(10b)은, 상기 제1 하우징(10a)의 전단부에 탈착 가능하게 부착되는 원판형 부재로서, 도 3에 도시된 바와 같이 후술할 저널 베어링(34)과 스러스트 베어링(35)과 회전축(31)의 장착을 가능하게 해주는 형상으로 마련되어 있다.
상기 제2 하우징(10b)은, 상기 제1 하우징(10a)의 전단부를 폐쇄 가능한 형상으로 마련되어 있다.
상기 제3 하우징(10c)은, 상기 제2 하우징(10b)의 전단부에 탈착 가능하게 부착되는 원판형 부재로서, 도 3에 도시된 바와 같이 후술할 스러스트 베어링(35)과 회전축(31)의 장착을 가능하게 해주는 형상으로 마련되어 있다.
상기 제3 하우징(10c)은, 후술할 스러스트 베어링 러너(311) 및 스러스트 베어링(35)이 전방으로 이탈하지 않도록 구속 가능하게 마련되어 있다.
상기 제3 하우징(10c)의 중심부에는, 상기 회전축(31)이 삽입될 수 있을 정도의 직경을 가진 원형 구멍(14)이 형성되어 있다.
상기 제2 하우징(10b) 및 제3 하우징(10c)에는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가 상기 모터 수용 공간(13)으로 유입될 수 있도록 마련되어 있는 제1 관통공(11)이 적어도 하나 이상 형성되어 있다.
본 실시예에서 상기 제1 관통공(11)은, 복 수개 마련되어 상기 회전축(31)의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 나열되어 있다.
상기 제1 관통공(11)은, 원형 구멍, 상기 회전축(31)의 반경 방향을 따라 연장된 슬릿(slit)형 구멍, 상기 회전축(31)으로 근접할 수록 폭이 좁아지도록 형성된 부채꼴형 구멍등 다양한 형태로 형성될 수 있다.
상기 제3 하우징(10c)에는, 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가 상기 스러스트 베어링(35)으로 유입될 수 있도록 마련되어 있는 제3 관통공(15)이 적어도 하나 이상 형성되어 있다.
본 실시예에서 상기 제3 관통공(15)은, 도 3에 도시된 바와 같이 상기 제3 하우징(10c)에 형성된 원형 구멍(14)과 상기 원형 구멍(14)에 배치된 후술할 회전축(31)의 전단부가 서로 협력하여 형성되는 원형 고리 형상의 구멍(15)을 포함한다.
상기 제4 하우징(10d)은, 도 1에 도시된 바와 같은 원판형 부재로서, 후술할 기체 유도 부재(22)의 후단부를 폐쇄하는 부재이다.
상기 압축 유닛(20)은, 외부의 공기를 흡입하여 압축하는 장치로서, 임펠러(21)와, 기체 유도 부재(22)를 구비한다.
상기 임펠러(21)는, 원심형 펌프의 주요 구성으로 곡면을 지닌 날개를 복수 개 구비한 바퀴로서, 고속 회전이 가능하도록 장착되어 있다.
상기 기체 유도 부재(22)는, 상기 임펠러(21)의 전방에 배치되는 금속 부재로서, 상기 임펠러(21)로 유입되어 압축될 공기와 상기 임펠러(21)에 의하여 압축된 공기를 가이드하는 부재이다.
상기 기체 유도 부재(22)는, 상기 제1 하우징(10a)의 후단부를 폐쇄할 수 있도록 마련되어 있다.
본 실시예에서 상기 기체 유도 부재(22)는, 도 1에 도시된 바와 같이 상기 임펠러(21)를 거친 공기가 와선형으로 흐를 수 있도록 형성된 유로를 구비한 스크롤(scroll) 케이싱 형태로 마련된다.
상기 임펠러(21)는 후술할 압축 기체 흡입구(24)를 통하여 유입된 공기를 압축하며, 상기 임펠러(21)에 의하여 압축된 공기는 압축 기체 배출구(25)를 통하여 외부로 배출된다.
상기 압축 기체 흡입구(24)는, 압축 대상인 외부의 공기를 흡입되는 부재로서, 상기 하우징(10)의 전단부에 배치되어 있는데, 본 실시예에서는 상기 제2 하우징(10b)의 전단부에 탈착 가능하게 결합되어 있다.
상기 압축 기체 흡입구(24)로 흡입된 공기는, 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(26)를 따라 이동하면서 압축된다.
상기 모터(30)는, 회전력을 발생시키는 전기 모터로서, 상기 임펠러(21)에 고속 회전력을 공급하기 위한 장치이다. 이 모터(30)는 회전축(31)과 고정자(32)와 회전자(33)와 저널 베어링(34)과 스러스트 베어링(35)을 포함한다.
상기 회전축(31)은, 상기 제1 중심축(C1)을 따라 연장된 막대 부재로서, 상기 임펠러(21)를 회전시키기 위하여 후단부가 상기 임펠러(21)와 상대 회전 불가능하게 결합되어 있다.
상기 회전축(31)은, 상기 회전축(31)의 길이 방향인 상기 제1 중심축(C1)을 따라 연장되어 있는 중공(H)을 포함하고 있다.
상기 회전축(31)의 전단부에는, 상기 스러스트 베어링(35)과 대응되는 위치 및 형상을 가지는 스러스트 베어링 러너(311)가 마련되어 있다.
본 실시예에서 상기 스러스트 베어링 러너(311)는 일반적인 원판형 러너(runner)이다.
상기 회전축(31)의 전단부에는, 상기 회전축(31)의 중공(H)과 연통되어 있는 기체 유입공(312)이 형성되어 있다.
상기 기체 유입공(312)은, 상기 압축 기체 흡입구(24)로 유입되는 공기가 상기 중공(H)으로 유입될 수 있도록 유도하는 구멍이다.
본 실시예에서 상기 기체 유입공(312)은 상기 제3 하우징(10c)의 원형 구멍(14)의 내부에 위치한다.
상기 회전축(31)의 후단부에는, 상기 회전축(31)의 중공(H)과 연통되어 있는 기체 유출공(313)이 형성되어 있다.
상기 기체 유출공(313)은, 상기 회전축(31)의 중공(H)으로 유입된 공기가 상기 임펠러(21)에 도달할 수 있도록 유도하는 구멍이다.
본 실시예에서 상기 기체 유출공(313)은, 복 수개 마련되어 상기 회전축(31)의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 나열되어 있다.
본 실시예에서 상기 기체 유출공(313)은, 도 1에 도시된 바와 같이 상기 모터(30)의 고정자(32)와 상기 임펠러(21)의 사이에 위치하며, 상기 기체 유도 부재(22)의 내부에 배치되어 있다.
상기 고정자(32)는, 계자 코일(field coil)이 감겨지는 스테이터(stator)로서, 상기 모터 수용 공간(13)에 고정된 상태로 장착된다.
상기 회전자(33)는, 영구 자석을 포함하는 로터(rotor)로서, 상기 회전축(31)의 중간부에 결합되어 있다.
상기 저널 베어링(34)은, 고속 회전에 의하여 발생되는 마찰력을 감소시키기 위하여, 상기 회전축(31)을 회전 가능하게 지지하는 저널 포일 공기 베어링 (Journal foil air bearing)으로서, 상기 회전축(31)의 전단부와 후단부에 각각 마련되어 있다.
상기 저널 베어링(34) 중 상기 회전축(31)의 전단부에 배치된 저널 베어링(34)은, 상기 스러스트 베어링(35)의 후방에 배치되어 있다.
상기 스러스트 베어링(35)은, 스러스트 포일 공기 베어링 (Thrust foil air bearing)으로서, 한 쌍이 마련되어 상기 스러스트 베어링 러너(311)의 양면에 각각 배치되어 있다.
본 실시예에서 상기 스러스트 베어링(35)은, 도 1에 도시된 바와 같이 상기 하우징(10)의 가장 앞쪽에 배치되어 있다.
상기 고정자(32)와 상기 회전자(33) 사이, 상기 회전축(31)과 상기 고정자(32)의 사이, 상기 회전축(31)과 상기 저널 베어링(34)의 사이, 상기 스러스트 베어링(35)과 상기 스러스트 베어링 러너(311)의 사이, 각각에는 미리 정한 간격이 존재한다.
결국 본 실시예에서 상기 모터(30)는, 상기 압축 기체 흡입구(24)와 상기 임펠러(21) 사이에 배치되어 있다.
상기 냉각 기로는, 내부에 수용된 냉각용 기체가 유동 가능하도록 형성된 기로로서, 제1 냉각 기로(41)와 제2 냉각 기로(42)와 제3 냉각 기로(43)와 제4 냉각 기로(44)와 제5 냉각 기로(45)를 포함한다.
여기서, 상기 냉각용 기체는 상기 임펠러(51)의 흡입력에 의하여 상기 압축 기체 흡입구(24)로부터 흡입되는 압축 대상 기체로서의 공기이다.
상기 제1 냉각 기로(41)는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여 상기 회전축(31)의 외주면을 거쳐서 상기 임펠러(21)까지 도달하는 냉각 기로이다.
본 실시예에서 상기 제1 냉각 기로(41)는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 모터 수용 공간(13)의 전단부, 상기 고정자(32)와 상기 회전축(31)의 외주면과의 사이 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달한다.
따라서, 상기 제1 냉각 기로(41)는, 상기 모터(30)의 고정자(32)를 신속히 냉각시킬 수 있다.
본 실시예에서 상기 제1 냉각 기로(41)는, 도 3에 도시된 바와 같이 상기 제1 관통공(11)을 관통하는 과정에서 상기 스러스트 베어링 러너(311)가 수용된 공간을 거쳐감으로써, 상기 스러스트 베어링(35)을 냉각할 수 있도록 마련되어 있다.
상기 제2 냉각 기로(42)는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 회전축(31)의 중공(H)을 거쳐서 상기 임펠러(21)까지 도달하는 냉각 기로이다.
본 실시예에서 상기 제2 냉각 기로(42)는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 기체 유입공(312), 상기 회전축(31)의 중공(H), 상기 기체 유출공(313)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달한다.
따라서, 상기 제2 냉각 기로(42)는, 상기 모터(30)의 회전자(33)를 신속히 냉각시킬 수 있다.
상기 제3 냉각 기로(43)는, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 스러스트 베어링(35)을 거쳐서 상기 임펠러(21)까지 도달하는 냉각 기로이다.
본 실시예에서 상기 제3 냉각 기로(43)는, 도 3에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 스러스트 베어링(35), 상기 저널 베어링(34), 상기 모터 수용 공간(13)의 전단부, 상기 고정자(32)와 상기 회전축(31)의 외주면과의 사이 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달한다.
따라서, 상기 제3 냉각 기로(43)는, 상기 스러스트 베어링(35) 및 저널 베어링(34)를 신속히 냉각시킬 수 있다.
본 실시예에서 상기 제3 냉각 기로(43)는, 도 3에 도시된 바와 같이 상기 모터 수용 공간(13)이 후단부에서 상기 제1 냉각 기로(41)와 합류한다.
상기 제4 냉각 기로(44)는, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 냉각 부재(50)의 타단부를 거쳐서 상기 임펠러(21)까지 도달하는 냉각 기로이다.
본 실시예에서 상기 제4 냉각 기로(44)는, 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 냉각 부재(50)의 냉각핀(52), 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달한다.
상기 제4 냉각 기로(44)는, 도 6에 도시된 바와 같이 상기 냉각핀(52)의 표면과 상기 고정자(32)의 외부 표면과 상기 개구부(16)의 내부 표면이 서로 협력하여 생성되는 다수 개의 냉각 기로를 포함한다.
따라서, 상기 제4 냉각 기로(44)는, 상기 냉각핀(52)을 냉각함으로써, 상기 전력 변환 장치(60)를 신속히 냉각시킬 수 있다.
본 실시예에서 상기 제4 냉각 기로(44)는, 도 3에 도시된 바와 같이 상기 모터 수용 공간(13)의 후단부에서 상기 제1 냉각 기로(41) 및 제3 냉각 기로(43)와 합류한다.
상기 제5 냉각 기로(45)는, 상기 압축 기체 흡입구(24)로부터 시작하여 후술할 전력 변환 장치(60)의 케이스(61)의 내부 공간을 거쳐서 상기 임펠러(21)까지 도달하는 냉각 기로이다.
본 실시예에서 상기 제5 냉각 기로(45)는, 도 1에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 케이스(61)의 내부 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달한다.
따라서, 상기 제5 냉각 기로(45)는, 상기 압축 기체 흡입구(24)를 통하여 유입된 공기가 상기 케이스(61)의 내부 공간에 직접 진입하여, 상기 전력 변환 장치(60)의 발열 부품들을 신속히 냉각시킬 수 있는 구조를 가진다.
본 실시예에서 상기 제5 냉각 기로(45)는, 도 3에 도시된 바와 같이 상기 모터 수용 공간(13)의 후단부에서 상기 제1 냉각 기로(41)와 제3 냉각 기로(43) 및 제4 냉각 기로(44)와 합류한다.
결과적으로 상기 냉각 기로(41, 42, 43, 44, 45)는 상기 압축 기체 유로(26)의 전단부에 배치되어 있으며, 상기 임펠러(21)의 상류로부터 상기 임펠러(21)를 향하여 상기 압축 기체 유로(26)를 따라 흐르는 압축 대상인 공기가 냉각용 기체로 기능하게 된다.
상기 냉각 부재(50)는, 상기 전력 변환 장치(60)의 발열 부품을 냉각하기 위한 열전도성 냉각 부재(Heat Sink)로서, 본체(51)와 냉각핀(52)을 포함한다.
상기 본체(51)는, 도 2에 도시된 바와 같이 사각 판 형상의 금속 부재로서 상기 냉각 부재(50)의 일단부에 마련되어 있다.
상기 본체(51)는, 상기 전력 변환 장치(60)의 발열 부품에 접촉된 상태로, 상기 케이스(61)의 내부 공간에 배치되어 있다.
상기 냉각핀(52)은, 상기 제4 냉각 기로(44)를 흐르는 냉각용 기체와의 열교환 효율을 증가시키기 위한 부재로서, 상기 냉각 부재(50)의 타단부에 배치되어 있다.
상기 냉각핀(52)은, 다수 개가 마련되어 있으며, 도 2에 도시된 바와 같이 상기 제1 하우징(10a)의 개구부(16)를 통하여 상기 모터 수용 공간(13)에 삽입된 상태로 배치되어 있다.
본 실시예에서 상기 냉각핀(52)은, 도 2에 도시된 바와 같이 상기 회전축(31)을 향하여 돌출된 상태로, 상기 회전축(31)의 길이 방향(C1)을 따라 연장되어 있으며, 도 6에 도시된 바와 같이 서로 이격된 상태로 상기 회전축(31)의 원주 방향을 따라 나열되어 있다.
상기 냉각핀(52)의 말단부 중 적어도 일부는, 상기 모터(30)의 고정자(32)의 외부 표면에 접촉하거나 미리 정한 거리 이내로 밀접하게 배치될 수 있게 마련되는 것이 바람직하다.
본 실시예에서는 상기 냉각핀(52)의 말단부 모두가 도 6에 도시된 바와 같이 상기 모터(30)의 고정자(32)의 외부 표면에 접촉하고 있다.
상기 전력 변환 장치(60)는, 상기 모터(30)를 제어하기 위하여 전기를 변환하는 장치로서, 직류(DC) 성분을 교류(AC) 성분으로 바꾸거나 반대로 교류(AC) 성분을 직류(DC)로 변환하여 상기 모터(30)에 공급하는 장치이다. 이 전력 변환 장치(60)는, 케이스(61)와 스위칭 모듈(62)과 덮개(63)와 관통공(64)을 포함하고 있다.
상기 케이스(61)는, 내부 공간에 각종 발열 부품을 수용할 수 있는 금속 재질의 용기로서, 내부의 각종 발열 부품이 소손되어 화염이 발생하더라도, 그 화염이 외부로 유출되지 않도록 기밀 가능한 구조를 가지는 것이 바람직하다.
본 실시예에서 상기 케이스(61)는, 상기 제1 하우징(10a)의 상단부에 배치되며, 상기 하우징(10)과 열교환할 수 있도록 도 1에 도시된 바와 같이 상기 제1 하우징(10a)의 외주면에 접촉된 상태를 유지하고 있다.
본 실시예에서 상기 케이스(61)는, 상기 냉각 부재(50)의 본체(51)와 열교환할 수 있도록, 상기 본체(51)와 접촉한 상태로 결합되어 있다.
상기 케이스(61)의 바닥면에는, 상기 제5 냉각 기로(45)를 따라 흐르는 공기가 유입된 후 유출될 수 있도록 적어도 하나 이상의 기공(미도시)이 형성되어 있다. 본 실시예에서 상기 기공(미도시)은, 도 2에 도시된 바와 같이 상기 냉각 부재(50)의 전방과 후방에 각각 하나 이상이 마련되어 있으며, 상기 제1 하우징(10a)의 개구부(16)와 상기 케이스(61)의 내부 공간을 서로 연통시킨다.
상기 스위칭 모듈(62)은, 상기 전력 변환 장치(60)의 주요 발열 부품으로서, 절연 게이트 양극성 트랜지스터(IGBT, Insulated/Isolated Gate bi-polar Transistor)를 포함하고 있다.
상기 전력 변환 장치(60)는, 주요 발열 부품인 상기 스위칭 모듈(62) 이외에도, 상기 모터(30)의 회전 속도를 조절하는 등 상기 모터(30)의 작동 전반을 제어하는 제어기 등 각종 발열 부품을 포함하고 있다.
본 실시예에서 상기 스위칭 모듈(62)은, 상기 케이스(61)의 바닥면 근처에 배치되며, 상기 냉각 부재(50)의 본체(51)의 상면에 밀착된 상태로 결합되어 있다.
상기 스위칭 모듈(62)은, 직류(DC) 성분을 교류(AC) 성분으로 바꾸는 인버터(inverter)의 핵심 구성이다.
상기 인버터는 파워 인버터(power inverter)로도 불리며, 적절한 변환 방법이나 스위칭 소자, 제어 회로를 통해 원하는 전압과 주파수 출력값을 얻는다.
상기 덮개(63)는, 금속 판재형 부재로서, 도 2에 도시된 바와 같이 상기 케이스(61)의 개구된 상단부를 탈착 가능하게 폐쇄하기 위한 부재이다.
상기 관통공(64)은, 상기 케이스(61)의 바닥면에 형성되어 있는 사각형 구멍으로서, 상기 냉각 부재(50)이 냉각핀(52)이 관통할 수 있는 형상으로 마련되어 있다.
본 실시예에서 상기 관통공(64)은, 상기 냉각 부재(50)의 본체(51)가 관통할 수 없는 크기와 형상을 가진다.
이하에서는, 상술한 구성의 터보 압축기(100)가 작동하는 방법의 일례를 설명하기로 한다.
상기 모터(30)의 회전축(31)이 회전하면, 상기 임펠러(21)가 회전하게 되고, 상기 임펠러(21)의 흡입력에 의하여 상기 압축 기체 흡입구(24)로부터 흡입되는 공기가, 상기 제1 냉각 기로(41)와 제2 냉각 기로(42)와 제3 냉각 기로(43)와 제4 냉각 기로(44)와 제5 냉각 기로(45)를 통하여 흐르면서, 상기 모터(30)를 냉각시키게 된다.
이렇게 상기 모터(30)를 냉각한 공기는, 상기 기체 유도 부재(22)의 내부로 유입된 후, 상기 임펠러(21)에 의하여 압축된 후 상기 압축 기체 배출구(25)를 통하여 외부로 배출된다.
이때, 상기 제1 냉각 기로(41)와 상기 제2 냉각 기로(42) 및 제3 냉각 기로(43)와 제4 냉각 기로(44)와 제5 냉각 기로(45)를 흐르는 공기는, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 임펠러(21)까지 일방향으로 유동하게 되며, 상기 압축 기체 흡입구(24) 쪽으로 재순환하지 않는다.
상기 제1 냉각 기로(41)를 따라 유동하는 공기는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 모터 수용 공간(13)의 전단부, 상기 고정자(32)와 상기 회전축(31)의 외주면과의 사이 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달함으로써, 상기 고정자(32)와 상기 회전축(31)의 외주면을 신속하게 냉각시킬 수 있다.
상기 제2 냉각 기로(42)를 따라 유동하는 공기는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 기체 유입공(312), 상기 회전축(31)의 중공(H), 상기 기체 유출공(313)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달함으로써, 상기 회전자(33)와 상기 회전축(31)의 중공(H)을 신속하게 냉각시킬 수 있다.
상기 제3 냉각 기로(43)를 따라 유동하는 공기는, 도 3에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 스러스트 베어링(35), 상기 저널 베어링(34), 상기 모터 수용 공간(13)의 전단부, 상기 고정자(32)와 상기 회전축(31)의 외주면과의 사이 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달함으로써, 상기 스러스트 베어링(35)과 저널 베어링(34) 등을 신속하게 냉각시킬 수 있다.
상기 제4 냉각 기로(44)를 따라 유동하는 공기는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 냉각 부재(50)의 냉각핀(52), 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달함으로써, 상기 냉각 부재(50)의 냉각핀(52)을 신속하게 냉각시킬 수 있다.
상기 제5 냉각 기로(45)를 따라 유동하는 공기는, 도 2에 도시된 바와 같이 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 케이스(61)의 내부 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달함으로써, 상기 전력 변환 장치(60)의 발열 부품들을 직접적으로 신속하게 냉각시킬 수 있다.
상술한 구성의 터보 압축기(100)는, 기체를 압축하여 외부로 공급할 수 있는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구(24); 상기 압축 기체 흡입구(24)를 통하여 유입된 기체를 압축하는 임펠러(21); 상기 임펠러(21)에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구(25); 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(26)를 구비하는 압축 유닛(20); 상기 임펠러(21)를 회전시키기 위하여, 일단부가 상기 임펠러(21)와 결합되어 있는 회전축(31)을 구비하는 모터(30); 상기 모터(30)를 수용하는 모터 수용 공간(13)을 구비한 하우징(10); 내부에 수용된 냉각용 기체가 유동 가능하도록 마련되어 있는 냉각 기로;를 포함하며, 상기 모터(30)를 제어하기 위한 장치로서, 내부에 발열 부품을 구비하는 전력 변환 장치(60); 상기 전력 변환 장치(60)의 발열 부품을 냉각하기 위한 열전도성 부재로서, 일단부는 상기 발열 부품에 접촉하고 있으며, 타단부는 상기 모터 수용 공간(13)에 노출되어 있는 냉각 부재(50);를 포함하며, 상기 압축 기체 흡입구(24)는 상기 하우징(10)의 전단부에 배치되어 있고, 상기 임펠러(21)는 상기 하우징(10)의 후단부에 배치되어 있으며, 상기 모터(30)는, 상기 압축 기체 흡입구(24)와 상기 임펠러(21) 사이에 배치되어 있으며, 상기 냉각 기로는, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 냉각 부재(50)의 타단부를 거쳐서 상기 임펠러(21)까지 도달하는 제4 냉각 기로(44);를 포함하며, 상기 임펠러(21)의 흡입력에 의하여 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가, 상기 제4 냉각 기로(44)를 거치면서 상기 전력 변환 장치(60)의 발열 부품을 냉각시키므로, 상기 압축 기체 흡입구(24)로부터 흡입되는 비교적 저온의 냉각용 기체를 이용하여 상기 전력 변환 장치(60)의 발열 부품을 신속하게 냉각할 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 전력 변환 장치(60)가, 내부 공간에 발열 부품을 수용할 수 있는 케이스(61)를 구비하며, 상기 냉각 기로는, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 케이스(61)의 내부 공간을 거쳐서 상기 임펠러(21)까지 도달하는 제5 냉각 기로(45);를 포함하며, 상기 임펠러(21)의 흡입력에 의하여 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가, 상기 제5 냉각 기로(45)를 거치면서 상기 전력 변환 장치(60)의 발열 부품을 냉각시키므로, 상기 압축 기체 흡입구(24)를 통하여 유입된 공기가 상기 케이스(61)의 내부 공간에 직접 진입하여, 상기 전력 변환 장치(60)의 발열 부품들을 냉각시킬 수 있다는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 하우징(10)의 전단부에는, 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가 상기 모터 수용 공간(13)으로 유입될 수 있도록 마련되어 있는 제1 관통공(11)이 적어도 하나 이상 형성되어 있으며, 상기 하우징(10)의 후단부에는, 상기 모터 수용 공간(13)에 수용된 기체가 상기 임펠러(21)로 유입될 수 있도록 마련되어 있는 제2 관통공(12)이 적어도 하나 이상 형성되어 있으므로, 냉각용 기체가 상기 모터 수용 공간(13)에 유입된 후 유출되는 구조를 마련하기 용이하다는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 제1 관통공(11)과 상기 제2 관통공(12) 중 적어도 하나가, 상기 회전축(31)의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 복수 개 나열되어 있으므로, 상기 모터 수용 공간(13)의 내부로 진입하는 공기의 유량 및 유선 형태를 쉽게 조절할 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 제4 냉각 기로(44)가, 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 냉각 부재(50)의 타단부, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달하므로, 상기 모터(30)와 상기 전력 변환 장치(60)를 동시에 냉각시킬 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 제5 냉각 기로(45)가, 상기 압축 기체 흡입구(24)로부터 시작하여, 상기 제1 관통공(11), 상기 케이스(61)의 내부 공간, 상기 제2 관통공(12)을 순차적으로 거쳐서 상기 임펠러(21)까지 도달하므로, 상기 냉각 부재(50)를 통한 간접 냉각과 상기 케이스(61)의 내부 진입을 통한 직접 냉각을 동시에 구현할 수 있다는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각 부재(50)의 타단부에는 다수 개의 냉각핀(52)이 마련되어 있으므로, 냉각용 기체와 상기 냉각 부재(50)와의 열교환 효율이 매우 증가하는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각핀(52)이, 도 6에 도시된 바와 같이 상기 회전축(31)을 향하여 돌출된 상태로, 상기 회전축(31)의 길이 방향(C1)을 따라 연장되어 있으며, 서로 이격된 상태로 상기 회전축(31)의 원주 방향을 따라 나열되어 있으므로, 상기 제4 냉각 기로(44)를 따라 유동하는 공기의 흐름을 방해하지 않는 상황하에서 열교환 효율을 증가시킬 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각핀(52)의 말단부 중 적어도 일부는, 도 6에 도시된 바와 같이 상기 모터(30)의 고정자(32)의 외부 표면에 접촉하거나 미리 정한 거리 이내로 밀접하게 배치될 수 있게 마련되어 있으므로, 상기 냉각핀(52)의 돌출 길이를 최대한으로 확보할 수 있으며, 상기 고정자(32)에서 발생하는 열의 일부를 상기 냉각 부재(50)로 전도시킬 수 있는 장점도 있다.
그리고 상기 터보 압축기(100)는, 상기 전력 변환 장치(60)가, 내부의 발열 부품을 수용할 수 있는 케이스(61)를 구비하며, 상기 케이스(61)는, 금속 재질을 포함하며, 상기 냉각 부재(50)와 열교환할 수 있도록 상기 냉각 부재(50)의 일단부와 결합되어 있으므로, 상기 냉각 부재(50)로부터 상기 케이스(61)로의 열전달을 통하여, 상기 케이스(61)가 제2의 열전도성 냉각 부재(Heat Sink)로 기능하는 장점이 있다.
한편, 상기 터보 압축기(100)는, 상기 냉각 기로(41, 42, 43, 44, 45)가, 상기 냉각용 기체가 상기 압축 기체 흡입구(24)로부터 시작하여 상기 임펠러(21)까지 일방향으로 유동하여 재순환하지 않도록 형성되어 있으므로, 냉각에 사용된 공기가 가열된 이후에 다시 임펠러의 상류측으로 유입되어 재압축되는 "맴돌이 유동"을 가지지 않는 바, 임펠러(21)의 압축 효율이 우수하다는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 제1 냉각 기로(41)가, 상기 모터(30)의 고정자(32)를 냉각시킬 수 있도록 형성되어 있으므로, 비교적 저온의 냉각용 기체를 이용하여 상기 고정자(32)를 신속하게 냉각할 수 있는 장점이 있다. 여기서, 상기 제1 관통공(11) 및 제2 관통공(12)의 크기나 개수를 조절하여 상기 제1 냉각 기로(41)를 흐르는 공기의 양을 용이하게 조절할 수 있다.
또한 상기 터보 압축기(100)는, 상기 제2 냉각 기로(42)가, 상기 모터(30)의 회전자(33)를 냉각시킬 수 있도록 형성되어 있으므로, 비교적 저온의 냉각용 기체를 이용하여 상기 회전자(33)를 신속하게 냉각할 수 있는 장점이 있다. 여기서, 상기 기체 유입공(312), 중공(H), 기체 유출공(313)의 크기나 개수를 조절하여 상기 제2 냉각 기로(42)를 흐르는 공기의 양을 용이하게 조절할 수 있다.
그리고 상기 터보 압축기(100)는, 상기 회전축(31)의 전단부에 배치되어 있는 스러스트 베어링(35)을 포함하며, 상기 압축 기체 흡입구(24)로부터 시작하여 상기 스러스트 베어링(35)을 거쳐서 상기 임펠러(21)까지 도달하는 제3 냉각 기로(43)를 포함하므로, 비교적 저온의 냉각용 기체를 이용하여 상기 스러스트 베어링(35)을 신속하게 냉각할 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 하우징(10)의 전단부에는, 상기 압축 기체 흡입구(24)로부터 흡입되는 기체가 상기 스러스트 베어링(35)으로 유입될 수 있도록 마련되어 있는 제3 관통공(15)이 적어도 하나 이상 형성되어 있으므로, 상기 제3 냉각 기로(43)를 따라 유동하는 공기의 유량 및 유선 형태를 쉽게 조절할 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 제3 관통공(15)이, 상기 하우징(10)의 전단부에 형성된 원형 구멍(14)과 상기 원형 구멍(14)에 배치된 상기 회전축(31)의 전단부가 협력하여 형성되는 원형 고리 형상의 구멍(15)을 포함하므로, 복잡한 절삭 가공이 없어도 상기 제3 관통공(15)을 쉽게 형성할 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 회전축(31)이, 상기 회전축(31)의 중공(H)과 연통되어 있으며, 상기 회전축(31)의 전단부에 형성되어 있는 기체 유입공(312); 상기 회전축(31)의 중공(H)과 연통되어 있으며, 상기 회전축(31)의 후단부에 형성되어 있는 기체 유출공(313);을 포함하며, 상기 기체 유출공(313)은 상기 모터(30)의 고정자(32)와 상기 임펠러(21)의 사이에 배치되어 있으므로, 상기 제2 냉각 기로(42)를 따라 흐르는 공기가, 다른 냉각 기로(41, 43)를 따라 흐르는 공기와 혼합되지 않은 상태로, 곧바로 상기 임펠러(21)까지 도달할 수 있는 장점이 있다. 이렇게 하면, 상기 제2 냉각 기로(42)를 따라 흐르는 공기의 유량을 개별적으로 조절하기 매우 쉽다.
본 실시예에서는, 상기 냉각 기로(41, 42, 43, 45)의 내부에 별도의 냉각핀이 없으나, 별도의 냉각핀이 상기 냉각 기로의 내부에 마련될 수 있음은 물론이다. 이때 냉각핀이 상기 하우징(10)에 일체로 형성될 수도 있고, 별도의 부재로 가공된 후 압입 등의 방법으로 결합될 수도 있다.
본 실시예에서는, 상기 베어링(34, 35)이 포일 공기 베어링으로 마련되어 있으나, 다른 종류의 공기 베어링이나 기타 다양한 베어링이 사용될 수도 있음은 물론이다.
본 실시예에서는, 기밀을 위한 별도의 실링(sealing) 수단이 설명되어 있지 않지만, 다양한 종류의 실링 수단이 사용될 수도 있음은 물론이다.
이상으로 본 발명을 설명하였는데, 본 발명의 기술적 범위는 상술한 실시예에 기재된 내용으로 한정되는 것은 아니며, 해당 기술 분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 본 발명의 기술적 사상의 범위를 벗어나지 않는 것임은 명백하다.

Claims (10)

  1. 기체를 압축하여 외부로 공급할 수 있는 터보 압축기로서,
    상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛;
    상기 임펠러를 회전시키기 위하여, 일단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터;
    상기 모터를 수용하는 모터 수용 공간을 구비한 하우징;
    내부에 수용된 냉각용 기체가 유동 가능하도록 마련되어 있는 냉각 기로;
    상기 모터를 제어하기 위한 장치로서, 내부에 발열 부품을 구비하는 전력 변환 장치;
    상기 전력 변환 장치의 발열 부품을 냉각하기 위한 열전도성 부재로서, 일단부는 상기 발열 부품에 접촉하고 있으며, 타단부는 상기 모터 수용 공간에 노출되어 있는 냉각 부재;를 포함하며,
    상기 압축 기체 흡입구는 상기 하우징의 전단부에 배치되어 있고, 상기 임펠러는 상기 하우징의 후단부에 배치되어 있으며,
    상기 모터는, 상기 압축 기체 흡입구와 상기 임펠러 사이에 배치되어 있으며,
    상기 냉각 기로는,
    상기 압축 기체 흡입구로부터 시작하여 상기 냉각 부재의 타단부를 거쳐서 상기 임펠러까지 도달하는 제4 냉각 기로;를 포함하며,
    상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제4 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키는 것을 특징으로 하는 터보 압축기
  2. 제 1항에 있어서,
    상기 전력 변환 장치는, 내부 공간에 발열 부품을 수용할 수 있는 케이스를 구비하며,
    상기 냉각 기로는,
    상기 압축 기체 흡입구로부터 시작하여 상기 케이스의 내부 공간을 거쳐서 상기 임펠러까지 도달하는 제5 냉각 기로;를 포함하며,
    상기 임펠러의 흡입력에 의하여 상기 압축 기체 흡입구로부터 흡입되는 기체가, 상기 제5 냉각 기로를 거치면서 상기 전력 변환 장치의 발열 부품을 냉각시키는 것을 특징으로 하는 터보 압축기
  3. 제 1항 또는 제 2항에 있어서,
    상기 하우징의 전단부에는, 상기 압축 기체 흡입구로부터 흡입되는 기체가 상기 모터 수용 공간으로 유입될 수 있도록 마련되어 있는 제1 관통공이 적어도 하나 이상 형성되어 있으며,
    상기 하우징의 후단부에는, 상기 모터 수용 공간에 수용된 기체가 상기 임펠러로 유입될 수 있도록 마련되어 있는 제2 관통공이 적어도 하나 이상 형성되어 있는 것을 특징으로 하는 터보 압축기
  4. 제 3항에 있어서,
    상기 제1 관통공과 상기 제2 관통공 중 적어도 하나는, 상기 회전축의 원주 방향을 따라 미리 정한 간격만큼 이격된 상태로 복수 개 나열되어 있는 것을 특징으로 하는 터보 압축기
  5. 제 3항에 있어서,
    상기 제4 냉각 기로는,
    상기 압축 기체 흡입구로부터 시작하여, 상기 제1 관통공, 상기 냉각 부재의 타단부, 상기 제2 관통공을 순차적으로 거쳐서 상기 임펠러까지 도달하는 것을 특징으로 하는 터보 압축기
  6. 제 3항에 있어서,
    상기 제5 냉각 기로는,
    상기 압축 기체 흡입구로부터 시작하여, 상기 제1 관통공, 상기 케이스의 내부 공간, 상기 제2 관통공을 순차적으로 거쳐서 상기 임펠러까지 도달하는 것을 특징으로 하는 터보 압축기
  7. 제 1항에 있어서,
    상기 냉각 부재의 타단부에는 다수 개의 냉각핀이 마련되어 있는 것을 특징으로 하는 터보 압축기
  8. 제 7항에 있어서,
    상기 냉각핀은, 상기 회전축을 향하여 돌출된 상태로, 상기 회전축의 길이 방향을 따라 연장되어 있으며, 서로 이격된 상태로 상기 회전축의 원주 방향을 따라 나열되어 있는 것을 특징으로 하는 터보 압축기
  9. 제 7항에 있어서,
    상기 냉각핀의 말단부 중 적어도 일부는, 상기 모터의 고정자의 외부 표면에 접촉하거나 미리 정한 거리 이내로 밀접하게 배치될 수 있게 마련되어 있는 것을 특징으로 하는 터보 압축기
  10. 제 1항에 있어서,
    상기 전력 변환 장치는, 내부의 발열 부품을 수용할 수 있는 케이스를 구비하며, 상기 케이스는, 금속 재질을 포함하며, 상기 냉각 부재와 열교환할 수 있도록 상기 냉각 부재의 일단부와 결합되어 있는 것을 특징으로 하는 터보 압축기
PCT/KR2023/016484 2022-10-25 2023-10-23 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기 WO2024090931A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220137924A KR20240057580A (ko) 2022-10-25 2022-10-25 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기
KR10-2022-0137924 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024090931A1 true WO2024090931A1 (ko) 2024-05-02

Family

ID=90831345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016484 WO2024090931A1 (ko) 2022-10-25 2023-10-23 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기

Country Status (2)

Country Link
KR (1) KR20240057580A (ko)
WO (1) WO2024090931A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010213A (ko) * 2004-07-27 2006-02-02 삼성테크윈 주식회사 터어보압축기
JP2010090776A (ja) * 2008-10-07 2010-04-22 Kubota Tekkosho:Kk 電動ポンプ
JP2013024041A (ja) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd 電動過給装置及び多段過給システム
US20180231006A1 (en) * 2017-02-14 2018-08-16 Danfoss A/S Oil free centrifugal compressor for use in low capacity applications
JP2021195921A (ja) * 2020-06-16 2021-12-27 株式会社アイシン 電動ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010213A (ko) * 2004-07-27 2006-02-02 삼성테크윈 주식회사 터어보압축기
JP2010090776A (ja) * 2008-10-07 2010-04-22 Kubota Tekkosho:Kk 電動ポンプ
JP2013024041A (ja) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd 電動過給装置及び多段過給システム
US20180231006A1 (en) * 2017-02-14 2018-08-16 Danfoss A/S Oil free centrifugal compressor for use in low capacity applications
JP2021195921A (ja) * 2020-06-16 2021-12-27 株式会社アイシン 電動ポンプ

Also Published As

Publication number Publication date
KR20240057580A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2018131988A1 (ko) 팬 모터
WO2018143705A1 (ko) 팬 모터
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2022181997A1 (ko) 베어링 냉각 수로를 포함하는 터보 압축기
WO2017039108A1 (ko) 직결 구동형 듀얼 터보 블로워 냉각 구조
WO2012148189A2 (ko) 전동기 및 이를 구비한 전기차량
WO2012148131A2 (en) Electric motor and electric vehicle having the same
WO2016148442A1 (ko) 송풍 시스템
WO2018030657A1 (ko) 차량용 공기 압축기
WO2017052114A1 (ko) 냉각장치를 갖춘 진공펌프
WO2014061918A1 (ko) 터보기계 시스템
WO2018225878A1 (ko) 모터
KR20030015858A (ko) 초전도성 전자기기 및 그의 냉각 방법
DE60120259D1 (de) Elektrisches Gebläse und damit ausgerüsteter elektrischer Staubsauger
WO2018225877A1 (ko) 모터
WO2020091357A1 (ko) 복합식 냉각구조를 갖는 연료전지용 터보 송풍기
WO2020027436A1 (ko) 전동기
WO2022154340A1 (ko) 공기조화기
WO2024090931A1 (ko) 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기
US4807354A (en) Method of rearranging components of a dynamoelectric machine
WO2020175715A1 (ko) 로터 및 이를 구비한 전동기
WO2022203178A1 (ko) 방폭 기능을 구비하는 터보 압축기
WO2024034868A1 (ko) 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기