WO2018088778A1 - 분리된 냉각 기로를 구비한 터보 압축기 - Google Patents

분리된 냉각 기로를 구비한 터보 압축기 Download PDF

Info

Publication number
WO2018088778A1
WO2018088778A1 PCT/KR2017/012555 KR2017012555W WO2018088778A1 WO 2018088778 A1 WO2018088778 A1 WO 2018088778A1 KR 2017012555 W KR2017012555 W KR 2017012555W WO 2018088778 A1 WO2018088778 A1 WO 2018088778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
housing
compressed gas
turbo compressor
gas
Prior art date
Application number
PCT/KR2017/012555
Other languages
English (en)
French (fr)
Inventor
김경수
Original Assignee
주식회사 티앤이코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤이코리아 filed Critical 주식회사 티앤이코리아
Priority to CN201780070137.6A priority Critical patent/CN109983236A/zh
Priority to US16/348,552 priority patent/US11639724B2/en
Priority to JP2019524237A priority patent/JP7042265B2/ja
Publication of WO2018088778A1 publication Critical patent/WO2018088778A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • the present invention relates to a turbocompressor, and more particularly to a turbocompressor capable of cooling the motor efficiently without pressure loss of the compression unit.
  • a turbo compressor or turbo blower is a centrifugal pump that sucks and compresses external air or gas by blowing an impeller at high speed, and blows it out to the outside. It is widely used for aeration in water and sewage treatment plants, and recently, it has also been used for industrial processes and automobile mounting.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a turbo compressor having an improved structure so that the motor can be cooled efficiently without pressure loss of the compression unit.
  • a turbo compressor includes a turbo compressor for compressing a gas such as air and supplying it to the outside, wherein a compressed gas intake port through which the gas is sucked; An impeller for compressing the gas introduced through the compressed gas inlet; A compressed gas outlet through which the gas compressed by the impeller is discharged to the outside; A compression unit having a compressed gas flow passage connected from the compressed gas inlet port to the compressed gas outlet port; A motor having a rotating shaft having a front end coupled to the impeller to rotate the impeller; A housing having a motor accommodating space for accommodating the motor; And a cooler passage provided to pass through the motor accommodating space and configured to circulate the cooling gas contained therein, wherein the compressed gas flow passage is spatially separated from the cooler passage, thereby being located inside the compressed gas flow passage. It is characterized in that no gas can penetrate into the cooler.
  • the cooler includes a channel penetrating the housing so as to cool the housing.
  • a cooling fan for circulating the cooling gas contained in the cooler.
  • the cooling fan is disposed at the rear end of the rotary shaft, it is preferable to rotate by the rotational force of the rotary shaft.
  • the cooling channel formed so that a cooling liquid can circulate it is preferable to include the cooling channel formed so that a cooling liquid can circulate.
  • the cooling channel includes a channel penetrating the housing so as to cool the housing.
  • the cooling channel is provided so as to exchange heat with the gas for cooling contained in the cooler.
  • the cooler includes a channel penetrating the housing to cool the housing, a channel penetrating the housing and a channel penetrating the housing, extending along the longitudinal direction of the rotation shaft, It may be arrange
  • a cooling fin between the cooling channel and the cooling channel is provided to increase the heat exchange efficiency.
  • the housing the inner housing having the motor receiving space; And an outer housing surrounding the inner housing, wherein the cooler is provided between an outer surface of the inner housing and an inner surface of the outer housing.
  • a compressed gas inlet through which gas is sucked;
  • An impeller for compressing the gas introduced through the compressed gas inlet;
  • a compressed gas outlet through which the gas compressed by the impeller is discharged to the outside;
  • a compression unit having a compressed gas flow passage connected from the compressed gas inlet port to the compressed gas outlet port;
  • a motor having a rotating shaft having a front end coupled to the impeller to rotate the impeller;
  • a housing having a motor accommodating space for accommodating the motor;
  • a cooler passage provided to pass through the motor accommodating space and configured to circulate the cooling gas contained therein, wherein the compressed gas flow passage is spatially separated from the cooler passage, thereby being located inside the compressed gas flow passage. Since gas cannot penetrate into the cooler, there is an effect that the motor can be cooled efficiently without pressure loss of the compression unit.
  • FIG. 1 is a cross-sectional view of a turbo compressor which is one embodiment of the present invention.
  • FIG. 2 is an enlarged partial view of the turbo compressor illustrated in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A of the turbo compressor shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line B-B of the turbo compressor shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line C-C of the turbo compressor shown in FIG.
  • FIG. 6 is a view showing the liquid flow for cooling the turbo compressor shown in FIG.
  • FIG. 7 is a sectional view of a turbo compressor as a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line A-A of the turbo compressor shown in FIG.
  • FIG. 9 is a cross-sectional view taken along the line B-B of the turbo compressor shown in FIG.
  • FIG. 10 is a cross-sectional view taken along the line C-C of the turbo compressor shown in FIG.
  • FIG. 1 is a cross-sectional view of a turbo compressor according to an embodiment of the present invention
  • FIG. 2 is a partially enlarged view of the turbo compressor shown in FIG. 1.
  • 3 is a cross-sectional view taken along the line A-A of the turbo compressor shown in FIG.
  • a turbo compressor 100 is a centrifugal pump that sucks and compresses an external gas by blowing an impeller at a high speed and blows it outside. It is also called a turbo compressor or a turbo blower.
  • the turbo compressor 100 includes a housing 10, a compression unit 20, a motor 30, an air cooling unit 40, and a water cooling unit 50.
  • the gas to be compressed is air.
  • the housing 10 is a metal housing, and includes an inner housing 11 and an outer housing 12.
  • the inner housing 11 is a cylindrical member having a motor accommodating space 13 therein, and has a cross section having the first center axis C1 as the center of the circle, and along the first center axis C1. It is extended.
  • the motor accommodating space 13 is a space having a shape corresponding to the motor 30 so as to accommodate the motor 30 to be described later.
  • the inner housing 11 has an open left end portion, and a cooling fan mounting hole 111 is formed at the right end portion thereof.
  • the right end of the inner housing 11 is separately manufactured in several components for mounting the motor 30, but a detailed description thereof will be omitted.
  • the outer housing 12 is a cylindrical member having a cross section with the first center axis C1 as the center of a circle, and extends along the first center axis C1.
  • the outer housing 12 has a shape corresponding to the inner housing 11 so that the outer housing 12 can be accommodated in a state surrounded by the inner housing 11.
  • the inner surface of the outer housing 12 and the outer surface of the inner housing 11 face each other in a state spaced apart by a predetermined interval.
  • the compression unit 20 is an apparatus that sucks and compresses external air and includes an impeller 21, a front cover 22, and a rear cover 23.
  • the impeller 21 is a wheel having a plurality of wings having a curved surface as a main configuration of a centrifugal pump, and is mounted to enable high speed rotation.
  • the front cover 22 is a metal member disposed in front of the impeller 21, and is provided with a compressed gas inlet 24 for sucking outside air.
  • the front cover 22 is provided in the form of a scroll casing having a flow path formed so that the air passing through the impeller 21 flows in a spiral line.
  • the rear cover 23 is a metal member disposed behind the impeller 21 and is coupled to the housing 10 by bolts or screws.
  • the impeller 21 compresses the air introduced through the compressed gas inlet 24, and the air compressed by the impeller 21 is discharged to the outside through the compressed gas outlet 25.
  • the air sucked into the compressed gas intake port 24 is compressed while moving along the compressed gas flow path 26 connected from the compressed gas intake port 24 to the compressed gas outlet 25.
  • the motor 30 is an electric motor that generates a rotational force and is a device for supplying a high speed rotational force to the impeller 21.
  • the motor 30 includes a rotation shaft 31, a stator 32, a rotor 33, and a bearing 34.
  • the rotation shaft 31 is a rod member extending along the first central axis C1, and a front end portion of the rotation shaft 31 is rotatably coupled to the impeller 21 so as to rotate the impeller 21.
  • the stator 32 is a stator in which a field coil is wound, and is mounted in the motor accommodating space 13 in a fixed state.
  • the rotor 33 is a rotor including a permanent magnet and is coupled to an intermediate portion of the rotation shaft 31.
  • the bearing 34 is an air bearing rotatably supporting the rotating shaft 31 so as to reduce the frictional force generated by the high speed rotation, and is provided at the front end and the rear end of the rotating shaft 31, respectively.
  • Predetermined intervals exist between the stator 32 and the rotor 33, between the rotary shaft 31 and the stator 32, and between the rotary shaft 31 and the bearing 34.
  • the air cooling unit 40 is a device for cooling the housing 10 and the motor 30 by using a gas for cooling, and includes a cooler passage 41 and a cooling fan 42.
  • air or an inert gas is used as the cooling gas.
  • the cooler passage 41 is a passage for accommodating the cooling gas, and is formed to enable continuous circulation of the cooling gas contained therein.
  • the cooler passage 41 is provided to pass through the motor accommodating space 13 and the housing 10, but has a rear end passage 41a, an outer side passage 41b, and a front end passage. 41c, the intermediate channel
  • the rear end passage 41a is a cross section provided so that the cooling gas can flow from the center of the rear end portion of the inner housing 11 toward the radial direction of the inner housing 11.
  • the rear end passage 41a is a disk-shaped space provided between the rear end outer surface of the inner housing 11 and the rear end inner surface of the outer housing 12.
  • the outer passage 41b is a passage passing through the housing 10 so as to cool the housing 10 and extends around the first central axis C1.
  • the outer channel 41b is formed by an outer circumferential surface of the inner housing 11, an inner circumferential surface of the outer housing 12, and a surface of the cooling fin 52 to be described later.
  • a plurality of the outer side passages 41b are arranged along the circumferential direction of the first central axis C1 and communicate with the rear end passage 41a.
  • the front end passage 41c is a cross section provided so that the gas for cooling flows from the outer edge of the front end of the inner housing 11 toward the center direction of the inner housing 11.
  • the shear passage 41c extends from the front end of the outer passage 41b to the motor accommodating space 13 and includes a plurality of holes 41c passing through the inner housing 11.
  • the intermediate channel 41d extends from the middle of the outer channel 41b to the motor accommodating space 13 and includes a plurality of holes 41d passing through the inner housing 11.
  • the inner side passage 41e is a passage passing through the space between the rotation shaft 31 and the stator 32.
  • the inner side passage 41e is in communication with the front end passage 41c, the rear end passage 41a, and the intermediate passage 41d, respectively.
  • the inner side passage 41e is provided so that a cooling gas can pass through the field coil of the stator 32, the rotation shaft 31, the rotor 33, and the bearing 34.
  • the cooler passage 41 is preferably arranged in rotation symmetry or axial symmetry about the first central axis C1.
  • the cooler passage 41 is spatially separated from the compressed gas flow passage 26. Therefore, the air inside the compressed gas flow path 26 is leaked from the compressed gas flow path 26 in the process of being compressed and cannot penetrate into the cooler path 41.
  • the cooling fan 42 is a cooling fan for forcibly circulating the cooling gas contained in the cooler passage 41, and is mounted in the cooling fan mounting hole 111 of the inner housing 11. It is.
  • the cooling fan 42 since the cooling fan 42 is coupled to the rear end of the rotation shaft 31 so as not to rotate relatively, the cooling fan 42 rotates together by the rotational force of the rotation shaft 31.
  • the water cooling unit 50 is a device for cooling the housing 10 by using a liquid for cooling, and includes a cooling channel 51, a cooling fin 52, a cooling liquid inlet 53, and cooling. And a liquid liquid outlet 54.
  • water is used as the cooling liquid.
  • the cooling channel 51 is a passage for accommodating the liquid for cooling, and is formed to enable continuous circulation of the cooling gas contained therein.
  • the cooling channel 51 is provided to penetrate the inner housing 11, as shown in Figs. 1 and 3, but the unit channel 51a, the rear channel 51b, and the front channel 51c are provided. Include.
  • the unit channel 51a is a circular channel penetrating the inner housing 11 and extends around the first central axis C1.
  • the unit channel 51a is arranged in a plurality spaced apart from each other along the circumferential direction of the first central axis C1.
  • the rear end channel 51b is a channel connecting the rear ends of the unit channel 51a to each other, and is formed to penetrate the rear end of the inner housing 11 as shown in FIG. 5.
  • the front channel 51c is a channel connecting the front ends of the unit channel 51a to each other, and is formed to penetrate the front ends of the inner housing 11 as shown in FIG. 4.
  • the cooling channel 51 is formed along the circumferential direction of the inner housing 11 in a zigzag shape as illustrated in FIG. 6, and is disposed to surround the entire sidewall of the inner housing 11.
  • the said cooling channel 51 is arranged rotationally symmetrically or axially symmetric about the said 1st center axis C1.
  • the cooling fins 52 are cooling fins for increasing the heat exchange efficiency between the cooling liquid flowing along the cooling channel 51 and the cooling gas flowing along the cooling channel 41.
  • the cooling fins 52 protrude in the radial direction of the inner housing 11 from an outer circumferential surface of the inner housing 11, and the first central axis C1. Extends along.
  • the cooling fins 52 are arranged in plural along the circumferential direction of the inner housing 11 while being spaced apart from each other.
  • the distal end of the cooling fin 52 is in contact with the inner surface of the outer housing 12.
  • the cooling liquid inlet 53 is an inlet through which the cooling liquid flows from the outside, and communicates with one end of the cooling channel 51, and is provided in the outer housing 12.
  • cooling liquid inlet 53 is connected to a pump (not shown) provided outside, water is supplied by the pump.
  • the cooling liquid outlet 54 is an outlet through which the cooling liquid flows outward, and communicates with the other end of the cooling channel 51, and is provided in the outer housing 12.
  • the cooling liquid discharged from the cooling liquid outlet 54 may be introduced again through the cooling liquid inlet 53 after being cooled outside.
  • the gas for cooling contained in the cooler passage 41 is forcedly circulated by the cooling fan 42, so that the field coil of the stator 32 and the rotating shaft 31 and Passing through the rotor 33 and the bearing 34.
  • cooling liquid accommodated in the cooling channel 51 flows in from the cooling liquid inlet 53, and then circumferentially faces the inner housing 11 in a zigzag shape as illustrated in FIG. 6.
  • a cooling liquid flow (W) flowing along is formed, and the inner housing 11 and the outer housing 12 are cooled as a whole and then discharged through the cooling liquid outlet 54.
  • the cooling gas flowing through the outer channel 41b is rapidly cooled by the cooling liquid flowing through the unit channel 51a adjacent to the outer channel 41b.
  • the cooling fins 52 have a very high heat exchange efficiency between the cooling liquid flowing in the unit channel 51a and the cooling gas flowing in the outer channel 41b.
  • the turbo compressor 100 having the above-described configuration includes a compressed gas inlet 24 through which gas is sucked; An impeller 21 for compressing the gas introduced through the compressed gas inlet 24; A compressed gas outlet 25 through which the gas compressed by the impeller 21 is discharged to the outside; A compression unit (20) having a compressed gas flow passage (26) connected from the compressed gas inlet port (24) to the compressed gas outlet port (25); A motor (30) having a rotating shaft (31) having a front end coupled to the impeller (21) to rotate the impeller (21); A housing (10) having a motor accommodating space (13) for accommodating the motor (30); And a cooler passage 41 provided to pass through the motor accommodating space 13 and configured to circulate the cooling gas contained therein, wherein the compressed gas flow passage 26 is spatially connected to the cooler passage 41. Since the gas inside the compressed gas flow path 26 cannot be penetrated into the cooler passage 41, the motor 30 can be efficiently cooled without the pressure loss of the compression unit 20. There is an advantage.
  • the turbo compressor 100 includes air passages 41a, 41b, 41c, and 41d penetrating through the housing 10 to allow the cooler passage 41 to cool the housing 10. There is an advantage of using the gas to cool the housing 10 quickly.
  • turbo compressor 100 since the turbo compressor 100 includes a cooling fan 42 for circulating the cooling gas contained in the cooler passage 41, the turbo compressor 100 forces the cooling gas contained in the cooler passage 41. There is an advantage to cycling.
  • the cooling fan 42 is disposed at the rear end of the rotary shaft 31, and rotates by the rotational force of the rotary shaft 31, for rotating the cooling fan 42.
  • the turbo compressor 100 since the turbo compressor 100 includes a cooling channel 51 formed to circulate the cooling liquid, the water-cooled cooling by the cooling channel 51 simultaneously with the air-cooled cooling by the cooling channel 41. There is an advantage that can be achieved.
  • the turbo compressor 100 further includes cooling channels 51a, 51b, and 51c passing through the housing 10 so that the cooling channel 51 can cool the housing 10. Compared with the case of using a pipe, there is an advantage that the cooling efficiency is excellent and there is little possibility of leakage.
  • turbo compressor 100 is provided so that the cooling water passage 51 can exchange heat with the cooling gas contained in the cooling passage 41, and thus the cooling gas heated by the motor 30.
  • the turbo compressor 100 Has the advantage of having a two-stage cooling structure that can be cooled quickly by the cooling liquid.
  • the turbo compressor 100 since the cooling fins 52 are provided between the cooling channel 51 and the cooling channel 41, the turbo compressor 100 has an advantage of increasing heat exchange efficiency between the cooling gas and the cooling liquid. .
  • turbo compressor 100 the housing 10, the inner housing 11 having the motor accommodating space (13); And an outer housing 12 surrounding the inner housing 11, wherein the cooler passage 41 is provided between the outer surface of the inner housing 11 and the inner surface of the outer housing 12.
  • the cooling fins 52 and the cooler 41 have an advantage of being easily formed.
  • the cooling fins 52 are integrally formed on the outer circumferential surface of the inner housing 11, but the cooling fins 52 may be combined by a press-fitting method after being processed into a separate member. Of course.
  • FIG. 7 shows a turbo compressor 200 as a second embodiment of the present invention. Since the turbo compressor 200 has the same configuration and effects as those of the turbo compressor 100 described above, only the differences between the two will be described below.
  • the turbo compressor 200 is provided with one housing 110 instead of the inner housing 11 and the outer housing 12.
  • the unit channel 51a of the turbo compressor 200 extends along the longitudinal direction C1 of the rotary shaft 31, and the outer channel 41b of the turbo compressor 200 has a length of the rotary shaft 31. It extends along the direction C1.
  • the unit channel 51a and the outer channel 41b of the turbo compressor 200 alternately pass through the housing 110 along the circumferential direction of the rotation shaft 31 as illustrated in FIG. 8. It is arranged.
  • the turbo compressor 200 includes one housing 110, and the cooling gas 41 and the cooling water channel 51 penetrate the housing 110 so that the gas for cooling and the liquid for cooling flow into the housing 110. There is an advantage that the possibility of leakage from the housing 110 is small.
  • the cooling fan 42 is directly coupled to the rear end of the rotary shaft 31, of course, may be driven by a separate electric motor.
  • bearing 34 is provided as an air bearing, other kinds of bearings may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 터보 압축기에 관한 것으로서, 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 임펠러를 회전시키기 위하여, 전단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 모터 수용 공간을 지나가도록 마련되며, 내부에 수용된 냉각용 기체가 순환 가능하도록 형성된 냉각 기로;를 포함하며, 상기 압축 기체 유로는 상기 냉각 기로와 공간적으로 분리됨으로써, 상기 압축 기체 유로의 내부에 있는 기체가 상기 냉각 기로로 침투할 수 없는 것을 특징으로 한다. 본 발명에 따르면, 상기 압축 유닛의 압력 손실 없이 상기 모터를 효율적으로 냉각할 수 있는 효과가 있다.

Description

분리된 냉각 기로를 구비한 터보 압축기
본 발명은 터보 압축기에 관한 것으로서, 특히 압축 유닛의 압력 손실 없이 모터를 효율적으로 냉각할 수 있는 터보 압축기에 관한 것이다.
터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 공기나 가스를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 분체(powder) 이송용이나 하수 처리장 등에서 폭기(爆氣)용으로 많이 사용되고 있으며, 최근에는 산업 공정용과 자동차 탑재용으로도 사용이 되고 있다.
이러한 터보 압축기에서는, 임펠러의 고속 회전으로 인하여 모터와 베어링에서 마찰에 의한 고열이 발생할 수밖에 없는 바, 주요 발열부(heat source)인 모터와 베어링에 대한 냉각이 필요하다.
종래의 터보 압축기의 일례가 한국특허(공개번호 10-2015-0007755)에 개시되어 있는데, 이 터보 압축기에서는, 임펠러가 생산하는 압축 공기의 일부를 활용하여, 상기 임펠러를 회전시키기 위한 모터 및 베어링을 냉각한 후에, 이를 모터의 회전축의 내부 구멍을 통하여 다시 임펠러 측으로 유입시키게 하는 구조로 되어 있다.
그러나, 종래의 터보 압축기의 경우에는, 냉각 시스템의 구성을 단순하게 할 수 있는 이점이 있지만, 임펠러에 의해서 압축된 공기의 일부를 냉각용 기체로 이용하게 되므로, 임펠러에 의하여 압축된 공기의 압력 손실이 발생하는 문제점이 있다.
그리고, 종래의 터보 압축기의 경우에는, 냉각용 기체가 모터 및 베어링에 의해 가열된 후에 다시 임펠러 측으로 유입이 되므로, 임펠러에 의하여 압축될 공기의 온도가 상승함으로써, 터보 압축기의 압축 효율이 추가적으로 감소하는 문제점이 있다.
본 발명은 상기 문제를 해결하기 위해 안출된 것으로서, 그 목적은 압축 유닛의 압력 손실 없이 모터를 효율적으로 냉각할 수 있도록 구조가 개선된 터보 압축기를 제공하기 위함이다.
상기 목적을 달성하기 위하여 본 발명에 따른 터보 압축기는, 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서, 상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 임펠러를 회전시키기 위하여, 전단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 모터 수용 공간을 지나가도록 마련되며, 내부에 수용된 냉각용 기체가 순환 가능하도록 형성된 냉각 기로;를 포함하며, 상기 압축 기체 유로는 상기 냉각 기로와 공간적으로 분리됨으로써, 상기 압축 기체 유로의 내부에 있는 기체가 상기 냉각 기로로 침투할 수 없는 것을 특징으로 한다.
여기서, 상기 냉각 기로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 기로를 포함하는 것이 바람직하다.
여기서, 상기 냉각 기로의 내부에 수용된 냉각용 기체를 순환시키기 위한 냉각팬을 포함하는 것이 바람직하다.
여기서, 상기 냉각팬은, 상기 회전축의 후단부에 배치되며, 상기 회전축의 회전력에 의하여 회전하는 것이 바람직하다.
여기서, 냉각용 액체가 순환 가능하도록 형성된 냉각 수로를 포함하는 것이 바람직하다.
여기서, 상기 냉각 수로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 수로를 포함하는 것이 바람직하다.
여기서, 상기 냉각 수로는, 상기 냉각 기로의 내부에 수용된 냉각용 기체와 열교환할 수 있도록 마련되는 것이 바람직하다.
여기서, 상기 냉각 기로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 기로를 포함하며, 상기 하우징을 관통하는 기로와 상기 하우징을 관통하는 수로는, 상기 회전축의 길이 방향을 따라 연장되어 있으며, 상기 회전축의 원주 방향을 따라 교대로 배치되어 있는 것일 수도 있다.
여기서, 상기 냉각 수로와 상기 냉각 기로 사이에는, 열교환 효율을 증가시킬 수 있는 냉각핀이 마련되어 있는 것이 바람직하다.
여기서, 상기 하우징은, 상기 모터 수용 공간을 구비하는 내측 하우징; 상기 내측 하우징을 둘러감싸는 외측 하우징;을 구비하며, 상기 냉각 기로는, 상기 내측 하우징의 외부 표면과 상기 외측 하우징의 내부 표면 사이에 마련되어 있는 것이 바람직하다.
본 발명에 따르면, 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛; 상기 임펠러를 회전시키기 위하여, 전단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터; 상기 모터를 수용하는 모터 수용 공간을 구비한 하우징; 상기 모터 수용 공간을 지나가도록 마련되며, 내부에 수용된 냉각용 기체가 순환 가능하도록 형성된 냉각 기로;를 포함하며, 상기 압축 기체 유로는 상기 냉각 기로와 공간적으로 분리됨으로써, 상기 압축 기체 유로의 내부에 있는 기체가 상기 냉각 기로로 침투할 수 없으므로, 상기 압축 유닛의 압력 손실 없이 상기 모터를 효율적으로 냉각할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이다.
도 2는 도 1에 도시된 터보 압축기의 부분확대도이다.
도 3은 도 1에 도시된 터보 압축기의 A-A선 단면도이다.
도 4는 도 1에 도시된 터보 압축기의 B-B선 단면도이다.
도 5는 도 1에 도시된 터보 압축기의 C-C선 단면도이다.
도 6은 도 1에 도시된 터보 압축기의 냉각용 액체 흐름을 나타내는 도면이다.
도 7은 본 발명의 제2 실시예인 터보 압축기의 단면도이다.
도 8은 도 7에 도시된 터보 압축기의 A-A선 단면도이다.
도 9는 도 7에 도시된 터보 압축기의 B-B선 단면도이다.
도 10은 도 7에 도시된 터보 압축기의 C-C선 단면도이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예인 터보 압축기의 단면도이며, 도 2는 도 1에 도시된 터보 압축기의 부분확대도이다. 도 3은 도 1에 도시된 터보 압축기의 A-A선 단면도이다.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 터보 압축기(100)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 기체를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 소위 터보 압축기(turbo compressor) 또는 터보 블로어(turbo blower)로도 불린다. 이 터보 압축기(100)는, 하우징(10)과 압축 유닛(20)과 모터(30)와 공냉 유닛(40)과 수냉 유닛(50)을 포함하여 구성된다. 이하에서 압축 대상인 상기 기체가 공기인 것을 전제로 한다.
상기 하우징(10)은, 금속 재질의 하우징(housing)으로서, 내측 하우징(11)과 외측 하우징(12)을 구비한다.
상기 내측 하우징(11)은, 모터 수용 공간(13)을 내부에 구비하는 원통형 부재로서, 제1 중심축(C1)을 원의 중심으로 하는 단면을 가지며, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 모터 수용 공간(13)은, 후술할 상기 모터(30)를 수용할 수 있도록 상기 모터(30)와 대응되는 형상을 가진 공간이다.
상기 내측 하우징(11)은, 도 1에 도시된 바와 같이 좌측 단부는 개구되어 있으며, 우측 단부에는 냉각팬 장착공(111)이 형성되어 있다. 여기서 상기 내측 하우징(11)의 우측 단부는 상기 모터(30)의 장착을 위하여 몇 개의 구성품으로 분리 제작되어 있으나, 그에 대한 상세한 설명은 생략하기로 한다.
상기 외측 하우징(12)은, 상기 제1 중심축(C1)을 원의 중심으로 하는 단면을 가진 원통형 부재로서, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 외측 하우징(12)은, 상기 내측 하우징(11)을 둘러감싼 상태로 수용할 수 있도록, 상기 내측 하우징(11)과 대응되는 형상을 가지고 있다.
상기 외측 하우징(12)의 내부 표면과 상기 내측 하우징(11)의 외부 표면은, 미리 정한 간격만큼 이격된 상태로 서로 마주하고 있다.
상기 압축 유닛(20)은, 외부의 공기를 흡입하여 압축하는 장치로서, 임펠러(21)와, 전방 커버(22)와, 후방 커버(23)를 구비한다.
상기 임펠러(21)는, 원심형 펌프의 주요 구성으로 곡면을 지닌 날개를 복수 개 구비한 바퀴로서, 고속 회전이 가능하도록 장착되어 있다.
상기 전방 커버(22)는, 상기 임펠러(21)의 전방에 배치되는 금속 부재로서, 외부의 공기를 흡입되는 압축 기체 흡입구(24)가 형성되어 있다.
상기 전방 커버(22)는, 상기 임펠러(21)를 거친 공기가 와선형으로 흐를 수 있도록 형성된 유로를 구비한 스크롤(scroll) 케이싱 형태로 마련된다.
상기 후방 커버(23)는, 상기 임펠러(21)의 후방에 배치되는 금속 부재로서, 볼트나 스크류에 의하여 상기 하우징(10)과 결합된다.
상기 임펠러(21)는 상기 압축 기체 흡입구(24)를 통하여 유입된 공기를 압축하며, 상기 임펠러(21)에 의하여 압축된 공기는 압축 기체 배출구(25)를 통하여 외부로 배출된다.
상기 압축 기체 흡입구(24)로 흡입된 공기는, 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(26)를 따라 이동하면서 압축된다.
상기 모터(30)는, 회전력을 발생시키는 전기 모터로서, 상기 임펠러(21)에 고속 회전력을 공급하기 위한 장치이다. 이 모터(30)는 회전축(31)과 스테이터(32)와 로터(33)와 베어링(34)을 포함한다.
상기 회전축(31)은, 상기 제1 중심축(C1)을 따라 연장된 막대 부재로서, 상기 임펠러(21)를 회전시키기 위하여 전단부가 상기 임펠러(21)와 상대 회전 불가능하게 결합되어 있다.
상기 스테이터(32)는, 계자 코일(field coil)이 감겨지는 고정자(stator)로서, 상기 모터 수용 공간(13)에 고정된 상태로 장착된다.
상기 로터(33)는, 영구 자석을 포함하는 회전자(rotor)로서, 상기 회전축(31)의 중간부에 결합되어 있다.
상기 베어링(34)은, 고속 회전에 의하여 발생되는 마찰력을 감소시키기 위하여, 상기 회전축(31)을 회전 가능하게 지지하는 공기 베어링으로서, 상기 회전축(31)의 전단부와 후단부에 각각 마련되어 있다.
상기 스테이터(32)와 상기 로터(33) 사이, 상기 회전축(31)과 상기 스테이터(32)의 사이, 상기 회전축(31)과 상기 베어링(34)의 사이, 각각에는 미리 정한 간격이 존재한다.
상기 공냉 유닛(40)은, 상기 하우징(10) 및 모터(30)를 냉각용 기체를 사용하여 냉각하기 위한 장치로서, 냉각 기로(41)와 냉각팬(42)을 구비한다. 여기서, 상기 냉각용 기체로는 공기 또는 불활성 기체가 사용된다.
상기 냉각 기로(41)는, 상기 냉각용 기체를 수용하는 통로로서, 내부에 수용된 상기 냉각용 기체의 계속적 순환이 가능하도록 형성되어 있다.
상기 냉각 기로(41)는, 도 2에 도시된 바와 같이 상기 모터 수용 공간(13) 및 하우징(10)을 거쳐서 지나가도록 마련되어 있는데, 후단 기로(41a)와, 외측 기로(41b)와, 전단 기로(41c)와, 중간 기로(41d)와, 내측 기로(41e)를 포함한다.
상기 후단 기로(41a)는, 냉각용 기체가 상기 내측 하우징(11)의 후단부 중심으로부터 상기 내측 하우징(11)의 반경 방향으로 향하여 유동할 수 있도록 마련된 기로이다.
상기 후단 기로(41a)는, 상기 내측 하우징(11)의 후단부 외부 표면과 상기 외측 하우징(12)의 후단부 내부 표면 사이에 마련되는 원판형 공간이다.
상기 외측 기로(41b)는, 상기 하우징(10)을 냉각할 수 있도록 상기 하우징(10)을 관통하는 기로로서, 상기 제1 중심축(C1)을 중심으로 연장되어 있다.
상기 외측 기로(41b)는, 도 3에 도시된 바와 같이 상기 내측 하우징(11)의 외주면과, 상기 외측 하우징(12)의 내주면과, 후술할 냉각핀(52)의 표면에 의하여 형성된다.
상기 외측 기로(41b)는, 상기 제1 중심축(C1)의 원주 방향을 따라 다수 개 나열되어 있으며, 상기 후단 기로(41a)와 연통되어 있다.
상기 전단 기로(41c)는, 상기 내측 하우징(11)의 전단부 외곽으로부터 상기 내측 하우징(11)의 중심 방향을 향하여 냉각용 기체가 유동할 수 있도록 마련된 기로이다.
상기 전단 기로(41c)는, 상기 외측 기로(41b)의 전단부로부터 상기 모터 수용 공간(13)까지 연장되며, 상기 내측 하우징(11)을 관통하는 다수 개의 구멍(41c)을 포함한다.
상기 중간 기로(41d)는, 상기 외측 기로(41b)의 중간부로부터 상기 모터 수용 공간(13)까지 연장되며, 상기 내측 하우징(11)을 관통하는 다수 개의 구멍(41d)을 포함하는 기로이다.
상기 내측 기로(41e)는, 상기 회전축(31)과 상기 스테이터(32) 사이의 공간을 지나가는 기로이다.
상기 내측 기로(41e)는, 상기 전단 기로(41c), 상기 후단 기로(41a), 및 중간 기로(41d)와 각각 연통되어 있다.
상기 내측 기로(41e)는, 냉각용 기체가 상기 스테이터(32)의 계자 코일과, 상기 회전축(31)과, 상기 로터(33)와, 상기 베어링(34)을 거쳐 지나갈 수 있도록 마련된다.
상기 냉각 기로(41)는, 상기 제1 중심축(C1)을 중심으로 회전 대칭 내지 축 대칭으로 배열되는 것이 바람직하다.
본 실시예에서 상기 냉각 기로(41)는, 상기 압축 기체 유로(26)와 공간적으로 분리되어 있다. 따라서, 상기 압축 기체 유로(26)의 내부에 있는 공기가, 압축되는 과정에서 상기 압축 기체 유로(26)로부터 누설되어 상기 냉각 기로(41)로 침투할 수 없는 구조이다.
상기 냉각팬(42)은, 상기 냉각 기로(41)의 내부에 수용된 냉각용 기체를 강제 순환시키기 위한 냉각팬(cooling fan)으로서, 상기 내측 하우징(11)의 냉각팬 장착공(111)에 장착되어 있다.
본 실시예에서 상기 냉각팬(42)은, 상기 회전축(31)의 후단부에 상대 회전 불가능하게 결합되어 있으므로, 상기 회전축(31)의 회전력에 의하여 함께 회전한다.
상기 수냉 유닛(50)은, 상기 하우징(10)을 냉각용 액체를 사용하여 냉각하기 위한 장치로서, 냉각 수로(51)와, 냉각핀(52)과, 냉각용 액체 유입구(53)와, 냉각용 액체 유출구(54)를 구비한다. 여기서, 상기 냉각용 액체로는 물이 사용된다.
상기 냉각 수로(51)는, 냉각용 액체를 수용하는 통로로서, 내부에 수용된 냉각용 기체의 계속적 순환이 가능하도록 형성되어 있다.
상기 냉각 수로(51)는, 도 1 및 도 3에 도시된 바와 같이 상기 내측 하우징(11)을 관통하도록 마련되어 있는데, 단위 수로(51a)와, 후단 수로(51b)와, 전단 수로(51c)를 포함한다.
상기 단위 수로(51a)는, 상기 내측 하우징(11)을 관통하는 원형 수로로서, 상기 제1 중심축(C1)을 중심으로 연장되어 있다.
상기 단위 수로(51a)는, 도 3에 도시된 바와 같이 상기 제1 중심축(C1)의 원주 방향을 따라 서로 이격된 상태로 다수 개 나열되어 있다.
상기 후단 수로(51b)는, 상기 단위 수로(51a)의 후단부를 서로 연결하는 수로로서, 도 5에 도시된 바와 같이 상기 내측 하우징(11)의 후단부를 관통하도록 형성되어 있다.
상기 전단 수로(51c)는, 상기 단위 수로(51a)의 전단부를 서로 연결하는 수로로서, 도 4에 도시된 바와 같이 상기 내측 하우징(11)의 전단부를 관통하도록 형성되어 있다.
따라서, 상기 냉각 수로(51)는, 도 6에 도시된 바와 같이 지그재그 형상으로 상기 내측 하우징(11)의 원주 방향을 따라 형성되며, 상기 내측 하우징(11)의 측벽 전체를 둘러 감싸도록 배치된다.
상기 냉각 수로(51)는, 상기 제1 중심축(C1)을 중심으로 회전 대칭 내지 축 대칭으로 배열되는 것이 바람직하다.
상기 냉각핀(52)은, 상기 냉각 수로(51)를 따라 흐르는 냉각용 액체와 상기 냉각 기로(41)를 따라 흐르는 냉각용 기체 사이의 열교환 효율을 증가시키기 위한 냉각핀이다.
상기 냉각핀(52)은, 도 1 및 도 3에 도시된 바와 같이, 상기 내측 하우징(11)의 외주면으로부터 상기 내측 하우징(11)의 반경 방향으로 돌출되어 있으며, 상기 제1 중심축(C1)을 따라 연장되어 있다.
상기 냉각핀(52)은, 서로 이격된 상태로 상기 내측 하우징(11)의 원주 방향을 따라 다수 개 나열되어 있다.
상기 냉각핀(52)의 말단부는, 상기 외측 하우징(12)의 내부 표면과 접촉한 상태를 유지하고 있다.
상기 냉각용 액체 유입구(53)는, 냉각용 액체가 외부로부터 유입되는 입구로서, 상기 냉각 수로(51)의 일 말단부와 연통되어 있으며, 상기 외측 하우징(12)에 마련되어 있다.
상기 냉각용 액체 유입구(53)는, 외부에 마련된 펌프(미도시)와 연결되어 있으므로, 상기 펌프에 의하여 물을 공급받는다.
상기 냉각용 액체 유출구(54)는, 냉각용 액체가 외부로 유출되는 출구로서, 상기 냉각 수로(51)의 타 말단부와 연통되어 있으며, 상기 외측 하우징(12)에 마련되어 있다.
상기 냉각용 액체 유출구(54)로부터 배출된 냉각용 액체는, 외부에서 냉각된 후 다시 상기 냉각용 액체 유입구(53)를 통하여 유입될 수도 있다.
이하에서는, 상술한 구성의 터보 압축기(100)가 작동하는 방법의 일례를 설명하기로 한다.
상기 모터(30)의 회전축(31)이 회전하면, 상기 임펠러(21)와 상기 냉각팬(42)가 회전하게 되고, 상기 압축 기체 흡입구(24)를 통하여 유입된 공기는 상기 압축 유닛(20)의 압축 기체 유로(26)를 따라 흐르면서 압축되어 상기 압축 기체 배출구(25)를 통하여 외부로 배출된다. 이때, 상기 압축 기체 유로(26)는 상기 냉각 기로(41)와 공간적으로 분리되어 있으므로, 상기 압축 기체 유로(26)의 내부에서 흐르는 공기가 압축되는 과정에서 누설되어 상기 냉각 기로(41)로 침투할 수 없다. 즉 상기 압축 기체 유로(26)를 따라 흐르는 공기의 흐름과 상기 냉각 기로(41)를 따라 흐르는 냉각용 기체 흐름(G)은 서로 혼합되지 않는다.
상기 냉각 기로(41)의 내부에 수용된 냉각용 기체는, 상기 냉각팬(42)에 의하여 강제 순환됨으로써, 도 2에 도시된 바와 같이 상기 스테이터(32)의 계자 코일과, 상기 회전축(31)과, 상기 로터(33)와, 상기 베어링(34)을 거쳐 지나가게 된다.
또한, 상기 냉각 수로(51)의 내부에 수용된 냉각용 액체는, 상기 냉각용 액체 유입구(53)으로부터 유입된 후, 도 6에 도시된 바와 같이 지그재그 형상으로 상기 내측 하우징(11)의 원주 방향을 따라 흐르는 냉각용 액체 흐름(W)을 형성하게 되며, 상기 내측 하우징(11) 및 상기 외측 하우징(12)을 전체적으로 냉각시킨 후 상기 냉각용 액체 유출구(54)를 통하여 배출된다.
이때, 상기 외측 기로(41b)를 통하여 흐르는 냉각용 기체는, 상기 외측 기로(41b)에 인접한 상기 단위 수로(51a)를 통하여 흐르는 냉각용 액체에 의하여 신속히 냉각된다. 특히 상기 냉각핀(52)에 의하여, 상기 단위 수로(51a)를 흐르는 냉각용 액체와 상기 외측 기로(41b)를 흐르는 냉각용 기체 간의 열교환 효율이 매우 높다.
상술한 구성의 터보 압축기(100)는, 기체가 흡입되는 압축 기체 흡입구(24); 상기 압축 기체 흡입구(24)를 통하여 유입된 기체를 압축하는 임펠러(21); 상기 임펠러(21)에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구(25); 상기 압축 기체 흡입구(24)로부터 상기 압축 기체 배출구(25)까지 연결되어 있는 압축 기체 유로(26)를 구비하는 압축 유닛(20); 상기 임펠러(21)를 회전시키기 위하여, 전단부가 상기 임펠러(21)와 결합되어 있는 회전축(31)을 구비하는 모터(30); 상기 모터(30)를 수용하는 모터 수용 공간(13)을 구비한 하우징(10); 상기 모터 수용 공간(13)을 지나가도록 마련되며, 내부에 수용된 냉각용 기체가 순환 가능하도록 형성된 냉각 기로(41);를 포함하며, 상기 압축 기체 유로(26)는 상기 냉각 기로(41)와 공간적으로 분리됨으로써, 상기 압축 기체 유로(26)의 내부에 있는 기체가 상기 냉각 기로(41)로 침투할 수 없으므로, 상기 압축 유닛(20)의 압력 손실 없이 상기 모터(30)를 효율적으로 냉각할 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각 기로(41)가 상기 하우징(10)을 냉각할 수 있도록 상기 하우징(10)을 관통하는 기로(41a, 41b, 41c, 41d)를 포함하므로, 냉각용 기체를 사용하여 신속하게 상기 하우징(10)을 냉각할 수 있는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각 기로(41)의 내부에 수용된 냉각용 기체를 순환시키기 위한 냉각팬(42)을 포함하므로, 상기 냉각 기로(41)의 내부에 수용된 냉각용 기체를 강제 순환시킬 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각팬(42)이 상기 회전축(31)의 후단부에 배치되며, 상기 회전축(31)의 회전력에 의하여 회전하므로, 상기 냉각팬(42)을 회전시키기 위한 별도의 모터가 필요가 없다는 장점이 있다.
또한 상기 터보 압축기(100)는, 냉각용 액체가 순환 가능하도록 형성된 냉각 수로(51)를 포함하므로, 상기 냉각 기로(41)에 의한 공냉식 냉각과 함께 상기 냉각 수로(51)에 의한 수냉식 냉각이 동시에 이루어질 수 있는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각 수로(51)가, 상기 하우징(10)을 냉각할 수 있도록 상기 하우징(10)을 관통하는 수로(51a, 51b, 51c)를 포함하므로, 별도의 냉각 파이프를 사용하는 경우와 비교하여, 냉각 효율이 우수하고 누액의 가능성이 거의 없다는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 냉각 수로(51)가, 상기 냉각 기로(41)의 내부에 수용된 냉각용 기체와 열교환할 수 있도록 마련되어 있으므로, 상기 모터(30)에 의하여 가열된 냉각용 기체가 상기 냉각용 액체에 의하여 신속하게 냉각될 수 있는 2단계 냉각 구조를 가지는 장점이 있다.
그리고 상기 터보 압축기(100)는, 상기 냉각 수로(51)와 상기 냉각 기로(41) 사이에는 상기 냉각핀(52)이 마련되어 있으므로, 냉각용 기체와 냉각용 액체 간의 열교환 효율이 증가하는 장점이 있다.
또한 상기 터보 압축기(100)는, 상기 하우징(10)이, 상기 모터 수용 공간(13)을 구비하는 내측 하우징(11); 상기 내측 하우징(11)을 둘러감싸는 외측 하우징(12);을 구비하며, 상기 냉각 기로(41)는, 상기 내측 하우징(11)의 외부 표면과 상기 외측 하우징(12)의 내부 표면 사이에 마련되어 있으므로, 상기 냉각핀(52) 및 상기 냉각 기로(41)를 형성하기 용이하다는 장점이 있다.
본 실시예에서는, 상기 냉각핀(52)이 상기 내측 하우징(11)의 외주면에 일체로 형성되어 있으나, 상기 냉각핀(52)이 별도의 부재로 가공된 후 압입 등의 방법으로 결합될 수 있음은 물론이다.
한편, 도 7에는 본 발명의 제2 실시예인 터보 압축기(200)가 도시되어 있다. 상기 터보 압축기(200)는, 상술한 터보 압축기(100)와 대부분의 구성 및 효과가 동일하므로 이하에서는 양자의 차이점에 대해서만 기술하기로 한다.
상기 터보 압축기(200)는, 상기 내측 하우징(11) 및 외측 하우징(12)을 구비하는 대신에 1개의 하우징(110)을 구비하고 있다.
상기 터보 압축기(200)의 단위 수로(51a)는 상기 회전축(31)의 길이 방향(C1)을 따라 연장되어 있으며, 상기 터보 압축기(200)의 외측 기로(41b)는 상기 회전축(31)의 길이 방향(C1)을 따라 연장되어 있다.
상기 터보 압축기(200)의 단위 수로(51a)와 외측 기로(41b)는, 도 8에 도시된 바와 같이 상기 회전축(31)의 원주 방향을 따라 상기 하우징(110)을 관통한 상태로, 교대로 배치되어 있다.
상기 터보 압축기(200)는, 1개의 하우징(110)을 구비하고 있으며, 상기 하우징(110)을 상기 냉각 기로(41) 및 냉각 수로(51)이 관통하므로, 냉각용 기체 및 냉각용 액체가 상기 하우징(110)으로부터 누설될 가능성이 작다는 장점이 있다.
상술한 실시예들에서는, 상기 냉각팬(42)이 상기 회전축(31)의 후단부에 직접 결합되어 있으나, 별도의 전기 모터에 의하여 구동될 수도 있음은 물론이다.
상술한 실시예들에서는, 상기 베어링(34)이 공기 베어링으로 마련되어 있으나, 다른 종류의 베어링이 사용될 수도 있음은 물론이다.
상술한 실시예들에서는, 기밀을 위한 별도의 실링(sealing) 수단이 설명되어 있지 않지만, 다양한 종류의 실링 수단이 사용될 수도 있음은 물론이다.
이상으로 본 발명을 설명하였는데, 본 발명의 기술적 범위는 상술한 실시예에 기재된 내용으로 한정되는 것은 아니며, 해당 기술 분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 본 발명의 기술적 사상의 범위를 벗어나지 않는 것임은 명백하다.

Claims (10)

  1. 공기 등의 기체를 압축하여 외부로 공급하는 터보 압축기로서,
    상기 기체가 흡입되는 압축 기체 흡입구; 상기 압축 기체 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 압축 기체 배출구; 상기 압축 기체 흡입구로부터 상기 압축 기체 배출구까지 연결되어 있는 압축 기체 유로를 구비하는 압축 유닛;
    상기 임펠러를 회전시키기 위하여, 전단부가 상기 임펠러와 결합되어 있는 회전축을 구비하는 모터;
    상기 모터를 수용하는 모터 수용 공간을 구비한 하우징;
    상기 모터 수용 공간을 지나가도록 마련되며, 내부에 수용된 냉각용 기체가 순환 가능하도록 형성된 냉각 기로;를 포함하며,
    상기 압축 기체 유로는 상기 냉각 기로와 공간적으로 분리됨으로써, 상기 압축 기체 유로의 내부에 있는 기체가 상기 냉각 기로로 침투할 수 없는 것을 특징으로 하는 터보 압축기
  2. 제 1항에 있어서,
    상기 냉각 기로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 기로를 포함하는 것을 특징으로 하는 터보 압축기
  3. 제 1항에 있어서,
    상기 냉각 기로의 내부에 수용된 냉각용 기체를 순환시키기 위한 냉각팬을 포함하는 것을 특징으로 하는 터보 압축기
  4. 제 3항에 있어서,
    상기 냉각팬은, 상기 회전축의 후단부에 배치되며, 상기 회전축의 회전력에 의하여 회전하는 것을 특징으로 하는 터보 압축기
  5. 제 1항에 있어서,
    냉각용 액체가 순환 가능하도록 형성된 냉각 수로를 포함하는 것을 특징으로 하는 터보 압축기
  6. 제 5항에 있어서,
    상기 냉각 수로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 수로를 포함하는 것을 특징으로 하는 터보 압축기
  7. 제 5항에 있어서,
    상기 냉각 수로는, 상기 냉각 기로의 내부에 수용된 냉각용 기체와 열교환할 수 있도록 마련되는 것을 특징으로 하는 터보 압축기
  8. 제 6항에 있어서,
    상기 냉각 기로는, 상기 하우징을 냉각할 수 있도록 상기 하우징을 관통하는 기로를 포함하며,
    상기 하우징을 관통하는 기로와 상기 하우징을 관통하는 수로는, 상기 회전축의 길이 방향을 따라 연장되어 있으며, 상기 회전축의 원주 방향을 따라 교대로 배치되어 있는 것을 특징으로 하는 터보 압축기
  9. 제 7항에 있어서,
    상기 냉각 수로와 상기 냉각 기로 사이에는, 열교환 효율을 증가시킬 수 있는 냉각핀이 마련되어 있는 것을 특징으로 하는 터보 압축기
  10. 제 1항에 있어서,
    상기 하우징은, 상기 모터 수용 공간을 구비하는 내측 하우징; 상기 내측 하우징을 둘러감싸는 외측 하우징;을 구비하며,
    상기 냉각 기로는, 상기 내측 하우징의 외부 표면과 상기 외측 하우징의 내부 표면 사이에 마련되어 있는 것을 특징으로 하는 터보 압축기
PCT/KR2017/012555 2016-11-14 2017-11-07 분리된 냉각 기로를 구비한 터보 압축기 WO2018088778A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780070137.6A CN109983236A (zh) 2016-11-14 2017-11-07 具有独立冷却空气通道的涡轮压缩机
US16/348,552 US11639724B2 (en) 2016-11-14 2017-11-07 Turbo compressor having separate cooling air channel
JP2019524237A JP7042265B2 (ja) 2016-11-14 2017-11-07 分離された冷却気路を備えたターボ圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160151311A KR101888156B1 (ko) 2016-11-14 2016-11-14 분리된 냉각 기로를 구비한 터보 압축기
KR10-2016-0151311 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088778A1 true WO2018088778A1 (ko) 2018-05-17

Family

ID=62110468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012555 WO2018088778A1 (ko) 2016-11-14 2017-11-07 분리된 냉각 기로를 구비한 터보 압축기

Country Status (5)

Country Link
US (1) US11639724B2 (ko)
JP (1) JP7042265B2 (ko)
KR (1) KR101888156B1 (ko)
CN (1) CN109983236A (ko)
WO (1) WO2018088778A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070802A (ja) * 2018-10-30 2020-05-07 ターボウィン カンパニー,リミテッド インペラ手段の冷却ファンが形成された燃料電池用ターボ送風機

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988936B1 (ko) * 2018-10-30 2019-06-13 터보윈 주식회사 복합식 냉각구조를 갖는 연료전지용 터보 송풍기
KR102113426B1 (ko) * 2019-08-21 2020-05-21 주식회사 아이삭 터보송풍기의 모터케이싱 내부에 착설되는 쿨링팬
KR102259466B1 (ko) * 2019-10-08 2021-06-02 주식회사 남원터보원 공랭식 2단 터보 공기 압축기
KR20210043045A (ko) * 2019-10-10 2021-04-21 한온시스템 주식회사 차량용 공기 압축기
KR102151143B1 (ko) * 2020-04-14 2020-09-02 주식회사 터보존 냉각성능이 향상된 터보 블로어
KR102188203B1 (ko) * 2020-05-14 2020-12-08 주식회사 한진펌프 펌프
CN112260455B (zh) * 2020-10-13 2022-06-03 稳力(广东)科技有限公司 燃料电池用离心式高速空压机及其冷却结构
DE112021003196T5 (de) * 2021-04-01 2023-04-06 Hanon Systems Luftkompressor für fahrzeuge
CN114165462B (zh) * 2021-11-01 2023-11-14 广州市昊志机电股份有限公司 一种离心式空压机和燃料电池系统
KR102460020B1 (ko) 2021-12-28 2022-10-27 이일희 터보 압축기의 냉각구조
DE102022204860A1 (de) * 2022-05-17 2023-11-23 Robert Bosch Gesellschaft mit beschränkter Haftung Gaszuführvorrichtung
DE102022210428A1 (de) * 2022-09-30 2024-04-04 Robert Bosch Gesellschaft mit beschränkter Haftung Gaszuführvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222693U (ko) * 1988-07-29 1990-02-15
JPH07167098A (ja) * 1993-11-02 1995-07-04 Electrolux:Ab ターボファンユニット用電動モータ空冷装置
KR20130030392A (ko) * 2011-09-19 2013-03-27 주식회사 뉴로스 터보블로워 또는 터보압축기의 모터냉각구조
KR20130139076A (ko) * 2012-06-12 2013-12-20 주식회사 삼정터빈 터보 송풍기
KR20160014376A (ko) * 2014-07-29 2016-02-11 현대자동차주식회사 공기 압축기의 냉각유닛

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089969A (en) * 1955-10-15 1963-05-14 Bbc Brown Boveri & Cie Cooling arrangement for turbogenerators
US4125345A (en) * 1974-09-20 1978-11-14 Hitachi, Ltd. Turbo-fluid device
US4688383A (en) * 1984-06-04 1987-08-25 Juan Targa Pascual Supercharger system for use with heat engines
US6183208B1 (en) * 1997-10-03 2001-02-06 Roper Holdings, Inc. Immersible motor system
CN2427922Y (zh) * 2000-06-05 2001-04-25 杨泰和 具有封闭型冷却结构的回转电机
US7063519B2 (en) * 2002-07-02 2006-06-20 R & D Dynamics Corporation Motor driven centrifugal compressor/blower
KR200301435Y1 (ko) * 2002-10-22 2003-01-24 이영해 풍선용 공기주입기
US7193342B2 (en) * 2002-12-17 2007-03-20 Caterpillar Inc Apparatus for cooling of electrical devices
JP4602248B2 (ja) * 2003-02-03 2010-12-22 株式会社キャップ 高温ガス送風用ファン
JP4982119B2 (ja) * 2006-06-29 2012-07-25 株式会社東芝 回転電機
US7633193B2 (en) * 2007-01-17 2009-12-15 Honeywell International Inc. Thermal and secondary flow management of electrically driven compressors
FI120782B (fi) * 2008-04-18 2010-02-26 Abb Oy Jäähdytyselementti sähkökoneeseen
US20120207585A1 (en) * 2011-02-07 2012-08-16 Robert Anderson Centrifugal Compressor
WO2013011939A1 (ja) * 2011-07-21 2013-01-24 株式会社Ihi 電動モータ及びターボ圧縮機
CH705512A1 (de) * 2011-09-12 2013-03-15 Alstom Technology Ltd Gasturbine.
CN204258515U (zh) * 2012-04-10 2015-04-08 通用电气公司 电动机及用于电动机的机架
EP2924261B1 (en) * 2012-11-22 2019-09-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Supercharger with electric motor and engine device provided with supercharger with electric motor
CN103326512B (zh) * 2013-05-16 2015-04-15 西安交通大学 一种超高速永磁电机驱动的离心式空气压缩机冷却结构
KR101493161B1 (ko) 2013-07-12 2015-02-12 주식회사 동희산업 셀프 쿨링타입 공기압축기
TWI529306B (zh) * 2013-11-15 2016-04-11 建準電機工業股份有限公司 氣體鼓風裝置
CN204555761U (zh) * 2015-04-28 2015-08-12 袁树帅 一种用于空调的热交换器
KR101845833B1 (ko) * 2016-11-22 2018-04-05 ㈜티앤이코리아 인터쿨러를 구비한 터보 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222693U (ko) * 1988-07-29 1990-02-15
JPH07167098A (ja) * 1993-11-02 1995-07-04 Electrolux:Ab ターボファンユニット用電動モータ空冷装置
KR20130030392A (ko) * 2011-09-19 2013-03-27 주식회사 뉴로스 터보블로워 또는 터보압축기의 모터냉각구조
KR20130139076A (ko) * 2012-06-12 2013-12-20 주식회사 삼정터빈 터보 송풍기
KR20160014376A (ko) * 2014-07-29 2016-02-11 현대자동차주식회사 공기 압축기의 냉각유닛

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070802A (ja) * 2018-10-30 2020-05-07 ターボウィン カンパニー,リミテッド インペラ手段の冷却ファンが形成された燃料電池用ターボ送風機
CN111120410A (zh) * 2018-10-30 2020-05-08 特博赢株式会社 具有叶轮单元冷却风扇的燃料电池用涡轮鼓风机
JP7012371B2 (ja) 2018-10-30 2022-01-28 ターボウィン カンパニー,リミテッド インペラ手段の冷却ファンが形成された燃料電池用ターボ送風機

Also Published As

Publication number Publication date
JP7042265B2 (ja) 2022-03-25
JP2019535948A (ja) 2019-12-12
US11639724B2 (en) 2023-05-02
CN109983236A (zh) 2019-07-05
KR20180054027A (ko) 2018-05-24
US20190293085A1 (en) 2019-09-26
KR101888156B1 (ko) 2018-08-13

Similar Documents

Publication Publication Date Title
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
WO2017039108A1 (ko) 직결 구동형 듀얼 터보 블로워 냉각 구조
WO2018030657A1 (ko) 차량용 공기 압축기
WO2022181997A1 (ko) 베어링 냉각 수로를 포함하는 터보 압축기
WO2017039330A1 (ko) 흡입 유닛
CA2686229A1 (en) Electric machine with air cooling system
WO2018131827A1 (en) Turbo compressor
EP0563051A1 (en) METHODS AND APPARATUS FOR VENTILATION OF ELECTRIC MACHINES.
WO2013176532A1 (ko) 2 이상의 구동모터를 가지는 터보압축 시스템
WO2014061918A1 (ko) 터보기계 시스템
WO2020027436A1 (ko) 전동기
WO2021221294A1 (ko) 차량용 공기 압축기
WO2020013466A1 (ko) 전동기
WO2022211158A1 (ko) 차량용 공기 압축기
WO2021251604A1 (ko) 모터 어셈블리 및 이를 포함하는 청소기
WO2022203178A1 (ko) 방폭 기능을 구비하는 터보 압축기
WO2009108006A2 (ko) 인버터형 스크롤 압축기
WO2013176404A1 (ko) 터보 블로워장치
WO2016122235A1 (en) Bldc motor and cleaner having the same
WO2024090928A1 (ko) 압축 기체 유로의 상류측에 모터가 배치된 터보 압축기
WO2020153682A1 (ko) 전동 압축기
WO2023128176A1 (ko) 냉각 기로를 구비한 기체 사이클 히트 펌프
KR20190109886A (ko) 폐쇄 순환형 냉각 기로를 구비한 터보 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868977

Country of ref document: EP

Kind code of ref document: A1