WO2020091357A1 - 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 - Google Patents
복합식 냉각구조를 갖는 연료전지용 터보 송풍기 Download PDFInfo
- Publication number
- WO2020091357A1 WO2020091357A1 PCT/KR2019/014310 KR2019014310W WO2020091357A1 WO 2020091357 A1 WO2020091357 A1 WO 2020091357A1 KR 2019014310 W KR2019014310 W KR 2019014310W WO 2020091357 A1 WO2020091357 A1 WO 2020091357A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- cooling
- impeller means
- fuel cell
- impeller
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
- F04D25/0613—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
- F04D25/082—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/51—Inlet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a turbo blower for a fuel cell having a complex cooling structure, and more specifically, by preventing the temperature rise by cooling the impeller means for generating high-pressure air with a cooling structure that utilizes air-cooling and water-cooling simultaneously. It relates to a turbo blower for a fuel cell having a complex cooling structure that improves the efficiency and durability of the impeller means.
- the fuel cell vehicle Since the fuel cell is a cell that generates electrical energy during the reaction between hydrogen and oxygen, the fuel cell vehicle has a fuel cell stack, a hydrogen supply device that supplies hydrogen to the fuel cell stack, and compresses air to supply the fuel cell stack. An air blower or the like is mounted.
- the air blower for a fuel cell of a vehicle requires low flow rate and high pressure, and also requires high durability, low noise, and a wide driving range.
- the air blower for a fuel cell is a device that supplies oxygen required to generate electricity in the fuel cell stack, and is a core component of the fuel cell system, in order to reduce loss due to flow resistance generated in the process of being delivered to the fuel cell stack. , And the process of compressing the atmosphere.
- the air blower for a fuel cell is determined and applied according to the pressure and flow level of the air required by the fuel cell stack. For example, a screw or a positive displacement compressor is applied in a region where the flow rate is low and the pressure is high. In a relatively high flow rate and low pressure region, a turbo compressor is generally applied.
- the screw compressor In the case of the screw compressor, it operates at a lower rotational speed than the turbo compressor and has an intuitively understandable compression structure, but the disadvantage is that it is heavy and bulky, and in the case of the turbo compressor, the compact and simple structure can make the product inexpensive. , It is necessary to secure a lubrication structure suitable for high-speed rotation.
- the air blower for a fuel cell of a conventional vehicle focuses on and experiments on a cooling method and a cooling structure, and improves efficiency and durability by improving the efficiency and durability by noise of the air blower for a fuel cell. To provide.
- the axial load can be reduced to improve durability
- the motor including the bearing can be cooled
- the cooling water flow path is formed in the motor case to further increase the cooling efficiency of the fuel cell It relates to a vehicle air blower.
- a housing forming an exterior, an impeller support coupled to the front of the housing to support an impeller that sucks in external air, and an impeller coupled to the impeller support to cup the impeller, the air inlet through which air is sucked in and the compressed air discharged
- the impeller housing is formed with an air outlet, a rear cover coupled to the rear of the housing, and a blower motor installed inside the housing to rotate and drive the impeller.
- the prior art 1 to the prior art 2 are the same technical field as the present invention, but are partially the same in the subject (object of invention) to be solved by the present invention, but means for solving the problem, that is, a component and There are differences in the effects of this.
- Patent Document 1 Republic of Korea Patent Registration No. 10-1735042 (2017.05.04.)
- Patent Document 2 Republic of Korea Patent Publication No. 10-2016-0097884 (2016.08.18)
- An object of the present invention is to provide a turbo blower for a fuel cell with improved efficiency and durability by reducing a temperature rise of the impeller means by forming a cooling structure to simultaneously utilize the air-cooling and water-cooling methods.
- an object of the present invention is to provide a turbo blower for a fuel cell that reduces the temperature rise by using air that is naturally sucked into the blower casing means by the impeller means.
- Another object of the present invention is to provide a turbo blower for a fuel cell whose performance is steadily maintained by ensuring the amount of air sucked into the blower casing means by the impeller means.
- Blower casing means for guiding the flow and discharge of the sucked air
- the blower casing means are located inside, coupled, and impeller means for generating inflow and flow of air.
- An impeller means air cooling unit for cooling the impeller means by using a flow of air sucked into the blower casing means by the impeller means;
- the impeller means water cooling unit for cooling the impeller means;
- the impeller means for generating compressed air is cooled with a cooling structure that allows both air-cooled and water-cooled systems to be used simultaneously, thereby preventing the temperature from rising.
- the cooling method using air cooling utilizes a flow of air that is naturally sucked into the blower casing means by the impeller means, lowers the temperature rise with this flow of air, and simultaneously cools the impeller means. By inducing that it is introduced into the impeller as it is without discharging it to the outside, the efficiency of the impeller means is increased.
- the impeller means acts not only to compress the air, but also to act as a cooling fan that sucks in air for cooling the impeller means, a separate energy source to operate the cooling fan is removed, and the suction air The temperature of the impeller means is reduced by flow, and, of course, it is compressed and discharged to the fuel cell stack, thereby maximizing the efficiency of the impeller means.
- FIG. 1 is a block diagram of a turbo blower for a fuel cell having a composite cooling structure according to the present invention.
- Figure 2 shows a perspective view of a state for a turbo blower for a fuel cell having a composite cooling structure of the present invention.
- FIG 3 shows a cross-sectional view of a turbo blower for a fuel cell having a composite cooling structure according to the present invention.
- FIG. 4 is a simplified flow chart showing the operation of the turbo blower for a fuel cell having a combined cooling structure and the flow of intake air.
- blower casing means 100: blower casing means
- impeller means air cooling unit
- impeller means water cooling unit
- FIG. 1 is a block diagram of a fuel cell turbo blower having a composite cooling structure according to the present invention
- FIG. 2 is a state perspective view of a turbo blower for a fuel cell having a composite cooling structure according to the present invention
- FIG. 3 is a composite cooling structure according to the present invention It shows a cross-sectional view for a turbo blower for a fuel cell having a.
- Blower casing means for guiding the flow and discharge of the sucked air (100);
- blower casing means (100) is located inside, coupled, impeller means (200) for generating the inflow and flow of air; consisting of,
- An impeller means air cooling unit 150 for cooling the impeller means 200 by using a flow of air sucked into the blower casing means 100 by the impeller means 200;
- the impeller means water cooling unit 160 for cooling the impeller means 200 is configured
- the present invention is a turbo blower for a fuel cell that allows oxygen to be supplied to a fuel cell stack.
- the impeller means 200 for generating compressed air is cooled by cooling using both air cooling and water cooling at the same time. , Maximizes the cooling effect of the turbo blower for fuel cells, and at the same time improves the efficiency and durability of the turbo blower for fuel cells. It is to solve.
- the blower casing means 100 to prevent the temperature rise of the impeller means 200 by guiding the air sucked into the specific path
- An air suction duct 110 allowing air to be sucked into the interior
- An air flow induction cover 120 formed of a curved surface that is sealed and coupled to a position adjacent to the impeller means 200 to guide the air sucked into the impeller means 200;
- Blower casing means 100 to ensure the amount of air sucked into the suction air amount secured portion 140;
- An impeller means air cooling unit 150 for cooling the impeller means 200 by using a flow of air sucked into the blower casing means 100 by the impeller means 200;
- An impeller means water cooling unit 160 formed adjacent to the impeller means 200 and cooling the impeller means 200 to cool the impeller means 200 by using a flow of cooling water supplied from the outside;
- the air circulation chamber 190 to facilitate the flow of the inhaled air along the first air flow path 170 and the second air flow path 180; Became,
- the present invention prevents the temperature rise inside the blower casing means 100 by using a cooling method using air cooling and water cooling at the same time as a turbo blower for a fuel cell, and furthermore, thermal equilibrium (thermal). equilibrium) to improve the efficiency and durability of the turbo blower for fuel cells.
- the organic coupling relationship between the blower casing means 100 of the present invention maximizes the effect that the turbo blower for the fuel cell can exert in conjunction with the impeller means 200.
- the air sucked into the air intake duct 110 by the impeller means 200 is in contact with the impeller means 200 and the impeller means water cooling unit 160, the impeller means 200 and the impeller means to prevent the temperature rise of the water cooling unit 160.
- the intake air is branched into two branches (the first air flow path 170 and the second air flow path 180) by the impeller means air cooling unit 150 and the suction air amount securing unit 140, and Cooling the impeller means 200 through the first air flow path 170 and the impeller means water cooling section 160 through the second air flow path 180 prevents the temperature from rising.
- the impeller means water cooling section 160 formed adjacent to the impeller means 200 By the impeller means water cooling section 160 formed adjacent to the impeller means 200, the temperature rise of the impeller means 200 together with the impeller means air cooling section 150 is prevented.
- the impeller means air-cooling unit 150 cools the stator 210 and the rotor 220 of the impeller means 200 using air that is sucked in,
- the impeller means water cooling unit 160 cools the stator 210 of the impeller means 200 using cooling water
- the air sucked into the second air flow path 180 through the air suction duct 110 and the suction air amount securing unit 140 cools the inner walls of the impeller means water cooling unit 160 and the blower casing means 100, The impeller means 200 and the impeller means prevent the temperature rise of the water cooling unit 160.
- the air flow induction cover 120 is a component to generate the first air flow path 170 and the second air flow path 180, the first air flow path 170 and the second air flow path The air sucked through 180 induces the flow of air so that it is easily introduced into the impeller 230.
- suction The second air flow path 170 is generated through the air volume securing unit 140 so that the amount of air flowing into the impeller 230 is sufficiently secured.
- the intake air amount securing unit 140 is formed to ensure smooth flow of the inhaled air and secure air volume. do.
- the present invention focuses on the cooling method of the impeller means 200 as part of maximizing the efficiency and durability of the turbo blower for the fuel cell, by organic combination of the blower casing means 100 and the impeller means 200, A cooling structure in which air cooling and water cooling can be used simultaneously is formed to cool the impeller means 200.
- turbo blower 1 for a fuel cell having the complex cooling structure of the present invention is also provided.
- the impeller means 200 As the air sucked through the air intake duct 110 passes through the impeller means 200, it takes heat from the impeller means 200 to cool it, and promotes active molecular motion of the air due to the heat taken, to the impeller 230 side. The inflow of air is made easy.
- the present invention prevents an increase in temperature of the impeller means 200 and reduces noise, thereby maximizing efficiency and durability of a turbo blower for a fuel cell.
- the impeller means 200 for sucking air into the blower casing means 100 the impeller means 200 for sucking air into the blower casing means 100
- Impeller 230 is composed of.
- the organic combination of the blower casing means 100 and the impeller means 200 in particular, the organic combination of the blower casing means 100 to which the impeller means 200 is coupled to cool the impeller means 200
- the impeller means 200 it is not a description of the impeller means 200, so detailed description of the impeller means 200 will be omitted.
- the impeller means 200 is rotated by the energy supplied from the outside, ( ⁇ S100, impeller means operation step)
- Air is sucked into the blower casing means 100 by the impeller means 200 rotating at high speed. ( ⁇ S200, air intake step)
- the air sucked into the blower casing means 100 flows in two branches, ( ⁇ S300, air flow step)
- the branched air flows along the first air flow path 170 and the second air flow path 180 ( ⁇ S310, S320, the first air flow path generation step, the second air flow path generation step)
- the air flowing along the first air flow path 170 and the second air flow path 180 is compressed by the impeller 230, respectively ( ⁇ S500, air compression step)
- Compressed air is discharged by the air discharge duct 130 ( ⁇ S600, compressed air discharge step)
- the compressed air is supplied to the fuel cell stack combined with the air exhaust duct 130 ( ⁇ S700, compressed air supply step).
- the cooling of the impeller means 200 using water cooling is continuously operated in the process leading to the impeller means operation step (S100) to the compressed air supply step (S700) by the impeller means water cooling section 160.
- the impeller means 200 is cooled.
- the present invention relates to a turbo blower for a fuel cell that compresses the inhaled air and delivers compressed air to the fuel cell stack.
- the present invention relates to a turbo blower for a fuel cell having a complex cooling structure, and a manufacturing and sales business for manufacturing the same, in particular, a fuel cell turbo blower-related industry for supplying compressed air to the fuel cell stack, furthermore, requires compressed air It can be applied to contribute to the promotion of various industries, such as the overall industry.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
본 발명은 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 것으로서, 더욱 상세하게는, 고압의 공기를 생성시키는 임펠러수단을, 공랭식과 수랭식이 동시에 활용되도록 하는 냉각구조로 냉각시켜 온도 상승을 방지함으로서, 임펠러수단의 효율성과 내구성이 제고되는 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 것이다.
Description
본 발명은 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 것으로서, 더욱 상세하게는, 고압의 공기를 생성시키는 임펠러수단을, 공랭식과 수랭식이 동시에 활용되도록 하는 냉각구조로 냉각시켜 온도 상승을 방지함으로서, 임펠러수단의 효율성과 내구성이 제고되는 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 것이다.
화석에너지의 고갈에 따른 유가의 지속적인 상승, 차량에서 배출되는 배기가스에 따른 환경오염 등과 같은 문제로 인해, 연료전지를 이용한 차량의 개발이 더욱 절실히 요구되고 있다.
연료전지는 수소와 산소의 반응과정에서 전기에너지를 생성시키는 전지이기 때문에, 연료전지 차량에는 연료전지 스택, 연료전지 스택에 수소를 공급하는 수소공급장치, 공기를 압축한 후 연료전지 스택에 공급하는 공기 블로워 등이 탑재된다.
특히, 차량의 연료전지용 공기 블로워는, 낮은 유량과 높은 압력을 요구함과 동시에 높은 내구성과 낮은 소음, 그리고 넓은 운전 범위를 요구한다.
이러한, 연료전지용 공기 블로워는 연료전지 스택에서 전기를 생성하는데 필요한 산소를 공급하는 장치로, 연료전지 시스템의 핵심 구성 부품이며, 연료전지 스택으로 전달되는 과정에서 발생하는 유로 저항에 따른 손실을 줄이기 위해, 대기를 압축하는 과정을 포함하게 된다.
또한, 연료전지용 공기 블로워는 연료전지 스택이 필요로 하는 공기의 압력 및 유량 수준에 따라 형태가 결정되어 적용되는데, 예를 들어, 유량이 적고 압력이 높은 영역에서는 스크류 혹은 용적형 압축기가 적용되고, 상대적으로 유량이 많고 압력이 낮은 영역에서는 터보형 압축기가 적용되는 것이 일반적이다.
스크류 압축기의 경우, 터보형 압축기보다 낮은 회전수에서 동작하고, 직관적으로 이해할 수 있는 압축 구조를 갖고 있으나, 무겁고 부피가 큰 것이 단점이고, 터보형 압축기의 경우, 작고 간단한 구조로 제품을 저렴하게 만들 수 있으나, 고속 회전에 적합한 윤활 구조 확보가 필요하다.
이러한, 종래의 차량의 연료전지용 공기 블로워를, 본 발명은, 냉각 방법 및 냉각구조에 대해 중점적으로 집중, 실험하여, 연료전지용 공기 블로워의 열을 잡음으로서 효율성 및 내구성을 향상시킨 연료전지용 공기 블로워를 제공하기 위함이다.
이에, 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 선행기술로서, 대한민국 등록특허공보 제10-1735042호의 "연료전지차량용 공기블로어"(이하, '선행기술 1'이라 함.)는,
베어링의 외주와 맞닿는 영역에 공기유동홈이 형성됨으로써 축하중을 저감하여 내구성을 향상할 수 있고, 베어링을 포함한 모터를 냉각할 수 있으며, 모터케이스에 냉각수 유로가 형성됨으로써 냉각 효율을 더욱 높인 연료전지차량용 공기블로어에 관한 것이다.
또 다른 선행기술로서, 대한민국 공개특허공보 제10-2016-0097884호의 "연료전지 차량용 공기 블로어"(이하, '선행기술 2'라 함.)는,
외관을 형성하는 하우징과, 상기 하우징의 전방에 결합되어 외부 공기를 흡입하는 임펠러를 지지하는 임펠러 지지부와 상기 임펠러 지지부에 결합되어 상기 임펠러를 컵하며, 공기가 흡입되는 공기 유입구 및 압축된 공기가 배출되는 공기 토출구가 형성된 임펠러 하우징과, 상기 하우징의 후방에 결합되는 리어 커버와, 상기 하우징 내부에 설치되어 상기 임펠러를 회전 구동시키는 블로어 모터를 포함하며, 상기 임펠러 지지부는 임펠러에 의해 흡입된 공기를 상기 하우징의 내부로 유입시키는 제1 유로를 포함하여, 별도의 배수 호스 및 배수를 위한 포트가 없으므로 공기 블로어의 관리가 편리하며, 배수 호스를 교체할 필요가 없고, 블로어 모터의 로터를 충분히 냉각시킬 수 있어 로터의 열에 의한 베어링의 내구성 저하 및 수명 단축을 저감시키는 효과가 있는 연료전지 차량용 공기 블로어에 관한 것이다.
살펴본 바와 같이, 상기 선행기술 1 내지 선행기술 2는 본 발명과 동일한 기술분야로서, 해당 발명이 해결하고자 하는 과제(발명의 목적)에 있어서는 일부 동일하나, 이를 해결하기 위한 수단, 즉, 구성요소 및 이로 인한 효과에 있어 차이가 있다.
따라서, 기술적 특징이 상이하다 할 것이다.
*선행기술문헌*
(특허문헌 1) 대한민국 등록특허공보 제10-1735042호 (2017.05.04.)
(특허문헌 2) 대한민국 공개특허공보 제10-2016-0097884호 (2016.08.18)
이에, 본 발명은 상기 전술한 종래의 문제점을 해결하기 위하여 안출된 것으로서,
공랭식과 수랭식이 동시에 활용되도록 하는 냉각구조를 형성하여, 임펠러수단의 온도 상승을 저하시켜 효율성 및 내구성이 제고된 연료전지용 터보 송풍기를 제공하는 데에 목적이 있다.
특히, 임펠러수단에 의해 자연스럽게 블로워케이싱수단 내부로 흡입되는 공기를 이용하여, 온도 상승을 저하시키는 연료전지용 터보 송풍기를 제공하는 데 목적이 있다.
본 발명의 또 다른 목적은 임펠러수단에 의해 블로워케이싱수단 내부로 흡입되는 공기의 양을 확보함으로서 성능이 꾸준히 유지되는 연료전지용 터보 송풍기를 제공하는 데 그 목적이 있다.
상기 목적을 이루기 위한 본 발명은 해결하고자 하는 과제를 달성하기 위해 안출된 것으로서,
복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 있어서,
흡입된 공기의 유동 및 토출을 안내하는 블로워케이싱수단;
상기 블로워케이싱수단 내부에 위치, 결합되어, 공기의 유입 및 유동을 발생시키는 임펠러수단;으로 구성되되,
블로워케이싱수단에는,
임펠러수단에 의해 블로워케이싱수단 내부로 흡입되는 공기의 흐름을 이용하여, 임펠러수단을 냉각시키는 임펠러수단공랭냉각부;
임펠러수단에 인접하게 형성되어, 외부로부터 공급되는 냉각수의 흐름을 이용하여, 임펠러수단을 냉각시키는 임펠러수단수랭냉각부;가 구성되어,
고속으로 회전되는 임펠러수단의 온도 상승을 저하, 효율성 및 내구성을 극대화시키는 것을 특징으로 한다.
한편, 이에 앞서 본 명세서는 특허등록청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이상의 구성 및 작용에서 상기 설명한 바와 같이 본 발명에 따르면,
압축공기를 생성시키는 임펠러수단을, 공랭식과 수랭식이 동시에 활용되도록 하는 냉각구조로 냉각시켜 온도의 상승을 방지한다.
특히, 공랭(空冷)을 이용한 냉각방식은, 임펠러수단에 의해 자연스럽게 블로워케이싱수단 내부로 흡입되는 공기의 흐름을 이용하고, 이러한 공기의 흐름으로 온도 상승을 저하시킴과 동시에, 임펠러수단을 냉각시킨 공기를 외부로 배출시키지 않고 그대로 임펠러로 유입되도록 유도함으로서, 임펠러수단의 효율이 상승된다.
즉, 임펠러수단이, 공기를 압축시키는 역할은 물론, 임펠러수단을 냉각하기 위한 공기를 흡입시키는 냉각팬의 역할까지 수행하므로, 냉각팬을 작동시켜야 하는 별도의 에너지원이 제거되고, 흡입되는 공기의 흐름으로 임펠러수단의 온도 저하는 물론, 이를 압축하여 연료전지 스택으로 토출함으로서, 임펠러수단의 효율이 극대화된다.
이로 인해, 연료전지용 터보 송풍기의 효율성 및 내구성이 제고된다.
또한, 흡입공기량확보부를 통해 블로워케이싱수단 내부로 흡입되는 공기량을 충분히 확보하여, 임펠러수단에 의해 압축되어 연료전지 스택으로 공급되는 압축공기의 양이 꾸준히 유지되도록 한다.
즉, 연료전지용 터보 송풍기의 완벽한 냉각으로 고효율성 및 경제성이 유지, 확보되도록 하는 매우 효과적인 발명이라 하겠다.
도 1은 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 구성도를 나타낸 것이다.
도 2는 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 상태 사시도를 나타낸 것이다.
도 3은 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 단면도를 나타낸 것이다.
도 4는 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기의 작동 및 흡입되는 공기의 흐름을 간략하게 순서도로 나타낸 것이다.
*도면의 주요부호에 대한 상세한 설명*
1: 복합식 냉각구조를 갖는 연료전지용 터보 송풍기
100: 블로워케이싱수단
110: 공기흡입덕트
120: 공기유동유도커버
130: 공기배출덕트
140: 흡입공기량확보부
150: 임펠러수단공랭냉각부
160: 임펠러수단수랭냉각부
161: 냉각수유입순환홈
170: 제 1공기유동경로
180: 제 2공기유동경로
190: 공기순환실
200: 임펠러수단
210: 스테이터
220: 로터
230: 임펠러
S100: 임펠러수단 작동단계
S200: 공기 흡입단계
S300: 공기 유동단계
S310: 제 1공기유동경로 생성단계
S320: 제 2공기유동경로 생성단계
S400: 임펠러수단 냉각단계
S500: 공기 압축단계
S600: 압축공기 배출단계
S700: 압축공기 공급단계
이하, 첨부된 도면을 참조하여 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 기능, 구성 및 작용을 상세히 설명하기로 한다.
도 1은 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 구성도를 나타낸 것이며, 도 2는 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 상태 사시도를, 도 3은 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 대한 단면도를 나타낸 것이다.
도 1 내지 도 3에 도시된 바와 같이 본 발명은,
복합식 냉각구조를 갖는 연료전지용 터보 송풍기(1)에 있어서,
흡입된 공기의 유동 및 토출을 안내하는 블로워케이싱수단(100);
상기 블로워케이싱수단(100) 내부에 위치, 결합되어, 공기의 유입 및 유동을 발생시키는 임펠러수단(200);으로 구성되되,
블로워케이싱수단(100)에는,
임펠러수단(200)에 의해 블로워케이싱수단(100) 내부로 흡입되는 공기의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는 임펠러수단공랭냉각부(150);
임펠러수단(200)에 인접하게 형성되어, 외부로부터 공급되는 냉각수의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는 임펠러수단수랭냉각부(160);가 구성되어,
고속으로 회전되는 임펠러수단(200)의 온도 상승을 저하, 효율성 및 내구성을 극대화시키는 것을 특징으로 한다.
즉, 본 발명은, 연료전지 스택에 산소가 공급되도록 하는 연료전지용 터보 송풍기로서, 압축공기를 생성시키는 임펠러수단(200)을, 공랭(空冷)과 수랭(水冷)을 동시에 이용한 냉각방식으로 냉각하여, 연료전지용 터보 송풍기의 냉각 효과를 극대화함과 동시에, 이로 인한 연료전지용 터보 송풍기의 효율성 및 내구성을 향상시켜, 고열(高熱)로 인해 발생되는 연료전지용 터보 송풍기의 문제점(짧은 수명, 효율 저하)을 해결하기 위한 것이다.
좀 더 구체적으로 임펠러수단(200)에 의해, 내부로 흡입되는 공기를 특정 경로로 유도하여 임펠러수단(200)의 온도 상승을 방지하는 블로워케이싱수단(100)은,
도 3에 도시된 바와 같이,
내부로 공기가 흡입되도록 하는 공기흡입덕트(110);
임펠러수단(200)과 인접한 위치에 밀폐, 결합되어, 내부로 흡입되는 공기를 임펠러수단(200)으로 유도하는 곡면으로 형성된 공기유동유도커버(120);
임펠러수단(200)을 통해 압력이 상승된 공기가 연료전지 스택으로 토출되도록 하는 공기배출덕트(130);
블로워케이싱수단(100) 내부로 흡입되는 공기량이 확보되도록 하는 흡입공기량확보부(140);
임펠러수단(200)에 의해 블로워케이싱수단(100) 내부로 흡입되는 공기의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는 임펠러수단공랭냉각부(150);
임펠러수단(200)에 인접하게 형성되어, 외부로부터 공급되는 냉각수의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는, 냉각수유입순환홈(161)이 형성된 임펠러수단수랭냉각부(160);
상기 공기흡입덕트(110), 임펠러수단공랭냉각부(150) 및 공기유동유도커버(120)에 의해 생성되는 제 1공기유동경로(170);
상기 공기흡입덕트(110), 흡입공기량확보부(140) 및 공기유동유도커버(120)에 의해 생성되는 제 2공기유동경로(180);
상기 공기유동유도커버(120)에 의해 생성되어, 제 1공기유동경로(170) 및 제 2공기유동경로(180)를 따라 흡입된 공기의 흐름을 용이하게 하는 공기순환실(190);로 구성되어,
고속으로 회전되는 임펠러수단(200)의 온도 상승을 저하시킴과 동시에, 블로워케이싱수단(100) 내부로 흡입되는 공기를 상술한 바와 같이 특정 경로로 유도함으로서, 연료전지용 터보 송풍기의 효율성 및 내구성이 극대화되도록 한다.
즉, 본 발명은 상술한 바와 같이, 연료전지용 터보 송풍기를 공랭(空冷)과 수랭(水冷)을 동시에 이용한 냉각방식으로 블로워케이싱수단(100) 내부의 온도 상승을 방지하고, 나아가, 열평형(thermal equilibrium) 상태를 도모하여, 연료전지용 터보 송풍기의 효율성 및 내구성이 제고되도록 한다.
이러한, 본 발명의 블로워케이싱수단(100)의 유기적인 결합관계는, 임펠러수단(200)과의 결합과 더불어 연료전지용 터보 송풍기가 발휘할 수 있는 효과를 극대화시킨다.
예를 들어,
첫 번째는 ,
임펠러수단공랭냉각부(150)의 형성으로, 임펠러수단(200)에 의해 공기흡입덕트(110)로 흡입되는 공기가 임펠러수단(200) 및 임펠러수단수랭냉각부(160)와 접촉되어, 임펠러수단(200) 및 임펠러수단수랭냉각부(160)의 온도 상승을 방지한다.
즉, 흡입되는 공기가 임펠러수단공랭냉각부(150) 및 흡입공기량확보부(140)에 의해 두 갈래(제 1공기유동경로(170) 및 제 2공기유동경로(180))로 분기되고, 제 1공기유동경로(170)를 통해 임펠러수단(200)을, 제 2공기유동경로(180)를 통해 임펠러수단수랭냉각부(160)를 냉각하여 온도가 상승되는 것을 방지한다.
두 번째로 ,
임펠러수단(200)에 인접하게 형성된 임펠러수단수랭냉각부(160)에 의해, 임펠러수단공랭냉각부(150)와 함께 임펠러수단(200)의 온도 상승을 방지한다.
즉, 상기 임펠러수단공랭냉각부(150)는 임펠러수단(200)의 스테이터(210)와 로터(220)를 흡입되는 공기를 이용하여 냉각시키고,
임펠러수단수랭냉각부(160)는 임펠러수단(200)의 스테이터(210)를 냉각수를 이용하여 냉각시키며,
공기흡입덕트(110)와 흡입공기량확보부(140)를 통해 제 2공기유동경로(180)로 흡입되는 공기는 임펠러수단수랭냉각부(160) 및 블로워케이싱수단(100)의 내벽을 냉각시켜, 임펠러수단(200) 및 임펠러수단수랭냉각부(160)의 온도 상승을 방지한다.
세 번째로 ,
임펠러수단공랭냉각부(150) 및 임펠러수단수랭냉각부(160)가 원활하게 작동되도록, 공기흡입덕트(110)와 반대 방향으로 결합된 임펠러수단(200)의 임펠러(230)의 인접 위치에, 임펠러(230)를 감싸는 듯한 곡면으로 형성된 공기유동유도커버(120)를 밀폐, 결합함으로서, 소음을 저하시킴과 동시에, 공기의 흡입이 공기흡입덕트(110)에서만 이루어지도록 한다.
또한, 상기 공기유동유도커버(120)는 제 1공기유동경로(170) 및 제 2공기유동경로(180)가 생성되도록 하는 구성요소로서, 제 1공기유동경로(170) 및 제 2공기유동경로(180)를 통해 흡입되는 공기가 임펠러(230)로 용이하게 유입되도록 공기의 흐름을 유도한다.
네 번째는 ,
임펠러수단(200)의 임펠러(230)의 위치와, 블로워케이싱수단(100)의 공기흡입덕트(110)의 위치 관계로 인한, 임펠러(230)로 유입되어야 할 공기량의 문제점을 극복하기 위하여, 흡입공기량확보부(140)를 통해 제 2공기유동경로(170)를 생성시켜 임펠러(230)로 유입되는 공기량이 충분히 확보되도록 한다.
다시 말해, 임펠러(230)와 공기흡입덕트(110)의 형성된 위치가 블로워케이싱수단(100)의 양 가장자리이므로, 흡입된 공기의 원활한 유동 및 공기량의 확보를 위해 흡입공기량확보부(140)가 형성된다.
즉, 본 발명은, 연료전지용 터보 송풍기의 효율성 및 내구성을 극대화시키는 일환으로 임펠러수단(200)의 냉각 방법에 집중하여, 블로워케이싱수단(100) 및 임펠러수단(200)의 유기적인 결합에 의해, 공랭(空冷)과 수랭(水冷)이 동시에 이용될 수 있는 냉각구조가 형성되어, 임펠러수단(200)을 냉각시키도록 한 것이다.
더하여서, 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기(1)는,
공기흡입덕트(110)를 통해 흡입되는 공기가 임펠러수단(200)을 지나면서, 임펠러수단(200)으로부터 열을 빼앗아 냉각시키고, 빼앗은 열로 인해 공기의 활발한 분자운동을 도모함으로서, 임펠러(230) 측으로의 공기의 유입이 용이하게 이루어지도록 한다.
즉, 본 발명은, 임펠러수단(200)의 온도 상승을 방지하고, 소음을 저하시켜, 연료전지용 터보 송풍기의 효율성 및 내구성을 극대화시킨다.
한편, 블로워케이싱수단(100) 내부로 공기를 흡입시키는 임펠러수단(200)은,
종래의 연료전지용 터보 송풍기에 형성된 고속모터의 구성과 동일하게,
스테이터(210);
로터(220);
임펠러(230);로 구성된다.
본 발명은, 블로워케이싱수단(100)과 임펠러수단(200)의 유기적인 결합, 특히, 임펠러수단(200)이 결합되는 블로워케이싱수단(100)의 유기적인 결합으로 임펠러수단(200)을 냉각시키는 기술로, 임펠러수단(200)에 대한 기술이 아니므로, 임펠러수단(200)에 대한 구체적인 기술내용은 생략하기로 한다.
한편, 본 발명인 복합식 냉각구조를 갖는 연료전지용 터보 송풍기(1)의 작동 및 공기의 흐름을 도 4를 참조하여 간략하게 설명하면,
외부로부터 공급되는 에너지에 의해 임펠러수단(200)이 회전하고,(◀ S100, 임펠러수단 작동단계)
고속으로 회전하는 임펠러수단(200)에 의해 블로워케이싱수단(100) 내부로 공기가 흡입된다.(◀ S200, 공기 흡입단계)
블로워케이싱수단(100) 내부로 흡입되는 공기는 두 갈래로 분기되어 흐르고,(◀ S300, 공기 유동단계)
분기된 공기는 제 1공기유동경로(170) 및 제 2공기유동경로(180)를 따라 흘러,(◀ S310, S320, 제 1공기유동경로 생성단계, 제 2공기유동경로 생성단계)
임펠러수단(200)을 냉각시킨다.(◀ S400, 임펠러수단 냉각단계)
각각 제 1공기유동경로(170) 및 제 2공기유동경로(180)를 따라 흐르는 공기가 임펠러(230)에 의해 압축되고,(◀ S500, 공기 압축단계)
압축된 공기는 공기배출덕트(130)에 의해 토출되어,(◀ S600, 압축공기 배출단계)
공기배출덕트(130)와 결합된 연료전지 스택으로 압축공기가 공급되도록 한다.(◀ S700, 압축공기 공급단계)
이때, 수랭(水冷)을 이용한 임펠러수단(200)의 냉각은, 임펠러수단수랭냉각부(160)에 의해 임펠러수단 작동단계(S100) 내지 압축공기 공급단계(S700)로 이어지는 과정에서 연속적으로 작동되어 임펠러수단(200)을 냉각시킨다.
즉, 본 발명은, 흡입된 공기를 압축하여 연료전지 스택으로 압축공기를 전달하는 연료전지용 터보 송풍기에 관한 것이다.
이상에서와 같이, 본 발명은 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다.
따라서, 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있으므로, 본 발명의 실시 예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 아니되며 다양하게 변형하여 실시할 수 있다.
본 발명은 복합식 냉각구조를 갖는 연료전지용 터보 송풍기에 관한 것으로서, 이를 제작하는 제작업 및 판매업, 특히, 연료전지 스택으로 압축공기를 공급하기 위한 연료전지용 터보 송풍기 관련 산업, 나아가, 압축공기를 필요로 하는 전반적인 산업 등, 다양한 산업분야 증진에 기여하는 데에 적용할 수 있다.
Claims (1)
- 압축공기를 생성시키는 임펠러수단(200)을, 공랭(空冷)과 수랭(水冷)을 동시에 이용한 냉각방식으로 냉각하여, 연료전지용 터보 송풍기의 냉각 효과를 극대화함과 동시에, 이로 인한 연료전지용 터보 송풍기의 효율성 및 내구성을 향상시켜, 고열(高熱)로 인해 발생되는 연료전지용 터보 송풍기의 문제점(짧은 수명, 효율 저하)을 해결하기 위한, 복합식 냉각구조를 갖는 연료전지용 터보 송풍기(1)에 있어서,흡입된 공기의 유동 및 토출을 안내하는 블로워케이싱수단(100);상기 블로워케이싱수단(100) 내부에 위치, 결합되어, 공기의 유입 및 유동을 발생시키는 임펠러수단(200);으로 구성되되,내부로 흡입되는 공기를 특정 경로로 유도하여 임펠러수단(200)의 온도 상승을 방지하는 블로워케이싱수단(100)은,내부로 공기가 흡입되도록 하는 공기흡입덕트(110);임펠러수단(200)과 인접한 위치에 밀폐, 결합되어, 내부로 흡입되는 공기를 임펠러수단(200)으로 유도하는 곡면으로 형성된 공기유동유도커버(120);임펠러수단(200)을 통해 압력이 상승된 공기가 연료전지 스택으로 토출되도록 하는 공기배출덕트(130);블로워케이싱수단(100) 내부로 흡입되는 공기량이 확보되도록 하는 흡입공기량확보부(140);임펠러수단(200)에 의해 블로워케이싱수단(100) 내부로 흡입되는 공기의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는 임펠러수단공랭냉각부(150);임펠러수단(200)에 인접하게 형성되어, 외부로부터 공급되는 냉각수의 흐름을 이용하여, 임펠러수단(200)을 냉각시키는, 냉각수유입순환홈(161)이 형성된 임펠러수단수랭냉각부(160);상기 공기흡입덕트(110), 임펠러수단공랭냉각부(150) 및 공기유동유도커버(120)에 의해 생성되는 제 1공기유동경로(170);상기 공기흡입덕트(110), 흡입공기량확보부(140) 및 공기유동유도커버(120)에 의해 생성되는 제 2공기유동경로(180);상기 공기유동유도커버(120)에 의해 생성되어, 제 1공기유동경로(170) 및 제 2공기유동경로(180)를 따라 흡입된 공기의 흐름을 용이하게 하는 공기순환실(190);로 구성되어,고속으로 회전되는 임펠러수단(200)의 온도 상승을 저하시킴과 동시에, 블로워케이싱수단(100) 내부로 흡입되는 공기를 상술한 바와 같이 특정 경로로 유도함으로서, 연료전지용 터보 송풍기의 효율성 및 내구성이 극대화되도록 하고,블로워케이싱수단(100) 내부로 공기를 흡입시키는 임펠러수단(200)은,스테이터(210);로터(220);임펠러(230);로 구성되어,흡입된 공기를 압축하여 연료전지 스택으로 압축공기를 전달하되,공랭(空冷)과 수랭(水冷)을 동시에 이용한 냉각방식으로 블로워케이싱수단(100) 내부의 온도 상승을 방지하고, 나아가, 열평형(thermal equilibrium) 상태를 도모함으로서,고속으로 회전되는 임펠러수단(200)의 온도 상승을 저하, 효율성 및 내구성을 극대화시키는 것을 특징으로 하는 복합식 냉각구조를 갖는 연료전지용 터보 송풍기.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021523455A JP7257708B2 (ja) | 2018-10-30 | 2019-10-28 | 複合式冷却構造を有する燃料電池用ターボ送風機 |
CN201980072527.6A CN112997007A (zh) | 2018-10-30 | 2019-10-28 | 具有复合式冷却结构的燃料电池用涡轮鼓风机 |
DE112019004941.0T DE112019004941T5 (de) | 2018-10-30 | 2019-10-28 | Turbogebläse mit komplexer kühlstruktur für eine brennstoffzelle |
US17/290,252 US20220021011A1 (en) | 2018-10-30 | 2019-10-28 | Turbo-blower having complex cooling structure for fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0130828 | 2018-10-30 | ||
KR1020180130828A KR101988936B1 (ko) | 2018-10-30 | 2018-10-30 | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020091357A1 true WO2020091357A1 (ko) | 2020-05-07 |
Family
ID=66847646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014310 WO2020091357A1 (ko) | 2018-10-30 | 2019-10-28 | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220021011A1 (ko) |
JP (1) | JP7257708B2 (ko) |
KR (1) | KR101988936B1 (ko) |
CN (1) | CN112997007A (ko) |
DE (1) | DE112019004941T5 (ko) |
WO (1) | WO2020091357A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113202794A (zh) * | 2021-05-14 | 2021-08-03 | 山东三牛精工科技有限公司 | 一种紧凑式悬浮鼓风机和紧凑式悬浮鼓风机的空气自冷方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101988936B1 (ko) * | 2018-10-30 | 2019-06-13 | 터보윈 주식회사 | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 |
KR102512734B1 (ko) * | 2021-03-23 | 2023-03-22 | ㈜티앤이코리아 | 방폭 기능을 구비하는 터보 압축기 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203854A (ja) * | 2008-02-27 | 2009-09-10 | Jtekt Corp | 燃料電池用圧縮機 |
KR20130024096A (ko) * | 2011-08-30 | 2013-03-08 | 한라공조주식회사 | 연료전지 차량용 공기 블로워 |
KR20140096218A (ko) * | 2013-01-25 | 2014-08-05 | 한라비스테온공조 주식회사 | 연료전지 차량용 공기 블로워 |
KR20170058082A (ko) * | 2015-11-18 | 2017-05-26 | 한온시스템 주식회사 | 차량용 공기 압축기 |
KR20180054027A (ko) * | 2016-11-14 | 2018-05-24 | ㈜티앤이코리아 | 분리된 냉각 기로를 구비한 터보 압축기 |
KR101988936B1 (ko) * | 2018-10-30 | 2019-06-13 | 터보윈 주식회사 | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6185944B1 (en) * | 1999-02-05 | 2001-02-13 | Midwest Research Institute | Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line |
KR101735042B1 (ko) | 2010-09-13 | 2017-05-12 | 한온시스템 주식회사 | 연료전지차량용 공기블로어 |
US8702404B2 (en) * | 2009-12-09 | 2014-04-22 | Halla Visteon Climate Control Corporation | Air blower for a fuel cell vehicle |
KR20160097884A (ko) | 2015-02-10 | 2016-08-18 | 한온시스템 주식회사 | 연료전지 차량용 공기 블로어 |
CN105351231A (zh) * | 2015-12-09 | 2016-02-24 | 南京磁谷科技有限公司 | 鼓风机冷却结构 |
FR3045111B1 (fr) * | 2015-12-14 | 2017-12-01 | Labinal Power Systems | Compresseur centrifuge electrique de turbomachine ou d'aeronef |
JP6668161B2 (ja) * | 2016-05-11 | 2020-03-18 | 株式会社マーレ フィルターシステムズ | ターボチャージャ |
CN108512360B (zh) * | 2018-05-15 | 2020-04-10 | 浙江永磁电机股份有限公司 | 涡轮电机的双重冷却装置 |
-
2018
- 2018-10-30 KR KR1020180130828A patent/KR101988936B1/ko active IP Right Grant
-
2019
- 2019-10-28 DE DE112019004941.0T patent/DE112019004941T5/de active Granted
- 2019-10-28 US US17/290,252 patent/US20220021011A1/en not_active Abandoned
- 2019-10-28 CN CN201980072527.6A patent/CN112997007A/zh active Pending
- 2019-10-28 WO PCT/KR2019/014310 patent/WO2020091357A1/ko active Application Filing
- 2019-10-28 JP JP2021523455A patent/JP7257708B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203854A (ja) * | 2008-02-27 | 2009-09-10 | Jtekt Corp | 燃料電池用圧縮機 |
KR20130024096A (ko) * | 2011-08-30 | 2013-03-08 | 한라공조주식회사 | 연료전지 차량용 공기 블로워 |
KR20140096218A (ko) * | 2013-01-25 | 2014-08-05 | 한라비스테온공조 주식회사 | 연료전지 차량용 공기 블로워 |
KR20170058082A (ko) * | 2015-11-18 | 2017-05-26 | 한온시스템 주식회사 | 차량용 공기 압축기 |
KR20180054027A (ko) * | 2016-11-14 | 2018-05-24 | ㈜티앤이코리아 | 분리된 냉각 기로를 구비한 터보 압축기 |
KR101988936B1 (ko) * | 2018-10-30 | 2019-06-13 | 터보윈 주식회사 | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113202794A (zh) * | 2021-05-14 | 2021-08-03 | 山东三牛精工科技有限公司 | 一种紧凑式悬浮鼓风机和紧凑式悬浮鼓风机的空气自冷方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220021011A1 (en) | 2022-01-20 |
DE112019004941T5 (de) | 2021-08-12 |
JP7257708B2 (ja) | 2023-04-14 |
KR101988936B1 (ko) | 2019-06-13 |
CN112997007A (zh) | 2021-06-18 |
JP2022506241A (ja) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020091357A1 (ko) | 복합식 냉각구조를 갖는 연료전지용 터보 송풍기 | |
WO2018097511A1 (ko) | 인터쿨러를 구비한 터보 압축기 | |
US9644641B2 (en) | Electric supercharging device and multi-stage supercharging system | |
KR101969485B1 (ko) | 임펠러수단냉각팬이 형성된 연료전지용 터보 송풍기 | |
WO2016195238A1 (ko) | 직결 구동형 터보 블로워 냉각 구조 | |
US11143204B2 (en) | Air compressor | |
WO2018030657A1 (ko) | 차량용 공기 압축기 | |
WO2021221294A1 (ko) | 차량용 공기 압축기 | |
WO2018088778A1 (ko) | 분리된 냉각 기로를 구비한 터보 압축기 | |
WO2017039108A1 (ko) | 직결 구동형 듀얼 터보 블로워 냉각 구조 | |
WO2014061918A1 (ko) | 터보기계 시스템 | |
WO2022181997A1 (ko) | 베어링 냉각 수로를 포함하는 터보 압축기 | |
WO2022077541A1 (zh) | 空气压缩装置、多级空气压缩装置及氢燃料电池 | |
WO2020027436A1 (ko) | 전동기 | |
WO2022211158A1 (ko) | 차량용 공기 압축기 | |
WO2022203178A1 (ko) | 방폭 기능을 구비하는 터보 압축기 | |
WO2023080448A1 (ko) | 냉각수 제어 유닛 | |
WO2021071169A1 (ko) | 차량용 공기 압축기 | |
WO2024090931A1 (ko) | 모터의 전력 변환 장치를 냉각시킬 수 있는 터보 압축기 | |
WO2024195977A1 (ko) | 공기압축기 | |
WO2024090928A1 (ko) | 압축 기체 유로의 상류측에 모터가 배치된 터보 압축기 | |
WO2022220452A1 (ko) | 공기 압축기 | |
CN215860439U (zh) | 一种用于密闭发电机组空间内的冷却散热系统 | |
WO2017123070A1 (ko) | 팬 모터 | |
WO2024167148A1 (ko) | 차량용 공기 압축기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880237 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021523455 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19880237 Country of ref document: EP Kind code of ref document: A1 |