WO2021071169A1 - 차량용 공기 압축기 - Google Patents

차량용 공기 압축기 Download PDF

Info

Publication number
WO2021071169A1
WO2021071169A1 PCT/KR2020/013323 KR2020013323W WO2021071169A1 WO 2021071169 A1 WO2021071169 A1 WO 2021071169A1 KR 2020013323 W KR2020013323 W KR 2020013323W WO 2021071169 A1 WO2021071169 A1 WO 2021071169A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
rotor
cooling
flow path
air compressor
Prior art date
Application number
PCT/KR2020/013323
Other languages
English (en)
French (fr)
Inventor
박건웅
박치용
이종성
최규성
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US17/641,850 priority Critical patent/US11988228B2/en
Priority to CN202080070397.5A priority patent/CN114502844A/zh
Priority to DE112020004904.3T priority patent/DE112020004904T5/de
Publication of WO2021071169A1 publication Critical patent/WO2021071169A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners

Definitions

  • the present invention relates to a compressor, and more particularly, to an air compressor for a vehicle in which cooling efficiency is improved by increasing a circulation flow rate of cooling air.
  • a fuel cell vehicle refers to a vehicle in which hydrogen and oxygen are supplied to a humidifier to supply electric energy generated through an electrochemical reaction, which is the reverse reaction of electrolysis of water, as the driving force of the vehicle. Is disclosed.
  • passenger fuel cell vehicles are equipped with 100kW fuel cell stacks.
  • the air supplied to the fuel cell stack is supplied at a high pressure of 1 to 4 bar.
  • Air compressor with a rotation speed of 200,000 RPM should be used.
  • Fuel cell vehicles typically include a fuel cell stack that generates electricity, a humidifier that increases the humidity of air supplied to the fuel cell stack, a fuel supply that supplies hydrogen to the fuel cell stack, and air containing oxygen to the fuel cell stack. It is composed of an air supply unit for supplying the fuel cell and a cooling module for cooling the fuel cell stack.
  • the air supply unit includes an air cleaner that filters foreign substances contained in the air, an air compressor that compresses and supplies the air filtered by the air cleaner, a cooling device that cools the pressurized high temperature air, a humidifier that increases the humidity of the air, and controls the flow rate. It consists of a regulating valve.
  • the above-described air compressor compresses air sucked from the outside using a compressor impeller and then sends it to the fuel cell stack.
  • the compressor impeller is connected to a rotating shaft that receives power from the driving unit, and generally the driving unit drives the rotating shaft by electromagnetic induction of the stator and the rotor.
  • the air compressor generates heat loss due to air resistance in the air bearing due to the high-speed rotation of the rotor, and cooling of the motor and bearing, which are major heat sources, is required. Accordingly, a structure has been proposed in which a motor and a bearing for rotating the impeller are cooled by using part of the compressed air produced by the impeller of the air compressor, and then introduced back to the inlet side of the impeller through the inner hole of the rotation shaft of the motor. .
  • Korean Patent Registration No. 1810430 discloses an air compressor and a fuel cell vehicle in which an internal air flow is circulated using a motor shaft end, and the air compressor includes: a drive housing including a rotor and a stator; A motor shaft through which an air exhaust hole is formed through the drive housing; An air bearing coupled to the housing rear end of the drive housing to support the shaft rear end of the motor shaft; The cooling air collected from the impeller chamber through the inner space of the drive housing to the motor outer chamber is extracted from the compressed air formed by the impeller, and the cooling air is sucked into the air discharge hole, and the shaft is at the rear end of the shaft. It characterized in that it includes a motor cooling path for discharging to the front end.
  • the flow rate decreases as the compressed air passes through the narrow space around the air foil bearing, and the flow of air is retarded, thereby reducing the self-cooling efficiency through compressed air. .
  • the present invention has been devised to solve the above-described problem, and an object of the present invention is to provide an air compressor for a vehicle in which cooling efficiency is improved by securing a circulation flow rate of cooling air and smoothing the flow.
  • a vehicle air compressor for achieving the above object includes: a compression unit disposed on one side of a rotor to compress incoming air to generate compressed air; A bearing part supporting the rotor in a front-rear direction; A cooling circulation passage for cooling the bearing part by introducing compressed air discharged from the impeller into the bearing part; And a bypass flow path through which a part of the compressed air bypasses a partial region of the bearing part.
  • the cooling circulation flow path and the bypass flow path may branch in front of the bearing part or at a point where the bearing part is disposed, and merge at the rear of the bearing part.
  • some of the joined compressed air may be discharged to the outside.
  • a housing for accommodating the compression part, the bearing part, the cooling circulation flow path, and the bypass flow path may be further included.
  • the housing a vehicle air compressor including a rear cover disposed at the rear of the rotor.
  • the rear cover may be made of plastic.
  • the rear cover has a discharge hole extending to the rear side of the rotor, and the compressed air may be discharged through the discharge hole.
  • the rotor may include a rotation shaft coupled to the compression unit, a rotor coupled to an outer circumferential surface of the rotation shaft, and a rotor disk formed on a rear side of the rotor.
  • the bearing unit may include front and rear airfoil bearings supporting front and rear surfaces of the rotor disk.
  • the cooling circulation flow path and the bypass flow path may branch between the front airfoil bearing and the rear airfoil bearing.
  • the cooling circulation flow path is disposed outside the rotor, a cooling flow path that moves a part of the air compressed by the compression unit from the front to the rear, and is disposed inside the rotor, the cooling It may include a circulation flow path that circulates the air moved in the flow path and supplies it to the compression unit.
  • the cooling circulation passage may further include a chamber disposed between the cooling passage and the circulation passage.
  • bypass flow path may join the chamber.
  • the width of the chamber may be wider than that of the cooling passage or the bypass passage.
  • rotating air that rotates in one direction is formed inside the chamber, and the rotating air may rotate from an outlet of the bypass passage toward an inlet of the circulation passage.
  • compressed air introduced into the chamber from the bypass flow path may be transferred to the rear of the chamber by the flow of the rotating air.
  • bypass flow path may be closer to the rotor toward the chamber.
  • the chamber may be disposed inside the rear cover.
  • a bypass flow path for bypassing the airfoil bearing is additionally installed to secure a circulation flow rate of compressed air for internal cooling and facilitate circulation of the internal compressed air, thereby cooling air It can improve its cooling efficiency.
  • rotating air is formed in the air in the chamber in a direction coincident with the conveying direction, thereby preventing the phenomenon of air stagnation at the point where several flow paths merge through the rotating air, and near the bearing.
  • FIG. 1 is a cross-sectional view of an air compressor for a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a cooling circulation passage according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a path of compressed air of an air compressor for a vehicle according to an embodiment of the present invention.
  • FIG. 4 is a view showing a heat distribution of an air compressor for a vehicle according to an embodiment of the present invention.
  • FIG. 5 is a view showing a heat distribution of air inside an air compressor for a vehicle according to an embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view illustrating a connection portion between a second cooling passage, a bypass passage, a chamber, and a circulation passage of an air compressor for a vehicle according to an exemplary embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a flow of air in a connection portion between a second cooling passage, a bypass passage, a chamber, and a circulation passage of an air compressor for a vehicle according to an exemplary embodiment of the present invention.
  • the singular form may include the plural form unless specifically stated in the phrase, and when described as "at least one (or more than one) of A and (and) B, C", it is combined with A, B, and C. It may contain one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled, or connected to the other component, but also with the component. It may also include the case of being'connected','coupled' or'connected' due to another element between the other elements.
  • top (top) or bottom (bottom) when it is described as being formed or disposed on the “top (top) or bottom (bottom)” of each component, the top (top) or bottom (bottom) is one as well as when the two components are in direct contact with each other. It also includes the case where the above other component is formed or disposed between the two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
  • FIGS. 1 to 5 An air compressor for a vehicle according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is a cross-sectional view of an air compressor for a vehicle according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a cooling circulation passage according to an embodiment of the present invention
  • FIG. 3 is A block diagram showing a path of compressed air of a vehicle air compressor
  • FIG. 4 is a view showing a heat distribution of a vehicle air compressor according to an embodiment of the present invention
  • FIG. 5 is a vehicle air according to an embodiment of the present invention. It is a diagram showing the heat distribution of the air inside the compressor.
  • the vehicle air compressor includes a housing 100, a compression unit 200, a driving unit 300, a bearing unit 400, a cooling circulation channel 500, and a bypass channel 600. Includes.
  • the housing 100 forms an exterior.
  • the housing 100 accommodates the compression part 200, the driving part 300, the bearing part 400, the cooling circulation flow path 500, and the bypass flow path 600 in an internal space.
  • the housing 100 may include an impeller housing 110, a driving housing 120, and a rear cover 130.
  • the impeller housing 110 may be provided with an inlet 111 and an outlet 112.
  • the compression unit 200 is disposed in the inner space of the impeller housing 110. At this time, the air introduced through the inlet 111 is compressed by the compression unit 200 and discharged to the outside through the discharge port 112. Here, some of the compressed air is supplied to the cooling circulation passage 500 to be described later.
  • the driving housing 120 is connected to the impeller housing 110 at a rear end.
  • “rear” refers to a direction toward the driving part 300 based on the compression part 200
  • “front” refers to a direction opposite to the rear.
  • the driving unit 300 is disposed in the inner space of the driving housing 120.
  • the cooling circulation passage 500 may be formed inside the driving housing 120.
  • the rear cover 130 is connected to the rear end of the driving housing 120.
  • a chamber 530 to be described later may be disposed in the inner space of the rear cover 130.
  • the rear cover 130 may be made of plastic.
  • the rear cover 130 may include a discharge hole (not shown) opened toward the rear side of the vehicle air compressor.
  • the compression unit 200 is disposed in the inner space of the impeller housing 110 to compress the air introduced from the inlet 111.
  • the compression unit 200 may include a blow 210 and an impeller 220.
  • the blow 210 is connected to the inlet 111 and is formed in a shape in which the cross-sectional area is gradually reduced so that the introduced air is compressed.
  • the impeller 220 may be disposed between the inlet 111 and the blow 210. In this case, the impeller 220 may transfer the air introduced from the inlet 111 in the direction of the blow 210.
  • the air introduced through the inlet 111 may be conveyed to the blow 210 by the impeller 220, and compressed while passing through the blow 210 whose cross-sectional area is gradually reduced, and compressed air may be generated.
  • a part of the compressed air flows through the cooling circulation passage 500.
  • the compressed air may serve to cool the interior of the vehicle air compressor.
  • the driving unit 300 is disposed in the inner space of the driving housing 120 to provide a driving force to the compression unit 200.
  • the driving unit 300 may include a rotor 310 and a stator 320.
  • the rotor 310 is connected to the compression unit 200, and rotates the compression unit 200 while rotating.
  • the rotor 310 includes a rotation shaft 311, a rotor 312, and a rotor disk. (313) may be included.
  • the rotation shaft 311 is coupled to the impeller 230 to drive rotation.
  • the rotor 312 is coupled to the outer peripheral surface of the rotation shaft 311. At this time, when external power is supplied to the rotor 312, the rotor 312 generates a rotational force by electromagnetic interaction with the stator 320.
  • heat is concentrated on a portion where the rotor 312 and the stator 320 overlap and the rotor disk 313. In addition, the temperature of the air passing between the rotor 312 and the stator 320 increases.
  • the rotor disk 313 is connected to one side of the rotor 312.
  • the length of the rotor disk 313 in the radial direction may be larger than that of the rotor 312. At this time, heat is concentrated on both surfaces of the rotor disk 313 and the air contacting both surfaces of the rotor disk 313.
  • the stator 320 is disposed outside the rotor 310 and fixedly installed on the inner circumferential surface of the driving housing 120.
  • the outer side refers to a direction toward the housing 100 with respect to the rotation axis 311
  • the inner side refers to a direction opposite to the outer side.
  • the driving unit may be provided as a clutch (not shown) and operated by receiving a driving force from a vehicle engine.
  • the driving unit may include a pulley (not shown), a disk assembly (not shown), and a coil assembly (not shown).
  • the pulley (not shown) is connected by a vehicle engine (not shown) and a drive belt (not shown), and the drive belt (not shown) is installed on the outer circumferential surface of the pulley (not shown). Power can be transmitted to the pulley (not shown).
  • the disk assembly (not shown) is coupled to a drive shaft (not shown), and may transmit the power of the vehicle engine transmitted from the pulley (not shown) to the drive shaft (not shown).
  • the drive shaft serves as the rotation shaft 311 and is coupled to the impeller 340 to rotate the impeller 340.
  • the bearing part 400 rotatably supports the rotor 310.
  • the bearing part 400 may include front and rear journal bearings 410 and 420 and front and rear airfoil bearings 430 and 440.
  • the front and rear journal bearings 410 and 420 are disposed at both ends of the outer circumferential surface of the rotor 312 to support the rotor 312 so as to smoothly rotate the inside of the drive housing 120.
  • the front and rear airfoil bearings 430 and 440 are disposed on the front and rear surfaces of the rotor disk 313 to support the rotation of the rotor disk 313 in the axial direction. At this time, referring to FIG. 3, heat is concentrated in portions of the rotor disk 313 in contact with the front and rear airfoil bearings 430 and 440.
  • the cooling circulation passage 500 moves a part of the air compressed by the compression unit 200 in the axial direction and then circulates to the compression unit 200.
  • the cooling circulation passage 500 may include a cooling passage 510 and a circulation passage 520.
  • the cooling passage 510 may be disposed outside the rotor 310.
  • the cooling passage 510 may be formed by a gap between the driving housing 120 and the driving part 300.
  • the cooling passage 510 may move part of the air compressed by the compression unit 200 from the front to the rear.
  • FIG. 6 is an enlarged cross-sectional view illustrating a connection portion between a second cooling passage, a bypass passage, a chamber, and a circulation passage of an air compressor for a vehicle according to an exemplary embodiment of the present invention
  • FIG. 7 is an exemplary embodiment of the present invention.
  • the cooling passage 510 may include a first cooling passage 511 and a second cooling passage 512.
  • the first cooling passage 511 surrounds the outer surface of the rotor 312 and the front and rear journal bearings 410 and 420, and passes compressed air to the rotor 312 and the front and rear journals. It cools the heat generated by the bearings 410 and 420 and the stator 320.
  • the second cooling passage 512 surrounds the outer surface of the rotor disk 313 and the outer surfaces of the front and rear airfoil bearings 430 and 440, and passes compressed air to the rotor disk 313. And the heat generated from the front and rear airfoil bearings 430 and 440 are cooled.
  • the second cooling passage 512 may include a first region 5121, a second region 5122, and a third region 5123.
  • the first region 5121 surrounds the front surface of the rotor disk 313 and the front airfoil bearing 430, and heat generated from the front surface of the rotor disk 313 and the front airfoil bearing 430 To cool.
  • the second area 5122 surrounds a side surface of the rotor disk 313 and cools heat generated from the side surface of the rotor disk 313.
  • the third area 5123 surrounds the rear surface of the rotor disk 313 and the rear airfoil bearing 440, and heat generated from the rear surface of the rotor disk 313 and the rear airfoil bearing 440 To cool.
  • cooling passage 510 bypasses the rear journal bearing 420 to further include a third cooling passage 513 connecting the first cooling passage 511 and the second cooling passage 512.
  • the circulation passage 520 may be disposed inside the rotor 310.
  • the circulation passage 520 may be formed by the hollow of the rotation shaft 311.
  • the circulation passage 520 may be connected to a rear end of the cooling passage 510 to receive the air moved from the circulation passage 520, and supply it to the compressor 100 by circulating it.
  • the cooling circulation passage 500 may further include a chamber 530 connected between the cooling passage 510 and the circulation passage 520.
  • the chamber 530 delivers the air moved from the cooling passage 510 to the circulation passage 520. In this case, turbulence of air may occur inside the chamber 530.
  • compressed air joined from the cooling passage 510 and the bypass passage 600 may be discharged to the rear of the vehicle air compressor through an exhaust hole (not shown) of the rear cover 130.
  • the bypass flow path 600 receives part of the air passing through the cooling circulation flow path 500, bypasses a partial region of the bearing part 400, and joins the cooling circulation flow path 500.
  • the cooling circulation passage 500 and the bypass passage 600 may branch in front of the bearing part 400 or at a point where the bearing part 400 is disposed. In this case, the cooling circulation passage 500 and the bypass passage 600 may be joined at the rear of the bearing part 400.
  • cooling circulation passage 500 and the bypass passage 600 may branch between the front airfoil bearing 430 and the rear airfoil bearing 440.
  • bypass flow path 600 may branch from the second region 5122.
  • air passing through the bypass flow path 600 may bypass the rear airfoil bearing 440 and merge into the cooling circulation flow path 500.
  • This bypass flow path 600 increases the circulation flow rate of the cooling air in the compressor and alleviates the delay in the flow of air in the section around the airfoil bearing, thereby facilitating circulation of the internal compressed air and improving the internal cooling performance. You can increase it.
  • bypass flow path 600 may join the chamber 530. In this case, the bypass flow path 600 may be closer to the rotor 310 as the bypass flow path 600 goes toward the chamber 530.
  • a connection point between the chamber 530 and the bypass flow path 600 may be spaced apart from the rotor 310 than a connection point between the chamber 530 and the cooling flow path 510.
  • the width of the chamber 530 may be wider than the cooling passage 510 or the bypass passage 600.
  • the air introduced into the chamber 530 from the cooling passage 510 collides with the inner wall of the rear cover 130 and moves to the vicinity of the corners.
  • the rear cover 130 may move toward the discharge port of the bypass flow path 600 and the discharge port of the cooling flow path 510 along the inner wall of the rear cover 130.
  • rotating air rotating in one direction may be formed inside the chamber 530.
  • the rotary air rotates so as to sequentially pass through the discharge port of the bypass flow path 600 and the discharge port of the cooling flow path 510 and the inlet port of the circulation flow path 520.
  • the air introduced into the chamber 530 from the bypass flow path 600 is transported to the rear of the chamber 530 by riding the flow of the rotating air, thereby increasing the speed of flowing into the circulation flow path 520. have.
  • the air rotating inside the chamber 510 facilitates the flow of air at the connection point between the cooling passage 510, the circulation passage 520, and the bypass passage 600, and near the bearing.
  • third cooling passage 520 circulation passage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 내부 냉각을 위한 압축 공기의 순환 유량을 확보하고, 상기 압축 공기의 순환을 원활하게 함으로써, 내부 냉각 효율을 향상시킨 차량용 공기 압축기에 관한 것으로, 하우징; 상기 하우징 내부에 배치되고, 외부로부터 공기를 유입하여 압축하는 압축부; 상기 하우징 내부에 배치되고, 회전자와 고정자를 포함하여, 상기 회전자의 회전에 의해 상기 압축부를 회전 구동시키는 모터부; 상기 회전자를 회전 가능하게 지지하는 베어링부; 상기 하우징 내측에 형성되어, 상기 압축부에서 압축된 공기의 일부를 축 방향으로 이동시킨 후 상기 압축부로 순회되도록 하는 냉각 순환 유로; 및 상기 냉각 순환 유로를 통과하는 공기의 일부를 공급받아, 상기 베어링부의 일부 영역을 바이패스 하여 상기 냉각 순환 유로로 합류시키는 바이패스 유로를 포함한다.

Description

차량용 공기 압축기
본 발명은 압축기에 관한 것으로, 보다 상세하게는 냉각 공기의 순환 유량을 증가시키어 냉각 효율을 향상시킨 차량용 공기 압축기에 관한 것이다.
일반적으로 연료전지 차량은 수소와 산소가 가습기에 공급되어 물의 전기분해 역반응인 전기화학 반응을 통해 생성되는 전기 에너지를 차량의 구동력으로 공급하는 차량을 말하며, 한국특허등록 제0962903호에 일반적인 연료전지 차량이 개시되어 있다.
통상적으로 승용연료전지 자동차는 100kW 급의 연료전지스택을 탑재하고 있는데, 연료전지스택의 운전을 가압조건에서 할 경우 연료전지스택에 공급되는 공기는 1~4bar의 고압으로 공급되기 때문에 이를 위해서 10만에서 20만 RPM의 회전수를 갖는 공기압축기를 사용하여야 한다.
연료전지 차량은 통상적으로 전기를 생산하는 연료전지 스택과, 연료전지 스택에 공급되는 공기의 습도를 높여주는 가습기와, 연료전지 스택에 수소를 공급하는 연료공급부와, 연료전지 스택에 산소를 포함한 공기를 공급하는 공기공급부와, 연료전지 스택을 냉각하기 위한 냉각 모듈 등으로 구성된다.
공기공급부는 공기 중에 포함된 이물질을 여과하는 에어클리너와, 에어클리너에서 여과된 공기를 압축해 공급하는 공기 압축기, 가압된 고온의 공기를 냉각하는 냉각장치, 공기의 습도를 높여주는 가습기, 유량을 조절하는 밸브로 구성된다.
전술한 공기 압축기는 외부로부터 흡입한 공기를 압축기임펠러를 이용하여 압축한 후 연료전지스택으로 송출한다.
여기서 압축기임펠러는 구동부로부터 동력을 전달받는 회전축과 연결되어 있으며, 일반적으로 구동부는 스테이터와 로터의 전자기 유도에 의해 회전축을 구동하게 된다.
이때 공기 압축기는 로터의 고속 회전으로 인하여 공기 베어링에서 공기의 저항으로 인한 열손실이 발생하게 되며, 주요 발열부(heat source)인 모터와 베어링에 대한 냉각이 필요하다. 이에, 공기 압축기의 임펠러가 생산하는 압축 공기의 일부를 활용하여, 임펠러를 회전시키기 위한 모터 및 베어링을 냉각한 후에, 이를 모터의 회전축 내부 구멍을 통하여 다시 임펠러의 입구 측으로 유입시키는 구조가 제안되고 있다.
이에 관련하여, 한국특허등록 제1810430호에서는 내부 공기 흐름이 모터 축 끝단을 이용해 순환되는 공기압축기 및 연료전지 차량에 관하여 개시하고 있으며, 상기 공기 압축기는, 로터와 스테이터를 내장한 구동 하우징; 상기 구동 하우징을 관통하여 공기배출 홀이 뚫려진 모터 축; 상기 구동 하우징의 상기 하우징 후방엔드에 결합되어 상기 모터 축의 상기 축 후방 엔드를 지지하는 공기 베어링; 상기 임펠러 챔버에서 상기 구동 하우징의 내부공간을 거쳐 상기 모터 외부 챔버로 모여지는 냉각 공기를 상기 임펠러가 형성하는 압축 공기에서 뽑아내고, 상기 냉각공기를 상기 공기배출 홀로 빨아들여 상기 축 후방 엔드에서 상기 축 전방 엔드로 배출시켜주는 모터냉각경로를 포함하는 것을 특징으로 한다.
그러나 종래와 같은 공기 압축기는, 압축 공기가 공기 베어링(Air foil bearing) 주변의 협소한 공간을 지나면서 유량이 감소하고, 공기의 흐름이 지체되면서, 압축 공기를 통한 자체 냉각 효율이 떨어지는 문제가 있다.
본 발명에 상술한 바와 같은 문제를 해결하고자 안출된 것으로, 냉각 공기의 순환 유량을 확보하고 흐름을 원활하게 하여 냉각 효율을 향상시킨 차량용 공기 압축기를 제공하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 차량용 공기 압축기는, 회전자의 일측에 배치되어 유입 공기를 압축하여, 압축 공기를 생성하는 압축부; 상기 회전자를 전후 방향으로 지지하는 베어링부; 상기 임펠러에서 배출된 압축 공기를 상기 베어링부에 유입시켜, 상기 베어링부를 냉각하는 냉각 순환 유로; 및 상기 압축 공기의 일부가 상기 베어링부의 적이도 일부 영역을 바이패스 하도록 하는 바이패스 유로를 포함한다.
일 실시예에서, 상기 냉각 순환 유로와 상기 바이패스 유로는, 상기 베어링부의 전방 또는 상기 베어링부가 배치된 지점에서 분기되어, 상기 베어링부의 후방에서 합류될 수 있다.
일 실시예에서, 상기 합류된 압축 공기의 일부는 외부로 배출될 수 있다.
일 실시예에서, 상기 압축부, 상기 베어링부, 상기 냉각 순환 유로 및 상기 바이패스 유로를 수용하는 하우징을 더 포함할 수 있다.
일 실시예에서, 상기 하우징은, 상기 회전자의 후방에 배치되는 리어 커버를 포함하는 차량용 공기 압축기.
일 실시예에서, 상기 리어 커버는 플라스틱(Plastic)으로 재질일 수 있다.
일 실시예에서, 상기 리어 커버는 상기 회전자의 후측으로 연장된 배출홀이 형성되고, 상기 압축 공기는 상기 배출홀을 통하여 배출될 수 있다.
일 실시예에서, 상기 회전자는, 상기 압축부와 결합하는 회전축와, 상기 회전축의 외주면에 결합하는 로터와, 상기 로터의 후측부에 형성되는 로터 디스크를 포함할 수 있다.
일 실시예에서, 상기 베어링부는, 상기 로터 디스크의 전면과 후면을 지지하는 전방 및 후방 에어포일 베어링을 포함할 수 있다.
일 실시예에서, 상기 냉각 순환 유로와 상기 바이패스 유로는 상기 전방 에어포일 베어링과 상기 후방 에어포일 베어링의 사이에서 분기될 수 있다.
일 실시예에서, 상기 냉각 순환 유로는, 상기 회전자의 외측에 배치되어, 상기 압축부에서 압축된 공기의 일부를 전방에서 후방으로 이동시키는 냉각 유로 및 상기 회전자의 내측에 배치되어, 상기 냉각 유로에서 이동된 공기를 순회시켜 상기 압축부에 공급하는 순환 유로를 포함할 수 있다.
일 실시예에서, 상기 냉각 순환 유로는 상기 냉각 유로와 상기 순환 유로의 사이에 배치되는 챔버를 더 포함할 수 있다.
일 실시예에서, 상기 바이패스 유로는 상기 챔버에 합류될 수 있다.
일 실시예에서, 상기 챔버의 폭은 상기 냉각 유로 또는 상기 바이패스 유로 보다 폭이 넓을 수 있다.
일 실시예에서, 상기 챔버의 내부에서는 일 방향으로 회전하는 회전 공기가 형성되되, 상기 회전공기는 상기 바이패스 유로의 토출구에서 상기 순환 유로 유입구 방향으로 회전할 수 있다.
일 실시예에서, 상기 바이패스 유로에서 상기 챔버로 유입되는 압축 공기는 상기 회전공기의 흐름에 의해 상기 챔버의 후방으로 이송될 수 있다.
일 실시예에서, 상기 바이패스 유로는 상기 챔버 측으로 갈수록 상기 회전자와 가까워질 수 있다.
일 실시예에서, 상기 챔버는 상기 리어 커버 내부에 배치될 수 있다.
본 발명에 따른 차량용 공기 압축기에 의하면, 에어포일 베어링을 바이패스 하는 바이패스 유로를 추가 설치하여, 내부 냉각을 위한 압축 공기의 순환 유량을 확보하고, 내부 압축 공기의 순환을 원활하게 함으로써, 냉각 공기의 냉각 효율을 향상시킬 수 있다.
본 발명에 따른 차량용 공기 압축기에 의하면, 챔버 내부에 공기에 이송 방향과 일치하는 방향으로 회전 공기를 형성하여, 상기 회전공기를 통해 여러 유로가 합류하는 지점에서 공기가 정체되는 현상 방지하고, 베어링 부근에서 냉각 공기의 열교환을 유도함으로써, 냉각 공기의 냉각 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 단면도이다.
도 2는 본 발명의 일 실시예에 따른 냉각 순환 유로의 단면도이다.
도 3은 본 발명의 본 발명의 일 실시예에 따른 차량용 공기 압축기의 압축 공기의 경로를 도시한 블록도이다.
도 4는 본 발명의 일 실시예에 따른 차량용 공기 압축기의 열 분포를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 차량용 공기 압축기 내부 공기의 열 분포를 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 제2 냉각 유로, 바이패스 유로, 챔버 및 순환 유로의 연결 부위를 확대하여 도시한 단면도이다.
도 7은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 제2 냉각 유로, 바이패스 유로, 챔버 및 순환 유로의 연결 부위에서 공기의 흐름을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 본 발명의 일 실시예에 따른 차량용 공기 압축기에 관하여, 도 1 내지 도 5를 참조로 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 단면도이고, 도 2는 본 발명의 일 실시예에 따른 냉각 순환 유로의 단면도이며, 도 3은 본 발명의 본 발명의 일 실시예에 따른 차량용 공기 압축기의 압축 공기의 경로를 도시한 블록도이고, 도 4는 본 발명의 일 실시예에 따른 차량용 공기 압축기의 열 분포를 나타낸 도면이며, 도 5는 본 발명의 일 실시예에 따른 차량용 공기 압축기 내부 공기의 열 분포를 나타낸 도면이다.
도 1 및 도 2를 참조하면, 상기 차량용 공기 압축기는 하우징(100), 압축부(200), 구동부(300), 베어링부(400), 냉각 순환 유로(500) 및 바이패스 유로(600)를 포함한다.
상기 하우징(100)은 외관을 형성한다. 상기 하우징(100)은 내부 공간에 압축부(200), 구동부(300), 베어링부(400), 냉각 순환 유로(500) 및 바이패스 유로(600)를 수용한다. 이때, 상기 하우징(100)은 임펠러 하우징(110), 구동 하우징(120) 및 리어 커버(130)로 구성될 수 있다.
상기 임펠러 하우징(110)은 유입구(111) 및 토출구(112)가 마련될 수 있다. 또한, 상기 임펠러 하우징(110)은 내부공간에 상기 압축부(200)가 배치된다. 이때, 상기 유입구(111)를 통하여 유입된 공기는 상기 압축부(200)에 의하여 압축되고, 상기 토출구(112)를 통하여 외부로 배출된다. 여기서, 압축된 공기 중에 일부는 후술할 냉각 순환 유로(500)로 공급된다.
상기 구동 하우징(120)은 상기 임펠러 하우징(110)에 후단부에 연결된다. 여기서, 후방이라 함은 상기 압축부(200)를 기준으로 구동부(300)를 향하는 방향이고, 전방이라 함은 후방의 반대 방향을 의미한다. 이때, 상기 구동 하우징(120)의 내부공간에는 상기 구동부(300)가 배치된다. 또한, 상기 구동 하우징(120)의 내측으로 상기 냉각 순환 유로(500)가 형성될 수 있다.
상기 리어 커버(130)는 상기 구동 하우징(120)의 후단부에 연결된다. 이때, 상기 리어 커버(130)의 내부공간에는 후술할 챔버(530)가 배치될 수 있다. 상기 리어 커버(130)는 플라스틱(Plastic) 재질일 수 있다.
이때, 상기 리어 커버(130)는 상기 차량용 공기 압축기의 후측을 향하여 개방된 배출홀(미도시)을 포함할 수 있다.
상기 압축부(200)는 상기 임펠러 하우징(110)의 내부공간에 배치되어, 상기 유입구(111)로부터 유입된 공기를 압축한다. 상기 압축부(200)는 블로우(210)와 임펠러(220)를 포함하여 구성될 수 있다.
상기 블로우(210)는 상기 유입구(111)와 연결되고 점차적으로 단면적이 축소되는 형상으로 형성되어 유입된 공기가 압축되도록 한다.
상기 임펠러(220)는 상기 유입구(111)와 상기 블로우(210) 사이에 배치될 수 있다. 이때, 상기 임펠러(220)는 상기 유입구(111)에서 유입된 공기를 상기 블로우(210) 방향으로 이송할 수 있다.
즉, 상기 유입구(111)를 통해 유입된 공기가 상기 임펠러(220)에 의해 블로우(210)로 이송되어, 점차 단면적이 축소되는 상기 블로우(210) 통과하면서 압축되면서 압축 공기개 생성될 수 있다. 이때, 상기 압축 공기의 일부는 상기 냉각 순환 유로(500)로 흐르게 된다. 여기서, 상기 압축 공기는 차량용 공기 압축기 내부를 냉각시키는 역할을 할 수 있다.
상기 구동부(300)는 상기 구동 하우징(120)의 내부공간에 배치되어, 상기 압축부(200)에 구동력을 제공한다. 이때, 상기 구동부(300)는 회전자(310)와 고정자(320)를 포함할 수 있다.
상기 회전자(310)는 일측이 상기 압축부(200에 연결되고, 회전하면서 상기 압축부(200)를 회전시킨다. 이때, 회전자(310)는 회전축(311), 로터(312) 및 로터 디스크(313)을 포함할 수 있다.
상기 회전축(311)은 상기 임팰러(230)에 결합하여 회전 구동시킨다.
상기 로터(312)는 상기 회전축(311)의 외주면에 결합한다. 이때, 상기 로터(312)는 외부 전력이 공급되면, 상기 고정자(320)와의 전자기적 상호 작용에 의하여 회전력을 발생시킨다. 여기서, 도 4 및 도 5를 참조하면, 상기 로터(312)와 상기 고정자(320)가 오버랩되는 부위와, 상기 로터 디스크(313)에 열이 집중된다. 그리고, 상기 로터(312)와 상기 고정자(320) 사이를 지나는 공기의 온도가 높아진다.
상기 로터 디스크(313)는 상기 로터(312)의 일측에 연결된다. 상기 로터 디스크(313)의 반경 방향 길이는 상기 로터(312)보다 크게 형성될 수 있다. 이때, 상기 로터 디스크(313)는 양면과, 상기 로터 디스크(313)의 양면과 맞닿는 공기에 열이 집중된다.
상기 고정자(320)는 상기 회전자(310)의 외측에 배치되고, 상기 구동 하우징(120)의 내주면에 고정 설치된다. 여기서, 외측이라 함은 상기 회전축을(311) 기준으로 상기 하우징(100)을 향하는 방향이고, 내측이라 함은 외측과 반대되는 방향이다.
한편, 상기 구동부는, 도면에는 도시하지 않았지만, 클러치(미도시)로 구비되어, 차량 엔진의 구동력을 전달받아 동작될 수도 있다. 이러한, 상기 구동부는, 풀리(미도시), 디스크 어셈블리(미도시) 및 코일 어셈블리(미도시) 등을 포함할 수 있다. 이때, 풀리(미도시)는 차량 엔진(미도시)과 구동 벨트(미도시)에 의해 연결되며, 구동 벨트(미도시)는 풀리(미도시)의 외주면에 설치되어 차량 엔진(미도시)의 동력을 풀리(미도시)에 전달할 수 있다. 그리고, 디스크 어셈블리(미도시)는 구동축(미도시)에 결합되며, 풀리(미도시)에서 전달된 차량 엔진의 동력을 구동축(미도시)으로 전달할 수 있다. 여기서, 상기 구동축은 상기 회전축(311)의 역할을 하여, 상기 임펠러(340)와 결합되어, 상기 임펠러(340)를 회전 구동시킨다.
상기 베어링부(400)는 상기 회전자(310)를 회전 가능하게 지지한다. 이때, 상기 베어링부(400)는 전방 및 후방 저널 베어링(410)(420)과, 전방 및 후방 에어포일 베어링(430)(440)을 포함할 수 있다.
상기 전방 및 후방 저널 베어링(410)(420)은 상기 로터(312)의 외주면의 양단부에 배치되어, 상기 로터(312)가 상기 구동 하우징(120)의 내부를 원활히 회전할 수 있도록 지지해준다.
상기 전방 및 후방 에어포일 베어링(430)(440)은 상기 로터 디스크(313)의 전면과 후면에 배치되어, 상기 로터 디스크(313)의 회전을 축 방향으로 지지해준다. 이때, 도 3을 참조하면, 상기 로터 디스크(313)는 전방 및 후방 에어포일 베어링(430)(440)와 맞닿는 부분에 열이 집중된다.
도 2를 참조하면, 상기 냉각 순환유로(500)는 상기 압축부(200)에서 압축된 공기의 일부를 축 방향으로 이동한 후에 상기 압축부(200)로 순회되도록 한다. 이때, 상기 냉각 순환유로(500)는 냉각 유로(510) 및 순환 유로(520)를 포함할 수 있다.
상기 냉각 유로(510)는 상기 회전자(310)의 외측으로 배치될 수 있다. 이때, 상기 냉각 유로(510)는 상기 구동 하우징(120)과 구동부(300) 사이의 간격에 의하여 형성될 수 있다. 상기 냉각 유로(510)는, 상기 압축부(200)에서 압축된 공기의 일부를 전방에서 후방으로 이동시킬 수 있다.
도 6은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 제2 냉각 유로, 바이패스 유로, 챔버 및 순환 유로의 연결 부위를 확대하여 도시한 단면도이고, 도 7은 본 발명의 일 실시예에 따른 차량용 공기 압축기의 제2 냉각 유로, 바이패스 유로, 챔버 및 순환 유로의 연결 부위에서 공기의 흐름을 도시한 도면이다.
도 2 및 도 6을 참조하면, 상기 냉각 유로(510)는 제1 냉각 유로(511) 및 제2 냉각 유로(512)를 포함할 수 있다.
상기 제1 냉각 유로(511)는 상기 로터(312)의 외면과 상기 전방 및 후방 저널 베어링(410)(420)을 둘러싸면서, 압축 공기를 통과시켜 상기 로터(312)와, 상기 전방 및 후방 저널 베어링(410)(420)과, 상기 고정자(320)에서 발생하는 열을 냉각하여 준다.
그리고, 상기 제2 냉각 유로(512)는 상기 로터 디스크(313)의 외면과 상기 전방 및 후방 에어포일 베어링(430)(440)의 외면을 둘러싸면서, 압축 공기를 통과시켜 상기 로터 디스크(313)와 상기 전방 및 후방 에어포일 베어링(430)(440)에서 발생하는 열을 냉각하여 준다.
도 6 및 도 7을 참조하면, 상기 제2 냉각 유로(512)는 제1 영역(5121), 제2 영역(5122) 및 제3 영역(5123)을 포함할 수 있다.
상기 제1 영역(5121)은 상기 로터 디스크(313)의 전면과 상기 전방 에어포일 베어링(430)을 둘러싸면서, 상기 로터 디스크(313)의 전면과 상기 전방 에어포일 베어링(430)에서 발생하는 열을 냉각하여 준다.
상기 제2 영역(5122)은 상기 로터 디스크(313)의 측면을 둘러싸면서, 상기 로터 디스크(313)의 측면에서 발생하는 열을 냉각하여 준다.
상기 제3 영역(5123)은 상기 로터 디스크(313)의 후면과 상기 후방 에어포일 베어링(440)을 둘러싸면서, 상기 로터 디스크(313)의 후면과 상기 후방 에어포일 베어링(440)에서 발생하는 열을 냉각하여 준다.
또한, 상기 냉각 유로(510)는 상기 후방 저널 베어링(420)을 바이패스 하여, 상기 제1 냉각 유로(511)와 상기 제2 냉각 유로(512)를 연결하는 제3 냉각 유로(513)를 더 포함할 수 있다.
상기 순환 유로(520)는 상기 회전자(310)의 내측에 배치될 수 있다. 이때, 상기 순환 유로(520)는 상기 회전축(311)의 중공에 의하여 형성될 수 있다. 상기 순환 유로(520)는 상기 냉각 유로(510)의 후단부와 연결되어, 상기 순환 유로(520)에서 이동된 공기를 공급받아, 순회시켜 상기 압축기(100)에 공급할 수 있다.
또한, 상기 냉각 순환유로(500)는 상기 냉각 유로(510)와 상기 순환 유로(520) 사이에 연결되는 챔버(530)를 더 포함할 수 있다. 상기 챔버(530)는 상기 냉각 유로(510)에서 이동된 공기를 상기 순환 유로(520)로 전달하여 준다. 이때, 상기 챔버(530)의 내부에서는 공기의 난류가 발생될 수 있다.
반면, 상기 냉각 유로(510)와 상기 바이패스 유로(600)로부터 합류한 압축 공기는 상기 리어 커버(130)의 배출홀(미도시)를 통하여, 차량용 공기 압축기의 후방으로 배출되는 것이 가능하다.
상기 바이패스 유로(600)는 상기 냉각 순환 유로(500)를 통과하는 공기의 일부를 공급받아, 상기 베어링부(400)의 일부 영역을 바이패스 하여, 상기 냉각 순환 유로(500)로 합류시킨다.
상기 냉각 순환 유로(500)와 상기 바이패스 유로(600)는 상기 베어링부(400)의 전방이나, 상기 베어링부(400)가 배치된 지점에서 분기될 수 있다. 이때, 상기 냉각 순환 유로(500)와 상기 바이패스 유로(600)는 상기 베어링부(400)의 후방에서 합류될 수 있다.
이때, 상기 냉각 순환 유로(500)와 상기 바이패스 유로(600)는 상기 전방 에어포일 베어링(430)과 상기 후방 에어포일 베어링(440)의 사이에서 분기될 수 있다.
보다 상세하게 설명하면, 상기 바이패스 유로(600)는 상기 제2 영역(5122)으로부터 분기될 수 있다. 이때, 도 5를 참조하면, 상기 바이패스 유로(600)를 지나는 공기는 상기 후방 에어포일 베어링(440)을 우회하여, 상기 냉각 순환 유로(500)로 합류될 수 있다.
이러한 바이패스 유로(600)는 압축기 내의 냉각 공기의 순환 유량을 늘려주고, 에어포일 베어링 주변의 구간에서 공기의 흐름이 지체되는 현상을 완화하여, 내부 압축 공기의 순환을 원활하게 하고 내부 냉각 성능을 높일 수 있다.
또한, 상기 바이패스 유로(600)는 상기 챔버(530)에 합류될 수 있다. 이때, 상기 바이패스 유로(600)는 상기 바이패스 유로(600)는 상기 챔버(530) 측으로 갈수록 상기 회전자(310)와 가까워질 수 있다.
이때, 상기 챔버(530)와 상기 바이패스 유로(600)의 연결 지점은 상기 챔버(530)와 상기 냉각 유로(510)의 연결 지점 보다 상기 회전자(310)로부터 이격될 수 있다. 또한, 상기 챔버(530)의 폭은 상기 냉각 유로(510) 또는 상기 바이패스 유로(600) 보다 폭이 넓을 수 있다.
이때, 도 7을 참조하면, 상기 냉각 유로(510)에서 상기 챔버(530)로 유입된 공기가 상기 리어 커버(130)의 내벽에 충돌하면서, 모서리 부근으로 이동한다. 그리고, 상기 리어 커버(130)의 내벽을 타고 상기 바이패스 유로(600)의 토출구와, 상기 냉각 유로(510)의 토출구 측으로 이동할 수 있다. 이에 따라, 상기 챔버(530) 내부에서는 일 방향으로 회전하는 회전공기가 형성될 수 있다. 이때, 회전공기는 상기 바이패스 유로(600)의 토출구, 상기 냉각 유로(510)의 토출구 상기 순환 유로(520)의 유입구를 순차적으로 지나도록 회전한다. 이때, 상기 바이패스 유로(600)에서 상기 챔버(530)로 유입되는 공기 상기 회전공기의 흐름을 타고 상기 챔버(530)의 후방으로 이송되면서, 상기 순환 유로(520)로 유입되는 속도를 높일 수 있다.
이로 인해, 상기 챔버(510) 내부에서 회전하는 공기는, 상기 냉각 유로(510), 상기 순환 유로(520) 및 상기 바이패스 유로(600)의 연결 지점에서 공기의 흐름을 원활하게 해주고, 베어링 부근에서 압축 공기의 열교환 효율을 높여주어, 차량용 공기 압축기의 냉각 효율을 향상시킬 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
<부호의 설명>
100: 하우징, 110: 임펠러 하우징, 120: 구동 하우징, 130: 리어 커버, 200: 압축부, 210: 블로우, 220: 임펠러, 300: 구동부, 310: 회전자, 311: 회전축, 312: 로터, 313: 로터 디스크, 320: 고정자, 400: 베어링부, 410: 전방 저널 베어링, 420: 후방 저널 베어링, 430: 전방 에어포일 베어링, 440: 후방 에어포일 베어링, 500: 냉각 순환 유로, 510: 냉각 유로, 511: 제1 냉각 유로512: 제2 냉각 유로
513: 제3 냉각 유로 520: 순환 유로
530: 챔버 600: 바이패스 유로

Claims (18)

  1. 회전자의 일측에 배치되어 유입 공기를 압축하여, 압축 공기를 생성하는 압축부;
    상기 회전자를 전후 방향으로 지지하는 베어링부;
    상기 압축부에서 배출된 압축 공기를 상기 베어링부에 유입시켜, 상기 베어링부를 냉각하는 냉각 순환 유로; 및
    상기 압축 공기가 상기 베어링부의 적어도 일부 영역을 바이패스하도록 하는 바이패스 유로를 포함하는 차량용 공기 압축기.
  2. 제1항에 있어서,
    상기 냉각 순환 유로와 상기 바이패스 유로는, 상기 베어링부의 전방 또는 상기 베어링부가 배치된 지점에서 분기되어, 상기 베어링부의 후방에서 합류되는 차량용 공기 압축기.
  3. 제2항에 있어서,
    상기 합류된 압축 공기의 일부는 외부로 배출되는 것을 특징으로 하는 공기 압축기.
  4. 제2항에 있어서,
    상기 합류된 압축 공기의 적어도 일부는 상기 냉각 순환 유로를 통하여 상기 압축부로 공급되는 차량용 공기 압축기.
  5. 제1항에 있어서,
    상기 압축부, 상기 베어링부, 상기 냉각 순환 유로 및 상기 바이패스 유로를 수용하는 하우징을 더 포함하는 것을 특징으로 하는 차량용 공기 압축기.
  6. 제5항에 있어서,
    상기 하우징은,
    상기 회전자의 후방에 배치되는 리어 커버를 포함하는 차량용 공기 압축기.
  7. 제6항에 있어서,
    상기 리어 커버는 플라스틱(Plastic)으로 재질인 것을 특징으로 하는 차량용 공기 압축기.
  8. 제6항에 있어서,
    상기 리어 커버는 후측으로 연장되는 적어도 하나의 배출홀이 형성되고,
    상기 압축 공기는 상기 배출홀을 통하여 배출되는 것을 특징으로 하는 차량용 공기 압축기.
  9. 제1항에 있어서,
    상기 회전자는,
    상기 압축부와 결합하는 회전축와,
    상기 회전축의 외주면에 결합하는 로터와,
    상기 로터의 후측부에 형성되는 로터 디스크를 포함하는 차량용 공기 압축기.
  10. 제9항에 있어서,
    상기 베어링부는,
    상기 로터 디스크의 전면과 후면을 지지하는 전방 및 후방 에어포일 베어링을 포함하는 것을 특징으로 하는 차량용 공기 압축기.
  11. 제6항에 있어서,
    상기 냉각 순환 유로는,
    상기 회전자의 외측에 배치되어, 상기 압축부에서 압축된 공기의 일부를 전방에서 후방으로 이동시키는 냉각 유로 및
    상기 회전자의 내측에 배치되어, 상기 냉각 유로에서 이동된 공기를 순회시켜 상기 압축부에 공급하는 순환 유로를 포함하는 차량용 공기 압축기.
  12. 제11항에 있어서,
    상기 냉각 순환 유로는 상기 냉각 유로와 상기 순환 유로의 사이에 배치되는 챔버를 더 포함하는 차량용 공기 압축기.
  13. 제12항에 있어서,
    상기 챔버는 상기 리어 커버 내부에 배치되는 차량용 공기 압축기.
  14. 제13항에 있어서,
    상기 바이패스 유로는 상기 챔버에 합류되는 것을 특징으로 하는 차량용 공기 압축기.
  15. 제14항에 있어서,
    상기 챔버의 폭은 상기 냉각 유로 또는 상기 바이패스 유로의 폭보다 넓게 형성된 차량용 공기 압축기.
  16. 제15항에 있어서,
    상기 챔버의 내부에서는 일 방향으로 회전하는 회전 공기가 형성되되, 상기 회전공기는 상기 바이패스 유로의 토출구에서 상기 순환 유로의 유입구 방향으로 회전하는 차량용 공기 압축기.
  17. 제16항에 있어서,
    상기 바이패스 유로에서 상기 챔버로 유입되는 압축 공기는 상기 회전공기의 흐름에 의해 상기 챔버의 후방으로 이송되는 차량용 공기 압축기.
  18. 제17항에 있어서,
    상기 바이패스 유로는 상기 챔버 측으로 갈수록 상기 회전자와 가깝게 배치되는 차량용 공기 압축기.
PCT/KR2020/013323 2019-10-10 2020-09-29 차량용 공기 압축기 WO2021071169A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/641,850 US11988228B2 (en) 2019-10-10 2020-09-29 Air compressor for vehicle
CN202080070397.5A CN114502844A (zh) 2019-10-10 2020-09-29 用于车辆的空气压缩机
DE112020004904.3T DE112020004904T5 (de) 2019-10-10 2020-09-29 Luftkompressor für Fahrzeuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0125388 2019-10-10
KR1020190125388A KR20210043045A (ko) 2019-10-10 2019-10-10 차량용 공기 압축기

Publications (1)

Publication Number Publication Date
WO2021071169A1 true WO2021071169A1 (ko) 2021-04-15

Family

ID=75437363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013323 WO2021071169A1 (ko) 2019-10-10 2020-09-29 차량용 공기 압축기

Country Status (5)

Country Link
US (1) US11988228B2 (ko)
KR (1) KR20210043045A (ko)
CN (1) CN114502844A (ko)
DE (1) DE112020004904T5 (ko)
WO (1) WO2021071169A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210043045A (ko) * 2019-10-10 2021-04-21 한온시스템 주식회사 차량용 공기 압축기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061497A (ko) * 2015-11-26 2017-06-05 한온시스템 주식회사 에어 포일 베어링
KR20170061507A (ko) * 2015-11-26 2017-06-05 한온시스템 주식회사 차량용 공기 압축기
KR20170128823A (ko) * 2016-05-16 2017-11-24 주식회사 동희산업 축 확장형 냉각방식 공기압축기 및 연료전지 차량
JP2018150892A (ja) * 2017-03-14 2018-09-27 Ntn株式会社 軸受ユニット
KR20180118455A (ko) * 2017-04-21 2018-10-31 엘지전자 주식회사 터보 압축기
KR20200056294A (ko) * 2018-11-14 2020-05-22 한온시스템 주식회사 차량용 공기 압축기

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795138A (en) * 1992-09-10 1998-08-18 Gozdawa; Richard Compressor
DE4440495A1 (de) * 1994-11-12 1996-05-15 Bosch Gmbh Robert Elektrisch betriebene Luftgebläseeinheit, insbesondere Sekundärluftgebläseeinheit
KR100962903B1 (ko) 2007-12-12 2010-06-10 현대자동차주식회사 연료전지차량용 통합형 수소재순환블로워
FR2973846B1 (fr) * 2011-04-11 2013-05-24 Airfan Appareil de delivrance regulee d'un gaz, notamment appareil d'assistance respiratoire
KR101847165B1 (ko) * 2017-04-05 2018-04-09 주식회사 뉴로스 에어포일 베어링을 장착한 터보블로워의 냉각 유로 구조
KR102342943B1 (ko) 2017-06-30 2021-12-27 한온시스템 주식회사 공기압축기
CN108252956A (zh) * 2017-11-28 2018-07-06 湖南大学 一种空气箔片轴承支承空压机的转子自冷却系统
KR102052707B1 (ko) * 2018-05-15 2019-12-05 엘지전자 주식회사 냉각유로를 구비하는 터보 압축기
KR102002729B1 (ko) 2018-06-22 2019-07-23 한국항공우주연구원 터보차저를 위한 압축기 케이싱
US10962050B2 (en) * 2018-11-14 2021-03-30 Hanon Systems Air blower for vehicle
KR20210043045A (ko) * 2019-10-10 2021-04-21 한온시스템 주식회사 차량용 공기 압축기
KR20210117686A (ko) * 2020-03-20 2021-09-29 한온시스템 주식회사 차량용 공기 압축기
KR102433580B1 (ko) * 2020-10-29 2022-08-19 주식회사 뉴로스 공기 압축기
CN116261628A (zh) * 2021-04-01 2023-06-13 翰昂汽车零部件有限公司 用于车辆的空气压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061497A (ko) * 2015-11-26 2017-06-05 한온시스템 주식회사 에어 포일 베어링
KR20170061507A (ko) * 2015-11-26 2017-06-05 한온시스템 주식회사 차량용 공기 압축기
KR20170128823A (ko) * 2016-05-16 2017-11-24 주식회사 동희산업 축 확장형 냉각방식 공기압축기 및 연료전지 차량
JP2018150892A (ja) * 2017-03-14 2018-09-27 Ntn株式会社 軸受ユニット
KR20180118455A (ko) * 2017-04-21 2018-10-31 엘지전자 주식회사 터보 압축기
KR20200056294A (ko) * 2018-11-14 2020-05-22 한온시스템 주식회사 차량용 공기 압축기

Also Published As

Publication number Publication date
CN114502844A (zh) 2022-05-13
KR20210043045A (ko) 2021-04-21
US20220403854A1 (en) 2022-12-22
DE112020004904T5 (de) 2022-06-30
US11988228B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2019004595A1 (ko) 공기압축기
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2021221294A1 (ko) 차량용 공기 압축기
WO2018030657A1 (ko) 차량용 공기 압축기
EP2924261B1 (en) Supercharger with electric motor and engine device provided with supercharger with electric motor
US9644641B2 (en) Electric supercharging device and multi-stage supercharging system
WO2014181917A1 (ko) 냉각부재를 내장한 자동차용 전동식 워터펌프
KR100802767B1 (ko) 하이브리드 차량의 배터리유닛 및 모터제어유닛 냉각시스템
WO2016144126A1 (ko) 진공 흡입 유닛
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2021071169A1 (ko) 차량용 공기 압축기
WO2021045408A1 (ko) 의류건조기
WO2020027436A1 (ko) 전동기
WO2014061918A1 (ko) 터보기계 시스템
WO2020013466A1 (ko) 전동기
WO2022177303A1 (ko) 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈
WO2022211158A1 (ko) 차량용 공기 압축기
WO2014054830A1 (ko) 발전기 냉각 시스템 및 냉각 방법
WO2014171631A1 (en) Air blower for fuel cell vehicle
CN210404992U (zh) 一种风力发电机通风散热系统
WO2018169316A1 (ko) 쿨링 팬 및 이를 구비한 시트 쿨링장치
WO2022030663A1 (ko) 통합 열관리용 리저버 탱크 및 이를 포함한 통합 열관리 모듈
WO2013176404A1 (ko) 터보 블로워장치
WO2022173219A1 (ko) 워터펌프 및 밸브 통합장치
WO2013176405A1 (ko) 터보 블로워장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875198

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20875198

Country of ref document: EP

Kind code of ref document: A1