WO2018097511A1 - 인터쿨러를 구비한 터보 압축기 - Google Patents

인터쿨러를 구비한 터보 압축기 Download PDF

Info

Publication number
WO2018097511A1
WO2018097511A1 PCT/KR2017/012554 KR2017012554W WO2018097511A1 WO 2018097511 A1 WO2018097511 A1 WO 2018097511A1 KR 2017012554 W KR2017012554 W KR 2017012554W WO 2018097511 A1 WO2018097511 A1 WO 2018097511A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
housing
gas
air
compressed gas
Prior art date
Application number
PCT/KR2017/012554
Other languages
English (en)
French (fr)
Inventor
김경수
Original Assignee
주식회사 티앤이코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤이코리아 filed Critical 주식회사 티앤이코리아
Priority to CN201780029025.6A priority Critical patent/CN109072928B/zh
Priority to US16/078,100 priority patent/US11009043B2/en
Priority to JP2019512594A priority patent/JP6632763B2/ja
Publication of WO2018097511A1 publication Critical patent/WO2018097511A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers

Definitions

  • the present invention relates to a turbocompressor, and more particularly, to a turbocompressor which can reduce the overall product size through the integration of an intercooler and a housing, which can be used for various purposes, and the intercooler is not likely to be damaged by an external impact.
  • a turbo compressor or turbo blower is a centrifugal pump that sucks and compresses external air or gas by blowing an impeller at high speed, and blows it out to the outside. It is widely used for aeration in sewage treatment plants and the like, and recently, it has also been used for industrial processes and automobile mounting.
  • the maximum pressure of the compressed gas that can be produced is 3 to 4 bar, and the smaller the pressure, the lower the maximum pressure of the compressed gas, and the design factor of specific speed. Due to this, the rotational speed must be very high, and thus, the speed of the motor and the inverter for rotating the impeller must also be increased, and the loss due to windage loss on the surface of the bearing or the rotor increases rapidly, resulting in an overall increase in energy. There is a problem inevitably lowered efficiency.
  • a two stage compression method may be used in which two impellers are directly connected and compressed in two stages.
  • the maximum pressure of the compressed gas that can be produced increases, but the efficiency of the second impeller decreases due to the increase in the temperature of the compressed gas due to "thermal insulation compression”.
  • a cooling device called an intercooler is installed in between to achieve "Isothermal Compression”.
  • the conventional intercooler as shown in Figure 2 of the Korean Patent Publication, is provided separately on the outside of the housing surrounding the first impeller and the second impeller in order to increase the cooling efficiency, to increase the cooling efficiency For this reason, it is usually manufactured with a relatively large volume of cooling device.
  • the present invention has been made to solve the above problems, the object is to reduce the overall product size through the integration of the intercooler and the housing, can be used for various purposes, so that the intercooler is not likely to be damaged by external impact To provide a turbo compressor having an improved structure.
  • a turbo compressor includes a turbo compressor for compressing a gas such as air and supplying it to the outside, wherein a compressed gas intake port through which the gas is sucked; A first impeller to first compress the gas introduced through the compressed gas inlet; A second impeller that secondarily compresses the gas compressed by the first impeller; A compressed gas outlet through which the gas compressed by the second impeller is discharged to the outside; A compression unit having a compressed gas flow passage connected from the compressed gas inlet port to the compressed gas outlet port; A motor having a rotating shaft having one end coupled to the first impeller and the other end coupled to the second impeller and extending along a first central axis to rotate the first impeller and the second impeller; A housing having a motor accommodating space for accommodating the motor; And an intercooler provided in the compressed gas flow path positioned between the first impeller and the second impeller, the intercooler including an air cooler passage through which the gas can pass, wherein the air cooler passes through the housing.
  • the air cooler is formed in a spiral shape having the first center axis as the rotation center.
  • a guide member for guiding the direction of the fluid flow of the gas compressed by the first impeller is provided upstream to the air cooler.
  • the housing the inner housing having the motor receiving space; And an outer housing surrounding the inner housing, wherein the air cooler is provided between an outer surface of the inner housing and an inner surface of the outer housing.
  • the cooling liquid for cooling the housing includes a cooling channel formed to circulate.
  • the cooling channel includes a channel penetrating the housing so as to cool the housing.
  • the cooling channel is provided so as to exchange heat with the gas contained in the air cooler.
  • the air cooler is disposed outside the cooling channel in the radial direction of the first central axis.
  • a cooling fin between the cooling channel and the air cooling channel is provided to increase the heat exchange efficiency.
  • the cooling channel may include a plurality of unit channels extending along the first central axis and arranged in a state spaced apart from each other along the circumferential direction of the first central axis; A plurality of rear end channels connecting rear ends of the unit channels to each other; By including a plurality of shear channel connecting the front end of the unit channel to each other, it is preferably formed in a zigzag shape.
  • a compressed gas inlet through which gas is sucked;
  • a first impeller to first compress the gas introduced through the compressed gas inlet;
  • a second impeller that secondarily compresses the gas compressed by the first impeller;
  • a compressed gas outlet through which the gas compressed by the second impeller is discharged to the outside;
  • a compression unit having a compressed gas flow passage connected from the compressed gas inlet port to the compressed gas outlet port;
  • a motor having a rotating shaft having one end coupled to the first impeller and the other end coupled to the second impeller and extending along a first central axis to rotate the first impeller and the second impeller;
  • a housing having a motor accommodating space for accommodating the motor;
  • an intercooler provided in the compressed gas flow path positioned between the first impeller and the second impeller, the intercooler including an air cooler passage through which the gas can pass.
  • FIG. 1 is a cross-sectional view of a turbo compressor which is one embodiment of the present invention.
  • FIG. 2 is a right side view of the turbo compressor illustrated in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A of the turbo compressor shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line B-B of the turbo compressor shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line C-C of the turbo compressor shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line D-D of the turbo compressor shown in FIG. 1.
  • FIG. 7 is a view showing a compressed gas flow of the turbo compressor shown in FIG.
  • FIG. 7 is a sectional view of a turbo compressor as a second embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view of the turbo compressor shown in FIG. 2.
  • FIG. 9 is a view showing the liquid flow for cooling the turbo compressor shown in FIG.
  • FIG. 1 is a cross-sectional view of a turbo compressor according to an embodiment of the present invention
  • FIG. 2 is a partially enlarged view of the turbo compressor shown in FIG. 1.
  • 3 is a cross-sectional view taken along the line A-A of the turbo compressor shown in FIG.
  • a turbo compressor 100 is a centrifugal pump that sucks and compresses an external gas by blowing an impeller at a high speed and blows it outside. It is also called a turbo compressor or a turbo blower.
  • the turbo compressor 100 includes a housing 10, a compression unit 20, a motor 30, an intercooler 40, and a water cooling unit 50.
  • the gas to be compressed is air.
  • the housing 10 is a metal housing, and includes an inner housing 11, an outer housing 12, a motor accommodating space 13, and a rear housing 14.
  • the inner housing 11 is a cylindrical member having the motor accommodating space 13 therein.
  • the inner housing 11 has a cross section having the first central axis C1 as the center of the circle, and defines the first central axis C1. Extend along.
  • the motor accommodating space 13 is a space having a shape corresponding to the motor 30 so as to accommodate the motor 30 to be described later.
  • the inner housing 11 has a left end (front end) and a right end (rear end) open.
  • the outer housing 12 is a cylindrical member having a cross section with the first center axis C1 as the center of a circle, and extends along the first center axis C1.
  • the outer housing 12 has a shape corresponding to the inner housing 11 so that the outer housing 12 can be accommodated in a state surrounded by the inner housing 11.
  • the inner surface of the outer housing 12 and the outer surface of the inner housing 11 face each other in a state spaced apart by a predetermined interval.
  • the thickness of a portion of the side wall of the outer housing 12 facing the intercooler 40 is as thin as possible.
  • the rear housing 14 is a metal housing that hermetically closes rear ends of the inner housing 11 and the outer housing 12.
  • the rear housing 14 may be separately manufactured by several components for mounting the motor 30, and a detailed description thereof will be omitted.
  • the rear housing 14 includes a scroll 29 having a flow path formed so that air passing through the second impeller 22 flows in a spiral line as shown in FIG. 2.
  • the scroll 29 communicates the second impeller 22 and the compressed gas outlet 25 with each other.
  • the rear housing 14 is coupled to the inner housing 11 and the outer housing 12 by bolts or screws.
  • the compression unit 20 is a device that sucks and compresses external air, and includes a first impeller 21, a second impeller 22, and a compressed gas flow path 23.
  • the first impeller 21 is a wheel for sucking the outside air and compressing the primary air.
  • the first impeller 21 includes a plurality of wings having curved surfaces, and is mounted to enable high speed rotation.
  • the first impeller 21 is disposed between the left end of the inner housing 11 and the left end of the outer housing 12.
  • a compressed gas inlet 24 for sucking outside air is formed in the outer housing 12.
  • the second impeller 22 is a wheel for secondarily compressing the gas primarily compressed by the first impeller 21, and has a plurality of wings having a curved surface similarly to the first impeller 21. It is equipped to enable high speed rotation.
  • the second impeller 22 is disposed between the right end of the inner housing 11 and the rear housing 14.
  • a compressed gas intermediate suction port 26 into which the gas primarily compressed by the first impeller 21 flows is formed in the rear housing 14.
  • the rear housing 14 has a compressed gas intermediate outlet 27 through which the gas primarily compressed by the first impeller 21 is discharged.
  • Air G discharged from the compressed gas intermediate outlet 27 is introduced into the second impeller 22 through the compressed gas intermediate inlet 26 as shown in FIG. 8.
  • the compressed gas flow path 23 is a channel connected from the compressed gas inlet 24 to the compressed gas outlet 25.
  • the air sucked into the compressed gas inlet 24 is compressed while moving along the compressed gas flow path 23 connected from the compressed gas inlet 24 to the compressed gas outlet 25.
  • the compressed gas flow path 23 includes the first impeller 21, the intercooler 40, and the compressed gas intermediate outlet 27 from the compressed gas inlet 24. And, after passing through the compressed gas intermediate inlet 26 and the second impeller 22 in order, they are connected to the compressed gas outlet 25.
  • the compressed gas flow passage 23 includes a front passage 23a, an intermediate passage 23b, and a rear stage passage 23c.
  • the front end passage 23a is a cross section provided so that air can flow from the center of the housing 10 toward the outer edge of the front end of the housing 10.
  • the shear passage 23a is a plurality of passages partitioned by the diffuser 28 and extends along the radial direction of the first central axis C1.
  • the intermediate passage 23b is a plurality of passages penetrating the housing 10 to cool the housing 10 and extends around the first central axis C1.
  • the intermediate passages 23b are arranged to be spaced apart from each other by a predetermined interval along the circumferential direction of the first central axis C1.
  • the rear end channel 23c is a channel which connects the air from the intermediate channel 23b to be sucked into the compressed gas intermediate inlet 26, and is formed at the rear end of the housing 10.
  • the shear channel 23a and the intermediate channel 23b are preferably arranged rotationally or axially about the first central axis C1.
  • the air sucked into the compressed gas inlet 24 may be compressed in two stages while moving along the compressed gas flow path 23 connected from the compressed gas inlet 24 to the compressed gas outlet 25.
  • the motor 30 is an electric motor that generates a rotational force, and is an apparatus for supplying a high speed rotational force to the impellers 21 and 22.
  • the motor 30 includes a rotation shaft 31, a stator 32, a rotor 33, and a bearing 34.
  • the rotation shaft 31 is a rod member extending along the first central axis C1, and a front end portion is coupled to the first impeller 21 so as not to rotate relatively, and a rear end thereof is the second impeller 22. And relative rotation is impossible.
  • the stator 32 is a stator in which a field coil is wound, and is mounted in the motor accommodating space 13 in a fixed state.
  • the rotor 33 is a rotor including a permanent magnet and is coupled to an intermediate portion of the rotation shaft 31.
  • the bearing 34 is an air bearing rotatably supporting the rotating shaft 31 so as to reduce the frictional force generated by the high speed rotation, and is provided at the front end and the rear end of the rotating shaft 31, respectively.
  • Predetermined intervals exist between the stator 32 and the rotor 33, between the rotary shaft 31 and the stator 32, and between the rotary shaft 31 and the bearing 34.
  • the intercooler 40 is an apparatus for cooling the air heated by the first impeller 21, and includes an air cooler 41 and a guide member 42.
  • the air cooling path 41 is a path located between the first impeller 21 and the second impeller 22, and is a path through which air to be compressed flows.
  • at least a part of the intermediate channel 23b functions as the air cooler 41.
  • the air cooling path 41 is hidden inside the housing 10 in a state where the air cooling passage 41 penetrates the housing 10 in an airtight manner.
  • the air cooling path 41 is formed in a coil shape or a spiral shape having the first center axis C1 as a rotation center.
  • the air cooling path 41 is formed by an outer circumferential surface of the inner housing 11, an inner circumferential surface of the outer housing 12, and a surface of a cooling fin 52 to be described later.
  • the guide member 42 is a member for guiding a direction of a fluid flow of air compressed by the first impeller 21, and is provided in plurality upstream of the air cooling path 41.
  • the guide member 42 is a member for guiding the air passing through the diffuser 28 to flow in a predetermined direction before entering the air cooler passage 41.
  • the guide member 42 is provided to have a predetermined angle with respect to the first central axis C1.
  • the water cooling unit 50 is a device for cooling the housing 10 by using a liquid for cooling, and includes a cooling channel 51, a cooling fin 52, a cooling liquid inlet 53, and cooling. And a liquid liquid outlet 54.
  • water is used as the cooling liquid.
  • the cooling channel 51 is a passage for accommodating the cooling liquid, and is formed to enable continuous circulation of the cooling liquid contained therein.
  • the cooling channel 51 is hidden inside the inner housing 11 while penetrating the inner housing 11, and the unit channel 51a and the rear channel are located. 51b and shear channel 51c.
  • the unit channel 51a is a channel of a circular cross section hidden inside the inner housing 11 while penetrating the inner housing 11 and extends linearly along the first central axis C1. have.
  • the unit channel 51a is arranged in a plurality spaced apart from each other along the circumferential direction of the first central axis C1.
  • the rear end channel 51b is a channel connecting the rear ends of the unit channel 51a to each other, and as illustrated in FIG. 5, the rear end channel 51b passes through the rear end of the inner housing 11. It is formed to be hidden inside.
  • the front channel 51c is a channel connecting the front ends of the unit channel 51a to each other, and as illustrated in FIG. 4, the front channel 51c passes through the front end of the inner housing 11. It is formed to be hidden inside.
  • the cooling channel 51 is formed along the circumferential direction of the inner housing 11 in a zigzag shape as shown in FIG. 9, and is disposed to surround the entire sidewall of the inner housing 11.
  • the said cooling channel 51 is arranged rotationally symmetrically or axially symmetric about the said 1st center axis C1.
  • the cooling channel 51 is preferably arranged to be as close as possible to the air cooling channel 41.
  • the cooling channel 51 is disposed inside the air cooling channel 41 so as to be closer to the first central axis C1.
  • the cooling fins 52 are cooling fins for increasing the heat exchange efficiency between the cooling liquid flowing along the cooling channel 51 and the air flowing along the air cooling channel 41.
  • the cooling fins 52 protrude in the radial direction of the inner housing 11 from an outer circumferential surface of the inner housing 11, and the first central axis C1. Extends along.
  • the cooling fins 52 are arranged in plural along the circumferential direction of the inner housing 11 while being spaced apart from each other.
  • the distal end of the cooling fin 52 is in contact with the inner surface of the outer housing 12.
  • the cooling liquid inlet 53 is an inlet through which cooling liquid flows from the outside, and communicates with one end of the cooling channel 51, and is provided in the rear housing 14.
  • cooling liquid inlet 53 is connected to a pump (not shown) provided outside, water is supplied by the pump.
  • the cooling liquid outlet 54 is an outlet through which the cooling liquid flows outward and communicates with the other end of the cooling channel 51, and is provided in the rear housing 14.
  • the cooling liquid discharged from the cooling liquid outlet 54 may be introduced again through the cooling liquid inlet 53 after being cooled outside.
  • the air passing through the first impeller 21 decreases in speed and increases pressure when passing through the diffuser 28, and passes through the guide member 42 at an angle suitable for entering the air cooling path 41. The direction of the flow is changed.
  • the air passing through the guide member 42 is rapidly cooled while passing through the air cooling path 41.
  • the air cooling path 41 is close to the cooling channel 51 and the outer housing 12, the air flowing through the air cooling path 41 is transferred to the cooling liquid inside the cooling channel 51.
  • the cooling liquid contained in the cooling channel 51 flows in from the cooling liquid inlet 53, and then circumferentially faces the inner housing 11 in a zigzag shape as shown in FIG. A cooling liquid flow (W) flowing along is formed, and the inner housing 11 and the outer housing 12 are cooled as a whole and then discharged through the cooling liquid outlet 54.
  • the air flowing through the air cooler passage 41 is rapidly cooled by the cooling liquid flowing through the unit channel 51a adjacent to the air cooler passage 41.
  • the cooling fins 52 the heat exchange efficiency between the cooling liquid flowing through the unit channel 51a and the air flowing through the air cooling path 41 is greatly increased.
  • the turbo compressor 100 having the above-described configuration includes a compressed gas inlet 24 through which gas is sucked; A first impeller 21 which first compresses the gas introduced through the compressed gas inlet 24; A second impeller 22 which secondarily compresses the gas compressed by the first impeller 21; A compressed gas outlet 25 through which the gas compressed by the second impeller 22 is discharged to the outside; A compression unit (20) having a compressed gas flow passage (23) connected from the compressed gas inlet (24) to the compressed gas outlet (25); In order to rotate the first impeller 21 and the second impeller 22, one end is coupled to the first impeller 21, the other end is coupled to the second impeller 22, and a first center.
  • a motor 30 having a rotating shaft 31 extending along the axis C1;
  • a housing (10) having a motor accommodating space (13) for accommodating the motor (30);
  • An intercooler (40) provided in the compressed gas flow passage (23) positioned between the first impeller (21) and the second impeller (22) and including an air cooler passage (41) through which the gas can pass;
  • the air cooler 41 is hidden inside the housing 10 in a state where the air cooler 41 penetrates the housing 10 in a hermetic manner, thereby integrating the intercooler 40 and the housing 10.
  • the air cooler passage 41 is formed in a spiral shape around the first center axis C1 as the rotation center, the air and the housing inside the air cooler passage 41 are formed. As the contact area of 10 increases, there is an advantage that the air inside the air cooling furnace 41 can be cooled quickly.
  • turbo compressor 100 is provided with a guide member 42 for guiding the direction of the fluid flow of air compressed by the first impeller 21 upstream of the air cooler passage 41.
  • a guide member 42 for guiding the direction of the fluid flow of air compressed by the first impeller 21 upstream of the air cooler passage 41.
  • the turbo compressor 100 the housing 10, the inner housing (11) having the motor accommodating space (13); And an outer housing 12 surrounding the inner housing 11, wherein the air cooling path 41 is provided between the outer surface of the inner housing 11 and the inner surface of the outer housing 12.
  • the cooling fins 52 and the air cooling path 41 may be easily formed.
  • turbo compressor 100 since the turbo compressor 100 includes a cooling channel 51 formed to circulate the cooling liquid for cooling the housing 10, the turbo compressor 100 may be exposed to heat generated from the motor 30, the bearing 34, and the like. There is an advantage that can cool the housing 10 heated by.
  • the turbo compressor 100 further includes cooling channels 51a, 51b, and 51c passing through the housing 10 so that the cooling channel 51 can cool the housing 10. Compared with the case of using a pipe, there is an advantage that the cooling efficiency is excellent and there is little possibility of leakage.
  • turbo compressor 100 is provided so that the cooling water passage 51 can exchange heat with the air contained in the air cooling passage 41, and thus the turbo compressor 100 is generated from the motor 30 and the bearing 34. At the same time as cooling the housing 10 heated by the heat, there is an advantage that can also cool the air flowing inside the air cooler (41).
  • the air cooling passage 41 is disposed outside the cooling water passage 51 in the radial direction of the first central axis C1, the air cooling passage 41 is formed inside the air cooling passage 41.
  • the air flowing through is cooled in a water-cooled manner by the liquid for cooling in the cooling channel 51, and at the same time has the advantage that can be cooled in the air-cooled manner by the atmosphere outside the outer housing (12).
  • turbo compressor 100 is provided between the cooling water passage 51 and the air cooling passage 41, and a cooling fin 52 capable of increasing heat exchange efficiency is provided. The heat exchange efficiency between the flowing air and the cooling liquid flowing in the cooling channel 51 is increased.
  • the cooling water passages 51 extend along the first center axis C1 and are arranged in a state spaced apart from each other along the circumferential direction of the first center axis C1.
  • a plurality of shear channel 51c for connecting the front end of the unit channel 51a to each other it is formed in a zigzag shape, the cooling liquid in the cooling channel 51 and the inner housing 11
  • the contact area can be increased as much as possible, and the cooling liquid can flow evenly over the entire inner housing 11.
  • the cooling fins 52 are integrally formed on the outer circumferential surface of the inner housing 11, but the cooling fins 52 may be combined by a press-fitting method after being processed into a separate member. Of course.
  • the air cooling path 41 is formed in a coil shape or a spiral shape having the first center axis C1 as a rotation center, but the first center axis C1 is formed. Of course, it may be formed linearly.
  • the bearing 34 is provided as an air bearing, but other types of bearings may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 터보 압축기에 관한 것으로서, 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 1차적으로 압축하는 제1 임펠러; 상기 제1 임펠러에 의하여 압축된 상기 기체를 2차적으로 압축하는 제2 임펠러; 상기 제2 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 제1 임펠러 및 제2 임펠러를 회전시키기 위하여, 일단부가 상기 제1 임펠러와 결합되어 있으며 타단부가 상기 제2 임펠러와 결합되어 있으며, 제1 중심축을 따라 연장되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 제1 임펠러와 상기 제2 임펠러 사이에 위치하는 상기 압축 기체 유로에 마련되어 있으며, 상기 기체가 통과할 수 있는 공냉 기로를 포함하는 인터쿨러;를 포함하며, 상기 공냉 기로는, 상기 하우징을 관통한 상태로 상기 하우징의 내부에 숨겨져 있는 것을 특징으로 한다. 본 발명에 따르면, 상기 인터쿨러와 상기 하우징의 일체화를 통하여 전체적인 제품 크기를 감소시킬 수 있어, 다양한 용도로 사용될 수 있으며, 외부 충격에 의하여 상기 인터쿨러가 손상될 가능성이 없다는 효과가 있다.

Description

인터쿨러를 구비한 터보 압축기
본 발명은 터보 압축기에 관한 것으로서, 특히 인터쿨러와 하우징의 일체화를 통하여 전체적인 제품 크기를 감소시킬 수 있어, 다양한 용도로 사용될 수 있으며, 외부 충격에 의하여 인터쿨러가 손상될 가능성이 없는 터보 압축기에 관한 것이다.
터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 공기나 가스를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 분체(powder) 이송용이나 하수 처리장 등에서 폭기(aeration)용으로 많이 사용되고 있으며, 최근에는 산업 공정용과 자동차 탑재용으로도 사용이 되고 있다.
한편, 고압의 압축 기체를 만들기 위해서 한 개의 임펠러를 사용하는 단단(single stage) 압축 방식과, 두 개 이상의 임펠러를 직렬로 연결하여 사용하는 다단(multi stage) 압축 방식이 있다.
상기 단단(single stage) 압축 방식을 사용하는 경우에는, 만들어 낼 수 있는 압축 기체의 최대 압력이 3 내지 4bar 수준이며, 소형일수록 압축 기체의 최대 압력은 더 낮아지며, 비속(Specific Speed)이라는 설계 인자에 의해서 회전속도가 매우 높아져야 하며, 이로 인하여 임펠러를 회전시키기 위한 모터 및 인버터의 속도도 상승시켜야하는 문제가 있으며, 베어링이나 로터의 표면에서의 풍손(windage loss)에 의한 손실이 급격하게 증가하여 전체적인 에너지 효율이 낮아질 수밖에 없는 문제점이 있다.
이러한 문제점을 보완하기 위하여 두 개의 임펠러를 직결하여 2단으로 압축을 하는 2단(two stage) 압축 방식을 사용하기도 한다. 이 경우에는 만들어낼 수 있는 압축 기체의 최대 압력은 증가하지만, "단열 압축"에 따른 압축 기체의 온도 상승 때문에 두 번째 임펠러의 효율이 낮아지기 때문에, 이러한 문제를 해결하기 위하여 1단 임펠러와 2단 임펠러 사이에 인터쿨러(intercooler)라는 냉각 장치를 설치하여 "등온 압축"(Isothermal Compression)이 되도록 한다. 이렇게 다단 압축 방식을 사용하면, 각 임펠러가 분담하는 압축비가 낮기 때문에 비속에 따른 회전 속도도 감소하므로, 단단 압축에서 발생하는 여러 가지 기술적인 문제들을 해결할 수 있는 이점이 있다.
종래의 2단 터보 압축기의 일례가 한국특허공보(공개번호 10-2001-0010014)에 개시되어 있는데, 이 터보 압축기는, 고온의 압축공기를 대략 40℃ 이내로 냉각시키는 열교환 장치인 인터쿨러를 포함하고 있다.
그러나 종래의 인터쿨러는, 상기 한국특허공보의 도 2에 도시된 바와 같이, 냉각 효율을 증가시키기 위하여 제1 임펠러와 제2 임펠러를 둘러 감싸고 있는 하우징의 외부에 별로도 마련되며, 냉각 효율을 증가시키기 위하여 상당히 큰 부피의 냉각 장치로 제작되는 것이 보통이다.
따라서, 종래의 2단 터보 압축기의 경우에는, 전체적인 제작비가 상승하고, 전체적인 제품 크기의 증가로 인하여 제품 장착을 위한 필요 공간이 커질 수밖에 없으므로, 제한적인 용도로만 사용될 수밖에 없는 문제점이 있다.
본 발명은 상기 문제를 해결하기 위해 안출된 것으로서, 그 목적은 인터쿨러와 하우징의 일체화를 통하여 전체적인 제품 크기를 감소시킬 수 있어, 다양한 용도로 사용될 수 있으며, 외부 충격에 의하여 인터쿨러가 손상될 가능성이 없도록 구조가 개선된 터보 압축기를 제공하기 위함이다.
상기 목적을 달성하기 위하여 본 발명에 따른 터보 압축기는, 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 1차적으로 압축하는 제1 임펠러; 상기 제1 임펠러에 의하여 압축된 상기 기체를 2차적으로 압축하는 제2 임펠러; 상기 제2 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 제1 임펠러 및 제2 임펠러를 회전시키기 위하여, 일단부가 상기 제1 임펠러와 결합되어 있으며 타단부가 상기 제2 임펠러와 결합되어 있으며, 제1 중심축을 따라 연장되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 제1 임펠러와 상기 제2 임펠러 사이에 위치하는 상기 압축 기체 유로에 마련되어 있으며, 상기 기체가 통과할 수 있는 공냉 기로를 포함하는 인터쿨러;를 포함하며, 상기 공냉 기로는, 상기 하우징을 관통한 상태로 상기 하우징의 내부에 숨겨져 있는 것을 특징으로 한다.
여기서, 상기 공냉 기로는, 상기 제1 중심축을 회전 중심으로 하는 나선형으로 형성되는 것이 바람직하다.
여기서, 상기 공냉 기로의 상류에는 상기 제1 임펠러에 의하여 압축된 기체의 유체 흐름의 방향을 안내하기 위한 가이드 부재가 마련되어 있는 것이 바람직하다.
여기서, 상기 하우징은, 상기 모터 수용 공간을 구비하는 내측 하우징; 상기 내측 하우징을 둘러감싸는 외측 하우징;을 구비하며, 상기 공냉 기로는, 상기 내측 하우징의 외부 표면과 상기 외측 하우징의 내부 표면 사이에 마련되어 있는 것이 바람직하다.
여기서, 상기 하우징을 냉각하기 위한 냉각용 액체가 순환 가능하도록 형성된 냉각 수로를 포함하는 것이 바람직하다.
여기서, 상기 냉각 수로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 수로를 포함하는 것이 바람직하다.
여기서, 상기 냉각 수로는, 상기 공냉 기로의 내부에 수용된 상기 기체와 열교환할 수 있도록 마련되는 것이 바람직하다.
여기서, 상기 공냉 기로는, 상기 제1 중심축의 반경 방향으로 상기 냉각 수로의 외측에 배치되어 있는 것이 바람직하다.
여기서, 상기 냉각 수로와 상기 공냉 기로 사이에는, 열교환 효율을 증가시킬 수 있는 냉각핀이 마련되어 있는 것이 바람직하다.
여기서, 상기 냉각 수로는, 상기 제1 중심축을 따라 연장되어 있으며, 상기 제1 중심축의 원주 방향을 따라 서로 이격된 상태로 나열되어 있는 복수 개의 단위 수로; 상기 단위 수로의 후단부를 서로 연결하는 복수 개의 후단 수로; 상기 단위 수로의 전단부를 서로 연결하는 복수 개의 전단 수로;를 포함함으로써, 지그재그 형상으로 형성되는 것이 바람직하다.
본 발명에 따르면, 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 1차적으로 압축하는 제1 임펠러; 상기 제1 임펠러에 의하여 압축된 상기 기체를 2차적으로 압축하는 제2 임펠러; 상기 제2 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 제1 임펠러 및 제2 임펠러를 회전시키기 위하여, 일단부가 상기 제1 임펠러와 결합되어 있으며 타단부가 상기 제2 임펠러와 결합되어 있으며, 제1 중심축을 따라 연장되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 제1 임펠러와 상기 제2 임펠러 사이에 위치하는 상기 압축 기체 유로에 마련되어 있으며, 상기 기체가 통과할 수 있는 공냉 기로를 포함하는 인터쿨러;를 포함하며, 상기 공냉 기로는, 기밀 가능하게 상기 하우징을 관통한 상태로 상기 하우징의 내부에 숨겨져 있으므로, 상기 인터쿨러와 상기 하우징의 일체화를 통하여 전체적인 제품 크기를 감소시킬 수 있어, 다양한 용도로 사용될 수 있으며, 외부 충격에 의하여 상기 인터쿨러가 손상될 가능성이 없다는 효과가 있다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이다.
도 2는 도 1에 도시된 터보 압축기의 우측면도이다.
도 3은 도 1에 도시된 터보 압축기의 A-A선 단면도이다.
도 4는 도 1에 도시된 터보 압축기의 B-B선 단면도이다.
도 5는 도 1에 도시된 터보 압축기의 C-C선 단면도이다.
도 6은 도 1에 도시된 터보 압축기의 D-D선 단면도이다.
도 7은 도 1에 도시된 터보 압축기의 압축 기체 흐름을 나타내는 도면이다.
도 7은 본 발명의 제2 실시예인 터보 압축기의 단면도이다.
도 8은 도 2에 도시된 터보 압축기의 부분단면도이다.
도 9는 도 1에 도시된 터보 압축기의 냉각용 액체 흐름을 나타내는 도면이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이며, 도 2는 도 1에 도시된 터보 압축기의 부분확대도이다. 도 3은 도 1에 도시된 터보 압축기의 A-A선 단면도이다.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 터보 압축기(100)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 기체를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 소위 터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)로도 불린다. 이 터보 압축기(100)는, 하우징(10)과 압축 유닛(20)과 모터(30)와 인터쿨러(40)와, 수냉 유닛(50)을 포함하여 구성된다. 이하에서 압축 대상인 상기 기체가 공기인 것을 전제로 한다.
상기 하우징(10)은, 금속 재질의 하우징(housing)으로서, 내측 하우징(11)과 외측 하우징(12)과, 모터 수용 공간(13)과, 후방 하우징(14)을 구비한다.
상기 내측 하우징(11)은, 상기 모터 수용 공간(13)을 내부에 구비하는 원통형 부재로서, 제1 중심축(C1)을 원의 중심으로 하는 단면을 가지며, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 모터 수용 공간(13)은, 후술할 상기 모터(30)를 수용할 수 있도록 상기 모터(30)와 대응되는 형상을 가진 공간이다.
상기 내측 하우징(11)은, 도 1에 도시된 바와 같이 좌측 단부(전단부) 및 우측 단부(후단부)가 개구되어 있다.
상기 외측 하우징(12)은, 상기 제1 중심축(C1)을 원의 중심으로 하는 단면을 가진 원통형 부재로서, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 외측 하우징(12)은, 상기 내측 하우징(11)을 둘러감싼 상태로 수용할 수 있도록, 상기 내측 하우징(11)과 대응되는 형상을 가지고 있다.
상기 외측 하우징(12)의 내부 표면과 상기 내측 하우징(11)의 외부 표면은, 미리 정한 간격만큼 이격된 상태로 서로 마주하고 있다.
상기 외측 하우징(12)의 측벽 중에서 상기 인터쿨러(40)와 마주하는 부분의 두께는 최대한 얇게 형성하는 것이 바람직하다.
상기 후방 하우징(14)은, 상기 내측 하우징(11)와 상기 외측 하우징(12)의 후단부를 기밀 가능하게 폐쇄하는 금속 재질의 하우징이다.
상기 후방 하우징(14)은, 상기 모터(30)의 장착을 위하여 몇 개의 구성품으로 분리 제작될 수도 있으며, 그에 대한 상세한 설명은 생략하기로 한다.
상기 후방 하우징(14)은, 도 2에 도시된 바와 같이 상기 제2 임펠러(22)를 거친 공기가 와선형으로 흐를 수 있도록 형성된 유로를 구비한 스크롤(scroll)(29)을 포함한다.
상기 스크롤(29)은, 상기 제2 임펠러(22)와 상기 압축 기체 배출구(25)를 서로 연통시킨다.
상기 후방 하우징(14)은, 볼트나 스크류에 의하여 상기 내측 하우징(11) 및 상기 외측 하우징(12)과 결합된다.
상기 압축 유닛(20)은, 외부의 공기를 흡입하여 압축하는 장치로서, 제1 임펠러(21)와, 제2 임펠러(22)와, 압축 기체 유로(23)를 구비한다.
상기 제1 임펠러(21)는, 외부의 공기를 흡입하여 1차적으로 압축하기 위한 바퀴로서, 곡면을 지닌 날개를 복수 개 구비하며, 고속 회전이 가능하도록 장착되어 있다.
상기 제1 임펠러(21)는, 상기 내측 하우징(11)의 좌측 단부와 상기 외측 하우징(12)의 좌측 단부 사이에 배치되어 있다.
상기 제1 임펠러(21)의 전방에는, 외부의 공기를 흡입되는 압축 기체 흡입구(24)가 상기 외측 하우징(12)에 형성되어 있다.
상기 제2 임펠러(22)는, 상기 제1 임펠러(21)에 의하여 1차 압축된 상기 기체를 2차적으로 압축하기 위한 바퀴로서, 상기 제1 임펠러(21)과 마찬가지로 곡면을 지닌 날개를 복수 개 구비하며, 고속 회전이 가능하도록 장착되어 있다.
상기 제2 임펠러(22)는, 상기 내측 하우징(11)의 우측 단부와 상기 후방 하우징(14)의 사이에 배치되어 있다.
상기 제2 임펠러(22)의 후방에는, 상기 제1 임펠러(21)에 의하여 1차적으로 압축된 상기 기체가 유입되는 압축 기체 중간 흡입구(26)가 상기 후방 하우징(14)에 형성되어 있다.
상기 후방 하우징(14)에는, 도 2에 도시된 바와 같이 상기 제1 임펠러(21)에 의하여 1차적으로 압축된 상기 기체가 배출되는 압축 기체 중간 배출구(27)가 형성되어 있다.
상기 압축 기체 중간 배출구(27)로부터 배출된 공기(G)는, 도 8에 도시된 바와 같이 상기 압축 기체 중간 흡입구(26)를 통하여 상기 제2 임펠러(22)로 유입된다.
상기 압축 기체 유로(23)는, 상기 압축 기체 흡입구(24)로부터 압축 기체 배출구(25)까지 연결되어 있는 기로이다.
상기 압축 기체 흡입구(24)로 흡입된 공기는, 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(23)를 따라 이동하면서 압축된다.
상기 압축 기체 유로(23)는, 도 7에 도시된 바와 같이, 상기 압축 기체 흡입구(24)로부터, 상기 제1 임펠러(21)와, 상기 인터쿨러(40)와, 상기 압축 기체 중간 배출구(27)와, 상기 압축 기체 중간 흡입구(26)와, 상기 제2 임펠러(22)를 차례로 거친 후, 압축 기체 배출구(25)까지 연결되어 있다.
상기 압축 기체 유로(23)는, 전단 기로(23a)와 중간 기로(23b)와 후단 기로(23c)를 포함한다.
상기 전단 기로(23a)는, 상기 하우징(10)의 중심으로부터 상기 하우징(10)의 전단부 외곽을 향하여 공기가 유동할 수 있도록 마련된 기로이다.
상기 전단 기로(23a)는, 디퓨저(28)에 의하여 구획되는 다수 개의 기로로서, 상기 제1 중심축(C1)의 반경 방향을 따라 연장되어 있다.
상기 중간 기로(23b)는, 상기 하우징(10)을 냉각할 수 있도록 상기 하우징(10)을 관통하는 다수 개의 기로로서, 상기 제1 중심축(C1)을 중심으로 연장되어 있다.
상기 중간 기로(23b)는, 도 3 및 도 7에 도시된 바와 같이 상기 제1 중심축(C1)의 원주 방향을 따라 미리 정한 간격만큼 서로 이격된 상태로 나열되어 있다.
상기 후단 기로(23c)는, 상기 중간 기로(23b)로부터 나온 공기가 상기 압축 기체 중간 흡입구(26)로 흡입될 수 있도록 연결하는 기로로서, 상기 하우징(10)의 후단부에 형성되어 있다.
상기 전단 기로(23a) 및 중간 기로(23b)는, 상기 제1 중심축(C1)을 중심으로 회전 대칭 내지 축 대칭으로 배열되는 것이 바람직하다.
상기 압축 기체 흡입구(24)로 흡입된 공기는, 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(23)를 따라 이동하면서 2단계로 압축될 수 있다.
상기 모터(30)는, 회전력을 발생시키는 전기 모터로서, 상기 임펠러(21, 22)에 고속 회전력을 공급하기 위한 장치이다. 이 모터(30)는 회전축(31)과 스테이터(32)와 로터(33)와 베어링(34)을 포함한다.
상기 회전축(31)은, 상기 제1 중심축(C1)을 따라 연장된 막대 부재로서, 전단부가 상기 제1 임펠러(21)와 상대 회전 불가능하게 결합되어 있으며, 후단부는 상기 제2 임펠러(22)와 상대 회전 불가능하게 결합되어 있다.
상기 스테이터(32)는, 계자 코일(field coil)이 감겨지는 고정자(stator)로서, 상기 모터 수용 공간(13)에 고정된 상태로 장착된다.
상기 로터(33)는, 영구 자석을 포함하는 회전자(rotor)로서, 상기 회전축(31)의 중간부에 결합되어 있다.
상기 베어링(34)은, 고속 회전에 의하여 발생되는 마찰력을 감소시키기 위하여, 상기 회전축(31)을 회전 가능하게 지지하는 공기 베어링으로서, 상기 회전축(31)의 전단부와 후단부에 각각 마련되어 있다.
상기 스테이터(32)와 상기 로터(33) 사이, 상기 회전축(31)과 상기 스테이터(32)의 사이, 상기 회전축(31)과 상기 베어링(34)의 사이, 각각에는 미리 정한 간격이 존재한다.
상기 인터쿨러(40)는, 상기 제1 임펠러(21)에 의하여 가열된 공기를 냉각하기 위한 장치로서, 공냉 기로(41)와 가이드 부재(42)를 포함한다.
상기 공냉 기로(41)는 상기 제1 임펠러(21)와 상기 제2 임펠러(22) 사이에 위치하는 기로로서, 압축 대상인 공기가 흐르는 기로이다. 본 실시예에서는, 상기 중간 기로(23b)의 적어도 일부가 상기 공냉 기로(41)로서 기능한다.
상기 공냉 기로(41)는, 기밀 가능하게 상기 하우징(10)을 관통한 상태로 상기 하우징(10)의 내부에 숨겨져 있다.
상기 공냉 기로(41)는, 도 7에 도시된 바와 같이 상기 제1 중심축(C1)을 회전 중심으로 하는 코일형 내지 나선형으로 형성되어 있다.
상기 공냉 기로(41)는, 도 3에 도시된 바와 같이 상기 내측 하우징(11)의 외주면과, 상기 외측 하우징(12)의 내주면과, 후술할 냉각핀(52)의 표면에 의하여 형성된다.
상기 가이드 부재(42)는, 상기 제1 임펠러(21)에 의하여 압축된 공기의 유체 흐름의 방향을 안내하기 위한 부재로서, 다수 개 마련되어 상기 공냉 기로(41)의 상류에 마련된다.
상기 가이드 부재(42)는, 상기 디퓨저(28)를 거친 공기가 상기 공냉 기로(41)로 진입하기 전에 미리 정한 방향으로 유동할 수 있도록 안내하기 위한 부재이다.
상기 가이드 부재(42)는, 상기 제1 중심축(C1)에 대하여 미리 정한 각도를 가지도록 마련된다.
상기 수냉 유닛(50)은, 상기 하우징(10)을 냉각용 액체를 사용하여 냉각하기 위한 장치로서, 냉각 수로(51)와, 냉각핀(52)과, 냉각용 액체 유입구(53)와, 냉각용 액체 유출구(54)를 구비한다. 여기서, 상기 냉각용 액체로는 물이 사용된다.
상기 냉각 수로(51)는, 냉각용 액체를 수용하는 통로로서, 내부에 수용된 냉각용 액체의 계속적 순환이 가능하도록 형성되어 있다.
상기 냉각 수로(51)는, 도 1 및 도 3에 도시된 바와 같이 상기 내측 하우징(11)을 관통한 상태로 상기 내측 하우징(11)의 내부에 숨겨져 있으며, 단위 수로(51a)와, 후단 수로(51b)와, 전단 수로(51c)를 포함한다.
상기 단위 수로(51a)는, 상기 내측 하우징(11)을 관통한 상태로 상기 내측 하우징(11)의 내부에 숨겨져 있는 원형 단면의 수로로서, 상기 제1 중심축(C1)을 따라 직선적으로 연장되어 있다.
상기 단위 수로(51a)는, 도 3에 도시된 바와 같이 상기 제1 중심축(C1)의 원주 방향을 따라 서로 이격된 상태로 다수 개 나열되어 있다.
상기 후단 수로(51b)는, 상기 단위 수로(51a)의 후단부를 서로 연결하는 수로로서, 도 5에 도시된 바와 같이 상기 내측 하우징(11)의 후단부를 관통한 상태로 상기 내측 하우징(11)의 내부에 숨겨지도록 형성되어 있다.
상기 전단 수로(51c)는, 상기 단위 수로(51a)의 전단부를 서로 연결하는 수로로서, 도 4에 도시된 바와 같이 상기 내측 하우징(11)의 전단부를 관통한 상태로 상기 내측 하우징(11)의 내부에 숨겨지도록 형성되어 있다.
따라서, 상기 냉각 수로(51)는, 도 9에 도시된 바와 같이 지그재그 형상으로 상기 내측 하우징(11)의 원주 방향을 따라 형성되며, 상기 내측 하우징(11)의 측벽 전체를 둘러 감싸도록 배치된다.
상기 냉각 수로(51)는, 상기 제1 중심축(C1)을 중심으로 회전 대칭 내지 축 대칭으로 배열되는 것이 바람직하다.
상기 냉각 수로(51)는, 상기 공냉 기로(41)와 최대한 근접하도록 배치되는 것이 바람직하다.
상기 냉각 수로(51)는, 상기 제1 중심축(C1)에 더 가까워질 수 있도록, 상기 공냉 기로(41)의 내측에 배치되어 있다.
상기 냉각핀(52)은, 상기 냉각 수로(51)를 따라 흐르는 냉각용 액체와 상기 공냉 기로(41)를 따라 흐르는 공기 사이의 열교환 효율을 증가시키기 위한 냉각핀이다.
상기 냉각핀(52)은, 도 1 및 도 3에 도시된 바와 같이, 상기 내측 하우징(11)의 외주면으로부터 상기 내측 하우징(11)의 반경 방향으로 돌출되어 있으며, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 냉각핀(52)은, 서로 이격된 상태로 상기 내측 하우징(11)의 원주 방향을 따라 다수 개 나열되어 있다.
상기 냉각핀(52)의 말단부는, 상기 외측 하우징(12)의 내부 표면과 접촉한 상태를 유지하고 있다.
상기 냉각용 액체 유입구(53)는, 냉각용 액체가 외부로부터 유입되는 입구로서, 상기 냉각 수로(51)의 일 말단부와 연통되어 있으며, 상기 후방 하우징(14)에 마련되어 있다.
상기 냉각용 액체 유입구(53)는, 외부에 마련된 펌프(미도시)와 연결되어 있으므로, 상기 펌프에 의하여 물을 공급받는다.
상기 냉각용 액체 유출구(54)는, 냉각용 액체가 외부로 유출되는 출구로서, 상기 냉각 수로(51)의 타 말단부와 연통되어 있으며, 상기 후방 하우징(14)에 마련되어 있다.
상기 냉각용 액체 유출구(54)로부터 배출된 냉각용 액체는, 외부에서 냉각된 후 다시 상기 냉각용 액체 유입구(53)를 통하여 유입될 수도 있다.
이하에서는, 상술한 구성의 터보 압축기(100)가 작동하는 방법의 일례를 설명하기로 한다.
상기 모터(30)의 회전축(31)이 회전하면, 상기 제1 임펠러(21)와 상기 제2 임펠러(22)가 동시에 회전하게 되고, 상기 압축 기체 흡입구(24)를 통하여 유입된 공기(G)는, 상기 제1 임펠러(21)와 상기 인터쿨러(40)와 상기 제2 임펠러(22)를 차례로 거치면서 2단계로 압축되어 상기 압축 기체 배출구(25)를 통하여 외부로 배출된다.
상기 제1 임펠러(21)를 거친 공기는, 상기 디퓨저(28)를 지나면 속도가 줄고 압력이 상승하게 되며, 상기 가이드 부재(42)를 지나면서 상기 공냉 기로(41)로 진입하기에 적당한 각도로 흐름의 방향이 변경된다.
상기 가이드 부재(42)를 거친 공기는, 상기 공냉 기로(41)를 지나면서 급속히 냉각된다. 이때 상기 공냉 기로(41)는 상기 냉각 수로(51) 및 상기 외측 하우징(12)과 근접하고 있으므로, 상기 공냉 기로(41)를 흐르는 공기는 상기 냉각 수로(51)의 내부에 있는 냉각용 액체에 의하여 냉각되는 동시에, 상기 외측 하우징(12)의 외부에 있는 대기에 의해서도 냉각된다.
한편, 상기 냉각 수로(51)의 내부에 수용된 냉각용 액체는, 상기 냉각용 액체 유입구(53)으로부터 유입된 후, 도 9에 도시된 바와 같이 지그재그 형상으로 상기 내측 하우징(11)의 원주 방향을 따라 흐르는 냉각용 액체 흐름(W)을 형성하게 되며, 상기 내측 하우징(11) 및 상기 외측 하우징(12)을 전체적으로 냉각시킨 후 상기 냉각용 액체 유출구(54)를 통하여 배출된다.
이때, 상기 공냉 기로(41)를 흐르는 공기는, 상기 공냉 기로(41)에 인접한 상기 단위 수로(51a)를 통하여 흐르는 냉각용 액체에 의하여 신속히 냉각된다. 특히 상기 냉각핀(52)에 의하여, 상기 단위 수로(51a)를 흐르는 냉각용 액체와 상기 공냉 기로(41)를 흐르는 공기 간의 열교환 효율은 매우 증가한다.
상술한 구성의 터보 압축기(100)는, 기체가 흡입되는 압축 기체 흡입구(24); 상기 압축 기체 흡입구(24)를 통하여 유입된 기체를 1차적으로 압축하는 제1 임펠러(21); 상기 제1 임펠러(21)에 의하여 압축된 상기 기체를 2차적으로 압축하는 제2 임펠러(22); 상기 제2 임펠러(22)에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구(25); 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(23)를 구비하는 압축 유닛(20); 상기 제1 임펠러(21) 및 제2 임펠러(22)를 회전시키기 위하여, 일단부가 상기 제1 임펠러(21)와 결합되어 있으며 타단부가 상기 제2 임펠러(22)와 결합되어 있으며, 제1 중심축(C1)을 따라 연장되어 있는 회전축(31)을 구비하는 모터(30); 상기 모터(30)를 수용하는 모터 수용 공간(13)을 구비한 하우징(10); 상기 제1 임펠러(21)와 상기 제2 임펠러(22) 사이에 위치하는 상기 압축 기체 유로(23)에 마련되어 있으며, 상기 기체가 통과할 수 있는 공냉 기로(41)를 포함하는 인터쿨러(40);를 포함하며, 상기 공냉 기로(41)는, 기밀 가능하게 상기 하우징(10)을 관통한 상태로 상기 하우징(10)의 내부에 숨겨져 있으므로, 상기 인터쿨러(40)와 상기 하우징(10)의 일체화를 통하여 전체적인 제품 크기를 감소시킬 수 있어, 다양한 용도로 사용될 수 있으며, 외부 충격에 의하여 상기 인터쿨러(40)가 손상될 가능성이 없다는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 공냉 기로(41)가, 상기 제1 중심축(C1)을 회전 중심으로 하는 나선형으로 형성되어 있으므로, 상기 공냉 기로(41)의 내부에 있는 공기와 상기 하우징(10)의 접촉 면적이 증가하여, 상기 공냉 기로(41)의 내부에 있는 공기가 신속히 냉각될 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 공냉 기로(41)의 상류에는 상기 제1 임펠러(21)에 의하여 압축된 공기의 유체 흐름의 방향을 안내하기 위한 가이드 부재(42)가 마련되어 있으므로, 상기 디퓨저(28)를 거친 공기가 상기 공냉 기로(41)로 진입하기에 적당한 각도로 흐름의 방향이 변경될 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 하우징(10)은, 상기 모터 수용 공간(13)을 구비하는 내측 하우징(11); 상기 내측 하우징(11)을 둘러감싸는 외측 하우징(12);을 구비하며, 상기 공냉 기로(41)는, 상기 내측 하우징(11)의 외부 표면과 상기 외측 하우징(12)의 내부 표면 사이에 마련되어 있으므로, 상기 냉각핀(52) 및 상기 공냉 기로(41)를 형성하기 용이하다는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 하우징(10)을 냉각하기 위한 냉각용 액체가 순환 가능하도록 형성된 냉각 수로(51)를 포함하므로, 상기 모터(30)와 베어링(34) 등으로부터 발생된 열에 의하여 가열된 상기 하우징(10)을 냉각할 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각 수로(51)가, 상기 하우징(10)을 냉각할 수 있도록 상기 하우징(10)을 관통하는 수로(51a, 51b, 51c)를 포함하므로, 별도의 냉각 파이프를 사용하는 경우와 비교하여, 냉각 효율이 우수하고 누액의 가능성이 거의 없다는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각 수로(51)가, 상기 공냉 기로(41)의 내부에 수용된 공기와 열교환할 수 있도록 마련되어 있으므로, 상기 모터(30)와 베어링(34) 등으로부터 발생된 열에 의하여 가열된 상기 하우징(10)을 냉각함과 동시에, 상기 공냉 기로(41)의 내부를 흐르는 공기도 냉각할 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 공냉 기로(41)가, 상기 제1 중심축(C1)의 반경 방향으로 상기 냉각 수로(51)의 외측에 배치되어 있으므로, 상기 공냉 기로(41)의 내부를 흐르는 공기가 상기 냉각 수로(51)의 내부에 있는 냉각용 액체에 의하여 수냉 방식으로 냉각되는 동시에, 상기 외측 하우징(12)의 외부에 있는 대기에 의해서 공냉 방식으로 냉각될 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각 수로(51)와 상기 공냉 기로(41) 사이에는, 열교환 효율을 증가시킬 수 있는 냉각핀(52)이 마련되어 있으므로, 상기 공냉 기로(41)의 내부를 흐르는 공기와 상기 냉각 수로(51)의 내부를 흐르는 냉각용 액체 간의 열교환 효율이 증가하는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각 수로(51)가, 상기 제1 중심축(C1)을 따라 연장되어 있으며, 상기 제1 중심축(C1)의 원주 방향을 따라 서로 이격된 상태로 나열되어 있는 복수 개의 단위 수로(51a); 상기 단위 수로(51a)의 후단부를 서로 연결하는 복수 개의 후단 수로(51b); 상기 단위 수로(51a)의 전단부를 서로 연결하는 복수 개의 전단 수로(51c);를 포함함으로써, 지그재그 형상으로 형성되므로, 상기 냉각 수로(51)의 내부에 있는 냉각용 액체와 상기 내측 하우징(11)이 접촉하는 면적을 최대한 증가시킬 수 있고, 상기 내측 하우징(11)의 전체에 걸쳐서 골고루 냉각용 액체가 흐를 수 있는 장점이 있다.
본 실시예에서는, 상기 냉각핀(52)이 상기 내측 하우징(11)의 외주면에 일체로 형성되어 있으나, 상기 냉각핀(52)이 별도의 부재로 가공된 후 압입 등의 방법으로 결합될 수 있음은 물론이다.
본 실시예에서는, 상기 공냉 기로(41)가 도 7에 도시된 바와 같이 상기 제1 중심축(C1)을 회전 중심으로 하는 코일형 내지 나선형으로 형성되어 있으나, 상기 제1 중심축(C1)을 따라 직선적으로 형성될 수도 있음은 물론이다.
본 실시예에서는, 상기 베어링(34)이 공기 베어링으로 마련되어 있으나, 다른 종류의 베어링이 사용될 수도 있음은 물론이다.
본 실시예에서는, 기밀을 위한 별도의 실링(sealing) 수단이 설명되어 있지 않지만, 다양한 종류의 실링 수단이 사용될 수도 있음은 물론이다.
이상으로 본 발명을 설명하였는데, 본 발명의 기술적 범위는 상술한 실시예에 기재된 내용으로 한정되는 것은 아니며, 해당 기술 분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 본 발명의 기술적 사상의 범위를 벗어나지 않는 것임은 명백하다.

Claims (10)

  1. 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서,
    상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 1차적으로 압축하는 제1 임펠러; 상기 제1 임펠러에 의하여 압축된 상기 기체를 2차적으로 압축하는 제2 임펠러; 상기 제2 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛;
    상기 제1 임펠러 및 제2 임펠러를 회전시키기 위하여, 일단부가 상기 제1 임펠러와 결합되어 있으며 타단부가 상기 제2 임펠러와 결합되어 있으며, 제1 중심축을 따라 연장되어 있는 회전축을 구비하는 모터;
    상기 모터를 수용하는 모터 수용 공간을 구비한 하우징;
    상기 제1 임펠러와 상기 제2 임펠러 사이에 위치하는 상기 압축 기체 유로에 마련되어 있으며, 상기 기체가 통과할 수 있는 공냉 기로를 포함하는 인터쿨러;를 포함하며,
    상기 공냉 기로는, 상기 하우징을 관통한 상태로 상기 하우징의 내부에 숨겨져 있는 것을 특징으로 하는 터보 압축기
  2. 제 1항에 있어서,
    상기 공냉 기로는, 상기 제1 중심축을 회전 중심으로 하는 나선형으로 형성되는 것을 특징으로 하는 터보 압축기
  3. 제 1항에 있어서,
    상기 공냉 기로의 상류에는 상기 제1 임펠러에 의하여 압축된 기체의 유체 흐름의 방향을 안내하기 위한 가이드 부재가 마련되어 있는 것을 특징으로 하는 터보 압축기
  4. 제 1항에 있어서,
    상기 하우징은, 상기 모터 수용 공간을 구비하는 내측 하우징; 상기 내측 하우징을 둘러감싸는 외측 하우징;을 구비하며,
    상기 공냉 기로는, 상기 내측 하우징의 외부 표면과 상기 외측 하우징의 내부 표면 사이에 마련되어 있는 것을 특징으로 하는 터보 압축기
  5. 제 1항에 있어서,
    상기 하우징을 냉각하기 위한 냉각용 액체가 순환 가능하도록 형성된 냉각 수로를 포함하는 것을 특징으로 하는 터보 압축기
  6. 제 5항에 있어서,
    상기 냉각 수로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 수로를 포함하는 것을 특징으로 하는 터보 압축기
  7. 제 5항에 있어서,
    상기 냉각 수로는, 상기 공냉 기로의 내부에 수용된 상기 기체와 열교환할 수 있도록 마련되는 것을 특징으로 하는 터보 압축기
  8. 제 7항에 있어서,
    상기 공냉 기로는, 상기 제1 중심축의 반경 방향으로 상기 냉각 수로의 외측에 배치되어 있는 것을 특징으로 하는 터보 압축기
  9. 제 7항에 있어서,
    상기 냉각 수로와 상기 공냉 기로 사이에는, 열교환 효율을 증가시킬 수 있는 냉각핀이 마련되어 있는 것을 특징으로 하는 터보 압축기
  10. 제 5항에 있어서,
    상기 냉각 수로는,
    상기 제1 중심축을 따라 연장되어 있으며, 상기 제1 중심축의 원주 방향을 따라 서로 이격된 상태로 나열되어 있는 복수 개의 단위 수로; 상기 단위 수로의 후단부를 서로 연결하는 복수 개의 후단 수로; 상기 단위 수로의 전단부를 서로 연결하는 복수 개의 전단 수로;를 포함함으로써, 지그재그 형상으로 형성되는 것을 특징으로 하는 터보 압축기
PCT/KR2017/012554 2016-11-22 2017-11-07 인터쿨러를 구비한 터보 압축기 WO2018097511A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780029025.6A CN109072928B (zh) 2016-11-22 2017-11-07 包括中间冷却器的涡轮压缩机
US16/078,100 US11009043B2 (en) 2016-11-22 2017-11-07 Turbo compressor including intercooler
JP2019512594A JP6632763B2 (ja) 2016-11-22 2017-11-07 インタクーラーを備えたターボ圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160156061A KR101845833B1 (ko) 2016-11-22 2016-11-22 인터쿨러를 구비한 터보 압축기
KR10-2016-0156061 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097511A1 true WO2018097511A1 (ko) 2018-05-31

Family

ID=61977454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012554 WO2018097511A1 (ko) 2016-11-22 2017-11-07 인터쿨러를 구비한 터보 압축기

Country Status (5)

Country Link
US (1) US11009043B2 (ko)
JP (1) JP6632763B2 (ko)
KR (1) KR101845833B1 (ko)
CN (1) CN109072928B (ko)
WO (1) WO2018097511A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112682329A (zh) * 2020-12-24 2021-04-20 北京理工大学 一种燃料电池高速电动空气压缩机

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888156B1 (ko) * 2016-11-14 2018-08-13 ㈜티앤이코리아 분리된 냉각 기로를 구비한 터보 압축기
EP3557080A1 (fr) * 2018-04-20 2019-10-23 Belenos Clean Power Holding AG Pompe à chaleur comprenant un compresseur de fluide
EP3557079A1 (fr) * 2018-04-20 2019-10-23 Belenos Clean Power Holding AG Système de chauffage, ventilation et climatisation comprenant un compresseur de fluide
KR102014376B1 (ko) * 2018-06-25 2019-08-26 클러스터엘앤지(주) Lng 추진 선박용 증발가스 압축기
CN109268295A (zh) * 2018-11-20 2019-01-25 势加透博(北京)科技有限公司 一种具有径轴向扩压器的两级空气压缩系统
CN109869330A (zh) * 2019-03-28 2019-06-11 大连海事大学 一种两级电动压气机
KR102133245B1 (ko) 2019-05-15 2020-07-13 터보윈 주식회사 공랭식 2단 터보 압축기
DE102019118946A1 (de) * 2019-07-12 2021-01-14 J. Schmalz Gmbh Unterdruckerzeugungsvorrichtung
CN110578562B (zh) * 2019-08-30 2023-08-29 上海齐耀动力技术有限公司 一种冷却结构及其连接结构
CN110608176A (zh) * 2019-10-09 2019-12-24 合肥工业大学 一种电动两级增压器
CN111219340B (zh) * 2020-03-07 2021-04-30 山东爱索能源科技有限公司 一种阵列式微型气体压缩机
KR102151143B1 (ko) * 2020-04-14 2020-09-02 주식회사 터보존 냉각성능이 향상된 터보 블로어
KR20210136587A (ko) * 2020-05-08 2021-11-17 엘지전자 주식회사 터보 압축기 및 이를 포함하는 터보 냉동기
FR3113303B1 (fr) * 2020-08-05 2022-08-12 Enogia Compresseur centrifuge multi-étages
CN112460047A (zh) * 2020-11-26 2021-03-09 广州市昊志机电股份有限公司 一种两级离心式压缩机和氢燃料电池系统
CN113339287B (zh) * 2021-05-31 2022-06-10 势加透博(北京)科技有限公司 涡轮压缩机
DE102021121424A1 (de) 2021-08-18 2023-02-23 Zf Cv Systems Global Gmbh Mehrstufiger, elektrisch antreibbarer Kompressor
CN113833679A (zh) * 2021-09-16 2021-12-24 势加透博洁净动力如皋有限公司 可减小气流损失的压气机
CN114165462B (zh) * 2021-11-01 2023-11-14 广州市昊志机电股份有限公司 一种离心式空压机和燃料电池系统
CN114876880B (zh) * 2022-07-11 2022-10-14 沈阳透平机械股份有限公司 一种垂直剖分离心压缩机的装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222693U (ko) * 1988-07-29 1990-02-15
JPH07167098A (ja) * 1993-11-02 1995-07-04 Electrolux:Ab ターボファンユニット用電動モータ空冷装置
KR20130030392A (ko) * 2011-09-19 2013-03-27 주식회사 뉴로스 터보블로워 또는 터보압축기의 모터냉각구조
KR20130139076A (ko) * 2012-06-12 2013-12-20 주식회사 삼정터빈 터보 송풍기
KR20160014376A (ko) * 2014-07-29 2016-02-11 현대자동차주식회사 공기 압축기의 냉각유닛

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521554A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Heat exchanger for turbo fluid machine
JPS5135110A (ja) 1974-09-20 1976-03-25 Hitachi Ltd Patsukeejigatataaboryutaikikai
KR100530757B1 (ko) 1999-07-15 2005-11-23 삼성테크윈 주식회사 터보식 압축기
JP2002064956A (ja) * 2000-08-14 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd 高速回転電動機とその冷却方法
JP4122852B2 (ja) * 2002-06-14 2008-07-23 株式会社デンソー 冷却水用ポンプ
US6764279B2 (en) 2002-09-27 2004-07-20 Modine Manufacturing Company Internally mounted radial flow intercooler for a rotary compressor machine
KR101089339B1 (ko) * 2009-10-23 2011-12-02 주식회사 에어젠 수직형 터보 블로어
JP2015116113A (ja) * 2013-12-16 2015-06-22 ファナック株式会社 ターボブロア駆動用電動機
US20150308456A1 (en) * 2014-02-19 2015-10-29 Honeywell International Inc. Electric motor-driven compressor having bi-directional liquid coolant passage
CN203702592U (zh) * 2014-02-21 2014-07-09 珠海格力电器股份有限公司 压缩机及具有其的冷水式空调机组
JP6428434B2 (ja) * 2015-03-27 2018-11-28 株式会社豊田自動織機 圧縮機
JP6668161B2 (ja) * 2016-05-11 2020-03-18 株式会社マーレ フィルターシステムズ ターボチャージャ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222693U (ko) * 1988-07-29 1990-02-15
JPH07167098A (ja) * 1993-11-02 1995-07-04 Electrolux:Ab ターボファンユニット用電動モータ空冷装置
KR20130030392A (ko) * 2011-09-19 2013-03-27 주식회사 뉴로스 터보블로워 또는 터보압축기의 모터냉각구조
KR20130139076A (ko) * 2012-06-12 2013-12-20 주식회사 삼정터빈 터보 송풍기
KR20160014376A (ko) * 2014-07-29 2016-02-11 현대자동차주식회사 공기 압축기의 냉각유닛

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112682329A (zh) * 2020-12-24 2021-04-20 北京理工大学 一种燃料电池高速电动空气压缩机
CN112682329B (zh) * 2020-12-24 2022-01-28 北京理工大学 一种燃料电池高速电动空气压缩机

Also Published As

Publication number Publication date
CN109072928A (zh) 2018-12-21
JP2019515194A (ja) 2019-06-06
KR101845833B1 (ko) 2018-04-05
JP6632763B2 (ja) 2020-01-22
US11009043B2 (en) 2021-05-18
CN109072928B (zh) 2020-08-11
US20190048893A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
WO2017039108A1 (ko) 직결 구동형 듀얼 터보 블로워 냉각 구조
WO2022181997A1 (ko) 베어링 냉각 수로를 포함하는 터보 압축기
WO2018030657A1 (ko) 차량용 공기 압축기
WO2019004595A1 (ko) 공기압축기
JP3799121B2 (ja) 2段遠心圧縮機
WO2017164586A1 (ko) 압축기용 냉각 장치
WO2014061918A1 (ko) 터보기계 시스템
WO2013176532A1 (ko) 2 이상의 구동모터를 가지는 터보압축 시스템
WO2018131827A1 (en) Turbo compressor
KR20130050488A (ko) 다단형 건식 진공펌프
WO2021221294A1 (ko) 차량용 공기 압축기
WO2016148442A1 (ko) 송풍 시스템
WO2020027436A1 (ko) 전동기
WO2014171631A1 (en) Air blower for fuel cell vehicle
WO2020091357A1 (ko) 복합식 냉각구조를 갖는 연료전지용 터보 송풍기
WO2022211158A1 (ko) 차량용 공기 압축기
WO2022203178A1 (ko) 방폭 기능을 구비하는 터보 압축기
WO2018169316A1 (ko) 쿨링 팬 및 이를 구비한 시트 쿨링장치
WO2009108006A9 (ko) 인버터형 스크롤 압축기
WO2013176404A1 (ko) 터보 블로워장치
JPH01267392A (ja) ターボ真空ポンプ
WO2024090928A1 (ko) 압축 기체 유로의 상류측에 모터가 배치된 터보 압축기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512594

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874295

Country of ref document: EP

Kind code of ref document: A1