WO2017052114A1 - 냉각장치를 갖춘 진공펌프 - Google Patents

냉각장치를 갖춘 진공펌프 Download PDF

Info

Publication number
WO2017052114A1
WO2017052114A1 PCT/KR2016/010018 KR2016010018W WO2017052114A1 WO 2017052114 A1 WO2017052114 A1 WO 2017052114A1 KR 2016010018 W KR2016010018 W KR 2016010018W WO 2017052114 A1 WO2017052114 A1 WO 2017052114A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pump
temperature
cooling
vacuum pump
Prior art date
Application number
PCT/KR2016/010018
Other languages
English (en)
French (fr)
Inventor
이인철
Original Assignee
이인철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이인철 filed Critical 이인철
Priority to CN201680030727.1A priority Critical patent/CN107709787B/zh
Priority to US15/548,312 priority patent/US10690135B2/en
Publication of WO2017052114A1 publication Critical patent/WO2017052114A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a vacuum pump having a cooling device, and more particularly, to a vacuum pump having a cooling device, and more particularly, to a vacuum pump having a cooling device, To a technique capable of realizing the following.
  • a semiconductor manufacturing facility is a facility for selectively and repeatedly performing processes such as photography, diffusion, chemical vapor deposition, ion implantation, and metal deposition on a wafer.
  • the etching, diffusion, chemical vapor deposition, and the like in the manufacturing process of such a semiconductor manufacturing facility are steps of putting a process gas into a closed process chamber under a predetermined atmosphere so as to react on a wafer in the process chamber. Is performed in a vacuum state, and the vacuum state must be accurately maintained at a set value to perform a precise semiconductor manufacturing process.
  • the conditions of the pressure during the semiconductor manufacturing process for manufacturing semiconductor devices are very important and require low pressure, for example, low vacuum or high vacuum conditions, in many semiconductor manufacturing processes.
  • the degree of vacuum required for each process condition of this semiconductor manufacturing process differs depending on each process, and one or more vacuum pumps are used depending on the degree of vacuum required and are suitably used to exhaust the process gas from the process chamber.
  • a pumping device In order to maintain or make the process chamber at a low pressure during a heat treatment process such as a diffusion process or a deposition process in a semiconductor manufacturing process, a pumping device is necessarily required. In such a pumping device, Pumps are mainly used.
  • the vacuum pump includes a cylindrical pump housing body and a pump housing base coupled to a lower end of the body housing body.
  • a motor is positioned at the center, a rotor is simultaneously rotatably coupled to the drive shaft of the motor, And a structure in which the stator is disposed in a structure that surrounds the rotor.
  • a cooling device having various cooling methods or cooling structures is applied to the vacuum pump.
  • Korean Patent No. 10-1120887, Korean Patent No. 10-0517788 and Korean Patent No. 10-1129774 disclose various types of vacuum pump cooling apparatuses.
  • the present invention is directed to a cooling apparatus for a vacuum pump that can more effectively cool a vacuum pump belonging to a high-temperature environment.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a novel vacuum pump cooling method that keeps the internal temperature of the vacuum pump at a constant temperature by circulating oil in the rotor of the vacuum pump , It is possible to prevent the rapid increase of the temperature of the vacuum pump and ensure the stable operation of the pump and the pump during the initial stage of the operation such as smooth lubrication of the bearing, And a vacuum pump equipped with the vacuum pump.
  • Another object of the present invention is to provide a pump for circulating oil for cooling a vacuum pump by applying an external or internal pump and using a cooling water or a heat exchange method using a Peltier element, And to provide a vacuum pump equipped with a cooling device capable of designing an optimum layout.
  • the present invention provides a vacuum pump equipped with a cooling device.
  • the vacuum pump provided with the cooling device provided in the present invention has the following features.
  • the vacuum pump equipped with the cooling device includes a pump housing having an inlet for introducing a gas and an outlet for discharging gas, and a pump housing installed at both ends of the pump housing so as to generate vacuum pressure And a transmission gear for interlocking between the motor and the rotor connected to the axes of any one of the rotors for driving the rotor.
  • the rotor is provided with a side-by-side hole along the axis, and an oil supply pipe is provided inside the hole. Oil supplied from the oil supply device is supplied to the oil supply pipe. Thereby enabling the bearing to be cooled.
  • the oil supply device includes an oil pan for storing a predetermined amount of oil, an oil pump for pumping oil in the oil pan, and a heat exchanger for heat exchange of the oil pumped by the oil pump and supplied to the oil supply pipe Lt; / RTI >
  • the oil pump of the oil supply device may be an external pump installed outside the pump housing or a built-in pump installed inside the gear housing provided in the pump housing.
  • the built-in oil pump is driven by the power transmission between the oil pump side pump drive gear and the rotor side pump drive gear which mesh with each other.
  • the oil supply device may have an oil circulation type structure including an oil pan ⁇ oil pump ⁇ heat exchanger ⁇ oil supply pipe ⁇ rotor side hole ⁇ oil pan formed in the gear housing .
  • the heat exchanger of the oil supply device may be a water-cooled heat exchanger using cooling water or a heat exchanger using a Peltier element.
  • an oil block is disposed on the heat-
  • a cooling fan and a cooler may be disposed on a side surface of the Peltier element, or a structure in which an oil block is disposed on a heat absorbing side surface of the Peltier element and a cooling block capable of entering and exiting cooling water is disposed on a heat generating side surface.
  • the holes formed in the shaft of the rotor have oil outlets through which the cooled oil escapes.
  • the oil outlets are formed at positions adjacent to the transmission gear mounted on the shaft of the rotor, So that cooling of the transmission gear can be achieved.
  • the vacuum pump equipped with the cooling device may further include a first temperature sensor provided at a gas inflow side of the pump housing to detect the temperature of the gas and a second temperature sensor provided in the main oil line of the oil supply device for detecting the temperature of the oil, A third temperature sensor installed in the periphery of the pump housing for detecting a temperature of the ambient environment; a second temperature sensor for detecting an ambient temperature of the pump housing based on a temperature value input from the first temperature sensor, And a microprocessor that variably controls the temperature.
  • a first cooling block is provided around the pump housing, a 3-way valve is provided on a main oil line extending from the oil supply device, The branched first sub oil line may be connected to the first cooling block of the pump housing to cool the pump housing with the oil supplied to the first cooling block and subsequently cool and lubricate the rotor and the bearing .
  • the first sub oil line branches to a plurality of lines and is connected to a second cooling block formed in the periphery of the bearing housing or a cooling block formed in the periphery of the gear housing,
  • the housing, the gear housing, and the like can be cooled.
  • the second sub oil line extending from the first cooling block is connected to the main oil line at the rear end side of the three-way valve, .
  • the vacuum pump equipped with the cooling device provided in the present invention has the following advantages.
  • an external vacuum pump or a built-in vacuum pump as a means for circulating the oil for cooling the vacuum pump, it can be appropriately selected and used according to equipment specifications and layout, and the space utilization can be increased.
  • the heat exchange method using the Peltier element in addition to the heat exchange method using the cooling water, the oil heat exchange efficiency can be improved and the pump cooling efficiency can be further enhanced. Also, by applying the cooling method using the Peltier element, There is an advantage that it can be used in an environment where no water is supplied.
  • FIG. 1 is a cross-sectional view showing a vacuum pump equipped with a cooling device according to an embodiment of the present invention
  • Fig. 2 is a cross-sectional view taken along the line A-A in Fig.
  • FIG. 3 is a cross-sectional view showing a vacuum pump equipped with a cooling device according to another embodiment of the present invention
  • FIG. 4 is a sectional view taken along the line B-B in Fig. 3
  • 5A and 5B are cross-sectional views showing a heat exchanger using a Peltier element in a vacuum pump equipped with a cooling device according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view showing oil flow in a rotor in a vacuum pump equipped with a cooling device according to the present invention
  • FIG. 7 is a cross-sectional view showing a vacuum pump equipped with a cooling device according to another embodiment of the present invention
  • 1 and 2 are a horizontal sectional view and a side sectional view showing a vacuum pump equipped with a cooling device according to an embodiment of the present invention.
  • the vacuum pump equipped with the cooling device includes a pump housing 12 which constitutes a rotor accommodating space for generation of vacuum pressure.
  • An inlet 10 for introducing gas from the process chamber and an outlet 11 for discharging gas to the outside are formed respectively on the front end side and the rear end side of the pump housing 12.
  • the gas that has entered the housing through the inlet 10 during the rotor operation can be discharged to the outside of the housing through the outlet 11 while advancing backward by the vacuum pressure formed by the rotors 13a, 13b.
  • a bearing housing 35 is integrally formed at a front end portion and a rear end portion of the pump housing 12, in which a bearing 34 for rotatably supporting the rotors 13a and 13b is installed,
  • a coupler housing 37 and a gear housing 38 in which a coupler 36 and a transmission gear 15 are respectively positioned are formed in the front end portion and the rear end portion of the bearing housing 35.
  • the respective housings that is, the pump housing 12, the bearing housing 35, the coupler housing 37, and the gear housing 38 can be structured isolated from each other.
  • the lower bottom portion of the gear housing 38 in which the transmission gear 15 is located is constituted by an oil pan 19.
  • the oil pan 19 is provided with a predetermined amount of oil for cooling the rotor and the bearing,
  • the oil in the oil pan 19 can be supplied to the oil pump 20 through the main oil line connected to the oil pan 19 at this time.
  • the vacuum pump equipped with the cooling device includes a pair of rotors 13a and 13b as a means for generating vacuum pressure while rotating in engagement with each other.
  • the rotors 13a and 13b are threaded rotors having axes at both ends thereof and are horizontally disposed in parallel to the inside of the pump housing 12 and supported by bearings at both ends located inside the bearing housing 35, (34).
  • the rotors 13a and 13b may have a screw having the same pitch over the entire length of the rotor, or may have a screw having a pitch that gradually decreases toward the rear end of the rotor And a screw having a variety of pitches.
  • the rotor (13a, 13b) is provided with a hole (16) through which oil for cooling flows, and the hole (16) at this time is formed parallel to the rotor length in the center axis direction of the rotor And serves to guide the oil toward the center of the rotor.
  • the holes 16 may be formed over the entire length of the rotors 13a and 13b. However, in the entire length section of the rotors 13a and 13b, a relatively large temperature rise interval, for example, It is preferable to form it in the section where it is formed.
  • holes 16 are formed from one end of the rotor 13a or 13b, that is, from the rear end to the middle of the rotor length, and the rear end section in which the screw pitch interval is narrow is concentratedly cooled .
  • the holes (16) formed in the shafts of the rotors (13a, 13b) are provided with an oil outlet (30) through which the cooled oil flows out.
  • the oil outlet 30 is connected to the transmission gear 15 at a position adjacent to the transmission gear 15 mounted on the shaft of the rotors 13a and 13b, for example, at the rear end position of the shaft on which the transmission gear 15 is mounted. It can be formed in a diagonal direction toward the front surface of the housing or in a direction perpendicular to the axis.
  • the oil discharged from the oil outlet 30 of the hole 16 is injected from the rotating shaft and can be sprayed on the transmission gear 15.
  • the oil that has cooled the rotor and the bearing is utilized, (15) can be cooled.
  • the oil that is discharged through the oil outlet 30 and sprinkled on the transmission gear 15 is scattered on the wall surface of the gear housing 22 and flows down along the wall surface of the gear housing 22, And then flows into the bearing 34 which is in contact with the wall surface, so that the lubricant of the bearing 34 can be made by the inflow of such oil.
  • a space is formed in the upper portion of the position where the bearings are inserted so that the oil does not flow immediately, so that the oil can be sufficiently supplied into the bearings.
  • the vacuum pump equipped with the cooling device also includes an oil supply pipe 17 as a means for introducing oil for cooling to the inside of the hole 16 in the rotors 13a and 13b.
  • the oil supply pipe 17 is arranged concentrically along the inside of the hole 16 formed in the rotors 13a and 13b and the rear end portion of the oil supply pipe 17 disposed in this way is connected to the rotor 13a and 13b And can be coupled to the rear end shaft in a fastening or pushing-in structure to be rotated together.
  • An adapter cover 40 is provided on the rear surface of the gear housing 38.
  • An adapter 41 is fastened to the rear surface of the adapter cover 40. The tip of the adapter 41 And crosses the adapter cover 40 and comes into contact with the rear end of the oil supply pipe 17 through the tip portion thereof.
  • an adapter coupling groove 55 is formed in the rear end surface of the oil supply pipe 17, and a tip of the adapter 40 is inserted into the adapter coupling groove 55 formed as described above, .
  • An O-ring (not shown) can be interposed between the adapter binding groove 55 and the tip of the adapter 40. Even if there is no O-ring, The oil pan 19 of FIG.
  • the front end of the oil supply pipe 17 is spaced from the end portion of the hole 16 in the rotor shaft, and the outer circumference thereof is maintained at a distance from the inner circumference of the hole 16,
  • the oil that has escaped through the tip of the supply pipe 17 flows backward through the gap between the oil supply pipe 17 and the hole 16 to cool the bearings and the like as well as the rotors 13a and 13b.
  • An orifice 43 is formed in the adapter 41 so that the orifice 43 can communicate with the oil supply pipe 17 at this time.
  • the oil supplied from the oil supply device 18 can be sent to the oil supply pipe 17 through the orifice 43 of the adapter 41.
  • the vacuum pump equipped with the cooling device includes a motor 14 and a transmission gear 15 as means for driving the rotors 13a and 13b.
  • the motor 14 is installed on the outside of the pump housing 12, that is, on the front side of the coupler housing 37 provided at the front end of the pump housing 12, Are connected by a coupler 37 in the coupler housing 37 and the tip end shaft of one rotor 13a out of the couplings 13a and 13b.
  • the shaft of the motor 14 and the shaft end of the rotor 13a may be connected in a structure in which they are directly connected.
  • the transmission gear 15 is mounted on the rear end shaft of the pair of rotors 13a and 13b and each of the transmission gears 15 is positioned in the gear housing 38 and can be engaged with each other.
  • the vacuum pump equipped with the cooling device includes an oil supply device 18 as means for circulating oil in addition to supplying oil for cooling the rotor.
  • the oil supply device 18 includes an oil pan 19 for storing a predetermined amount of oil, an oil pump 20 for pumping oil in the oil pan 19 while being operated by an output control of the microprocessor 33, A heat exchanger 21 for heat exchange of the oil pumped by the oil pump 20 and supplied to the oil supply pipe 17, and the like.
  • the main oil line 42 connected to the oil pan 19 formed at the bottom of the gear housing 38 is connected to the oil pump 20.
  • the main oil line 42 is then connected to a heat exchanger
  • the main oil line from this heat exchanger 17 leads to the orifice 43 of the adapter 41 in the adapter cover 40 via a floor switch or sensor.
  • the oil supply device 18 is connected to the oil pan 19 through the oil pan 19, the oil pump 20, the heat exchanger 21, the oil supply pipe 17, the rotor side hole 16, And an oil circulating structure that continuously circulates the oil along the oil line.
  • an external oil pump or a built-in oil pump can be applied.
  • the oil pump 20 is installed outside the pump housing 12 And is connected to the oil pan 19 through a main oil line.
  • the oil pan 19 is installed inside the gear housing 22 at a position adjacent to the oil pan 19.
  • the built-in oil pump 20 is driven by using the rotational force of the rotors 13a and 13b as power.
  • the built-in oil pump 20 may be a rotary pump type, a gear pump type, a vane pump type, or the like.
  • an internal gear pump type such as a vehicle engine oil pump An example of applying the same internal gear pump type is shown.
  • the built-in oil pump 20 is supported on the gear housing 38 at a position adjacent to the oil pan 19 inside the gear housing 38 And the suction pipe 44 of the oil pump 20 installed in this manner is positioned at the end of the suction pipe 44 in the oil in the oil pan 19 and at the same time the discharge pipe 45 is connected to the filter or the heat exchanger 21 through the main oil line .
  • a rotor-side pump driving gear 24 is mounted on the rear end shaft of the rotor 13b, and an oil pump side driving gear 23 is connected to an internal gear shaft of the oil pump 20 And the oil pump side pump drive gear 23 and the rotor side pump drive gear 24 at this time can be rotated to be engaged with each other.
  • the oil in the oil pan 19 is supplied to the filter side of the oil pump 19 while the oil pump 20 is operated by the power at this time during rotation of the rotor and transmission between the oil pump side pump drive gear 23 and the rotor side pump drive gear 24, Or to the main oil line leading to the heat exchanger side.
  • the oil supply device 18 is provided with a heat exchanger 21 as a means for cooling the oil.
  • the heat exchanger 21 at this time is composed of a water-cooled heat exchanger using cooling water, a heat exchanger using a Peltier element, .
  • an oil pipe 46 connected to the main oil line and a cooling water pipe 47 through which cooling water flows are installed in the interior of the heat exchanger body, 46 and the cooling water pipe 47 can come into contact with each other or with each other.
  • heat exchanger 21 heat exchange is performed between the oil (oil-cooled oil) flowing through the oil pipe 46 and the cooling water flowing through the cooling water pipe 47, thereby cooling the oil.
  • a first valve 48 controlled by the microprocessor 33 is installed at one side of the cooling water pipe 47. By interrupting the flow of the cooling water through the opening / closing control of the first valve 48, So that the temperature of the heat exchanger can be controlled.
  • a Peltier element 25 controlled by the power / controller 49 side is provided as shown in FIG. 5A, and the heat absorbing side of the Peltier element 25
  • An oil block 26 having a flow passage 38 for oil flow is disposed on the surface of the Peltier element 25 and a cooling fan 27 and a cooler 28 are disposed on the heat-
  • the flow path 38 formed in the oil block 26 is preferably formed in various shapes such as a zigzag shape in order to secure a sufficient heat exchange area.
  • the heat emitted from the heat generation side of the Peltier element 25 can be controlled by the cooling fan 27 and the cooler 28.
  • thermoelectric module can be applied to the Peltier element, and a detailed description of its principle and effect will be omitted.
  • a Peltier element 25 controlled by the power / controller 49 side is provided on the heat-absorbing side surface of the Peltier element 25, an oil having an oil passage 38 for oil flow And a cooling block 29 for circulating cooling water is disposed on the heat-generating side surface of the Peltier element 25.
  • the heat emitted from the heat generation side of the Peltier element 25 can be controlled by the cooling water flowing through the cooling block 29.
  • the heat exchanger 21 including the water-cooled heat exchanger using the cooling water or the heat exchanger using the Peltier element
  • the supply side of the cooling water to the heat exchanger and the change of the polarity of the Peltier element The temperature of the oil can be controlled to be low, and the temperature of the oil can be controlled to be high according to circumstances such as the temperature of the pump to be increased.
  • the polarity of the Peltier element 25 is changed at the initial stage of operation of the vacuum pump so that the side contacting the oil block 26 side is set as the heat generation side and the side where the cooling block or the cooler contacts is set as the suction side, By increasing the temperature by heating the oil through the Peltier element, it becomes possible to smoothly lubricate the bearings and the like at the initial stage of the pump operation, and the pump can be activated at an appropriate temperature, thereby enhancing the pump operation efficiency.
  • the present invention provides a method of automatically controlling the temperature of the oil according to the temperature of the gas to be treated in the vacuum pump.
  • a first temperature sensor 31 for detecting the temperature of the gas is provided on the gas inflow side of the pump housing 12 and is connected to one side of the main oil line of the oil supply device 18, Is provided with a second temperature sensor 32 for detecting the temperature of the oil and a third temperature sensor 39 for detecting the ambient temperature at the periphery of the pump housing 12 adjacent to the pump housing 12.
  • the output of the microprocessor 33 While the operation of the heat exchanger 21 is controlled by control, for example, the supply period of the cooling water entering the heat exchanger is controlled through the control of the first valve 48, or the ON / OFF operation time of the Peltier element is varied
  • the temperature of the oil can be variably controlled in accordance with the operation condition of the vacuum pump.
  • the gas temperature of the first temperature sensor is about 60 degrees when the gas does not flow
  • the gas temperature of the first temperature sensor gradually increases as the amount of gas flowing increases. As the gas amount increases, The gas temperature will rise.
  • the gap between the pump rotor rotor and the housing due to the increase of the gas temperature is considered in the development of the pump. Therefore, the oil temperature of the second temperature sensor is automatically adjusted by the microphone process according to the gas temperature, It is possible to solve the problem that the gap between the rotor and the housing becomes narrower due to lowering of the temperature as much as possible.
  • the environmental temperature of the third temperature sensor that is, the environmental temperature at the place where the pump is installed, measures the environmental temperature around the pump, and when the temperature is high, it affects the gap change between the rotor rotor and the housing.
  • the oil temperature set value of the second temperature sensor can be changed based on the value read from the temperature and the value read from the environmental temperature of the third temperature sensor.
  • the third temperature sensor is 24 degrees and the first temperature sensor is 60 degrees to 100 degrees
  • the appropriate oil temperature is 80 degrees
  • the temperature setting value of the second temperature sensor is 80 degrees and the microprocessor sets the temperature , And is maintained at 80 degrees by a Peltier element or a heat exchanger.
  • the set value of the second temperature sensor is adjusted to 70 degrees by the microprocessor. That is, The gap between the rotor rotor and the housing can be adjusted by adjusting the oil temperature of the second temperature sensor.
  • the temperature of the pump installation is different for each user, it is best to keep the proper oil temperature at 80 degrees when the first temperature sensor is between 60 and 100 degrees, as in the first example. , If the ambient temperature of the third temperature sensor is increased by 40 degrees, the temperature of the second temperature sensor oil may need to be set at about 75 degrees lower than 80 degrees.
  • the above example shows an example of the approximate setting method, and the temperature characteristics are changed according to the design method and size of the pump rotor rotor, the combination of the pump (for example, the combination of the booster pump and the dry pump) You can do it differently.
  • the set value of the second temperature sensor can be arbitrarily set and used irrespective of the value of the first temperature sensor and the value of the third temperature sensor.
  • FIG. 6 is a cross-sectional view showing oil flow in a rotor in a vacuum pump equipped with a cooling device according to the present invention.
  • the oil in the oil pan 19 is cooled through the heat exchanger 21 while moving along the main oil line (or heated And then supplied to the hole 16 in the rotor shaft via the orifice 43 of the adapter 41 and the oil supply pipe 17.
  • the oil thus supplied to the holes 16 in the rotor shaft advances toward the rear end along the holes 16, that is, passes through the inside of the rotor to the rear end so as to cool the bearings as well as the heated rotors 13a and 13b
  • the oil that has cooled the rotor and the bearing is discharged through the oil outlet 30 of the hole 16 and is injected into the transmission gear 15 to cool the transmission gear 15 at this time, (19).
  • the flow of the oil is circulated through the oil pan 19 ⁇ the oil pump 20 ⁇ the heat exchanger 21 ⁇ the oil supply pipe 17 ⁇ the rotor side hole 16 ⁇ the oil pan 19, It is possible to effectively cool the rotors 13a and 13b through the continuous circulation of the oil.
  • FIG. 7 is a cross-sectional view showing a vacuum pump equipped with a cooling device according to another embodiment of the present invention.
  • a method of controlling the temperature of the housing by using cooling oil when housing temperature control is required is shown.
  • a first cooling block 50 having an oil passage (not shown) is provided around the periphery of the pump housing 12, that is, the outer circumferential surface of the pump housing 12, and the oil supply device 18 Way valve 51 is provided at a predetermined position on the main oil line 42 extending from the heat exchanger 21, for example, at the position on the rear end side of the heat exchanger 21.
  • the first sub oil line 52 is branched from the 3-way valve 51 and connected to the first cooling block 50 of the pump housing 12, do.
  • the oil supplied from the oil supply device 18, for example, the heat-exchanged cooling oil is sent to the first sub oil line 52 via the three-way valve 51, To the first cooling block 50 of the pump housing 12 to cool the pump housing 12.
  • the second sub oil line 56 extending from the first cooling block 50 is connected to one side of the main oil line 42, for example, the main oil line 42 on the downstream side of the 3- And a second valve 55 controlled by the microprocessor 33 is installed on the second sub oil line 56.
  • the second valve 55 can be opened under the control of the microprocessor 33 during the housing-side cooling control, so that the oil that has undergone the housing cooling is transferred from the second sub oil line 56 to the main oil line 42 And then proceeds to the rotor side.
  • the first sub oil line 52 branched from the three-way valve 51 includes a second cooling block 53 formed around the outer circumferential surface of the bearing housing 35, for example, And a cooling block (not shown) formed around the outer circumferential surface of the gear housing 22.
  • the cooling oil that has undergone the heat exchange in this case is also supplied to the three-way valve (not shown) Oil line 52 and then to the second cooling block 53 of the bearing housing 35 and the cooling block of the gear housing so that the bearing housing 35 and the gear housing 51, (22) can be cooled.
  • the second sub oil line 56 extending from the cooling housing block side cooling block 53 and the gear housing side cooling block at this time can also be connected to one side of the main oil line 42.
  • the oil that has been cooled by the housing can be sent to the main oil line side after exiting the respective cooling blocks and joining to the second sub oil line 56.
  • the three-way valve 51 can switch the flow path by the operation of a solenoid (not shown) controlled by the microprocessor 33, and can detect the temperature of the housing detected from a temperature sensor (not shown)
  • the first sub-oil-line-side flow path is opened (the rotor-side flow path is closed) and the oil can be sent only when the housing temperature control is required by the judgment control of the microprocessor which receives the gas temperature detected from the first temperature sensor, In other cases, the flow path is opened toward the rotor side, and the flow path toward the first sub oil line side is closed, so that the oil can be sent to the rotor side.
  • the flow path of the 3-way valve 51 when the flow path of the 3-way valve 51 is opened on the rotor side and the housing side is closed, the flow of the oil flows from the oil pan 19 to the oil pump 20, the heat exchanger 21, The rotor, the bearing, and the like can be cooled while showing a circulation pattern leading from the supply pipe 17 to the rotor side hole 16 to the oil pan 19.
  • the flow path of the three-way valve 51 when the flow path of the three-way valve 51 is closed on the rotor side and the housing side is opened, the flow of the oil flows from the oil pan 19 through the oil pump 20, the heat exchanger 21, 1 through the sub-oil line 52, each housing cooling block, the second sub oil line 56, the oil supply pipe 17, the rotor side hole 16, and the oil pan 19,
  • the rotor, the bearing, and the like can be cooled.
  • the present invention by implementing a new system for cooling the vacuum pump by controlling the temperature of the rotor by circulating the oil in the rotor of the vacuum pump, it is possible to prevent the sudden temperature rise of the vacuum pump, It is possible to ensure the stability of the process and the pump drive, and the semiconductor manufacturing facility can be economically maintained and managed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명은 반도체 제조설비의 공정 챔버 등을 진공으로 만들어주는 진공펌프를 효율적으로 냉각시켜주는 기술에 관한 것이다. 본 발명은 진공펌프의 로터 내부에 오일을 순환시키는 방식으로 진공펌프의 내부 온도를 항상 일정 온도로 유지시켜주는 새로운 형태의 진공펌프 냉각방식을 구현함으로써, 진공펌프의 급격한 온도상승을 방지할 수 있고, 운전 초기에는 베어링의 원활한 윤활을 도모할 수 있는 등 공정 수행 및 펌프 구동의 안정성을 확보할 수 있으며, 설비의 경제적인 관리 및 유지를 가능하게 하는 한편, 진공펌프 냉각을 위한 오일을 순환시켜주는 펌프의 경우 외장형 또는 내장형 펌프를 적용하고, 또 냉각수 또는 펠티어 소자를 이용한 열교환 방식을 적용함으로써, 냉각효율 향상은 물론 공장 여건에 맞는 최적의 레이아웃 설계를 가능하게 하고, 또 로터측 온도 및 오일 온도를 체크하여 펌프 내부로 흡입되는 가스의 유량에 따라 오일의 온도를 자동으로 가변 제어하는 방식을 적용함으로써, 진공펌프의 가동효율을 높일 수 있는 냉각장치를 갖춘 진공펌프를 제공한다.

Description

냉각장치를 갖춘 진공펌프
본 발명은 냉각장치를 갖춘 진공펌프에 관한 것으로서, 더욱 상세하게는 반도체 제조설비의 공정 챔버 등을 진공으로 만들어주는 진공펌프를 효율적으로 냉각시켜주거나 필요에 따라서는 가열시켜줌으로써 공정 특성에 맞는 진공펌프를 구현할 수 있는 기술에 관한 것이다.
일반적으로 반도체 제조설비는 웨이퍼 상에 사진, 확산, 화학기상증착, 이온주입, 금속증착 등의 공정을 선택적으로 또 반복적으로 수행하는 설비이다.
이러한 반도체 제조설비의 제조공정 중 식각, 확산, 화학기상증착 등의 공정은 밀폐된 공정챔버 내에 소정의 분위기 하에서 공정가스를 투입하여, 공정챔버 내의 웨이퍼 상에서 반응하도록 하는 공정으로서, 반도체 제조공정의 대부분은 진공상태에서 진행되고 있으며, 진공상태가 설정된 값에서 정확하게 유지되어야만 정밀한 반도체 제조공정을 수행할 수 있다.
보통 반도체 소자를 제조하는 반도체 제조공정 중 압력의 조건은 매우 중요하며, 많은 반도체 제조공정 상에서 저압력, 예를 들면 저진공이나 고진공의 조건들을 필요로 한다.
이러한 반도체 제조공정의 각 공정조건마다 요구되는 진공도는 각 공정에 따라 다르며, 요구되는 진공도에 따라 1개 또는 그 이상의 진공펌프들이 사용되고, 공정챔버로부터 공정가스를 배기시키는데 적합하게 사용된다.
일 예로서, 반도체 제조공정 중 확산 또는 증착공정 등의 열처리공정의 진행 시 공정챔버를 낮은 압력으로 유지하거나 만들기 위해서는 반드시 펌핑장치가 필요하며, 이러한 펌핑장치에는 로터의 회전력에 의해 진공을 발생시키는 진공펌프가 주로 이용된다.
이러한 진공펌프는 원통형상의 펌프 하우징 본체와 이 본체 하우징 본체의 하단부에 결합되는 펌프 하우징 베이스를 포함하며, 중앙에 모터가 위치되고 이 모터의 구동축에 로터가 동시에 회전 가능하게 결합되며 이 로터의 외측에 로터를 감싸는 구조로 스테이터가 배치되는 구조로 이루어진다.
따라서, 로터가 모터의 구동에 의해서 회전하게 되면 그 외측에 구비되는 스테이터와의 서로 반대의 경사각을 갖도록 한 각 스크류 사이에서 강력한 진공압이 발생되도록 하여 이때의 진공압에 의해서 공정 챔버 내의 잔류 가스가 원활하게 배출되도록 하고 있다.
여기서, 진공압 발생을 위한 진공펌프 작동 시 진공펌프에서는 고열이 발생되며, 이렇게 발생한 고열로부터 진공펌프를 보호하기 위하여 진공펌프에는 다양한 냉각 방식이나 냉각 구조 등을 가지는 냉각장치가 적용되고 있다.
예를 들면, 한국등록특허 10-1120887호, 한국등록특허 10-0517788호, 한국등록특허 10-1129774호 등에서는 다양한 형태의 진공펌프 냉각장치를 개시하고 있다.
본 발명은 고열의 환경에 속해 있는 진공펌프를 보다 효과적으로 냉각시킬 수 있는 진공펌프의 냉각장치를 그 안출의 대상으로 한다.
따라서, 본 발명은 이와 같은 점을 감안하여 안출한 것으로서, 진공펌프의 로터 내부에 오일을 순환시키는 방식으로 진공펌프의 내부 온도를 항상 일정 온도로 유지시켜주는 새로운 형태의 진공펌프 냉각방식을 구현함으로써, 진공펌프의 급격한 온도상승을 방지할 수 있고, 운전 초기에는 베어링의 원활한 윤활을 도모할 수 있는 등 공정 수행 및 펌프 구동의 안정성을 확보할 수 있으며, 설비의 경제적인 관리 및 유지가 가능한 냉각장치를 갖춘 진공펌프를 제공하는데 그 목적이 있다.
또한, 본 발명의 다른 목적은 진공펌프 냉각을 위한 오일을 순환시켜주는 펌프의 경우 외장형 또는 내장형 펌프를 적용하고, 또 냉각수 또는 펠티어 소자를 이용한 열교환 방식을 적용함으로써, 냉각효율 향상은 물론 공장 여건에 맞는 최적의 레이아웃 설계가 가능한 냉각장치를 갖춘 진공펌프를 제공하는데 있다.
또한, 본 발명의 또 다른 목적은 로터측 온도 및 오일 온도를 체크하여 펌프 내부로 흡입되는 가스의 유량에 따라 오일의 온도를 자동으로 가변 제어하는 방식을 적용함으로써, 진공펌프의 가동효율을 높일 수 있는 냉각장치를 갖춘 진공펌프를 제공하는데 있다.
또한, 본 발명의 또 다른 목적은 펌프 하우징이나 베어링 하우징 주변에 오일유로가 형성되어 있는 쿨링블럭이나 재킷을 설치하여 이곳에 오일을 공급하는 방식으로 하우징 온도를 제어하는 방식을 적용함으로써, 적절한 하우징 온도 제어로 진공펌프의 안정적인 작동성을 확보할 수 있고, 다양한 공정에 대응이 가능한 냉각장치를 갖춘 진공펌프를 제공하는데 있다.
상기 목적을 달성하기 위하여 본 발명에서 제공하는 냉각장치를 갖춘 진공펌프는 다음과 같은 특징이 있다.
상기 냉각장치를 갖춘 진공펌프는 가스의 유입을 위한 입구와 가스의 배출을 위한 출구를 가지는 펌프 하우징과, 상기 펌프 하우징의 내부에 양단 지지되는 구조로 설치되어 서로 맞물려 회전하면서 진공압을 발생시키는 한 쌍의 로터와, 상기 로터의 구동을 위해 어느 하나의 로터의 축에 연결되는 모터 및 로터 간의 연동을 위한 전동기어를 포함하는 구조로 이루어진다.
특히, 상기 로터에는 축선을 따라 나란한 홀이 형성됨과 더불어 상기 홀의 내부에는 오일공급관이 설치되고, 상기 오일공급관에는 오일공급장치로부터 보내지는 오일이 공급되는 동시에 이렇게 공급되는 오일이 홀 내부를 흐르면서 로터 및 베어링을 냉각시킬 수 있도록 하는 것에 특징이 있다.
여기서, 상기 오일공급장치는 일정량의 오일을 저장하기 위한 오일팬과, 상기 오일팬 내의 오일을 펌핑하기 위한 오일펌프와, 상기 오일펌프에 의해 펌핑되어 오일공급관으로 공급되는 오일의 열교환을 위한 열교환기로 구성될 수 있다.
이러한 오일공급장치의 오일펌프는 펌프 하우징의 외부에 설치되는 외장형 펌프 또는 펌프 하우징에 구비되는 기어 하우징의 내부에 설치되는 내장형 펌프로 이루어질 수 있다.
이때의 내장형의 오일펌프는 로터 동력을 이용하는 방식으로서, 서로 맞물려 돌아가는 오일펌프측 펌프 구동기어와 로터측 펌프 구동기어 간의 전동에 의해 구동되도록 하는 것이 바람직하다.
또한, 상기 오일공급장치의 경우, 기어 하우징의 내부에 조성되는 오일팬→오일펌프→열교환기→오일공급관→로터측 홀→오일팬으로 이어지는 메인 오일라인을 포함하는 오일순환식 구조로 이루어질 수 있다.
그리고, 상기 오일공급장치의 열교환기는 냉각수를 이용한 수냉식 열교환기 또는 펠티어 소자를 이용한 열교환기로 이루어질 수 있으며, 상기 펠티어 소자를 이용한 열교환기의 경우에는 펠티어 소자의 흡열측 면에는 오일블럭이 배치되는 동시에 발열측 면에는 쿨링팬 및 쿨러가 배치되는 구조 또는 펠티어 소자의 흡열측 면에는 오일블럭이 배치되는 동시에 발열측 면에는 냉각수의 출입이 가능한 쿨링블럭이 배치되는 구조로 이루어질 수 있다.
한편, 상기 로터의 축에 형성되는 홀에는 냉각을 마친 오일이 빠져나가는 오일출구를 구비하고, 이때의 오일출구는 로터의 축에 장착되어 있는 전동기어에 인접한 위치에 형성되도록 하여, 오일출구에서 배출되는 오일이 전동기어에 뿌려지면서 전동기어의 냉각이 이루어질 수 있도록 하는 것이 바람직하다.
또한, 상기 냉각장치를 갖춘 진공펌프는 펌프 하우징의 가스 유입측에 설치되어 가스의 온도를 검출하는 제1온도센서와, 상기 오일공급장치의 메인 오일라인에 설치되어 오일의 온도를 검출하는 제2온도센서와, 상기 펌프 하우징의 주변에 설치되어 주변 환경 온도를 검출하는 제3온도센서와, 상기 제1온도센서와 제2온도센서, 그리고 제3온도센서로부터 입력되는 온도값에 기초하여 오일의 온도를 가변적으로 제어하는 마이크로프로세서를 포함할 수 있다.
그리고, 본 발명의 바람직한 실시예로서, 상기 펌프 하우징의 주변에 제1쿨링블럭을 설치함과 더불어 오일공급장치로부터 연장되는 메인 오일라인 상에 3-웨이 밸브를 설치하고, 상기 3-웨이 밸브로부터 분기되는 제1서브 오일라인을 펌프 하우징의 제1쿨링블럭으로 연결하여, 제1쿨링블럭으로 공급되는 오일로 펌프 하우징을 냉각시킨 후에 계속해서 로터 및 베어링에 대한 냉각 및 윤활시킬 수 있도록 할 수 있다.
여기서, 상기 제1서브 오일라인은 복수의 라인으로 분기함과 더불어 베어링 하우징의 주변에 형성되어 있는 제2쿨링블럭이나 기어 하우징의 주변에 형성되어 있는 쿨링블럭 등으로 연결하여, 펌프 하우징은 물론 베어링 하우징이나 기어 하우징 등을 냉각시킬 수 있도록 할 수 있다.
바람직한 실시예로서, 상기 펌프 하우징의 주변을 냉각시킨 후, 상기 제1쿨링블럭으로부터 연장되는 제2서브 오일라인은 3-웨이 밸브의 후단측 메인 오일라인으로 연결되어, 하우징 냉각 후 로터측 냉각이 이루어질 수 있도록 할 수 있다.
본 발명에서 제공하는 냉각장치를 갖춘 진공펌프는 다음과 같은 장점이 있다.
첫째, 오일순환 방식으로 진공펌프의 로터나 베어링 등을 냉각시켜줌으로써, 진공펌프의 급격한 온도상승을 방지할 수 있는 등 공정 수행 및 펌프 구동의 안정성을 확보할 수 있고, 펌프 온도를 공정 특성에 맞게 설정할 수 있는 장점이 있다.
둘째, 진공펌프 냉각을 위한 오일을 순환시켜주는 수단으로 외장형 진공펌프나 내장형 진공펌프를 적용함으로써, 설비 사양이나 레이아웃에 맞게 적절히 선택 사용할 수 있고, 공간활용도를 높일 수 있는 장점이 있다.
셋째, 오일의 열교환을 위한 방식으로 냉각수를 이용한 열교환 방식 이외에도 펠티어 소자를 이용한 열교환 방식을 적용함으로써, 오일 열교환 효율 향상과 더불어 펌프 냉각효율을 한층 높일 수 있으며, 펠티어 소자를 이용한 냉각방식의 적용으로 쿨링워터가 공급되지 않은 환경에서도 사용할 수 있는 장점이 있다.
특히, 펠티어 소자를 이용하는 열교환 방식을 통해 펌프 가동 초기에 오일 온도를 가열함으로써, 온도가 상승된 오일을 통해 베어링 윤활부위의 윤활이 한층 부드럽게 이루어지도록 할 수 있다.
넷째, 펌프 내부로 흡입되는 가스의 유량에 따라 오일의 온도를 자동으로 가변 제어하는 방식을 적용함으로써, 진공펌프의 가동효율을 높일 수 있고, 공정 상황에 맞게 오일의 온도를 물론 펌프의 온도를 적절하게 제어할 수 있는 장점이 있다.
다섯째, 진공펌프의 적절한 온도 제어로 설비 가동율을 증대시켜 생산성이 증대되도록 하고, 특히 펌프의 유지 보수를 위한 관리 비용이 최대한 절감되도록 하는 경제적인 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 냉각장치를 갖춘 진공펌프를 나타내는 단면도
도 2는 도 1의 A-A 선 단면도
도 3은 본 발명의 다른 실시예에 따른 냉각장치를 갖춘 진공펌프를 나타내는 단면도
도 4는 도 3의 B-B 선 단면도
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 냉각장치를 갖춘 진공펌프에서 펠티어 소자를 이용한 열교환기를 나타내는 단면도
도 6은 본 발명에 따른 냉각장치를 갖춘 진공펌프에서 로터 내의 오일 흐름을 나타내는 단면도
도 7은 본 발명의 또 다른 실시예에 따른 냉각장치를 갖춘 진공펌프를 나타내는 단면도
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.
도 1과 도 2는 본 발명의 일 실시예에 따른 냉각장치를 갖춘 진공펌프를 나타내는 평단면도 및 측단면도이다.
도 1과 도 2에 도시한 바와 같이, 상기 냉각장치를 갖춘 진공펌프는 진공압 발생을 위한 로터 수용 공간을 조성하는 펌프 하우징(12)을 포함한다.
상기 펌프 하우징(12)의 선단측과 후단측에는 공정 챔버로부터의 가스의 유입을 위한 입구(10)와 외부로의 가스의 배출을 위한 출구(11)가 각각 형성된다.
이에 따라, 로터 동작 시 입구(10)를 통해 하우징 안으로 들어온 가스는 로터(13a,13b)가 형성하는 진공압에 의해 뒷쪽으로 진행되면서 출구(11)를 통해 하우징 밖으로 배출될 수 있게 된다.
특히, 상기 펌프 하우징(12)의 선단부와 후단부에는 각각 로터(13a,13b)의 회전지지를 위한 베어링(34)이 설치되는 베어링 하우징(35)이 일체식으로 형성되고, 펌프 하우징(12)의 선단부와 후단부에는 커플러(36)와 전동기어(15)가 각각 위치되는 커플러 하우징(37)과 기어 하우징(38)이 베어링 하우징(35)에 연접하여 형성된다.
여기서, 상기 각각의 하우징, 즉 펌프 하우징(12), 베어링 하우징(35), 커플러 하우징(37), 기어 하우징(38)은 상호 간에 격리된 구조를 이룰 수 있게 된다.
그리고, 상기 전동기어(15)가 위치되는 기어 하우징(38)의 아래쪽 바닥부위는 오일팬(19)으로 조성되고, 이러한 오일팬(19)에는 로터 및 베어링 냉각, 그리고 베어링 윤활을 위한 일정량의 오일이 항상 채워진 상태로 있게 되며, 이때의 오일팬(19)으로 연결되는 메인 오일라인을 통해 오일팬(19) 내의 오일이 오일펌프(20)로 제공될 수 있게 된다.
또한, 상기 냉각장치를 갖춘 진공펌프는 서로 맞물려 회전하면서 진공압 발생을 위한 수단으로 한 쌍의 로터(13a,13b)를 포함한다.
상기 로터(13a,13b)는 양단에 축을 가지는 나사식 로터(Threaded rotor)로서, 펌프 하우징(12)의 내부에 나란히 수평 배치되면서 베어링 하우징(35)의 내부에 위치되는 양단의 축 부분을 통해 베어링(34)에 의해 양단 지지되는 구조로 설치된다.
여기서, 상기 로터(13a,13b)는 로터 전 길이에 걸쳐 동일한 피치의 나사를 갖는 형태로 이루어질 수 있거나, 또는 어느 한 쪽으로 갈수록, 예를 들면 로터 후단쪽으로 갈수록 점점 작아지는 피치의 나사를 갖는 형태로 이루어질 수 있는 등 다양한 피치의 나사를 갖는 형태로 이루어질 수 있다.
특히, 상기 로터(13a,13b)에는 냉각을 위한 오일이 유입되는 홀(16)이 구비되며, 이때의 홀(16)은 로터(13a,13b)의 중심축선방향으로 로터 길이를 따라 나란하게 형성되어 오일을 로터 중심측으로 유도하는 역할을 하게 된다.
이러한 홀(16)은 로터(13a,13b)의 전체 길이에 걸쳐 형성할 수도 있으나, 로터(13a,13b)의 전체 길이 구간 중에서 상대적으로 온도가 많이 상승하는 구간, 예를 들면 나사 피치 간격이 좁게 형성되어 있는 구간에 형성하는 것이 바람직하다.
본 발명에서는 로터(13a,13b)의 한쪽 단부, 즉 후단부에서부터 로터 길이 중간쯤되는 구간까지 홀(16)을 형성하여, 나사 피치 간격이 좁게 형성되어 있는 후단부 구간을 집중 냉각하는 예를 보여준다.
그리고, 상기 로터(13a,13b)의 축에 형성되는 홀(16)에는 냉각을 마친 오일이 빠져나가는 오일출구(30)가 구비된다.
이러한 오일출구(30)는 로터(13a,13b)의 축에 장착되어 있는 전동기어(15)에 인접한 위치, 예를 들면 전동기어(15)가 장착되어 있는 축의 후단부 위치에서 전동기어(15)의 전면을 향해 사선방향이나 축선에 대한 직각방향으로 형성될 수 있게 된다.
이에 따라, 상기 홀(16)의 오일출구(30)에서 배출되는 오일은 회전하는 축으로부터 분사되어 전동기어(15)에 뿌려질 수 있게 되고, 결국 로터와 베어링 냉각을 마친 오일을 활용하여 전동기어(15)까지도 냉각시킬 수 있는 이점을 얻을 수 있게 된다.
그리고, 상기 오일출구(30)를 통해 배출되어 전동기어(15)에 뿌려지면서 비산되는 오일은 기어 하우징(22)의 벽면으로 뿌려짐과 더불어 이때의 벽면을 타고 흘러내리면서 기어 하우징(22)의 벽면과 접해 있는 베어링(34) 내로 유입되고, 결국 이러한 오일의 유입에 의해 베어링(34)의 윤활이 이루어질 수 있게 된다.
여기서, 베어링이 삽입되는 위치의 윗부분에 오일이 바로 흘러내리지 않게 공간을 형성하여 오일이 충분히 베어링 내로 공급될 수 있도록 하는 것이 바람직하다.
또한, 상기 냉각장치를 갖춘 진공펌프는 냉각을 위한 오일을 로터(13a,13b)에 있는 홀(16)의 내부까지 도입하는 수단으로 오일공급관(17)을 포함한다.
상기 오일공급관(17)은 로터(13a,13b)에 형성되어 있는 홀(16)의 내부를 따라 동심원으로 나란하게 배치되고, 이렇게 배치되는 오일공급관(17)의 후단부는 로터(13a,13b)의 후단 축에 체결식 또는 압입식 구조로 결합되어 함께 회전될 수 있게 된다.
그리고, 기어 하우징(38)의 후면부에는 어댑터 커버(40)가 설치되고, 이렇게 설치되는 어댑터 커버(40)의 후면에는 어댑터(41)가 체결구조로 설치되며, 이때의 어댑터(41)의 선단부는 어댑터 커버(40)를 가로지르면서 그 선단부를 통해 오일공급관(17)의 후단부에 접하게 된다.
예를 들면, 상기 오일공급관(17)의 후단부 단면에는 어댑터 결속홈(55)이 형성되고, 이렇게 형성되는 어댑터 결속홈(55)에 어댑터(40)의 선단부가 삽입 위치되면서 약간의 간극을 두고 접하게 된다.
이때의 어댑터 결속홈(55)과 어댑터(40)의 선단부 간의 접하는 부위에는 O-링(미도시)이 개재될 수 있게 되며, O-링이 없는 경우에도 미세한 간극을 통해 누설되는 오일은 그 하부의 오일팬(19)으로 떨어질 수 있게 된다.
이때, 상기 오일공급관(17)의 선단부는 로터 축에 있는 홀(16)의 막혀 있는 끝부분과 간격을 유지하게 되는 동시에 외주둘레 또한 홀(16)의 내주면과 간격을 유지하게 되고, 이에 따라 오일공급관(17)의 선단부를 통해 빠져나온 오일은 오일공급관(17)과 홀(16) 간의 간격을 통해 뒷쪽으로 진행되면서 로터(13a,13b)는 물론 베어링 등을 냉각시킬 수 있게 된다.
그리고, 상기 어댑터(41)의 내부에는 오리피스(43)가 형성되고, 이때의 오리피스(43)는 오일공급관(17)과 통할 수 있게 된다.
이에 따라, 상기 오일공급장치(18)로부터 공급되는 오일은 어댑터(41)의 오리피스(43)를 거쳐 오일공급관(17)으로 보내질 수 있게 된다.
또한, 상기 냉각장치를 갖춘 진공펌프는 로터(13a,13b)의 구동을 위한 수단으로 모터(14)와 전동기어(15)를 포함한다.
상기 모터(14)는 펌프 하우징(12)의 외측, 즉 펌프 하우징(12)의 선단부에 설치되어 있는 커플러 하우징(37)의 전면에 설치되고, 이렇게 설치되는 모터(14)의 축은 한 쌍의 로터(13a,13b) 중에서 1개의 로터(13a)의 선단 축과 커플러 하우징(37) 내에서 커플러(37)에 의해 연결된다.
다른 예로서, 상기 모터(14)의 축과 로터(13a)의 선단 축은 직결되는 구조로 연결될 수 있게 된다.
그리고, 상기 전동기어(15)는 한 쌍의 로터(13a,13b)의 후단 축에 각각 장착되고, 이러한 각각의 전동기어(15)는 기어 하우징(38) 내에 위치되면서 서로 맞물려 돌아갈 수 있게 된다.
이에 따라, 상기 마이크로프로세서(33)의 출력 제어에 의한 모터(14)의 작동으로 1개의 로터(13a)가 회전하게 되면, 전동기어(15)의 맞물림에 의해 다른 1개의 로터(13b)가 회전하게 되고, 결국 한 쌍의 로터(13a,13b) 간의 맞물림 회전에 의해 진공압이 형성되면서 가스가 하우징 내에 유입된 후에 하우징 밖으로 배출될 수 있게 된다.
또한, 상기 냉각장치를 갖춘 진공펌프는 로터 냉각을 위한 오일을 공급함과 더불어 오일을 순환시키는 수단으로 오일공급장치(18)를 포함한다.
상기 오일공급장치(18)는 일정량의 오일을 저장하기 위한 오일팬(19), 마이크로프로세서(33)의 출력 제어에 의해 작동되면서 오일팬(19) 내의 오일을 펌핑하기 위한 오일펌프(20), 상기 오일펌프(20)에 의해 펌핑되어 오일공급관(17)으로 공급되는 오일의 열교환을 위한 열교환기(21) 등을 포함한다.
그리고, 기어 하우징(38)의 바닥부에 조성되어 있는 오일팬(19)으로부터 연결되는 메인 오일라인(42)은 오일펌프(20)로 이어지고, 계속해서 메인 오일라인(42)은 필터를 거쳐 열교환기(17)로 이어진 다음, 이러한 열교환기(17)로부터의 메인 오일라인은 플로어 스위치 또는 센서를 거쳐 어댑터 커버(40)에 있는 어댑터(41)의 오리피스(43)로 이어진다.
이에 따라, 상기 오일공급장치(18)는 오일팬(19)→오일펌프(20)→열교환기(21)→오일공급관(17)→로터측 홀(16)→오일팬(19)으로 이어지는 메인 오일라인을 따라 오일을 계속해서 순환시키는 오일순환식 구조로 이루어질 수 있게 된다.
여기서, 상기 오일공급장치(18)에서 오일을 압송하는 오일펌프(20)의 경우 외장형 오일펌프 또는 내장형 오일펌프를 적용할 수 있게 되며, 외장형 오일펌프의 경우에는 펌프 하우징(12)의 외부에 설치되어 오일팬(19)과 메인 오일라인으로 연결되고, 내장형 오일펌프의 경에는 기어 하우징(22)의 내부에서 오일팬(19)에 인접한 위치에 설치된다.
특히, 상기 내장형의 오일펌프(20)는 로터(13a,13b)의 회전력을 동력으로 이용하여 구동되는 방식으로 이루어지게 된다.
이러한 내장형의 오일펌프(20)는 로터리 펌프 타입, 기어 펌프 타입, 베인 펌프 타입 등을 적용할 수 있으며, 본 발명에서는 기어 펌프 타입 중에서도 내접 기어 펌프 타입, 예를 들면 차량 엔진오일 펌프 등에 사용되는 것과 동일한 내접 기어 펌프 타입을 적용한 예를 보여준다.
이를 위하여, 도 3과 도 4에 도시한 바와 같이, 상기 내장형의 오일펌프(20)는 기어 하우징(38)의 내부에서 오일팬(19)과 인접한 위치에 기어 하우징(38) 상에 지지되는 구조로 설치되고, 이렇게 설치되는 오일펌프(20)의 흡입관(44)은 그 단부가 오일팬(19) 내의 오일 속에 위치되는 동시에 배출관(45)은 메인 오일라인을 통해 필터나 열교환기(21)측으로 연결된다.
이러한 오일펌프(20)의 구동을 위하여 로터(13b)의 후단 축에는 로터측 펌프 구동기어(24)가 장착됨과 더불어 오일펌프(20)의 내접 기어 축에는 오일펌프측 펌프 구동기어(23)가 장착되고, 이때의 오일펌프측 펌프 구동기어(23)와 로터측 펌프 구동기어(24)는 서로 맞물려 회전될 수 있게 된다.
이에 따라, 로터 구동 시 이때의 동력과 오일펌프측 펌프 구동기어(23)와 로터측 펌프 구동기어(24) 간의 전동에 의해 오일펌프(20)가 작동되면서 오일팬(19) 내의 오일이 필터측이나 열교환기측으로 이어지는 메인 오일라인으로 보내질 수 있게 된다.
그리고, 상기 오일공급장치(18)에는 오일의 냉각을 위한 수단으로 열교환기(21)가 구비되며, 이때의 열교환기(21)는 냉각수를 이용한 수냉식 열교환기, 펠티어 소자를 이용한 열교환기 등으로 이루어질 수 있게 된다.
일 예로서, 냉각수를 이용한 수냉식 열교환기의 경우, 열교환기 본체의 내부에는 메인 오일라인과 연결되는 오일파이프(46)와 냉각수가 흐르는 냉각수파이프(47)가 각각 설치되고, 이렇게 설치되는 오일파이프(46)와 냉각수파이프(47)는 서로 접하거나 서로 감기는 구조를 이룰 수 있게 된다.
이에 따라, 상기 열교환기(21)에서는 오일파이프(46)를 흐르는 오일(로터 냉각을 마친 오일)과 냉각수파이프(47)를 흐르는 냉각수 간의 열교환이 이루어지면서 오일에 대한 냉각이 이루어질 수 있게 된다.
이때, 상기 냉각수파이프(47)의 일측에는 마이크로프로세서(33)에 의해 제어되는 제1밸브(48)가 설치되어 있으며, 이러한 제1밸브(48)의 개폐 제어를 통해 냉각수의 흐름을 단속함으로써 오일의 온도가 조절되도록 할 수 있게 된다.
즉, 펌프 운전 상황에 따라 냉각수 흐름을 유지하여 오일 온도를 떨어뜨리거나, 또는 냉각수 흐름을 단속하여 오일 온도의 상승상태를 유지하는 제어가 가능하게 된다.
다른 예로서, 펠티어 소자를 이용한 열교환기의 경우, 도 5a에 도시한 바와 같이, 파워/컨트롤러(49)측에 의해 제어되는 펠티어 소자(25)가 마련되고, 이러한 펠티어 소자(25)의 흡열측 면에는 오일 흐름을 위한 유로(38)를 가지는 오일블럭(26)이 배치되며, 펠티어 소자(25)의 발열측 면에는 쿨링팬(27) 및 쿨러(28)가 배치된다.
그리고, 상기 오일블럭(26)의 내부에 형성되는 유로(38)는 충분한 열교환면적의 확보를 위하여 지그재그 형태 등과 같은 다양한 형태로 이루어지도록 하는 것이 바람직하다.
이에 따라, 메인 오일라인에 연결되어 있는 오일블럭(26)의 유로(38)에 오일이 흐르게 되고, 이와 더불어 펠티어 소자(25)가 가동되면서 오일에 대한 냉각이 이루어질 수 있게 된다.
이때, 펠티어 소자(25)의 발열측에서 방출되는 열은 쿨링팬(27)과 쿨러(28)에 의해 제어가 이루어질 수 있게 된다.
여기서, 상기 펠티어 소자는 통상의 열전소자(Thermoelectric Module)를 적용할 수 있으며, 그 원리나 효과에 대해서는 구체적인 설명은 생략하기로 한다.
도 5b에 도시한 바와 같이, 파워/컨트롤러(49)측에 의해 제어되는 펠티어 소자(25)가 마련되고, 이러한 펠티어 소자(25)의 흡열측 면에는 오일 흐름을 위한 유로(38)를 가지는 오일블럭(26)이 배치되며, 펠티어 소자(25)의 발열측 면에는 냉각수가 순환되는 쿨링블럭(29)이 배치된다.
이에 따라, 메인 오일라인에 연결되어 있는 오일블럭(26)의 유로(38)에 오일이 흐르게 되고, 이와 더불어 펠티어 소자(25)가 가동되면서 오일에 대한 냉각이 이루어질 수 있게 된다.
이때, 펠티어 소자(25)의 발열측에서 방출되는 열은 쿨링블럭(29)을 흐르는 냉각수에 의해 제어가 이루어질 수 있게 된다.
이와 같이, 냉각수를 이용한 수냉식 열교환기나 펠티어 소자를 이용한 열교환기 등으로 이루어지는 열교환기(21)를 채택한 경우, 열교환기로 들어가는 냉각수의 공급주기나 펠티어 소자의 극성 변경에 따른 흡열측과 발열측 변경으로 오일의 온도를 낮게 제어할 수 있게 되고, 펌프의 온도를 올려야 하는 조건 등과 같은 경우에 따라 오일의 온도를 높게 제어할 수 있게 된다.
일 예로서, 진공펌프의 가동 초기에 펠티어 소자(25)의 극성을 변경하여, 오일블럭(26)측과 접하는 쪽을 발열측으로 설정함과 아울러 쿨링블럭이나 쿨러가 접하는 쪽을 흡력측으로 설정하고, 펠티어 소자를 통해 오일을 가열하여 온도를 높여줌으로써, 펌프 운전 초기에 베어링 등의 원활한 윤활이 가능하게 되고, 또 펌프도 적정온도로 활성화시켜줄 수 있게 되는 등 펌프 운전 효율을 높일 수 있게 된다.
한편, 쿨링워터 공급설비를 갖춘 곳에서는 냉각수를 이용한 열교환기 타입을 적용하는데 문제가 없지만, 소규모의 사업장과 같이 쿨링워터 공급설비가 없기 때문에 이와 같은 경우에 위와 같은 펠티어 소자(25)를 이용한 열교환기를 적용함으로써, 경제적으로 진공펌프의 온도를 제어할 수 있는 이점이 있다.
한편, 본 발명에서는 진공펌프에서 처리하는 가스의 온도에 따라 오일의 온도를 자동으로 가변 조절하는 방식을 제공한다.
이를 위하여, 상기 펌프 하우징(12)의 가스 유입측에는 가스의 온도를 검출하는 제1온도센서(31)가 설치되고, 오일공급장치(18)의 메인 오일라인 상의 일측, 예를 들면 열교환기(21)의 전단 라인에는 오일의 온도를 검출하는 제2온도센서(32)가 설치되며, 펌프 하우징(12)과 인접한 그 주변에는 주변 환경 온도를 검출하는 제3온도센서(39)가 설치된다.
이에 따라, 상기 제1온도센서(31)와 제2온도센서(32), 그리고 제3온도센서(39)로부터 검출되는 온도값이 마이크로프로세서(33)로 입력되면, 마이크로프로세서(33)의 출력 제어에 의해 열교환기(21)의 작동이 제어되면서, 예를 들면 제1밸브(48)의 제어를 통해 열교환기로 들어가는 냉각수의 공급주기를 가변시키거나, 펠티어 소자의 ON/OFF 작동 시간을 가변시키는 등이 제어되면서 오일의 온도를 진공펌프 운전상황에 맞게 가변적으로 제어할 수 있게 된다.
일 예로서, 제1온도센서의 가스 온도는 가스가 흐르지 않을 시 대략 60도 정도라고 가정할 때 가스가 흐르는 양이 증가하게 되면 제1온도 센서의 가스 온도는 서서히 증가하게 되어 가스량이 많아지면 200도 가까이 가스 온도가 상승하게 된다.
가스 온도 증가에 따른 펌프 로터 회전자와 하우징 간의 간극 변화는 펌프 개발 시 고려되는 내용이므로 각 가스 온도에 따라 제2온도센서의 오일 온도를 마이크 프로세스에서 자동으로 조정하거나, 특정 온도 이상이 되었을 경우 오일 온도를 최대한 낮춰 로터 회전자와 하우징의 간극이 좁아져서 닿는 문제를 해결할 수 있다.
또한, 제3온도센서의 환경 온도, 즉 펌프가 설치되는 장소의 환경 온도는 펌프 주변의 환경 온도를 측정하여 온도가 높아질 경우 로터 회전자와 하우징의 간극 변화에 영향을 주므로 제1온도센서의 가스 온도가 읽어들이는 값과 제3온도센서의 환경온도에서 읽어들이는 값을 기본으로 하여 제2온도 센서의 오일 온도 설정치를 변경시킬 수 있다.
만약에 제3온도 센서가 24도라고 가정할 때 제1온도센서가 60도~100도 일 때 적절한 오일 온도가 80도라고 가정하면, 제2온도센서의 온도 설정치는 80도로 마이크로 프로세서가 온도를 설정하고, 펠티어 소자나 열교환기에 의해서 80도를 유지한다.
추가로 가스가 더 흐르게 되어 제1온도센서의 온도가 150도로 증가했을 경우 제2온도센서의 설정치를 70도로 마이크로 프로세스가 조정하는 형태로 가스 유입량에 따른 즉, 제1온도센서의 가스 온도 변화에 따른 제2온도센서의 오일 온도 조정으로 로터 회전자와 하우징의 간극을 조정할 수 있다.
펌프가 설치되는 곳의 온도는 사용자마다 틀리므로 첫 번째 예를 든 것 같이 제1온도 센서가 60~100도를 사이에 있을 때 적절한 오일 온도가 80도를 유지하는 것이 간극 유지에 가장 좋은 조건이였다면, 제3온도센서 환경 온도가 만약에 40도로 증가하게 되었다면 제2온도센서 오일의 온도는 80도보다 낮은 75도 정도의 온도 설정이 필요할 것이다.
위의 예는 대략적인 설정 방법에 대한 예를 든 것으로 펌프 로터 회전자의 설계 방법이나 크기, 펌프의 조합(예컨대, 부스터 펌프와 드라이 펌프의 조합) 등에 따라 온도 특성은 변경되므로 적절한 설정치는 각 모델별로 달리 할 수 있다.
또한, 제1온도센서의 값과 제3온도센서의 값에 상관없이 제2온도 센서의 설정치를 임의로 설정해서 사용할 수도 있다.
도 6은 본 발명에 따른 냉각장치를 갖춘 진공펌프에서 로터 내의 오일 흐름을 나타내는 단면도이다.
도 6에 도시한 바와 같이, 반도체 제조설비의 가동 시 공정 챔버 내의 진공조건을 구현하기 위하여, 모터(14)가 작동하면 전동기어(15)가 맞물려 돌아감과 함께 한 쌍의 로터(13a,13b)가 회전되면서 진공압이 발생되고, 이때의 진공압에 의해서 공정 챔버 내에서 배출되는 가스가 펌프 하우징(12)의 내부로 유입된 후에 배출될 수 있게 되며, 결국 공정 챔버 내에 진공환경이 조성된다.
이와 함께, 오일공급장치(18)의 오일펌프(20)가 작동하면 오일팬(19) 내의 오일은 메인 오일라인을 따라 이동하면서 열교환기(21)를 거쳐 냉각되고(또는 가열되거나 고온상태가 유지되고), 계속해서 어댑터(41)의 오리피스(43), 오일공급관(17)을 거쳐 로터 축 내부의 홀(16)에 공급된다.
이렇게 로터 축 내부의 홀(16)에 공급된 오일은 홀(16)을 따라 후단쪽으로 진행되면서, 즉 로터 내부를 경유하여 후단쪽으로 진행되면서 가열되어 있는 로터(13a,13b)는 물론 베어링을 냉각시키게 되고, 로터와 베어링 냉각을 마친 오일은 홀(16)의 오일출구(30)를 통해 빠져나감과 동시에 전동기어(15)에 분사되어 이때의 전동기어(15)를 냉각시킨 후, 아래쪽의 오일팬(19)으로 재차 회수된다.
이러한 오일의 흐름은 오일팬(19)→오일펌프(20)→열교환기(21)→오일공급관(17)→로터측 홀(16)→오일팬(19)으로 이어지는 순환 형태를 보이게 되고, 결국 오일의 계속적인 순환을 통해 로터(13a,13b)를 효과적으로 냉각시킬 수 있게 된다.
도 7은 본 발명의 또 다른 실시예에 따른 냉각장치를 갖춘 진공펌프를 나타내는 단면도이다.
도 7에 도시한 바와 같이, 여기서는 하우징 온도 제어 필요 시 냉각오일을 이용하여 하우징의 온도를 제어하는 방식을 보여준다.
이를 위하여, 상기 펌프 하우징(12)의 주변, 즉 펌프 하우징(12)의 외주면 둘레에는 내부에 오일유로(미도시)가 형성되어 있는 제1쿨링블럭(50)이 설치되고, 오일공급장치(18)로부터 연장되는 메인 오일라인(42) 상의 소정의 위치, 예를 들면 열교환기(21)의 후단측 위치에는 3-웨이 밸브(51)가 설치된다.
그리고, 상기 3-웨이 밸브(51)로부터 제1서브 오일라인(52)이 분기되고, 이렇게 분기되는 제1서브 오일라인(52)은 펌프 하우징(12)의 제1쿨링블럭(50)으로 연결된다.
이에 따라, 상기 오일공급장치(18)로부터 공급되는 오일, 예를 들면 열교환을 마친 냉각오일은 3-웨이 밸브(51)를 거쳐 제1서브 오일라인(52)으로 보내지게 되고, 계속해서 펌프 하우징(12)의 제1쿨링블럭(50)으로 공급되어 펌프 하우징(12)을 냉각시킬 수 있게 된다.
또한, 상기 제1쿨링블럭(50)으로부터 연장되는 제2서브 오일라인(56)은 메인 오일라인(42)의 일측, 예를 들면 3-웨이 밸브(51)의 후단측 메인 오일라인(42) 상으로 연결되고, 이러한 제2서브 오일라인(56) 상에는 마이크로프로세서(33)에 의해 제어되는 제2밸브(55)가 설치된다.
이때의 제2밸브(55)는 하우징측 냉각 제어 시 마이크로프로세서(33)의 제어에 의해 개방될 수 있게 되고, 따라서 하우징 냉각을 마친 오일이 제2서브 오일라인(56)에서 메인 오일라인(42)으로 넘어가 로터측으로 진행될 수 있게 된다.
물론, 이때의 제2밸브(55)를 대신하여 메인 오일라인(42)에서 제2서브 오일라인(56)측으로 오일이 흐르는 것을 막아주고 제2서브 오일라인(56)측에서 메인 오일라인(42)측으로 오일이 흐르는 것을 가능하게 하는 첵밸브를 적용할 수도 있게 된다.
또한, 상기 3-웨이 밸브(51)로부터 분기되는 제1서브 오일라인(52)은 베어링 하우징(35)의 외주면 둘레에 형성되어 있는 제2쿨링블럭(53), 예를 들면 내부에 오일유로(미도시)가 형성되어 있는 제2쿨링블럭(53), 기어 하우징(22)의 외주면 둘레에 형성되는 쿨링블럭(미도시) 등으로 연결되고, 이때에도 마찬가지로 열교환을 마친 냉각오일이 3-웨이 밸브(51)를 거쳐 제1서브 오일라인(52)으로 보내지게 되며, 계속해서 베어링 하우징(35)의 제2쿨링블럭(53), 기어 하우징측 쿨링블럭으로 공급되어 베어링 하우징(35)과 기어 하우징(22)을 냉각시킬 수 있게 된다.
이때의 베어링 하우징측 제2쿨링블럭(53)과 기어 하우징측 쿨링블럭으로부터 연장되는 제2서브 오일라인(56)도 메인 오일라인(42)의 일측으로 연결될 수 있게 된다.
즉, 하우징 냉각을 마친 오일은 각 쿨링블럭을 빠져나와 제2서브 오일라인(56)으로 합류한 후에 메인 오일라인측으로 보내질 수 있게 된다.
여기서, 상기 3-웨이 밸브(51)는 마이크로프로세서(33)에 의해 제어되는 솔레노이드(미도시)의 작동에 의해 유로가 전환될 수 있게 되며, 온도센서(미도시)로부터 검출되는 하우징 온도 또는 제1온도센서로부터 검출되는 가스 온도 등을 입력받는 마이크로프로세서의 판단 제어에 의해 하우징 온도 제어가 필요한 경우에만 제1서브 오일라인측 유로를 개방(로터측 유로는 폐쇄)하여 오일을 보낼 수 있게 되고, 그 이외의 경우는 로터측으로 향하는 쪽으로 유로가 개방됨과 더불어 제1서브 오일라인측으로 향하는 유로는 폐쇄되어 오일이 로터측으로 보내질 수 있게 된다.
이와 같은 제1서브 오일라인과 제2서브 오일라인을 포함하는 진공펌프에서는 두가지 방식의 냉각 제어가 이루어질 수 있게 된다.
일 예로서, 상기 3-웨이 밸브(51)의 유로가 로터측이 개방되고 하우징측이 폐쇄된 경우, 오일의 흐름은 오일팬(19)→오일펌프(20)→열교환기(21)→오일공급관(17)→로터측 홀(16)→오일팬(19)으로 이어지는 순환 형태를 보이면서 로터와 베어링 등을 냉각시킬 수 있게 된다.
다른 예로서, 상기 3-웨이 밸브(51)의 유로가 로터측이 폐쇄되고 하우징측이 개방된 경우, 오일의 흐름은 오일팬(19)→오일펌프(20)→열교환기(21)→제1서브 오일라인(52)→각 하우징측 쿨링블럭→제2서브 오일라인(56)→오일공급관(17)→로터측 홀(16)→오일팬(19)으로 이어지는 순환 형태를 보이면서 하우징은 물론 로터와 베어링 등을 냉각시킬 수 있게 된다.
한편, 로터측 냉각과 하우징측 냉각을 동시에 제어할 수 있는 오일라인을 설계할 수도 있으나, 이 경우 오일의 설정온도에 따라 로터측 온도와 하우징측 온도가 동일한 온도로 제어되기 때문에 각각의 냉각 제어 특성이 다른 로터측 또는 하우징측 모두를 만족시킬 수 있는 냉각 제어를 수행하는데 어려움이 따르게 된다.
하지만, 본 발명의 실시예와 같이 적절한 유로 전환 및 오일라인 설계를 통해서 로터측 냉각 제어와 하우징측 및 로터측 냉각 제어를 선택적으로 수행함으로써, 예를 들면 하우징측 온도를 높여야 하는 경우 등과 같은 상황에서 하우징측으로의 오일을 차단함으로써, 로터측 온도는 물론 하우징측 온도 둘 다를 최적의 상태로 제어할 수 있게 된다.
이와 같이, 본 발명에서는 진공펌프의 로터 내부에 오일을 순환시켜서 로터의 온도를 제어하는 방식으로 진공펌프를 냉각시키는 새로운 시스템을 구현함으로써, 진공펌프의 급격한 온도상승, 특히 로터의 급격한 온도상승을 방지할 수 있는 등 공정 수행 및 펌프 구동의 안정성을 확보할 수 있고, 반도체 제조설비를 경제적으로 유지 및 관리할 수 있다.
[부호의 설명]
10 : 입구
11 : 출구
12 : 펌프 하우징
13a,13b : 로터
14 : 모터
15 : 전동기어
16 : 홀
17 : 오일공급관
18 : 오일공급장치
19 : 오일팬
20 : 오일펌프
21 : 열교환기
22 : 기어 하우징
23 : 오일펌프측 펌프 구동기어
24 : 로터측 펌프 구동기어
25 : 펠티어 소자
26 : 오일블럭
27 : 쿨링팬
28 : 쿨러
29 : 쿨링블럭
30 : 오일출구
31 : 제1온도센서
32 : 제2온도센서
33 : 마이크로프로세서
34 : 베어링
35 : 베어링 하우징
36 : 커플러
37 : 커플러 하우징
38 : 유로
39 : 제3온도센서
40 : 어댑터 커버
41 : 어댑터
42 : 오일통로
43 : 오리피스
44 : 흡입관
45 : 배출관
46 : 오일 파이프
47 : 냉각수 파이프
48 : 제1밸브
49 : 파워/컨트롤러
50 : 제1쿨링블럭
51 : 3-웨이 밸브
52 : 제1서브 오일라인
53 : 제2쿨링블럭
54 : 어댑터 결속홈
55 : 제2밸브
56 : 제2서브 오일라인

Claims (17)

  1. 가스의 유입을 위한 입구(10)와 가스의 배출을 위한 출구(11)를 가지는 펌프 하우징(12)과, 상기 펌프 하우징(12)의 내부에 양단 지지되는 구조로 설치되어 서로 맞물려 회전하면서 진공압을 발생시키는 한 쌍의 로터(13a,13b)와, 상기 로터(13a,13b)의 구동을 위해 어느 하나의 로터(13a)의 축에 연결되는 모터(14) 및 로터(13a,13b) 간의 연동을 위한 전동기어(15)를 포함하며,
    상기 로터(13a,13b)에는 축선을 따라 나란한 홀(16)이 형성됨과 더불어 상기 홀(16)의 내부에는 오일공급관(17)이 설치되고, 상기 오일공급관(17)에는 오일공급장치(18)로부터 보내지는 오일이 공급되는 동시에 이렇게 공급되는 오일이 홀(16) 내부를 흐르면서 로터(13a,13b)를 냉각시킬 수 있도록 된 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  2. 청구항 1에 있어서,
    상기 오일공급장치(18)는 일정량의 오일을 저장하기 위한 오일팬(19)과, 상기 오일팬(19) 내의 오일을 펌핑하기 위한 오일펌프(20)와, 상기 오일펌프(20)에 의해 펌핑되어 오일공급관(17)으로 공급되는 오일의 열교환을 위한 열교환기(21)로 구성되는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  3. 청구항 2에 있어서,
    상기 오일공급장치(18)의 오일펌프(20)는 펌프 하우징(12)의 외부에 설치되는 외장형 펌프로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  4. 청구항 2에 있어서,
    상기 오일공급장치(18)의 오일펌프(20)는 펌프 하우징(12)에 구비되는 기어 하우징(22)의 내부에 설치되는 내장형 펌프로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  5. 청구항 4에 있어서,
    상기 내장형의 오일펌프(20)는 로터 동력을 이용하는 방식으로서, 서로 맞물려 돌아가는 오일펌프측 펌프 구동기어(23)와 로터측 펌프 구동기어(24) 간의 전동에 의해 구동되는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  6. 청구항 1 또는 청구항 2에 있어서,
    상기 오일공급장치(18)는 기어 하우징(22)의 내부에 조성되는 오일팬(19)→오일펌프(20)→열교환기(21)→오일공급관(17)→로터측 홀(16)→오일팬(19)으로 이어지는 메인 오일라인을 포함하는 오일순환식 구조로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  7. 청구항 1 또는 청구항 2에 있어서,
    상기 오일공급장치(18)의 열교환기(21)는 냉각수를 이용한 수냉식 열교환기로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  8. 청구항 1 또는 청구항 2에 있어서,
    상기 오일공급장치(18)의 열교환기(21)는 펠티어 소자를 이용한 열교환기로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  9. 청구항 8에 있어서,
    상기 펠티어 소자를 이용한 열교환기(21)는 펠티어 소자(25)의 흡열측 면에는 오일블럭(26)이 배치되는 동시에 발열측 면에는 쿨링팬(27) 및 쿨러(28)가 배치되는 구조로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  10. 청구항 8에 있어서,
    상기 펠티어 소자를 이용한 열교환기(21)는 펠티어 소자(25)의 흡열측 면에는 오일블럭(26)이 배치되는 동시에 발열측 면에는 냉각수의 출입이 가능한 쿨링블럭(29)이 배치되는 구조로 이루어지는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  11. 청구항 1에 있어서,
    상기 로터(13a,13b)의 축에 형성되는 홀(16)에는 냉각을 마친 오일이 빠져나가는 오일출구(30)가 구비되고, 상기 오일출구(30)는 로터(13a,13b)의 축에 장착되어 있는 전동기어(15)에 인접한 위치에 형성되어, 오일출구(30)에서 배출되는 오일이 전동기어(15)에 뿌려지면서 전동기어(15)의 냉각이 이루어질 수 있도록 한 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  12. 청구항 1에 있어서,
    상기 펌프 하우징(12)의 가스 유입측에 설치되어 가스의 온도를 검출하는 제1온도센서(31)와, 상기 오일공급장치(18)의 메인 오일라인에 설치되어 오일의 온도를 검출하는 제2온도센서(32)와, 상기 제1온도센서(31)와 제2온도센서(32)로부터 입력되는 온도값에 기초하여 오일의 온도를 가변적으로 제어하는 마이크로프로세서(33)를 포함하는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  13. 청구항 1 또는 청구항 12에 있어서,
    상기 펌프 하우징(12)의 주변에 설치되어 주변 환경 온도를 검출하는 제3온도센서(39)와, 상기 제3온도센서(39)로부터 입력되는 온도값에 기초하여 오일의 온도를 가변적으로 제어하는 마이크로프로세서(33)를 포함하며,
    상기 마이크로프로세서(33)는 제3온도센서(39)로부터 입력되는 온도값이 미리 설정해놓은 온도값 이상이면 오일의 온도를 옵셋 테이블에 의거하여 낮춰서 제어하는 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  14. 청구항 12에 있어서,
    상기 마이크로프로세서(33)는 펠티어 소자를 이용한 열교환기로 이루어지는 열교환기(21)를 채택한 경우, 펌프 가동 초기에 펠티어 소자의 극성을 변경하여 오일을 가열하는 제어를 수행할 수 있도록 된 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  15. 청구항 1에 있어서,
    상기 펌프 하우징(12)의 주변에 제1쿨링블럭(50)을 설치함과 더불어 오일공급장치(18)로부터 연장되는 메인 오일라인(42) 상에 3-웨이 밸브(51)를 설치하고, 상기 3-웨이 밸브(51)로부터 분기되는 제1서브 오일라인(52)을 펌프 하우징(12)의 제1쿨링블럭(50)으로 연결하여, 제1쿨링블럭(50)으로 공급되는 오일을 이용하여 펌프 하우징(12)을 냉각시킬 수 있도록 한 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  16. 청구항 15에 있어서,
    상기 제1서브 오일라인(52)은 복수의 라인으로 분기함과 더불어 베어링 하우징(35)의 주변에 형성되어 있는 제2쿨링블럭(53)으로 연결하여, 제2쿨링블럭(53)으로 공급되는 오일을 이용하여 베어링 하우징(35)을 냉각시킬 수 있도록 한 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
  17. 청구항 15에 있어서,
    상기 펌프 하우징(12)의 주변을 냉각시킨 후, 상기 제1쿨링블럭(50)으로부터 연장되는 제2서브 오일라인(56)은 3-웨이 밸브(51)의 후단측 메인 오일라인(42)으로 연결되어, 하우징 냉각 후 로터측 냉각이 이루어질 수 있도록 한 것을 특징으로 하는 냉각장치를 갖춘 진공펌프.
PCT/KR2016/010018 2015-09-24 2016-09-07 냉각장치를 갖춘 진공펌프 WO2017052114A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680030727.1A CN107709787B (zh) 2015-09-24 2016-09-07 具有冷却装置的真空泵
US15/548,312 US10690135B2 (en) 2015-09-24 2016-09-07 Vacuum pump with cooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150135156A KR101712962B1 (ko) 2015-09-24 2015-09-24 냉각장치를 갖춘 진공펌프
KR10-2015-0135156 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017052114A1 true WO2017052114A1 (ko) 2017-03-30

Family

ID=58386276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010018 WO2017052114A1 (ko) 2015-09-24 2016-09-07 냉각장치를 갖춘 진공펌프

Country Status (4)

Country Link
US (1) US10690135B2 (ko)
KR (1) KR101712962B1 (ko)
CN (1) CN107709787B (ko)
WO (1) WO2017052114A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI624596B (zh) * 2017-03-15 2018-05-21 亞台富士精機股份有限公司 可被遠端監控的幫浦機台及幫浦監控系統
CN108953146B (zh) * 2018-07-09 2021-09-28 上海伊莱茨真空技术有限公司 一种循环油冷的罗茨泵
FR3087504B1 (fr) * 2018-10-17 2020-10-30 Pfeiffer Vacuum Procede de controle de la temperature d’une pompe a vide, pompe a vide et installation associees
KR102096623B1 (ko) * 2019-07-29 2020-04-02 주식회사 세미안 오스뮴 가스 누출 방지 장치 및 방법
JP7261139B2 (ja) * 2019-10-15 2023-04-19 株式会社荏原製作所 真空ポンプ装置
CN111365236B (zh) * 2020-03-27 2020-12-11 宁波英德菲尔机械科技有限公司 干式螺杆压缩机
CN111907113B (zh) * 2020-06-19 2021-08-31 合肥职业技术学院 一种用于旋转式压片机模具的润滑保养装置
CN112128109A (zh) * 2020-08-24 2020-12-25 浙江飞越机电有限公司 根据泵温识别工况的结构及识别方法
CN112032021B (zh) * 2020-09-10 2024-04-26 北京通嘉宏瑞科技有限公司 一种真空泵用温度调控装置及使用方法
CN115013315A (zh) * 2022-06-09 2022-09-06 华能国际电力股份有限公司丹东电厂 一种大型汽轮机组真空泵冷却水节能运行方法
CN116538090B (zh) * 2023-04-26 2023-11-28 北京通嘉宏瑞科技有限公司 一种真空泵温度控制系统及温度控制方法
CN117090768B (zh) * 2023-10-19 2023-12-22 江苏江大泵业制造有限公司 一种真空泵及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347228B1 (ko) * 1998-03-31 2002-08-03 다이코 기카이 고교 가부시키가이샤 진공펌프
KR100750848B1 (ko) * 2005-11-01 2007-08-22 가부시키가이샤 도요다 지도숏키 진공 펌프
KR100846162B1 (ko) * 2006-07-11 2008-07-17 김영용 온도 조절용 에어펌프
KR100892530B1 (ko) * 2001-11-15 2009-04-10 욀리콘 라이볼트 바쿰 게엠베하 스크류 냉각식 진공 펌프
KR20130125703A (ko) * 2010-05-24 2013-11-19 고쿠리츠다이가쿠호진 도호쿠다이가쿠 스크루 진공 펌프

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637655B1 (fr) * 1988-10-07 1994-01-28 Alcatel Cit Machine rotative du type pompe a vis
DE19745616A1 (de) 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
JPH11336684A (ja) 1998-05-22 1999-12-07 Hitachi Ltd オイルフリースクリュー圧縮機のジャケット冷却装置
DE10156179A1 (de) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Kühlung einer Schraubenvakuumpumpe
GB0223769D0 (en) * 2002-10-14 2002-11-20 Boc Group Plc A pump
US7963744B2 (en) 2004-09-02 2011-06-21 Edwards Limited Cooling of pump rotors
JP5103246B2 (ja) * 2008-01-24 2012-12-19 株式会社神戸製鋼所 スクリュ圧縮機
DE202010015306U1 (de) 2010-11-10 2011-02-10 Lewa Gmbh Kühlvorrichtung für verfahrenstechnische Einrichtungen, wie Pumpen, insbesondere Dosierpumpen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347228B1 (ko) * 1998-03-31 2002-08-03 다이코 기카이 고교 가부시키가이샤 진공펌프
KR100892530B1 (ko) * 2001-11-15 2009-04-10 욀리콘 라이볼트 바쿰 게엠베하 스크류 냉각식 진공 펌프
KR100750848B1 (ko) * 2005-11-01 2007-08-22 가부시키가이샤 도요다 지도숏키 진공 펌프
KR100846162B1 (ko) * 2006-07-11 2008-07-17 김영용 온도 조절용 에어펌프
KR20130125703A (ko) * 2010-05-24 2013-11-19 고쿠리츠다이가쿠호진 도호쿠다이가쿠 스크루 진공 펌프

Also Published As

Publication number Publication date
KR101712962B1 (ko) 2017-03-07
CN107709787A (zh) 2018-02-16
US10690135B2 (en) 2020-06-23
US20180030983A1 (en) 2018-02-01
CN107709787B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2017052114A1 (ko) 냉각장치를 갖춘 진공펌프
WO2018235969A1 (ko) 오일분사부를 구비한 전동기
WO2018225877A1 (ko) 모터
WO2016098977A1 (en) Rotating electric machine
WO2018070618A1 (ko) 감시 카메라용 냉각장치
WO2020189826A1 (ko) 지능형 동력생성모듈
WO2021015483A1 (ko) 차량용 열관리 장치 및 차량용 열관리 방법
WO2018169133A1 (ko) 반도체 챔버용 펌프 시스템
WO2012148189A2 (ko) 전동기 및 이를 구비한 전기차량
WO2016021832A1 (ko) 서버랙
WO2018225878A1 (ko) 모터
WO2016195339A1 (en) Clothes treating apparatus
WO2022154340A1 (ko) 공기조화기
WO2013191421A1 (ko) 기판 처리 장치
WO2022239949A1 (ko) 조리기기 및 그 제어 방법
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
WO2020189825A1 (ko) 지능형 동력생성모듈
WO2020059909A1 (ko) 전동기 및 이를 구비하는 지능형 동력생성모듈
KR20100053138A (ko) 커넥터 보호 장치, 이를 구비하는 베이크 장치 및 그의 커넥터 보호 방법
WO2022270772A1 (ko) 냉장고
WO2022158721A1 (ko) 공기조화기
WO2021187929A1 (ko) 의류처리장치
WO2018235978A1 (ko) 외함구조체
WO2019124958A1 (ko) 수분 공급부가 구비된 히트 펌프 유닛을 포함하는 다기능 수납 시스템 및 이를 이용한 다기능 수납 시스템의 예열 방법
WO2017039329A1 (en) Gas cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848840

Country of ref document: EP

Kind code of ref document: A1