WO2022220452A1 - 공기 압축기 - Google Patents

공기 압축기 Download PDF

Info

Publication number
WO2022220452A1
WO2022220452A1 PCT/KR2022/004534 KR2022004534W WO2022220452A1 WO 2022220452 A1 WO2022220452 A1 WO 2022220452A1 KR 2022004534 W KR2022004534 W KR 2022004534W WO 2022220452 A1 WO2022220452 A1 WO 2022220452A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
cooling
cooling passage
air compressor
motor unit
Prior art date
Application number
PCT/KR2022/004534
Other languages
English (en)
French (fr)
Inventor
최규성
김현칠
박건웅
박민규
박치용
성열우
양현섭
이종성
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220016032A external-priority patent/KR20220141221A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to CN202280017025.5A priority Critical patent/CN116888368A/zh
Priority to US18/276,668 priority patent/US20240125334A1/en
Priority to DE112022000802.4T priority patent/DE112022000802T5/de
Publication of WO2022220452A1 publication Critical patent/WO2022220452A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air compressor, and more particularly, to an air compressor integrally provided with a control unit.
  • a fuel cell vehicle refers to a vehicle in which hydrogen and oxygen are supplied to a humidifier, and electric energy generated through an electrochemical reaction, which is a reverse reaction of electrolysis of water, is supplied as a driving force of the vehicle. This is disclosed.
  • passenger fuel cell vehicles are equipped with a fuel cell stack of 80 kW class, and when the fuel cell stack is operated under pressurized conditions, the air supplied to the fuel cell stack is supplied at a high pressure of 1.2 to 3.0 bar.
  • An air compressor having a rotation speed of 5,000 to 100,000 rpm should be used.
  • a fuel cell vehicle typically includes a fuel cell stack that produces electricity, a humidifier that humidifies and supplies fuel and air to the fuel cell stack, a fuel supply that supplies hydrogen to the humidifier, and air that supplies air containing oxygen to the humidifier. It is composed of a supply unit and a cooling module for cooling the fuel cell stack.
  • the air supply unit consists of an air cleaner that filters foreign substances contained in the air, an air compressor that compresses and supplies the air filtered by the air cleaner, and a control box that controls the air compressor.
  • the above-mentioned air compressor compresses air sucked in from the outside using an impeller and then sends it out to the fuel cell stack through an exhaust port. At this time, the impeller and the shaft constituting the compression unit are driven by the rotational force of the motor.
  • the motor of this air compressor is powered through an inverter, and its operation is controlled.
  • the inverter includes a printed circuit board (PCB) on which electric elements such as transistors, capacitors, inductors, and the like, fixed resistors, diodes, and drivers are mounted.
  • PCB printed circuit board
  • An air compressor includes a housing; a rotating shaft disposed inside the housing; a compression unit connected to the rotating shaft to compress and discharge the inlet air; a motor unit for driving the rotating shaft; a control board for controlling the motor unit and a filter unit for filtering noise from external power and supplying it to the control panel, wherein the housing includes a first cooling passage for cooling the motor unit and a second cooling path for cooling the filter unit A cooling passage may be provided, wherein the first cooling passage and the second cooling passage communicate with each other.
  • the first cooling passage may be arranged in an axial direction of the motor unit.
  • the first cooling passage may be provided in plurality.
  • the plurality of first cooling flow paths are connected through a connection flow path, and the connection flow path may be characterized in that the heat exchange medium moving the first cooling flow path is arranged to move in a zigzag manner.
  • the second cooling passage may be arranged along a radial direction of the motor unit.
  • the second cooling passage may be characterized in that heat exchange with the configuration of the filter unit is performed.
  • the second cooling passage may be disposed inside the heat exchanger.
  • the heat exchanger may be characterized in that heat exchange is performed on at least one surface.
  • the second cooling passage may be disposed at the rear of the motor unit.
  • the first cooling passage and the second cooling passage may be connected in series.
  • a region of the second cooling passage and the first cooling passage may be disposed at an upper portion and a lower portion of the filter unit, respectively.
  • the filter unit may include a transistor, and the heat exchanger may perform heat exchange with the transistor.
  • the second cooling passage may include a 2-1 cooling passage and a 2-2 cooling passage.
  • the 2-1 cooling flow path is disposed above the filter unit, and the 2-2 cooling flow path is disposed below the filter unit.
  • one side of the heat exchanger performs heat exchange with the filter unit, and the other side of the heat exchanger performs heat exchange with the motor unit.
  • the heat exchanger may include a first heat exchange passage in which the 2-1 cooling passage is disposed and a second heat exchange passage in which the 2-2 cooling passage is disposed.
  • the housing includes an impeller housing and a driving housing, wherein the motor unit is disposed on the driving housing, accommodating parts are respectively formed on both upper sides of the motor part, and the filter part is disposed in the accommodating part can do.
  • At least one of the accommodating parts may be connected to the connector part.
  • the motor unit includes a rotor disposed outside the rotation shaft and a stator disposed outside the rotor, wherein the stator includes teeth and a shoe disposed at an end of the teeth, and A groove may be disposed at an end of the shoe facing it to be deflected from the centerline of the tooth.
  • a cooling cover disposed on the heat exchanger may be included, and the cooling cover and the heat exchanger may be provided integrally.
  • FIG. 1 is a cross-sectional view schematically illustrating an air compressor according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a housing and a filter unit according to an embodiment of the present invention.
  • FIG. 3 is a plan view of an air compressor according to an embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view of an air compressor according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a housing according to an embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view of a front portion of an air compressor according to an embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view of an air compressor front portion according to an embodiment of the present invention.
  • FIG. 8 is a view showing positions of a first cooling passage and a second cooling passage in a housing according to an embodiment of the present invention.
  • FIG. 9 is a view showing the shape of the first cooling passage of FIG. 8 .
  • FIG. 10 is a view showing an inflow/outflow structure of a heat exchange medium in FIG. 1 .
  • FIG. 11 is a view showing the internal structure of FIG. 1 .
  • FIG. 12 is a view showing a first embodiment of the cooling flow path of FIG. 1 .
  • FIG. 13 is a view showing the flow of the heat exchange medium of FIG. 12 .
  • FIG. 14 is a view showing a second embodiment of the cooling flow path of FIG. 1 .
  • FIG. 15 is a view showing the flow of the heat exchange medium of FIG. 14 .
  • 16 is a perspective view of a cover according to an embodiment of the present invention.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include the case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • FIG. 1 is a cross-sectional view schematically illustrating an air compressor according to an embodiment of the present invention.
  • the air compressor may include a housing 100 , a compression unit 200 , a motor unit 300 , a control board 410 , a filter unit 500 , and a bus bar assembly 600 .
  • the housing 100 forms an exterior, and the rotating shaft 101 , the compression unit 200 , and the motor unit 300 are disposed therein.
  • the housing 100 may include an impeller housing 110 and a driving housing 120 .
  • An inlet hole and an outlet port may be provided in the impeller housing 110 .
  • the compression unit 200 is disposed in the inner space of the impeller housing 110 . At this time, the air introduced through the inlet hole is compressed by the compression unit 200 and discharged to the outside through the outlet.
  • the driving housing 120 is connected to the rear end of the impeller housing 110 .
  • the term “rear” refers to a direction toward the motor unit 300 with respect to the compression unit 200, and “front” refers to a direction opposite to the rear.
  • the motor unit 300 is disposed in the inner space of the driving housing 120 .
  • a cooling air flow path may be formed inside the driving housing 120 .
  • the compression unit 200 is disposed at the front inside the housing 100 .
  • the motor unit 300 rotationally drives the rotation shaft 101 to provide a driving force to the compression unit 200 .
  • the motor unit 300 includes a rotor 310 and a stator 320 .
  • the stator 320 may include a driving coil.
  • the driving coil generates electromagnetic force when power is supplied from the outside. Accordingly, the rotor 310 may rotate by electromagnetic interaction between the rotor 310 and the stator 320 . Meanwhile, the rotor 310 has one side connected to the compression unit 200 to drive the compression unit 200 .
  • the driving coil is preferably operated by receiving three-phase AC power.
  • the stator 320 of the motor unit 300 is disposed on the outer surface of the rotor 310 .
  • the driving coil 330 is wound on the outer surface of the teeth 321 provided in the stator 320 .
  • An insulator 340 may be disposed between the teeth 321 and the driving coil 330 .
  • the end of the tooth 321 is disposed on the circumference to face the rotor (310).
  • a shoe 322 is disposed at an end of the tooth 321 facing the rotor 310 .
  • a groove 322a may be formed at an end of the shoe 322 . These grooves 322a can prevent the concentration of magnetic flux into the teeth 321 of the stator 320 when the rotor 310 rotates.
  • the groove 322a may be disposed to be deflected from the center line of the tooth 321 .
  • the control board 410 is equipped with circuits and elements for controlling the motor unit 300 .
  • the control board 410 may be a printed circuit board (PCB).
  • the control board 410 may be disposed on the rear side of the rotation shaft 101 and the motor unit 300 , and may be spaced apart from the rear end of the rotation shaft 101 .
  • the control board 410 is formed in the shape of a board.
  • the thickness direction of the control board 410 may be disposed to face the axial direction of the rotation shaft 101 .
  • the filter unit 500 receives external power and supplies it to the control board 410 .
  • the filter unit 500 supplies the control board 410 with noise of external power removed.
  • the filter unit 500 may be disposed radially outside the motor unit 300 .
  • the bus bar assembly 600 transmits the power of the control board 410 to the motor unit 300 . At this time, the power may be transmitted to the motor unit 300 through the bus bar assembly 600 through the filter unit 500 .
  • the bus bar assembly 600 may transmit the three-phase AC voltage converted by the filter unit 500 to the motor unit 300 .
  • FIG. 2 is a plan view of a housing and a filter unit according to an embodiment of the present invention
  • FIG. 3 is a plan view of an air compressor according to an embodiment of the present invention.
  • the driving housing 120 has a space in which the compression unit 200 and the motor unit 300 are disposed.
  • the driving housing 120 may form the filter unit accommodating unit 130 in which the filter unit 500 is disposed.
  • the filter unit 500 may include a transistor 510 , a capacitor assembly 520 , and a current sensor assembly 530 .
  • the transistor 510 converts a DC voltage into a driving voltage of the motor unit 300 through switching driving.
  • the transistor 510 is disposed on the rear side of the filter unit accommodating part 130 and is connected to the control board 410 .
  • the transistor 510 may be an insulated gate bipolar transistor (IGBT).
  • the transistor 510 includes six IGBTs, a first phase U high-side switching element, a first phase U low-side switching element, and a second phase V high-side switching element. ) a switching device, a second phase (Phase V) low side switching device, a third phase (Phase W) high side switching device, and a third phase (Phase W) low side switching device. .
  • the transistor 510 is connected to the capacitor assembly 520 and the current sensor assembly 530 .
  • the capacitor assembly 520 is electrically connected to an external power source to receive and store a high voltage DC current. Also, the capacitor assembly 520 is electrically connected to the transistor 510 and the bus bar assembly 600 .
  • the current sensor assembly 530 detects a current transmitted to the motor unit 300 .
  • the current sensor assembly 530 is electrically connected to the transistor 510 and the bus bar assembly 600 .
  • the transistor 510 , the capacitor assembly 520 , and the current sensor assembly 530 may be mounted in the filter unit accommodating part 130 .
  • the capacitor assembly 520 and the current sensor assembly 530 may be disposed in the first direction (X-axis direction).
  • the transistor 510 may be disposed in the second direction (Y-axis direction) with respect to the capacitor assembly 520 and the current sensor assembly 530 .
  • the first direction (X-axis direction) and the second direction (Y-axis direction) may be perpendicular, and the second direction (Y-axis direction) may be parallel to the axial direction.
  • the bus bar assembly 600 connects the motor unit 300 and the filter unit 500 .
  • the bus bar assembly 600 transmits power from the control board 410 to the motor unit 300 .
  • the bus bar assembly 600 may be electrically connected to the capacitor assembly 520 and the current sensor assembly 530 .
  • the bus bar assembly 600 may include a plurality of bus bars, at least one of the plurality of bus bars may be connected to the capacitor assembly 520 , and the other at least one of the plurality of bus bars may be connected to the current sensor assembly 530 . have.
  • the bus bar assembly 600 may be spaced apart from the transistor 510 in the second direction (Y-axis direction) with the capacitor assembly 520 and the current sensor assembly 530 interposed therebetween. In this case, the bus bar assembly 600 may pass through the filter unit accommodating unit 130 to be connected to the motor unit 300 .
  • a through hole 120H in which the bus bar assembly 600 is disposed may be formed in the driving housing 120 .
  • One end of the bus bar assembly 600 may be connected to the motor unit 300 with respect to the through hole 120H, and the other end may be connected to the filter unit 500 .
  • the air compressor having this structure minimizes the thickness of the housing between the motor unit 300 and the filter unit 500 and compactly arranges the components of the filter unit 500 in the filter unit accommodating unit 130 . , the size of the air compressor can be reduced.
  • the bus bar assembly 600 may include a bus bar 610 and a bus bar fixing member 620 .
  • the bus bar 610 is electrically connected to the motor unit 300 . At this time, the bus bar 610 supplies the AC voltage converted by the transistor 510 to the motor unit 300 .
  • the plurality of bus bars 610 include a U-phase bus bar 611 for transmitting AC power of a first phase (Phase U) and a V-phase bus bar 612 for transmitting AC power of a second phase (Phase V). and a W-phase bus bar 613 that transmits AC power of the third phase (Phase W).
  • the plurality of bus bars 610 may extend radially outward from the motor unit 300 .
  • the bus bar 610 may pass through the through hole 120H and be bent toward the filter unit 500 .
  • the U-phase bus bar 611 may be bent toward the capacitor assembly 520
  • the V-phase and W-phase bus bars 612 and 613 may be bent toward the current sensor assembly 530 .
  • Ends of the U-phase, V-phase, and W-phase bus bars 611 , 612 , and 613 may be exposed from the bus bar fixing member 620 while being spaced apart from each other.
  • at least one end of the plurality of bus bars 610 may be connected to the capacitor assembly 520 , and the rest of the plurality of bus bars 610 may be connected to the current sensor assembly 530 .
  • an assembly space can be secured between the bus bar 610 and the capacitor assembly 520 and the current sensor assembly 530 , and assembly is convenient. can increase
  • the bus bar fixing member 620 fixes the plurality of bus bars 610 to the housing 100 in an insulated state.
  • the bus bar fixing member 620 may include a grommet 621 and a guide member 622 .
  • the grommet 621 is disposed in the through hole 120H to fix the plurality of bus bars 610 passing through the through hole 120H.
  • the grommet 621 may have elasticity and may be made of an insulating material.
  • the grommet 621 may be a rubber material.
  • the guide member 612 fixes at least a portion of the plurality of bus bars 610 on the mounting surface 121 .
  • the guide member 612 may guide an end of each of the plurality of bus bars 610 to the capacitor assembly 520 or the current sensor assembly 530 .
  • the guide member 612 may be made of an insulating material.
  • the guide member 612 may be a plastic material.
  • the air compressor according to the present invention includes a plurality of cooling passages 700 for cooling the motor unit 300 .
  • the plurality of cooling passages 700 may extend in parallel with the axial direction of the rotation shaft ( 101 of FIG. 1 ).
  • the plurality of cooling passages 700 may be embedded in the housing 100 and disposed between the motor unit 300 and the filter unit 500 .
  • the plurality of cooling passages 700 are spaced apart from each other in the circumferential direction of the motor unit 300 so as to surround at least one side of the motor unit 300 to absorb heat generated by the motor unit 300 . have.
  • the air compressor according to the present invention may include a connector part 800 , a cooling cover 900 , a discharge resistor 1000 , a first fixing member 1100 , and a connection member 1200 .
  • the connector unit 800 may apply an external power to the filter unit 500 and transmit a signal detected by the filter unit 500 to the control board 410 .
  • the connector part 800 may include a first connector 810 and a second connector 820 .
  • the first connector 810 electrically connects the control board 410 and the current sensor assembly 530 .
  • it can be checked whether the second connector 820 and the capacitor assembly 520 are connected.
  • FIG. 4 is a partial cross-sectional view of an air compressor according to an embodiment of the present invention
  • FIG. 5 is a plan view of a housing according to an embodiment of the present invention
  • FIG. 6 is a partial cross-sectional view of a front part of the air compressor according to an embodiment of the present invention
  • 7 is a partial cross-sectional view of the front part of the air compressor according to an embodiment of the present invention
  • FIG. 8 is a view showing the positions of the first cooling passage and the second cooling passage in the housing according to the embodiment of the present invention.
  • 9 is a view showing the shape of the first cooling passage of FIG. 8
  • FIG. 10 is a view showing the inflow/outflow structure of the heat exchange medium in FIG. 1 , FIG.
  • FIG. 11 is a view showing the internal structure of FIG. 1
  • FIG. 12 1 is a view showing a first embodiment of the cooling flow path of FIG. 1
  • FIG. 13 is a diagram showing the flow of the heat exchange medium of FIG. 12
  • FIG. 14 is a view showing a second embodiment of the cooling flow path of FIG. 1
  • FIG. 15 is a view showing the flow of the heat exchange medium of FIG. 14 .
  • a cooling passage 700 passes between the motor unit ( 300 in FIG. 1 ) and the filter unit ( 500 in FIG. 1 ).
  • the cooling passage 700 absorbs heat from the motor unit 300 and the filter unit 500 .
  • any one selected from air, refrigerant, and cooling water may circulate as a heat exchange medium.
  • the cooling passage 700 may include a first cooling passage 710 and a second cooling passage 720 .
  • the first cooling passage 710 may cool the motor unit 300 .
  • the second cooling passage 720 may cool the filter unit 500 .
  • An inlet pipe 135 for introducing a heat exchange medium into the housing 100 and an outlet pipe 140 through which a heat exchange medium undergoing heat exchange in the housing 100 flows out may be disposed in the housing 100 .
  • the heat exchange medium introduced through the inlet pipe 135 may circulate in the first cooling passage 710 to cool the motor unit 300 .
  • the heat exchange medium moving the first cooling passage 710 may be disposed outside the motor unit 300 to absorb heat generated by the motor unit 300 .
  • a plurality of first cooling passages 710 may be provided and disposed in the axial direction of the motor unit 300 .
  • the first cooling passage 710 may be disposed so that the heat exchange medium moves along the pipe.
  • the first cooling passage 710 may have one end disposed toward the compression unit 200 , and the other end may be disposed toward the control board 410 .
  • a plurality of first cooling passages 710 may be disposed along the outer peripheral surface of the motor unit 300 , and the first cooling passages 710 may be connected through a connection passage 711 .
  • the connection passage 711 may alternately connect one side and the other side of the first connection passage 711 to connect the plurality of first cooling passages 710 in series.
  • the first cooling passage 710 and the connection passage 711 may be disposed so that the heat exchange medium moving the first cooling passage 710 moves in a zigzag manner.
  • the plurality of first cooling passages 710 may be disposed parallel to the neighboring first cooling passages 710 , and the connection passage 711 may be disposed to be perpendicular to the first cooling passage 710 .
  • the second cooling passage 720 may cool the controller 400 .
  • a heat exchanger 750 may be disposed in the movement line of the heat exchange medium moving the second cooling passage 720 .
  • the heat exchanger 750 may perform heat exchange with the filter unit 500 which is a component of the control unit 400 .
  • the second cooling passage 720 is disposed inside the heat exchanger 750 so that the heat exchange medium flowing in from the first cooling passage 710 moves inside the heat exchanger 750 , and conducts into contact with the heat exchanger 750 . heat can be absorbed.
  • the heat exchanger 750 may absorb heat from the transistor 510 with a high degree of heat generation.
  • a cooling cover 900 may be disposed above the heat exchanger 750 .
  • the heat exchanger 750 may absorb heat transferred through the cooling cover 900 .
  • the heat exchanger 750 may be provided integrally with the cooling cover 900 .
  • the cooling cover 900 Since the cooling cover 900 is disposed on the heat exchanger 750, the cooling cover 900 in a state in which the cooling cover 900 and the heat exchanger 750 are integrally provided can reduce the phenomenon that the cooling cover 900 is shaken even by vibration caused by an external force. .
  • the cooling cover 900 and the heat exchanger 750 may be integrally formed through injection.
  • the cooling cover 900 and the heat exchanger 750 may be coupled through an adhesive member such as an adhesive.
  • the second cooling passage 720 may be disposed at the rear of the motor unit 300 . Through this arrangement, it is possible to form a space inside the driving housing 120, and through this, it is possible to secure a space for accommodating the control parts.
  • first cooling passage 710 and the second cooling passage 720 are connected in series, and the first cooling passage 710 and the second cooling passage 720 may have overlapping regions.
  • One region of the second cooling passage 720 and the first cooling passage 710 may be disposed above and below the filter unit 500 , respectively.
  • the first cooling passage 710 may be disposed parallel to the axial direction of the motor unit 300 .
  • a plurality of first cooling passages 710 are disposed outside the motor unit 300 and are connected through a connection passage 711 .
  • the second cooling passage 720 is disposed to intersect the first cooling passage 710 , and the connection passage 711 to which the first cooling passage 710 is connected forms an area where the second cooling passage 720 overlaps. can be provided Cooling efficiency can be increased through these overlapping regions.
  • the second cooling passage 720 may include a 2-1 cooling passage 721 and a 2-2 cooling passage 722 .
  • the 2-1 cooling passage 721 may be disposed above the filter unit 500 , and the 2-2 cooling flow path 722 may be disposed below the filter unit 500 .
  • the second cooling passage 720 may have a branching structure inside the heat exchanger 750 .
  • the heat exchanger 750 includes a first heat exchange passage 751 in which the 2-1 cooling passage 721 is disposed and a second heat exchange passage 752 in which the 2-2 cooling passage 722 is disposed. may include
  • the heat exchange medium passing through the first cooling passage 710 flows into the heat exchanger 750 .
  • the heat exchange medium flowing into the heat exchanger 750 is branched from one side of the heat exchanger 750 and includes a first heat exchange passage 751 and a 2-2 cooling passage 722 in which the 2-1 cooling passage 721 is disposed. It moves to the second heat exchange passage 752 to be arranged.
  • the transistor 510 may be disposed between the first heat exchange passage 751 and the second heat exchange passage 752 .
  • the 2-1 cooling passage 721 and the 2-2 cooling passage 722 respectively disposed on the upper and lower portions of the transistor 510 absorb heat generated by the transistor 510, respectively, to increase cooling efficiency. have.
  • the upper surface of the 2-2 cooling passage 722 may contact the transistor 510 to cool the transistor 510 , and the lower surface may contact the motor unit 300 and generate in the motor unit 300 . Cooling efficiency can be improved by absorbing and cooling the generated heat.
  • the number of the second cooling passages 720 may reduce the overall temperature of the compression unit 200 by adjusting the differential pressure of the cooling passages of the entire compressor to the number of cooling passages passing through the transistor 510 .
  • the cooling flow path of the entire air compressor passes through the compression unit 200 to the control unit 400 and the filter unit 500 of the control unit 400 and the transistor ( 510) and the contact surface.
  • the first cooling passage 710 for cooling the compression unit 200 and the second cooling passage 720 for cooling the control unit 400 may be connected in series to have a unified cooling passage.
  • durability against heat of the transistor 510 may be increased through direct contact with the transistor 510 , which generates a lot of heat.
  • 16 is a perspective view of a cover according to an embodiment of the present invention.
  • the cooling cover 900 may include a body 910 , a fixing part 920 , a connector fixing part 930 , and a resistance fixing part 940 .
  • the body 910 may be disposed above the transistor 510 to cover at least a portion of an upper surface and a side surface of the transistor 510 . In this case, the body 910 may absorb heat generated by the transistor 510 to prevent overheating of the transistor 510 .
  • the body 910 may include at least one of aluminum, a synthetic resin material, and steel.
  • the fixing part 920 is plural, and each fixing part 920 may extend from the edge of the body 910 .
  • the plurality of fixing parts 920 may be formed integrally with the body 910 and made of the same material as the body 910 .
  • the plurality of fixing parts 920 may be coupled to the first housing ( 120 in FIG. 2 ) by fastening bolts.
  • the connector part fixing part 930 may be disposed on the upper surface 911 of the body 910 .
  • the connector part fixing part 930 may fix the connector part 800 passing over the upper side of the cooling cover 900 .
  • the connector fixing part 930 may protrude upward from the upper surface of the body 910 , and a fixing hole 931 for inserting the fixing clip 830 may be formed. At this time, the end of the fixing clip 830 may be inserted into the fixing hole 931 to be fixed in motion.
  • the resistor fixing part 940 may be coupled to the discharge resistor 1000 . More specifically, the resistor fixing part 940 may be coupled to the first fixing member 1100 for fixing the discharge resistor 1000 .
  • the plurality of resistance fixing units 940 may be provided, and the plurality of resistance fixing units 420 may be spaced apart from each other in a first direction (X-axis direction).
  • the discharge resistor 1000 may be disposed between the plurality of resistor fixing units 940 spaced apart from each other.
  • the separation distance D in the first direction (X-axis direction) between the plurality of resistor fixing parts 940 may be greater than the width of the discharge resistor 100 .
  • the cooling cover 900 may have a width WC1 in the first direction (X-axis direction) greater than a width WC2 in the second direction (Y-axis direction).
  • cooling passage 710: first cooling passage, 711: connection passage, 720: second cooling passage, 721: 2-1 cooling passage, 722: 2-2 cooling passage, 750: heat exchanger, 751: first heat exchange passage, 752: second heat exchange passage, 800: connector part, 900: cooling cover

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명의 일 측면에 따른 공기 압축기는 하우징, 상기 하우징 내부에 배치되는 회전축, 상기 회전축과 연결되어 유입 공기를 압축하여 토출하는 압축부, 상기 회전축을 구동하는 모터부, 상기 모터부를 제어하는 제어기판 및 외부 전력의 노이즈를 필터링하여 상기 제어기판에 공급하는 필터부를 포함하고, 상기 하우징은 상기 모터부를 냉각하기 위한 제1 냉각유로와 상기 필터부를 냉각하기 위한 제2 냉각유로를 구비하되, 상기 제1 냉각유로와 상기 제2 냉각유로는 연통되는 것을 특징으로 할 수 있다.

Description

공기 압축기
본 발명은 공기 압축기에 관한 것으로, 보다 상세하게는 제어부가 일체로 구비된 공기 압축기에 관한 것이다.
일반적으로 연료전지 차량은 수소와 산소가 가습기에 공급되어 물의 전기분해 역반응인 전기화학 반응을 통해 생성되는 전기 에너지를 차량의 구동력으로 공급하는 차량을 말하며, 한국특허등록 제0962903호에 일반적인 연료전지 차량이 개시되어 있다.
통상적으로 승용연료전지 자동차는 80㎾ 급의 연료전지스택을 탑재하고 있는데, 연료전지스택의 운전을 가압조건에서 할 경우 연료전지스택에 공급되는 공기는 1.2~3.0 bar의 고압으로 공급되기 때문에 이를 위해서 5천 내지 10만 rpm의 회전수를 갖는 공기압축기를 사용하여야 한다.
연료전지 차량은 통상적으로 전기를 생산하는 연료전지 스택과, 연료전지 스택에 연료와 공기를 가습하여 공급하는 가습기와, 가습기에 수소를 공급하는 연료공급부와, 가습기에 산소를 포함한 공기를 공급하는 공기공급부와, 연료전지 스택을 냉각하기 위한 냉각 모듈 등으로 구성된다.
공기공급부는 공기 중에 포함된 이물질을 여과하는 에어클리너와, 에어클리너에서 여과된 공기를 압축해 공급하는 공기 압축기, 공기 압축기를 제어하는 컨트롤 박스로 구성된다.
전술한 공기 압축기는 외부로부터 흡입한 공기를 임펠러를 이용하여 압축한 후 배기구를 통해 연료전지스택으로 송출한다. 이때, 압축부를 구성하는 임펠러 및 샤프트는 모터의 회전력에 의해 구동된다.
이러한 공기 압축기의 모터는 인버터를 통하여 전력이 공급되며, 작동이 제어된다. 인버터는 트랜지스터, 커패시터, 인덕터 등과, 고정저항, 다이오드, 드라이버 등의 전기소자가 실장된 인쇄회로기판(PCB)를 포함한다.
그러나 종래의 공기 압축기는 모터와 인버터의 발열에 의하여 내부가 과열되는 현상이 발생한다. 또한, 냉각수단을 마련하기 위한 별도의 공간이 요구되며 공기 압축기의 크기가 증대되는 문제가 있다.
본 발명의 일 측면에 따른 공기 압축기는 하우징; 상기 하우징 내부에 배치되는 회전축; 상기 회전축과 연결되어 유입 공기를 압축하여 토출하는 압축부; 상기 회전축을 구동하는 모터부; 상기 모터부를 제어하는 제어기판 및 외부 전력의 노이즈를 필터링하여 상기 제어기판에 공급하는 필터부;를 포함하고, 상기 하우징은 상기 모터부를 냉각하기 위한 제1 냉각유로와 상기 필터부를 냉각하기 위한 제2 냉각유로를 구비하되, 상기 제1 냉각유로와 상기 제2 냉각유로는 연통되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 냉각유로는 상기 모터부의 축방향으로 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 냉각유로는 복수로 마련되는 것을 특징으로 할 수 있다.
바람직하게는, 복수의 상기 제1 냉각유로는 연결유로를 통해 연결되며, 상기 연결유로는 상기 제1 냉각유로를 이동하는 열교환매체가 지그재그로 이동하도록 배치되는것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로는 상기 모터부의 반경 방향을 따라 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로는 상기 필터부의 구성과 열교환을 진행하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로는 열교환기 내부에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 열교환기는 적어도 일면에서 열교환이 진행되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로는 상기 모터부의 후방에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제1 냉각유로와 상기 제2 냉각유로는 직렬로 연결되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로와 상기 제1 냉각유로의 일영역은 상기 필터부의 상부 및 하부에 각각 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 필터부는 트랜지스터를 포함하며, 상기 열교환기는 상기 트랜지스터와 열교환이 진행되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2 냉각유로는 제2-1 냉각유로와 제2-2 냉각유로를 포함하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 제2-1 냉각유로는 상기 필터부의 상부에 배치되고, 상기 제2-2 냉각유로는 상기 필터부의 하부에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 열교환기의 일측은 상기 필터부와 열교환을 진행하며, 타측은 상기 모터부와 열교환을 진행하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 열교환기는 상기 제2-1 냉각유로가 배치되는 제1 열교환통로와 상기 제2-2 냉각유로가 배치되는 제2 열교환통로를 구비하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 하우징은 임펠러 하우징과 구동하우징을 포함하며, 상기 구동하우징에는 상기 모터부가 배치되되, 상기 모터부의 상부 양측에는 수용부가 각각 형성되고, 상기 수용부에는 상기 필터부가 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 수용부 중 적어도 하나는 커넥터부와 연결되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 모터부는 상기 회전축의 외측에 배치되는 회전자 및 상기 회전자의 외측에 배치되는 고정자를 포함하며, 상기 고정자는 티스와 티스의 단부에 배치되는 슈를 포함하며, 상기 회전자를 바라보는 상기 슈의 단부에는 홈이 상기 티스의 중심선에서 편향되도록 배치될 수 있다.
바람직하게는, 상기 열교환기에 배치되는 냉각커버를 포함하고, 상기 냉각커버와 상기 열교환기는 일체로 마련될 수 있다.
실시예에 따르면, 냉각 유로와 필터부 사이의 배치 관계를 개선하여 내부의 열교환 효율을 높이고 공기 압축기의 사이즈를 소형화할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 공기 압축기를 개략적으로 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 하우징과 필터부의 평면도이다.
도 3은 본 발명의 일 실시예에 따른 공기 압축기의 평면도이다.
도 4는 본 발명의 일 실시예예 따른 공기 압축기의 부분 단면도이다.
도 5는 본 발명의 일 실시예예 따른 하우징의 평면도이다.
도 6은 본 발명의 일 실시예에 따른 공기 압축기의 전방부의 부분 단면도이다.
도 7은 본 발명의 일 실시예에 따른 공기 압축기 전방부에 대한 부분 단면도이다.
도 8은 본 발명의 일 실시예예 따른 하우징에 제1 냉각유로와 제2 냉각유로의 위치를 표시한 도면이다.
도 9는 도 8의 제1 냉각유로의 형상을 나타내는 도면이다.
도 10은 도 1에서 열교환매체의 유출입 구조를 나타내는 도면이다.
도 11은 도 1의 내부 구조를 나타내는 도면이다.
도 12는 도 1의 냉각유로의 제1 실시예를 나타내는 도면이다.
도 13은 도 12의 열교환매체의 흐름을 나타내는 도면이다.
도 14는 도 1의 냉각유로의 제2 실시예를 나타내는 도면이다.
도 15는 도 14의 열교환매체의 흐름을 나타내는 도면이다.
도 16은 본 발명의 일 실시예에 따른 커버의 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)" 로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 16은, 본 발명을 개념적으로 명확히 이해하기 위하여, 주요 특징 부분만을 명확히 도시한 것이며, 그 결과 도해의 다양한 변형이 예상되며, 도면에 도시된 특정 형상에 의해 본 발명의 범위가 제한될 필요는 없다.
도 1은 본 발명의 일 실시예에 따른 공기 압축기를 개략적으로 도시한 단면도이다.
도 1을 참조하면, 공기 압축기는 하우징(100), 압축부(200), 모터부(300), 제어기판(410), 필터부(500) 및 버스바 어셈블리(600)를 포함할 수 있다.
하우징(100)은 외관을 형성하고, 내부에 회전축(101), 압축부(200) 및 모터부(300)가 배치된다. 하우징(100)은 임펠러 하우징(110)과 구동 하우징(120)을 포함할 수 있다.
임펠러 하우징(110)에는 유입홀 및 토출구가 마련될 수 있다. 또한, 임펠러 하우징(110)의 내부공간에는 압축부(200)가 배치된다. 이때, 유입홀을 통하여 유입된 공기는 압축부(200)에 의하여 압축되고, 토출구를 통하여 외부로 배출된다.
구동 하우징(120)은 임펠러 하우징(110)의 후단부에 연결된다. 여기서, 후방이라 함은 압축부(200)를 기준으로 모터부(300)를 향하는 방향이고, 전방이라 함은 후방의 반대 방향을 의미한다. 이때, 구동 하우징(120)의 내부공간에는 모터부(300)가 배치된다. 또한, 구동 하우징(120)의 내측으로 냉각 공기 유로가 형성될 수 있다.
압축부(200)는 하우징(100) 내부의 전방에 배치된다.
모터부(300)는 회전축(101)을 회전 구동하여, 압축부(200)에 구동력을 제공하는 역할을 한다. 이때, 모터부(300)는 회전자(310)와 고정자(320)를 포함한다. 고정자(320)는 구동 코일을 포함할 수 있다. 구동 코일은 외부로부터 전원이 공급되면 전자기력을 발생시킨다. 이에, 회전자(310)와 고정자(320) 사이의 전자기적 상호 작용에 의하여 상기 회전자(310)가 회전할 수 있다. 한편, 회전자(310)는 일측이 상기 압축부(200)에 연결되어, 압축부(200)를 구동시킨다. 여기서, 구동 코일은 3상 교류 전원을 공급받아 동작하는 것이 바람직하다.
도 1과 도 6을 참조하면, 모터부(300)의 고정자(320)는 회전자(310)의 외측면에 배치된다. 고정자(320)에 구비되는 티스(teeth, 321)의 외측면에는 구동코일(330)이 감기도록 배치된다. 티스(321)와 구동코일(330)의 사이는 인슐레이터(340)가 배치될 수 있다.
이때, 티스(321)의 단부는 회전자(310)를 향하도록 원주상에 배치된다. 회전자(310)를 바라보는 티스(321)의 단부에는 슈(322)가 배치된다.
이때, 슈(322)의 단부에는 홈(322a)이 형성될 수 있다. 이러한 홈(322a)은 회전자(310)가 회전시 고정자(320)의 티스(321) 내부로 자속이 집중되는 현상을 방지할 수 있다.
일실시예로, 홈(322a)은 티스(321)의 중심선에서 편향되도록 배치될 수 있다.
제어기판(410)은 모터부(300)를 제어하기 위한 회로 및 소자가 장착된다. 이때, 제어기판(410)은 PCB(PRINTED CIRCUIT BOARD) 일 수 있다. 제어기판(410)은 상기 회전축(101)과 상기 모터부(300)의 후측에 배치될 수 있으며, 상기 회전축(101)의 후단으로부터 이격될 수 있다. 제어기판(410)은 기판의 형상으로 형성된다. 제어기판(410)의 두께 방향은 상기 회전축(101)의 축방향을 향하도록 배치될 수 있다.
필터부(500)는 외부 전력을 공급받아 상기 제어기판(410)에 공급한다. 필터부(500)는 외부 전력의 노이즈를 제거한 상태로 제어기판(410)에 공급한다. 이때, 필터부(500)는 모터부(300)의 반경방향 외측에 배치될 수 있다.
버스바 어셈블리(600)는 상기 제어기판(410)의 전력을 상기 모터부(300)에 전달한다. 이때, 상기 전력은 상기 필터부(500)를 거쳐 상기 버스바 어셈블리(600)를 통하여 모터부(300)로 전달될 수 있다. 버스바 어셈블리(600)는 필터부(500)에서 변환된 3상 교류 전압을 모터부(300)에 전달할 수 있다.
도 2는 본 발명의 일 실시예에 따른 하우징과 필터부의 평면도이고, 도 3은 본 발명의 일 실시예에 따른 공기 압축기의 평면도이다.
도 2 및 도 3을 참조하면, 구동 하우징(120)은 압축부(200), 모터부(300)가 배치되는 공간을 가진다. 그리고, 구동 하우징(120)은 필터부(500)가 배치되는 필터부 수용부(130)를 형성할 수 있다.
필터부(500)는 트랜지스터(510), 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)를 포함할 수 있다.
트랜지스터(510)는 스위칭 구동을 통하여 직류 전압을 모터부(300)의 구동 전압으로 변환한다. 상기 트랜지스터(510)는 상기 필터부 수용부(130)의 후측에 배치되어, 제어기판(410)과 연결된다. 이때, 트랜지스터(510)는 절연 게이트 양극성 트랜지스터(Insulated Gate Bipolar Transistor, IGBT)일 수 있다.
트랜지스터(510)는 6개의 IGBT를 포함하고, 제1 상(Phase U) 상측(High) 스위칭 소자, 제1 상(Phase U) 하측(Low) 스위칭 소자, 제2 상(Phase V) 상측(High) 스위칭 소자, 제2 상(Phase V) 하측(Low) 스위칭 소자, 제3 상(Phase W) 상측(High) 스위칭 소자, 제3 상(Phase W) 하측(Low) 스위칭 소자로 이루질 수 있다. 트랜지스터(510)는 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)와 연결된다.
캐패시터 어셈블리(520)는 외부 전원과 전기적으로 연결되어 고전압 DC 전류를 공급받아 저장한다. 또한, 캐패시터 어셈블리(520)는 상기 트랜지스터(510) 및 버스바 어셈블리(600)와 전기적으로 연결된다.
전류센서 어셈블리(530)는 모터부(300)로 전달되는 전류를 검출한다. 전류센서 어셈블리(530)는 상기 트랜지스터(510) 및 상기 버스바 어셈블리(600)와 전기적으로 연결된다.
이러한 트랜지스터(510), 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)는 필터부 수용부(130)에 장착될 수 있다. 이때, 캐패시터 어셈블리(520)와 전류센서 어셈블리(530)는 제1 방향(X축 방향)으로 배치될 수 있다. 그리고, 트랜지스터(510)는 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)에 대하여 제2 방향(Y축 방향)으로 배치될 수 있다. 이때, 제1 방향(X축 방향)과 제2 방향(Y축 방향)은 수직을 이루고, 제2 방향(Y축 방향)은 축방향과 평행할 수 있다.
버스바 어셈블리(600)는 모터부(300)와 필터부(500)를 연결한다. 버스바 어셈블리(600)는 제어기판(410)의 전력을 상기 모터부(300)에 전달한다. 이때, 버스바 어셈블리(600)는 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)와 전기적으로 연결될 수 있다. 버스바 어셈블리(600)는 복수의 버스바를 포함하고, 복수의 버스바 중 적어도 하나는 캐패시터 어셈블리(520)와 접속되고, 복수의 버스바 중 다른 적어도 하나는 전류센서 어셈블리(530)와 접속될 수 있다.
버스바 어셈블리(600)는 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530)를 사이에 두고, 트랜지스터(510)와 제2 방향(Y축 방향)으로 이격될 수 있다. 이때, 버스바 어셈블리(600)는 필터부 수용부(130)를 통과하여 상기 모터부(300)와 연결될 수 있다.
구동 하우징(120)에는 버스바 어셈블리(600)가 배치되는 관통홀(120H)이 형성될 수 있다. 버스바 어셈블리(600)는 상기 관통홀(120H)을 기준으로 일측 단부가 모터부(300)와 연결되고, 다른 일측 단부는 상기 필터부(500)와 연결될 수 있다.
이러한 구조의 공기 압축기는, 모터부(300)와 상기 필터부(500) 사이의 하우징 두께를 최소화하고, 필터부(500)의 부품을 필터부 수용부(130) 내에 컴팩트(Compact)하게 배치함으로써, 공기 압축기의 사이즈를 줄일 수 있다.
버스바 어셈블리(600)는 버스바(610)와 버스바 고정부재(620)를 포함할 수 있다.
버스바(610)는 모터부(300)와 전기적으로 연결된다. 이때, 상기 버스바(610)는 트랜지스터(510)에서 변환된 교류 전압을 모터부(300)에 공급한다. 버스바(610)는 복수개 일수 있다. 복수의 버스바(610)는 제1 상(Phase U)의 교류 전원을 전달하는 U상 버스바(611)와, 제2 상(Phase V)의 교류 전원을 전달하는 V상 버스바(612)와, 제3 상(Phase W)의 교류 전원을 전달하는 W상 버스바(613)를 포함할 수 있다.
복수의 버스바(610)는 모터부(300)에서 반경방향 외측으로 연장될 수 있다. 그리고, 버스바(610)는 상기 관통홀(120H)을 통과하여 필터부(500)를 향하여 절곡될 수 있다. 이때, U상 버스바(611)는 캐패시터 어셈블리(520) 측을 향하여 절곡되고, V상 및 W 상 버스바(612,613)는 전류센서 어셈블리(530)를 측을 향하여 절곡될 수 있다.
U상, V 상 및 W 상 버스바(611,612,613)의 단부는 서로 이격된 상태로 버스바 고정부재(620)로부터 노출될 수 있다. 이때, 복수의 버스바(610) 중 적어도 하나의 단부는 캐패시터 어셈블리(520)와 접속되고, 복수의 버스바(610) 중 나머지는 전류센서 어셈블리(530)와 접속될 수 있다.
실시예에 따르면, 버스바(610)의 단부가 양방향으로 분기되어 배치됨으로써, 버스바(610)와 캐패시터 어셈블리(520) 및 전류센서 어셈블리(530) 사이에 조립 공간을 확보할 수 있으며, 조립 편의성을 높일 수 있다.
버스바 고정부재(620)는 복수의 버스바(610)를 절연된 상태로 하우징(100)에 고정시킨다. 이를 위해, 버스바 고정부재(620)는 그로멧(621)과 가이드부재(622)를 포함할 수 있다.
그로멧(621)은 관통홀(120H)에 배치되어, 관통홀(120H)을 통과하는 복수의 버스바(610)을 고정시켜 준다. 이때 그로멧(621)은 탄성을 가질 수 있으며, 절연성 소재일 수 있다. 바람직하게는, 그로멧(621)은 고무 소재일 수 있다.
가이드부재(612)는 복수의 버스바(610)의 적어도 일부를 상기 장착면(121) 상에 고정시켜 준다. 이때, 가이드부재(612)는 복수의 버스바(610) 각각의 단부를 캐패시터 어셈블리(520) 또는 상기 전류센서 어셈블리(530)로 가이드할 수 있다. 가이드부재(612)는 절연성 소재일 수 있다. 바람직하게는, 상기 가이드부재(612)는 플라스틱 소재일 수 있다.
실시예에 따르면, 본 발명에 따른 공기 압축기는 상기 모터부(300)를 냉각하는 복수의 냉각유로(700)를 포함한다. 상기 복수의 냉각유로(700)는 상기 회전축(도 1의 101)의 축방향과 나란하게 연장될 수 있다. 상기 복수의 냉각유로(700)는 상기 하우징(100)에 내장되어, 상기 모터부(300)와 상기 필터부(500)의 사이에 배치될 수 있다. 이때, 복수의 냉각유로(700)는 상기 모터부(300)의 적어도 일측을 둘러싸도록 상기 모터부(300)의 원주 방향으로 이격 배치되어, 상기 모터부(300)에서 발생하는 열을 흡수할 수 있다.
도 3을 참조하면, 본 발명에 따른 공기 압축기는 커넥터부(800), 냉각커버(900), 방전저항(1000), 제1 고정부재(1100) 및 연결부재(1200)를 포함할 수 있다.
커넥터부(800)는 필터부(500)에 외부 전원을 인가하고 필터부(500)에서 감지된 신호를 제어기판(410)으로 송출할 수 있다. 커넥터부(800)는 제1 커넥터(810) 및 제2 커넥터(820)를 포함할 수 있다.
제1 커넥터(810)는 제어기판(410) 및 전류센서 어셈블리(530)를 전기적으로 연결시킨다. 그리고 제1 커넥터(810)는 일부분이 제2 커넥터(820)와 연결되어 제2 커넥터(820)와 캐패시터 어셈블리(520)의 연결 여부를 확인할 수 있다.
도 4는 본 발명의 일 실시예예 따른 공기 압축기의 부분 단면도이고, 도 5는 본 발명의 일 실시예예 따른 하우징의 평면도이며, 도 6은 본 발명의 일 실시예에 따른 공기 압축기의 전방부의 부분 단면도이고, 도 7은 본 발명의 일 실시예에 따른 공기 압축기 전방부에 대한 부분 단면도이며, 도 8은 본 발명의 일 실시예예 따른 하우징에 제1 냉각유로와 제2 냉각유로의 위치를 표시한 도면이고, 도 9는 도 8의 제1 냉각유로의 형상을 나타내는 도면이고, 도 10은 도 1에서 열교환매체의 유출입 구조를 나타내는 도면이고, 도 11은 도 1의 내부 구조를 나타내는 도면이고, 도 12는 도 1의 냉각유로의 제1 실시예를 나타내는 도면이고, 도 13은 도 12의 열교환매체의 흐름을 나타내는 도면이고, 도 14는 도 1의 냉각유로의 제2 실시예를 나타내는 도면이고, 도 15는 도 14의 열교환매체의 흐름을 나타내는 도면이다.
도 4 내지 도 15를 참조하면, 냉각유로(700)는 상기 모터부(도 1의 300)와 상기 필터부(도 1 의 500) 사이를 지난다. 냉각유로(700)는 모터부(300)와 필터부(500)의 열을 흡수한다.
냉각유로(700)의 내부에는 공기, 냉매 및 냉각수 중 선택된 어느 하나가 열교환매체로 순환할 수 있다. 냉각유로(700)는 복수개이며 복수의 냉각유로(700)는 원주방향을 따라 이격 배치될 수 있다.
냉각유로(700)는 제1 냉각유로(710) 및 제2 냉각유로(720)를 포함할 수 있다. 제1 냉각유로(710)는 상기 모터부(300)를 냉각할 수 있다. 제2 냉각유로(720)는 필터부(500)를 냉각할 수 있다.
하우징(100)에는 열교환매체가 유입되기 위한 유입배관(135)과 하우징(100) 내부에서 열교환이 진행된 열교환매체가 유출되기 위한 유출배관(140)이 배치될 수 있다.
제1 냉각유로(710)에는 유입배관(135)을 통해 유입되는 열교환매체가 순환하여 모터부(300)를 냉각할 수 있다. 제1 냉각유로(710)을 이동하는 열교환매체는 모터부(300)의 외측에 배치되어 모터부(300)에서 발생되는 열을 흡수할 수 있다.
제1 냉각유로(710)는 복수로 마련되어 모터부(300)의 축방향으로 배치될 수 있다. 이때, 제1 냉각유로(710)는 배관을 따라 열교환매체가 이동하도록 배치될 수 있다.
일실시예로, 제1 냉각유로(710)는 일단부가 압축부(200)를 향하여 배치되고, 타단부가 제어기판(410)을 향하도록 배치될 수 있다.
제1 냉각유로(710)는 모터부(300)의 외주면을 따라 복수로 배치될 수 있으며, 제1 냉각유로(710)는 연결유로(711)를 통해 연결될 수 있다. 연결유로(711)는 복수의 제1 냉각유로(710)를 직렬로 연결하기 위해 제1 연결유로(711)의 일측과 타측을 번갈아 가면서 연결할 수 있다. 모터부(300) 전체를 효율적으로 냉각하기 위해 제1 냉각유로(710)를 이동하는 열교환매체가 지그재그로 이동하도록 제1 냉각유로(710)와 연결유로(711)가 배치될 수 있다.
일실시예로, 복수의 제1 냉각유로(710)는 이웃하는 제1 냉각유로(710)와 평행하게 배치될 수 있으며, 연결유로(711)는 제1 냉각유로(710)와 직교하도록 배치될 수 있다.
제2 냉각유로(720)는 제어부(400)를 냉각할 수 있다. 제2 냉각유로(720)를 이동하는 열교환매체의 이동라인에는 열교환기(750)가 배치될 수 있다. 열교환기(750)는 제어부(400)의 구성인 필터부(500)와 열교환이 진행될 수 있다. 제2 냉각유로(720)는 열교환기(750) 내부에 배치되어 제1 냉각유로(710)에서 유입되는 열교환매체가 열교환기(750) 내부를 이동하게 되며, 열교환기(750)와 접촉으로 전도되는 열을 흡수할 수 있다.
일실시예로, 열교환기(750)는 발열의 정도가 심한 트랜지스터(510)의 열을 흡수할 수 있다.
열교환기(750)의 상부에는 냉각커버(900)가 배치될 수 있다. 이러한 열교환기(750)는 냉각커버(900)를 통해 전달되는 열을 흡수할 수 있다.
다시 도 11을 참조하면, 열교환기(750)는 냉각커버(900)와 일체로 마련될 수 있다.
냉각커버(900)가 열교환기(750)에 배치되므로, 냉각커버(900)와 열교환기(750)가 일체로 마련된 상태에서 냉각커버(900)는 외력에 의한 진동에도 흔들리는 현상이 저감될 수 있다. 냉각커버(900)와 열교환기(750)는 사출을 통해서도 일체로 형성될 수 있다. 또한, 냉각커버(900)와 열교환기(750)는 접착제 등의 접착부재를 통해 결합될 수 있다.
제2 냉각유로(720)는 모터부(300)의 후방에 배치될 수 있다. 이러한 배치구성을 통해 구동 하우징(120) 내부에 공간을 형성할 수 있으며, 이를 통해 제어부품을 수용할 수 있는 공간을 확보할 수 있다.
또한, 제1 냉각유로(710)와 제2 냉각유로(720)가 직렬로 연결되며, 제1 냉각유로(710)와 제2 냉각유로(720)는 중첩되는 영역을 구비할 수 있다.
제2 냉각유로(720)와 제1 냉각유로(710)의 일영역은 필터부(500)의 상부 및 하부에 각각 배치될 수 있다.
제1 냉각유로(710)는 모터부(300)의 축방향과 나란하게 배치될 수 있다. 제1 냉각유로(710)는 모터부(300) 외측에 복수로 배치되어 연결유로(711)를 통해 연결된다. 제2 냉각유로(720)는 제1 냉각유로(710)와 교차되도록 배치되는 바, 제1 냉각유로(710)가 연결되는 연결유로(711)는 제2 냉각유로(720)가 중첩되는 영역을 구비할 수 있다. 이러한 중첩되는 영역을 통해 냉각효율을 증대할 수 있다.
제2 냉각유로(720)는 제2-1 냉각유로(721)와 제2-2 냉각유로(722)를 포함할 수 있다.
제2-1 냉각유로(721)는 필터부(500)의 상부에 배치되고, 제2-2 냉각유로(722)는 필터부(500)의 하부에 배치될 수 있다.
이러한 제2 냉각유로(720)는 열교환기(750) 내부에서 분기되는 구조를 구비할 수 있다. 일실시예로, 열교환기(750)는 제2-1 냉각유로(721)가 배치되는 제1 열교환통로(751)와 제2-2 냉각유로(722)가 배치되는 제2 열교환통로(752)를 포함할 수 있다.
제1 냉각유로(710)를 통과한 열교환매체는 열교환기(750)로 유입된다. 열교환기(750)로 유입되는 열교환매체는 열교환기(750) 일측에서 분기되어 제2-1 냉각유로(721)가 배치되는 제1 열교환통로(751)와 제2-2 냉각유로(722)가 배치되는 제2 열교환통로(752)로 이동하게 된다.
일실시예로, 제1 열교환통로(751)와 제2 열교환통로(752) 사이에는 트랜지스터(510)가 배치될 수 있다. 트랜지스터(510)의 상부와 하부에 각각 배치되는 제2-1 냉각유로(721)와 제2-2 냉각유로(722)는 트랜지스터(510)에서 발생되는 열을 각각 흡수하여 냉각효율을 증대할 수 있다.
또한, 제2-2 냉각유로(722)의 상측면은 트랜지스터(510)에 접촉하여 트랜지스터(510)를 냉각할 수 있으며, 하측면은 모터부(300)와 접촉하여 모터부(300)에서 발생되는 열을 흡수하여 냉각시킴으로 냉각 효율을 향상시킬 수 있다.
제2 냉각유로(720)의 개수는 압축기 전체의 냉각유로의 차압을 트랜지스터(510)를 지나는 냉각유로의 개수로 조절하여 압축부(200) 전체의 온도를 감소시킬 수 있다.
도 12 내지 도 15을 참조하면, 공기 압축기 전체의 냉각유로는 압축부(200)를 타고 제어부(400)로 넘어가 제어부(400)의 필터부(500), 필터부(500)의 구성 중 트랜지스터(510)와 접촉면을 된다. 이때, 압축부(200)를 냉각시키는 제1 냉각유로(710)와 제어부(400)를 냉각하는 제2 냉각유로(720)를 직렬로 연결하여 일원화된 냉각유로를 가질 수 있다.
또한, 발열이 많은 트랜지스터(510)와 직접 접촉을 통해 트랜지스터(510)의 발열에 대한 내구도를 증대할 수 있다.
도 12 및 도 13에 나타나는 열교환기(750)가 트랜지스터(510)의 일면을 냉각하도록 배치되는 경우, 일면만 냉각하더라도 중첩 영역이 구비되어 트랜지스터의 냉각을 위한 보증온도를 만족하는 바, 원가 절감 및 조립성을 향상시킬 수 있다.
도 14 및 도 15에 나타나는 열교환기(750)가 트랜지스터(510)의 양면을 냉각하도록 배치되는 경우 일면을 냉각하는 경우와 비교할 때, 양면을 냉각하는 경우가 냉각효율이 더욱 증대되는 것을 확인할 수 있다.
도 16은 본 발명의 일 실시예에 따른 커버의 사시도이다.
도 16을 참조하면, 상기 냉각커버(900)는 몸체(910), 고정부(920), 커넥터부 고정부(930) 및 저항 고정부(940)를 포함할 수 있다.
상기 몸체(910)는 상기 트랜지스터(510)의 상측에 배치되어, 상기 트랜지스터(510)의 상부면 및 측면의 적어도 일부를 덮을 수 있다. 이때, 상기 몸체(910)는 상기 트랜지스터(510)에서 발생하는 열을 흡수하여 상기 트랜지스터(510)의 과열을 방지할 수 있다. 상기 몸체(910)는 알루미늄, 합성 수지재 및 스틸(Steel) 중 적어도 하나를 포함할 수 있다.
상기 고정부(920)는 복수 개이며, 각각의 상기 고정부(920)는 상기 몸체(910)의 가장자리에서 연장될 수 있다. 상기 복수의 고정부(920)는 상기 몸체(910)와 일체로 형성되어, 상기 몸체(910)와 동일한 소재로 이루어질 수 있다. 이때, 상기 복수의 고정부(920)는 상기 제1 하우징(도 2의 120)에 체결 볼트에 의하여 결합될 수 있다.
상기 커넥터부 고정부(930)는 상기 몸체(910)의 상면(911)에 배치될 수 있다. 그리고, 상기 커넥터부 고정부(930)는 상기 냉각커버(900)의 상측을 지나는 커넥터부(800)를 고정시켜 줄 수 있다. 상기 커넥터부 고정부(930)는 상기 몸체(910)의 상면에서 상향으로 돌출되어, 상기 고정클립(830)이 삽입되기 위한 고정홀(931)이 형성될 수 있다. 이때, 상기 고정클립(830)의 단부는 상기 고정홀(931)에 삽입되어 움직임이 고정될 수 있다.
상기 저항 고정부(940)는 상기 방전저항(1000)과 체결될 수 있다. 보다 구체적으로는, 상기 저항 고정부(940)는 상기 방전저항(1000)을 고정시키기 위한 상기 제1 고정부재(1100)와 체결될 수 있다.
상기 저항 고정부(940)는 복수개이며, 상기 복수의 저항 고정부(420)는 제1 방향(X축 방향)으로 이격될 수 있다. 이때, 상기 방전저항(1000)은 상기 복수의 저항 고정부(940)의 이격된 사이에 배치될 수 있다. 이때, 상기 복수의 저항 고정부(940) 사이의 제1 방향(X축 방향) 이격거리(D)는 상기 방전저항(100)의 폭보다 클 수 있다.
상기 냉각커버(900)의 장방형의 부재일 수 있다. 상기 냉각커버(900)는 제1 방향(X축 방향) 폭(WC1)이 제2 방향(Y축 방향) 폭(WC2)보다 클 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
<부호의 설명>
100 : 하우징, 101 : 회전축, 110 : 임펠러 하우징, 120 : 구동 하우징, 135 : 유입배관, 140 : 유출배관, 200 : 압축부, 300 : 모터부, 310 : 회전자, 320 : 고정자, 400 : 제어부, 410 : 제어기판, 500 : 필터부, 510 : 트랜지스터, 600 : 버스바 어셈블리, 620 : 고정수단, 700 : 냉각유로, 710 : 제1 냉각유로, 711 : 연결유로, 720: 제2 냉각유로, 721 : 제2-1 냉각유로, 722 : 제2-2 냉각유로, 750 : 열교환기, 751 : 제1 열교환통로, 752 : 제2 열교환통로, 800 : 커넥터부, 900 : 냉각커버

Claims (20)

  1. 하우징;
    상기 하우징 내부에 배치되는 회전축;
    상기 회전축과 연결되어 유입 공기를 압축하여 토출하는 압축부;
    상기 회전축을 구동하는 모터부;
    상기 모터부를 제어하는 제어기판 및
    외부 전력의 노이즈를 필터링하여 상기 제어기판에 공급하는 필터부;
    를 포함하고,
    상기 하우징은 상기 모터부를 냉각하기 위한 제1 냉각유로와 상기 필터부를 냉각하기 위한 제2 냉각유로를 구비하되, 상기 제1 냉각유로와 상기 제2 냉각유로는 연통되는 것을 특징으로 하는 공기 압축기.
  2. 제1 항에 있어서,
    상기 제1 냉각유로는 상기 모터부의 축방향으로 배치되는 것을 특징으로 하는 공기 압축기.
  3. 제1 항에 있어서,
    상기 제1 냉각유로는 복수로 마련되는 것을 특징으로 하는 공기 압축기.
  4. 제3 항에 있어서,
    복수의 상기 제1 냉각유로는 연결유로를 통해 연결되며,
    상기 연결유로는 상기 제1 냉각유로를 이동하는 열교환매체가 지그재그로 이동하도록 배치되는것을 특징으로 하는 공기 압축기.
  5. 제1 항에 있어서,
    상기 제2 냉각유로는 상기 모터부의 반경 방향을 따라 배치되는 것을 특징으로 하는 공기 압축기.
  6. 제5 항에 있어서,
    상기 제2 냉각유로는 상기 필터부의 구성과 열교환을 진행하는 것을 특징으로 하는 공기 압축기.
  7. 제6 항에 있어서,
    상기 제2 냉각유로는 열교환기 내부에 배치되는 것을 특징으로 하는 공기 압축기.
  8. 제7 항에 있어서,
    상기 열교환기는 적어도 일면에서 열교환이 진행되는 것을 특징으로 하는 공기 압축기.
  9. 제5 항에 있어서,
    상기 제2 냉각유로는 상기 모터부의 후방에 배치되는 것을 특징으로 하는 공기 압축기.
  10. 제1 항에 있어서,
    상기 제1 냉각유로와 상기 제2 냉각유로는 직렬로 연결되는 것을 특징으로 하는 공기 압축기.
  11. 제10 항에 있어서,
    상기 제2 냉각유로와 상기 제1 냉각유로의 일영역은 상기 필터부의 상부 및 하부에 각각 배치되는 것을 특징으로 하는 공기 압축기.
  12. 제8 항에 있어서,
    상기 필터부는 트랜지스터를 포함하며,
    상기 열교환기는 상기 트랜지스터와 열교환이 진행되는 것을 특징으로 하는 공기 압축기.
  13. 제8 항에 있어서,
    상기 제2 냉각유로는 제2-1 냉각유로와 제2-2 냉각유로를 포함하는 것을 특징으로 하는 공기 압축기.
  14. 제13 항에 있어서,
    상기 제2-1 냉각유로는 상기 필터부의 상부에 배치되고, 상기 제2-2 냉각유로는 상기 필터부의 하부에 배치되는 것을 특징으로 하는 공기 압축기.
  15. 제14 항에 있어서,
    상기 열교환기의 일측은 상기 필터부와 열교환을 진행하며, 타측은 상기 모터부와 열교환을 진행하는 것을 특징으로 하는 공기 압축기.
  16. 제15 항에 있어서,
    상기 열교환기는 상기 제2-1 냉각유로가 배치되는 제1 열교환통로와 상기 제2-2 냉각유로가 배치되는 제2 열교환통로를 구비하는 것을 특징으로 하는 공기 압축기.
  17. 제1 항에 있어서,
    상기 하우징은 임펠러 하우징과 구동하우징을 포함하며,
    상기 구동하우징에는 상기 모터부가 배치되되,
    상기 모터부의 상부 양측에는 수용부가 각각 형성되고, 상기 수용부에는 상기 필터부가 배치되는 것을 특징으로 하는 공기 압축기.
  18. 제17 항에 있어서,
    상기 수용부 중 적어도 하나는 커넥터부와 연결되는 것을 특징으로 하는 공기 압축기.
  19. 제1 항에 있어서,
    상기 모터부는 상기 회전축의 외측에 배치되는 회전자 및
    상기 회전자의 외측에 배치되는 고정자를 포함하며,
    상기 고정자는 티스와 티스의 단부에 배치되는 슈를 포함하며,
    상기 회전자를 바라보는 상기 슈의 단부에는 홈이 상기 티스의 중심선에서 편향되도록 배치되는 공기 압축기.
  20. 제7 항에 있어서,
    상기 열교환기에 배치되는 냉각커버를 포함하고,
    상기 냉각커버와 상기 열교환기는 일체로 마련되는 공기 압축기.
PCT/KR2022/004534 2021-04-12 2022-03-30 공기 압축기 WO2022220452A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280017025.5A CN116888368A (zh) 2021-04-12 2022-03-30 空气压缩机
US18/276,668 US20240125334A1 (en) 2021-04-12 2022-03-30 Air compressor
DE112022000802.4T DE112022000802T5 (de) 2021-04-12 2022-03-30 Luftkompressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0047422 2021-04-12
KR20210047422 2021-04-12
KR10-2022-0016032 2022-02-08
KR1020220016032A KR20220141221A (ko) 2021-04-12 2022-02-08 공기 압축기

Publications (1)

Publication Number Publication Date
WO2022220452A1 true WO2022220452A1 (ko) 2022-10-20

Family

ID=83639852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004534 WO2022220452A1 (ko) 2021-04-12 2022-03-30 공기 압축기

Country Status (3)

Country Link
US (1) US20240125334A1 (ko)
DE (1) DE112022000802T5 (ko)
WO (1) WO2022220452A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074517A (ja) * 2007-09-25 2009-04-09 Sanden Corp 駆動回路一体型電動圧縮機
JP2014058910A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 車載用電動圧縮機
JP2015175343A (ja) * 2014-03-18 2015-10-05 大豊工業株式会社 流体機械
KR20180018176A (ko) * 2016-08-12 2018-02-21 한온시스템 주식회사 차량용 공기 압축기
KR20210038116A (ko) * 2019-09-30 2021-04-07 한온시스템 주식회사 공기 압축기

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962903B1 (ko) 2007-12-12 2010-06-10 현대자동차주식회사 연료전지차량용 통합형 수소재순환블로워

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074517A (ja) * 2007-09-25 2009-04-09 Sanden Corp 駆動回路一体型電動圧縮機
JP2014058910A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 車載用電動圧縮機
JP2015175343A (ja) * 2014-03-18 2015-10-05 大豊工業株式会社 流体機械
KR20180018176A (ko) * 2016-08-12 2018-02-21 한온시스템 주식회사 차량용 공기 압축기
KR20210038116A (ko) * 2019-09-30 2021-04-07 한온시스템 주식회사 공기 압축기

Also Published As

Publication number Publication date
DE112022000802T5 (de) 2024-01-11
US20240125334A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US7400070B2 (en) Rotating electric machine for vehicles
US20070035185A1 (en) Rotating electric machine for vehicles
WO2014181917A1 (ko) 냉각부재를 내장한 자동차용 전동식 워터펌프
JP4275614B2 (ja) 車両用回転電機
JP4156542B2 (ja) 車両用回転電機装置
US7589481B2 (en) Control device integrated dynamo-electric machine
WO2012148131A2 (en) Electric motor and electric vehicle having the same
WO2018038339A1 (ko) 클러스터 조립체 및 이를 포함하는 전동식 압축기
WO2022177303A1 (ko) 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈
GB2295730A (en) Cooling vehicle drive motors and circuits
WO2012064119A2 (ko) 자동차용 워터 펌프
WO2012064103A2 (ko) 더블 로터 타입 모터
WO2020027436A1 (ko) 전동기
WO2020204534A1 (ko) 컨버터
WO2020013466A1 (ko) 전동기
WO2018012937A1 (ko) 고전압 클링팬 모터유닛
US6571895B2 (en) Electrical machine, and a drive arrangement for a vehicle
CN106898592B (zh) 功率转换器和旋转电机
WO2022220452A1 (ko) 공기 압축기
WO2022065752A1 (ko) 공기 압축기
WO2022211158A1 (ko) 차량용 공기 압축기
WO2023080448A1 (ko) 냉각수 제어 유닛
WO2022220510A1 (ko) 공기 압축기
KR20220141221A (ko) 공기 압축기
KR20220141238A (ko) 공기 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276668

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280017025.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022000802

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788308

Country of ref document: EP

Kind code of ref document: A1