WO2012064103A2 - 더블 로터 타입 모터 - Google Patents

더블 로터 타입 모터 Download PDF

Info

Publication number
WO2012064103A2
WO2012064103A2 PCT/KR2011/008513 KR2011008513W WO2012064103A2 WO 2012064103 A2 WO2012064103 A2 WO 2012064103A2 KR 2011008513 W KR2011008513 W KR 2011008513W WO 2012064103 A2 WO2012064103 A2 WO 2012064103A2
Authority
WO
WIPO (PCT)
Prior art keywords
hall sensor
stator
rotor
support
assembly
Prior art date
Application number
PCT/KR2011/008513
Other languages
English (en)
French (fr)
Other versions
WO2012064103A3 (ko
Inventor
김병수
이강복
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100135482A external-priority patent/KR101267945B1/ko
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to CN201180053603.2A priority Critical patent/CN103238266B/zh
Publication of WO2012064103A2 publication Critical patent/WO2012064103A2/ko
Publication of WO2012064103A3 publication Critical patent/WO2012064103A3/ko
Priority to US13/873,519 priority patent/US9419497B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • the present invention relates to a double rotor type motor including a heat dissipation unit in a rotor to improve stator heat dissipation performance, improve a hall sensor assembly installation structure, reduce manufacturing cost, and enable mass production.
  • a motor is applied to a washing machine, a water pump of an automobile, and the like to provide power by a rotational motion.
  • the washing machine rotates by receiving power from a driving motor located under the basket.
  • the power of the driving motor is transmitted by indirectly connecting the output shaft of the motor to the rotating shaft through a belt or the like, or directly connecting the output shaft of the motor to the rotating shaft.
  • a motor that employs a direct connection method of a double rotor structure has been attracting attention in order to reduce noise, failure and energy waste, to improve the overall strength of the rotor, and to improve the washing force.
  • FIG. 1 is a cross-sectional view of a conventional motor structure for a fully automatic washing machine.
  • the conventional motor (rotation) drives the basket or the inner tub of the automatic washing machine, the stator 10 having the coil 12 in the plurality of cores 11 and the interconnector by the rotor support 23 and the inside and Internal and external rotors 20a, which are mounted on the external back yokes 21a and 21b and are rotated by a magnetic circuit formed as power is applied to the coil 12 of the stator 10.
  • one side of the stator 10 is provided with a holder 31 is provided with a connector for connection to the control board of the motor (not shown, that is, a driver).
  • the connector for connecting the holder 31 is connected to the power sensor for applying the power to the stator 10, the Hall sensor substrate 33 provided with the Hall sensor 34 of the rotor (20a, 20b) Consists of a position signal transmission connector for transmitting a position signal, it is connected to the outside via the lead wire (32).
  • the controller board of the motor determines the rotational speeds of the rotors 20a and 20b and compares them with a preset target speed. According to the result, the rotor 20a, 20b is controlled by three phase (ie, U phase, V phase, W phase) timing signals so as to rotate at the target speed.
  • the control board of the motor is supplied to each phase coil of the stator 10 from the power supply unit by transferring the pulse waveform generated by the combination of the Hall sensors 34 to the driving unit and selectively switching transistors corresponding to each phase. Control the power to drive the motor.
  • the stator 10 is nine coils 12 are assigned to each of the three U, V, W phases are connected in series and then connected by a Y connection.
  • the controller board of the motor is sequentially applied to the two-phase coils 12 of the three-phase coils 12 at regular angles. Power is applied to drive the switching transistor. That is, in a three-phase motor, three phase end points are connected to each other, and from one phase point of view, the current flows in one direction and then flows in the opposite direction and then turns off.
  • the hall sensor 34 is made of a lead type.
  • the lead type Hall sensor 34 is inserted into the Hall sensor substrate 33 by one end of a long lead, and then soldered by hand.
  • the Hall sensor substrate 33 on which the Hall sensor 34 is mounted requires peripheral components such as a resistor and a capacitor around the IC chip that generates the position detection signals of the rotors 20a and 20b. Work should be done.
  • the Hall sensor substrate 33 is disposed in the horizontal direction on one side of the stator 10 along the circumferential direction of the motor, so that the Hall sensor 34 is formed of the rotors 20a and 20b.
  • the Hall sensor 34 is mounted on the Hall sensor substrate 33 as a lead type having a long lead, and surface mounting is impossible, so that one end of the long lead is soldered and connected by hand. This may limit the reliability between the Hall sensor 34 and the Hall sensor substrate 33 since the Hall sensor 34 may be detached from the Hall sensor substrate 33 due to a poor soldering, resulting in poor contact.
  • the Hall sensor substrate 33 is coupled in a state in which the Hall sensor 34 is inserted into the Hall sensor insertion hole provided in the stator 10.
  • Conventional Hall sensor mounting and assembly structures are manually inserted or subjected to a manual insertion process that requires a separate soldering process. This increases the cost of manufacturing and producing a motor due to man-made processes, and it is difficult to mass produce as it is performed by human hands. Accordingly, the hall sensor substrate 33 needs to be manufactured in a structure that is coupled to the stator 10 to facilitate mass production.
  • the holder 32 since the holder 32 is manufactured in a structure in which the power supply connector and the position signal transmission connector are integrated, all of them need to be replaced when an abnormality occurs in any one of the connectors, which may cause unnecessary costs.
  • the permanent magnets 22a and 22b are inserted into the back yokes 21a and 21b. Fixedly coupled.
  • the stator 10 is always generated heat from the coil as the power is applied to the coil for the rotation of the rotor, and thus a heat dissipation structure is required to ensure the stability of the driving environment of the motor.
  • the inner rotor 20b and the outer rotor 20a are provided, heat generated by applying power to the coil 12 is higher than that of one rotor, so that The demand is more urgent.
  • the stack height of the stator core 11 is increased, or the permanent magnets 22a and 22b of the rotor increase the capacity to increase the torque of the motor, thereby minimizing the load on the coil 12 of the stator.
  • the heat generated by suppressing was suppressed.
  • the conventional motor does not have a heat dissipation structure for heat dissipating the stator, heat is generated in the stator to reduce the performance of the motor and shorten the life of the motor.
  • an object of the present invention is to provide a double rotor type motor capable of improving the heat dissipation efficiency of the stator by including a heat dissipation unit in the rotor support capable of forcibly blowing external air into the stator during rotor rotation.
  • Another object of the present invention is to provide a double rotor type motor which can reduce the manufacturing cost because the heat dissipation unit is formed integrally with the rotor support, so that a separate heat dissipation device for heat dissipating the stator is unnecessary.
  • a Hall sensor assembly that surface mounts the Hall sensor simultaneously with other components of the Hall sensor substrate and couples the Hall sensor substrate in a vertical direction parallel to the axial direction so that the Hall sensor substrate can be opposed to an external or internal rotor.
  • the double rotor type motor of the present invention includes a stator, a double rotor disposed with a predetermined gap on the outer surface and the inner surface of the stator, and a rotor support having the double rotor integrally formed and radially penetrating a plurality of air passages. And a heat dissipation unit formed on the rotor support to forcibly blow external air into the air passage when the rotor rotates to dissipate the stator.
  • the heat dissipation unit of the present invention is formed on an outer surface of the rotor support and blows external air to the air passage when the rotor rotates, and air formed on the inner surface of the rotor support and introduced into the air passage blows the stator to the stator. It includes an inner blade.
  • the outer blade of the present invention is formed to protrude perpendicularly to the outer surface of the support ribs partitioning between the air passages, characterized in that arranged radially.
  • One side of the outer blade of the present invention is characterized in that the guide projection for guiding the air blown by the outer blade to the air passage is formed.
  • Guide protrusion of the present invention is formed to extend in the circumferential direction on both sides of the outer blade, it characterized in that it has the same height as the outer blade.
  • the inner blade of the present invention is formed to protrude perpendicularly to the inner surface of the support ribs partitioning between the air passages, characterized in that arranged radially.
  • the double rotor type motor of the present invention includes a stator, a double rotor disposed with a predetermined gap on the outer surface and the inner surface of the stator, and a rotor support having the double rotor integrally formed and radially penetrating a plurality of air passages. And a heat dissipation unit formed in the rotor support to forcibly blow external air into the air passage when the rotor rotates to dissipate the stator, and a hall sensor assembly installed in the stator support forming the stator.
  • the assembly includes a hall sensor disposed to face the permanent magnet of the double rotor, a hall sensor substrate on which the hall sensor is surface mounted, and a hall sensor holder into which the hall sensor substrate is inserted and mounted to the stator, wherein the stator support
  • the hall sensor substrate is arranged such that the hall sensor substrate is disposed in a vertical direction horizontal to an axial direction.
  • Stand assembly is characterized in that the assembly installation portion is formed.
  • the Hall sensor assembly of the present invention includes a pin type terminal terminal for connection with an external terminal.
  • Hall sensor holder of the present invention is composed of a vertical receiving portion and a horizontal coupling portion coupled to the stator support for receiving the Hall sensor assembly, the coupling portion for increasing surface contact with the assembly mounting portion It is formed to be bent many times, characterized in that coupled to the assembly installation portion.
  • the receiving portion of the Hall sensor holder of the present invention is characterized in that it is formed to the contact point in the core of the stator.
  • Hall sensor of the present invention is characterized in that the Surface Mount Device (SMD) component that is surface-mounted at the same time as the other components of the Hall sensor substrate.
  • SMD Surface Mount Device
  • Hall sensor assembly of the present invention is characterized in that it is disposed separately from the power supply for applying power to the coil of the stator.
  • An assembly frame is installed on the stator support of the present invention, a hall sensor assembly is mounted on an upper surface of the assembly frame, and a power supply unit is mounted on a lower surface of the assembly frame.
  • Hall sensor assembly of the present invention is installed on the circumference of the stator support at the same point as the power supply, characterized in that separate from the power supply.
  • Hall sensor holder of the present invention is characterized in that it is formed in a structure that can be inserted corresponding to the groove formed on the inner peripheral surface of the stator support.
  • the present invention can radially form the inner blade and the outer blade on the rotor support to force the outside air to the stator to improve the heat dissipation performance of the stator.
  • the invention since the heat dissipation unit is integrally formed on the rotor support, the invention does not require a separate heat dissipation device for dissipating the stator, thereby reducing manufacturing costs.
  • the present invention can form the inner blade, the outer blade and the guide protrusion on the rotor support to support the frame structure to improve the overall strength.
  • the present invention utilizes a Hall sensor assembly in which the Hall sensor is surface mounted together with other components of the Hall sensor substrate and the Hall sensor substrate is coupled in a vertical direction parallel to the axial direction, which may directly face the outer or inner rotor. There is no need for a separate assembly process for the sensor, which increases productivity and enables mass production.
  • the present invention can be installed by separating the hall sensor assembly from the power supply, it is possible to prevent unnecessary costs when an error occurs for each.
  • FIG. 1 is a cross-sectional view of a motor according to the prior art.
  • FIG. 2 is a cross-sectional view of a motor according to an embodiment of the present invention.
  • FIG 3 is a top view of the rotor according to an embodiment of the present invention.
  • FIG. 4 is a bottom view of a rotor according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a rotor according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a stator having a hall sensor assembly mounting structure according to another embodiment of the present invention.
  • FIG. 7 is a bottom view of a stator having a hall sensor assembly installation structure according to another embodiment of the present invention.
  • FIG. 8 is a top view of a hall sensor assembly according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a stator having a hall sensor assembly installation structure according to another embodiment of the present invention.
  • FIG. 10 is a top view of a stator having a hall sensor assembly installation structure according to another embodiment of the present invention.
  • FIG. 11 is a side view of a stator having a hall sensor assembly installation structure according to another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a motor according to an embodiment of the present invention.
  • a motor according to an embodiment of the present invention includes a stator 110 having a plurality of cores 111, a coil 112 wound around an outer circumferential surface of the core 111, and a stator ( And a double rotor 120 disposed at a predetermined gap on the outer and inner surfaces of the 110 and the rotor support 130 formed integrally with the double rotor 120 and having a rotating shaft fixed thereto.
  • the double rotor 120 includes an outer rotor 120a disposed with a predetermined gap on the outer surface of the stator 110, and an inner rotor 120b disposed with a predetermined gap on the inner surface of the stator 110.
  • the outer rotor 120a includes an outer back yoke 121a mounted on the outside of the rotor support 130 and an outer permanent magnet 122a mounted on an inner surface of the outer back yoke 212a.
  • the inner rotor 120b includes an inner back yoke 121b mounted inside the rotor support 130 and an inner permanent magnet 122b mounted on an outer surface of the inner back yoke 121b.
  • the support frame 300 is fixed to the center of the rotor support 130, the rotation axis is fixed to the support frame 300.
  • FIG. 3 is a top view of a rotor according to an embodiment of the present invention
  • FIG. 4 is a bottom view of a rotor according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the rotor according to an embodiment of the present invention.
  • the rotor support 130 forms a donut-shaped stator accommodation groove 134 for accommodating the stator 110, wherein external air is introduced into the rotor support 130 at an upper end of the drawing of the stator accommodation groove 134.
  • a plurality of air passages 128 are formed radially.
  • the weight of the rotor can be reduced and the weight of the rotor can be reduced while also serving as an air passage into which external air is introduced.
  • the rotor support 130 is provided with a heat dissipation unit for dissipating the stator 110 by forcibly sucking air into the air passage 128 when the double rotor 120 is rotated.
  • the heat dissipation unit is formed on the outer surface of the rotor support 130 so that the outer blade 132 forcibly blowing air to the air passage 128 when the rotor is rotated, and formed on the inner surface of the rotor support 130 to form the air passage 128 It includes an inner blade 132 for forcibly blowing air introduced into the stator 110.
  • the outer blade 131 projects vertically at a predetermined height from the support ribs 126 formed between the plurality of air passages 128, and is arranged radially in the circumferential direction of the rotor support 130.
  • One side of the outer blade 132 is formed with a guide protrusion 133 for guiding the air blown by the outer blade 132 to the air passage (128).
  • the guide protrusion 133 is formed by a predetermined length in the circumferential direction on both sides of the outer blade 132, and has the same height as the outer blade 132.
  • the guide protrusion 133 is formed at both outer edge portions of the air passage 128 to guide the air blown by the outer blades into the air passage 128.
  • the inner blade 131 projects vertically at a predetermined height from an inner surface of the support rib 126 formed between the plurality of air passages 128, and is arranged radially in the circumferential direction of the rotor support 130.
  • Guide protrusion 133 is formed adjacent to the outer rotor (120a) relative to the inner rotor (120b) to induce a large centripetal force stator 110 to wind the wind generated by the inner blade (131) and outer blade (132) To increase the effect of moving.
  • the inner blade 131, the outer blade 132 and the guide protrusion 133 is formed on the rotor support 130 to support the frame structure to increase the overall strength.
  • the rotor support 130 opens the lower end of the stator accommodation groove 134 to accommodate the stator. At this time, the rotor support 130 forms an inner rotor 120b and an outer rotor 120a on inner and outer sides of the stator accommodating groove 134.
  • the stator 110 is coupled to the top of the stator receiving groove 134 by maintaining a certain amount of space.
  • the guide protrusion 133 provides the wind generated by the inner blade 131 and the outer blade 132 during rotation to widen the contact area of the stator 110 to maximize the heat dissipation structure.
  • the stator 110 is supported by the stator support 114 so as to be opposed to the outer and inner rotors 120a and 120b at a predetermined interval.
  • the outer rotor 120a and the inner rotor 120b form a double rotor structure positioned inside and outside with respect to one stator 110.
  • the stator support 114 couples the hall sensor assembly 140 to the outside for sensing the position of the outer rotor 120a.
  • the stator support 114 is molded integrally with the stator 110 composed of a plurality of split cores using an injection resin, and for arranging the Hall sensor substrate 142 in the vertical direction (ie, the longitudinal direction of the rotating shaft).
  • the assembly installation part 132a is provided in the outer side as mounting structure of the hall sensor assembly 140.
  • the hall sensor assembly 140 includes a hall sensor 141, a hall sensor substrate 142, a terminal terminal 143, a hall sensor holder 144, a screw or bolt 145.
  • the hall sensor 141 is made of a SMD (Surface Mount Device) component.
  • the Hall sensor substrate 142 is inserted and fixed to the Hall sensor holder 144, the Hall sensor holder 144 is coupled to the stator support 114 in the vertical direction, as a result, the Hall sensor 141 is the outer rotor Disposed to face 120a. This means that the hall sensor 141 does not need to adjust the arrangement direction separately to sense the magnetic force of the external rotor 120a.
  • SMD components such as other components (for example, resistors, capacitors, etc.) in which the Hall sensor 141 is mounted on the Hall sensor substrate 142, may be used, and surface mounting work may be performed at the same time as other components.
  • the hall sensor 141 detects the magnetic flux of the external rotor 120a which rotates in interaction with the stator 110.
  • the terminal terminal 143 is inserted and coupled to the hall sensor substrate 142.
  • the terminal terminal 143 may be soldered to the rear surface of the hall sensor substrate 142 to be electrically and physically coupled.
  • the terminal terminal 143 is a pin type and can be easily attached and detached using a cable between the driver and the driver.
  • the terminal terminal 143 may be made of a female connector for connection with a control device such as a driver.
  • the hall sensor holder 144 has a shape in surface contact along the surface of the assembly installation unit 132a, and is accommodated in a vertical direction to fix the hall sensor substrate 142 so as not to flow laterally in the inserted and received state.
  • the frame 144a and the assembly installation part 132a form a frame including a coupling part 144b formed in a horizontal direction for coupling by a screw or bolt 145.
  • the receiving portion 144a of the Hall sensor holder 144 is disposed on the stacking surface of the core 111 on the surface facing the outer rotor (120a) without protruding to the outside when coupled to the assembly mounting portion (132a) do.
  • the coupling portion 144b of the hall sensor holder 144 increases the surface contactability with respect to the stator support 132 so as to form a bent portion to be fixed without movement due to vibration of the motor to interview the assembly installation portion 132a. After moistening, it is coupled to the assembly installation portion 132a by screws or bolts 145.
  • the assembly installation unit 132a moves the receiving unit 144a of the hall sensor holder 140 to the stator 110 in order to place the hall sensor 141 of the hall sensor assembly 140 close to the outer rotor 120a.
  • the stator 110 is reduced in width of the winding portion of the coil 112 to form the assembly installation portion 132a. This is to allow the hall sensor 141 of the hall sensor assembly 140 to sense the magnetic force generated by the outer permanent magnet 122a of the outer rotor 120a.
  • assembly installation unit 132a is formed on the outside of the stator support 132 to face the hall sensor 141 of the hall sensor assembly 140 to the outer rotor 120a. It can also be formed inside.
  • the Hall sensor assembly 140 is disposed separately from the power supply unit 150 for applying power to the coil 112 of the stator 110. This is not integrated when one of the Hall sensor assembly 140 and the power supply unit 150 is abnormal, so that it is not necessary to replace all, thereby preventing unnecessary costs.
  • the Hall sensor 141 may be surface mounted together with other components of the Hall sensor substrate 142, and the Hall sensor substrate 142 may directly face the outer rotor 120a. Are combined. Since there is no need for a separate process of assembling in consideration of the insertion direction of the Hall sensor 141, it prevents the additional cost required for the assembly process of the Hall sensor 141, and in the mass production of the Hall sensor assembly 140 Provides an easy structure.
  • the hall sensor assembly 140 may be separately installed from the power supply unit 150, when the abnormality occurs for each of the hall sensor assemblies 140, the hall sensor assembly 140 may prevent unnecessary cost.
  • FIG. 6 is a perspective view of a stator showing a Hall sensor assembly installation structure according to another embodiment of the present invention
  • Figure 7 is a bottom view of the stator according to another embodiment of the present invention
  • Figure 8 is another embodiment of the present invention
  • 9 is a cross-sectional view of a stator according to another embodiment of the present invention
  • FIG. 10 is a top view of a stator according to another embodiment of the present invention
  • FIG. 11 is another embodiment of the present invention.
  • the Hall sensor assembly installation structure according to another embodiment of the present invention, when the rotor is a double rotor coupling the hall sensor assembly 240 for sensing the position of the inner rotor to the inside do.
  • Hall sensor assembly 240 includes hall sensor 241, hall sensor substrate 242, terminal terminal 243, hall sensor holder 244, screw or bolt 245. Since the structure of the Hall sensor assembly 240 is the same as that of the Hall sensor assembly 140 described in the above embodiment, a detailed description thereof will be omitted.
  • stator support 232 is molded integrally with the stator 210 using an injection resin, while the Hall sensor assembly 240 for arranging the Hall sensor substrate 242 in the vertical direction (ie, the longitudinal direction of the rotation axis).
  • An assembly mounting portion 232a is provided on the inner circumferential surface as a mounting structure of the.
  • the stator support 232 is formed with a first assembly opening (A) for inserting the Hall sensor assembly 240 into the assembly installation portion 232a, the rotation shaft on the opposite side of the assembly opening (A)
  • a second assembling opening (B) for inserting the clutch for intermittent and intermittent release of the is formed.
  • the Hall sensor assembly 140 is installed at the same point as the power supply unit 250 on the circumference of the stator support 232, but can be separated from the power supply unit 250 through the assembly frame 260.
  • the assembly frame 260 covers the power supply unit 250 by arranging the power supply unit 250 at the bottom to serve as a protective cover of the power supply unit 250, and the upper surface of the hall sensor assembly 240.
  • stator support 232 is formed in the groove for the coupling of the Hall sensor assembly 140 to the inner peripheral surface, accordingly, the Hall sensor holder 244 of the Hall sensor assembly 240 is formed on the inner peripheral surface of the stator support 232 It is formed in a structure that can be inserted corresponding to the groove.
  • a ball-shaped groove is formed in the inner circumferential surface of the stator support 232, thereby forming the hall sensor holder 244 of the hall sensor assembly 240 in a concave structure.
  • the Hall sensor 241 is surface mounted together with other components of the Hall sensor substrate 242 and the vertical direction in which the Hall sensor substrate 242 can directly face the inner rotor. Are combined. Since there is no need for a separate insertion process for assembling in consideration of the insertion direction of the Hall sensor 241, it prevents the additional cost required for the insertion process of the Hall sensor 241, and is required for mass production of the Hall sensor assembly 240. Provide an easy structure.
  • the hall sensor assembly 240 may be separately installed from the power supply unit 250, when the abnormality occurs for each, the hall sensor assembly 240 may prevent unnecessary cost.
  • the motor configured as described above can be used in various fields that require rotational force, such as a washing machine, a water pump of a vehicle, a driving device, and the like.
  • the motor of the present invention is a double rotor type, even if the same power is applied, the rotation torque can be increased, thereby improving the motor efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명의 더블 로터 타입 모터는 스테이터와, 상기 스테이터의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터와, 상기 더블 로터가 일체로 형성되고 방사상으로 복수의 공기통로가 관통되게 형성되는 로터 지지체와, 상기 로터 지지체에 형성되어 상기 로터 회전시 상기 공기 통로로 외부 공기를 강제 송풍하여 상기 스테이터를 방열하는 방열 유닛으로 구성되어, 스테이터에 외부 공기를 강제로 송풍시킬 수 있어 스테이터의 방열 효율을 향상시킬 수 있다.

Description

더블 로터 타입 모터
본 발명은 로터에 방열 유닛을 구비하여 스테이터 방열성능을 향상시키고, 홀센서 조립체 설치구조를 개선하여 제조비용을 줄일 수 있고 대량 생산이 가능토록 하는 더블 로터 타입 모터에 관한 것이다.
일반적으로, 모터는 세탁기, 자동차의 워터 펌프 등에 적용되어 회전운동에 의한 동력을 제공하고 있다. 대표적으로 세탁기는 바스켓의 하부에 위치한 구동 모터의 동력을 전달받아 회전한다. 구동 모터의 동력은 모터의 출력축이 벨트 등을 통해 회전축에 간접적으로 연결되거나 모터의 출력축이 회전축에 직접 연결되어 전달된다. 최근에는 소음, 고장, 에너지 낭비 요소를 줄이고, 로터의 전체적인 강도를 향상시키며, 더 나아가 세탁력의 향상을 도모할 수 있도록 더블 로터 구조의 직결 방식이 채용된 모터가 주목받고 있다.
도 1은 종래의 전자동 세탁기용 모터 구조에 대한 단면도이다. 종래의 모터(motor)는 전자동 세탁기의 바스켓 또는 내조를 회전 구동하며, 다수의 코어(11)에 코일(12)을 구비한 스테이터(10)와, 로터 지지체(23)에 의해 상호 연결되며 내부 및 외부 백요크(21a,21b)에 내부 및 외부 영구자석(22a,22b)이 장착되고 스테이터(10)의 코일(12)에 전원이 인가됨에 따라 형성된 자기 회로에 의해 회전되는 내부 및 외부 로터(20a,20b)와, 로터 지지체(23)의 내주에 연장 형성된 지지 프레임(24)의 중앙부에 결합되어 회전하는 회전축을 포함한다.
또한, 스테이터(10)의 일측에는 모터의 제어기판(도면에 미도시, 즉 드라이버)에 대한 연결용 커넥터가 구비되는 홀더(31)가 설치된다. 이때, 홀더(31)의 연결용 커넥터는 스테이터(10)에 전원을 인가하기 위한 전원 인가용 커넥터, 홀 센서(34)가 구비된 홀 센서 기판(33)에 연결되어 로터(20a,20b)의 위치신호를 송신하기 위한 위치신호 송신용 커넥터로 이루어지며, 리드와이어(32)를 통해 외부와 연결된다.
한편, 모터의 제어기판은 홀 센서(34)에 의해 검출된 로터(20a,20b)의 위치정보가 입력되면, 로터(20a,20b)의 회전속도를 판별하여 기 설정된 목표속도와 비교하고, 비교결과에 따라 로터(20a,20b)가 목표속도로 회전하도록 3상(즉, U상, V상, W상) 타이밍신호로 제어한다. 구체적으로, 모터의 제어기판은 홀 센서(34)의 조합에 의해 발생된 펄스 파형을 구동부에 전달하고 각 상에 해당되는 트랜지스터를 선택적으로 스위칭함으로써 전원부로부터 스테이터(10)의 각 상 코일로 공급되는 전원을 제어하여 모터를 구동시킨다. 여기서, 스테이터(10)는 9개의 코일(12)이 U, V, W 각상마다 3개씩 할당되어 직렬접속된 후 Y 결선으로 연결된다. 이때, 모터의 제어기판은 3개의 홀 센서(34)에 의해 순차적으로 로터(20a,20b)의 위치가 검출되면, 일정한 각도마다 3상의 코일(12) 중 순차적으로 2개 상의 코일(12)에 전원을 인가하여 스위칭 트랜지스터를 구동시킨다. 즉, 3상 모터에서는 3상의 종단점(end point)이 서로 연결되어 있고, 하나의 상의 관점에서 보면 전류가 한쪽 방향으로 흘렀다가 다시 반대방향으로 흘렀다가 꺼지는 3가지 과정을 반복한다.
특히, 홀 센서(34)는 리드 타입으로 이루어져 있다. 이러한 리드 타입의 홀 센서(34)는 홀 센서 기판(33)에 긴 리드의 일단을 삽입한 후 수작업으로 납땜하여 연결한다. 이때, 홀 센서(34)가 장착되는 홀 센서 기판(33)은 로터(20a,20b)의 위치검출신호를 발생하는 IC칩 주변에 저항, 콘덴서 등과 같은 주변 부품을 필요로 하며, 필수적으로 표면 실장 작업을 진행해야 한다. 그러나, 종래의 홀 센서 장착 구조는 홀 센서 기판(33)이 모터의 원주 방향을 따른 스테이터(10)의 일측면에 수평 방향으로 배치되어 있어, 홀 센서(34)가 로터(20a,20b)의 회전 위치를 감지하기 위해서는 홀 센서 기판(33)에 직각 방향으로 돌출되어 인너 로터 또는 아웃터 로터의 측면으로 배치되는 것이 요구된다. 따라서, 종래에는 홀 센서(34)가 리드가 긴 리드 타입으로 홀 센서 기판(33)에 실장되며, 표면 실장 작업이 불가능하여 수작업으로 긴 리드 일단을 납땜하여 연결한다. 이는 납땜 불량으로 인해 홀 센서(34)가 홀 센서 기판(33)으로부터 이탈되어 접촉불량이 발생할 수 있기 때문에, 홀 센서(34)와 홀 센서 기판(33) 간의 신뢰성에 한계가 있다.
또한, 홀 센서 기판(33)은 홀 센서(34)를 스테이터(10)에 구비된 홀 센서 삽입홀에 삽입시킨 상태로 결합된다. 종래의 홀 센서 장착 및 조립 구조는 직접 삽입하거나 별도의 납땜 과정이 필요한 수삽 과정을 거친다. 이는 인력에 의한 공정이 요구되어 모터를 제작하여 생산하는 비용을 상승시키고, 사람 손에 의해 진행되어 대량 생산이 어렵다. 이에 따라, 홀 센서 기판(33)은 대량 생산에 용이하게 스테이터(10)에 결합되는 구조로 제작될 필요가 있다.
아울러, 홀더(32)는 전원 인가용 커넥터와 위치신호 송신용 커넥터를 일체화한 구조로 제작되어 있어, 어느 하나의 커넥터에 이상이 발생하는 경우에 전부 교체해야 하므로 불필요한 비용이 발생할 수 있다.
또한, 종래의 로터는 스테이터가 수용되는 로터 지지체(23)에 백요크(back yoke)(21a,21b)가 삽입된 후 백요크(21a,21b)에 영구자석(magnet)(22a,22b)이 고정 결합된다. 이때, 스테이터(10)는 로터의 회전을 위해 코일에 전원이 인가됨에 따라 코일로부터 열이 항상 발생되며, 그에 따라 모터의 구동 환경의 안정성을 보장하기 위한 방열 구조가 필요하다. 특히, 더블 로터형 모터의 경우에는 내부 로터(20b) 및 외부 로터(20a)를 구비함에 따라 코일(12)에 전원이 인가됨에 따라 발생하는 열이 로터가 하나인 경우보다 고온이므로 방열 구조에 대한 요구가 더욱 절실하다.
이러한 방열 구조로서, 종래에는 스테이터 코어(11)의 적층 높이를 높이거나 로터의 영구자석(22a,22b)은 용량을 키워 모터의 토크를 증가시킴으로써, 스테이터의 코일(12)에 대한 부하를 최소한으로 줄여 발생되는 열을 억제하였다.
하지만, 종래의 모터는 스테이터를 방열하기 위한 방열구조가 없기 때문에 스테이터에서 열이 발생되어 모터의 성능을 저하시키고, 모터의 수명을 단축시키는 문제가 발생된다.
따라서, 본 발명의 목적은 로터 회전시 스테이터에 외부 공기를 강제로 불어 넣을 수 있는 방열 유닛을 로터 지지체에 구비하여 스테이터의 방열 효율을 향상시킬 수 있는 더블 로터 타입 모터를 제공하는 것이다.
본 발명의 다른 목적은 방열 유닛이 로터 지지체에 일체로 형성되므로 스테이터를 방열하기 위한 별도의 방열장치가 불필요하므로 제조비용을 줄일 수 있는 더블 로터 타입 모터를 제공하는 것이다.
본 발명의 다른 목적은 홀 센서를 홀 센서 기판의 다른 부품과 동시에 표면 실장하고, 홀 센서 기판을 외부 또는 내부 로터에 대향할 수 있도록 축 방향과 평행한 수직 방향으로 결합하는 홀 센서 조립체를 스테이터 지지체에 설치함으로써, 제조비용을 줄이고, 생산성을 향상시킬 수 있으며, 대량 생산이 가능한 더블 로터 타입 모터를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 더블 로터 타입 모터는 스테이터와, 상기 스테이터의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터와, 상기 더블 로터가 일체로 형성되고 방사상으로 복수의 공기통로가 관통되게 형성되는 로터 지지체와, 상기 로터 지지체에 형성되어 상기 로터 회전시 상기 공기 통로로 외부 공기를 강제 송풍하여 상기 스테이터를 방열하는 방열 유닛을 포함한다.
본 발명의 방열 유닛은 상기 로터 지지체의 외면에 형성되어 로터 회전시 상기 공기 통로로 외부 공기를 송풍하는 외부 블레이드와, 상기 로터 지지체의 내면에 형성되어 상기 공기 통로로 유입되는 공기를 상기 스테이터로 송풍하는 내부 블레이드를 포함한다.
본 발명의 외부 블레이드는 상기 공기 통로들 사이를 구획하는 지지 리브의 외면에 수직으로 돌출되게 형성되고, 방사상으로 배열되는 것을 특징으로 한다.
본 발명의 외부 블레이드의 일측에는 외부 블레이드에 의해 송풍되는 공기를 상기 공기 통로로 가이드하는 가이드 돌기가 형성되는 것을 특징으로 한다.
본 발명의 가이드 돌기는 상기 외부 블레이드의 양쪽 측면에서 원주방향으로 연장되게 형성되고, 상기 외부 블레이드와 동일한 높이를 갖는 것을 특징으로 한다.
본 발명의 내부 블레이드는 상기 공기 통로들 사이를 구획하는 지지 리브의 내면에 수직으로 돌출되게 형성되고, 방사상으로 배열되는 것을 특징으로 한다.
본 발명의 더블 로터 타입 모터는 스테이터와, 상기 스테이터의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터와, 상기 더블 로터가 일체로 형성되고 방사상으로 복수의 공기통로가 관통되게 형성되는 로터 지지체와, 상기 로터 지지체에 형성되어 상기 로터 회전시 상기 공기 통로로 외부 공기를 강제 송풍하여 상기 스테이터를 방열하는 방열 유닛과, 상기 스테이터를 형성하는 스테이터 지지체에 설치되는 홀 센서 조립체를 포함하고, 상기 홀 센서 조립체는 상기 더블 로터의 영구자석과 마주보게 배치되는 홀 센서와, 상기 홀 센서가 표면 실장된 홀 센서 기판과, 상기 홀 센서 기판이 삽입되고 스테이터에 장착되는 홀 센서 홀더를 포함하고, 상기 스테이터 지지체에는 상기 홀 센서 기판이 축 방향과 수평한 수직방향으로 배치되도록 상기 홀 센서 조립체가 설치되는 조립체 설치부가 형성되는 것을 특징으로 한다.
본 발명의 홀 센서 조립체는 외부 단자와 연결을 위해 핀 타입 터미널 단자를 포함한다.
본 발명의 홀 센서 홀더는 상기 홀 센서 조립체를 수용하기 위해 수직 방향의 수용부와, 상기 스테이터 지지체에 결합되는 수평 방향의 결합부로 이루어지며, 상기 결합부는 상기 조립체 설치부에 면 접촉성을 높이기 위해 다수번 절곡되게 형성되고, 상기 조립체 설치부에 결합되는 것을 특징으로 한다.
본 발명의 홀 센서 홀더의 수용부는 상기 스테이터의 코어에 접촉 지점까지 형성되는 것을 특징으로 한다.
본 발명의 홀 센서는 상기 홀 센서 기판의 타 부품과 동시에 표면 실장되는 SMD(Surface Mount Device) 부품인 것을 특징으로 한다.
본 발명의 홀 센서 조립체는 스테이터의 코일에 전원을 인가하기 위한 전원 공급부와 분리되어 배치되는 것을 특징으로 한다.
본 발명의 스테이터 지지체에는 조립용 프레임이 설치되고, 상기 조립용 프레임의 상면에는 홀 센서 조립체가 장착되고, 상기 조립용 프레임의 하면에는 전원 공급부가 장착되는 것을 특징으로 한다.
본 발명의 홀 센서 조립체는 상기 스테이터 지지체의 원주상에 상기 전원 공급부와 동일한 지점에 설치되고, 상기 전원 공급부와 별도로 분리할 수 있는 것을 특징으로 한다.
본 발명의 홀 센서 홀더는 상기 스테이터 지지체의 내주면에 형성된 요홈에 대응하여 삽입할 수 있는 구조로 형성되는 것을 특징으로 한다.
상기한 바와 같이, 본 발명은 로터 지지체에 방사형으로 내부 블레이드 및 외부 블레이드를 형성하여 외부공기를 스테이터로 강제 송풍시킬 수 있어 스테이터의 방열 성능을 향상시킬 수 있다.
또한, 본 발명은 방열 유닛이 로터 지지체에 일체로 형성되므로 스테이터를 방열하기 위한 별도의 방열장치가 불필요하므로 제조비용을 줄일 수 있다.
또한, 본 발명은 내부 블레이드, 외부 블레이드 및 가이드 돌기를 로터 지지체에 형성하여 프레임 구조를 지지하여 전체적인 강도를 향상시킬 수 있다.
또한, 본 발명은 홀 센서가 홀 센서 기판의 다른 부품과 함께 표면 실장되고 홀 센서 기판이 바로 외부 또는 내부 로터에 대향할 수 있는 축방향과 평행한 수직 방향으로 결합되는 홀 센서 조립체를 이용하여 홀 센서에 대해 별도의 조립 공정이 불필요하여 생산성을 향상시키고 대량 생산이 가능하다.
또한, 본 발명은 홀 센서 조립체를 전원 공급부와 분리하여 설치함으로써 각각에 대해 이상이 발생할 때 불필요한 비용 발생을 방지할 수 있다.
도 1은 종래 기술에 따른 모터의 단면도이다.
도 2는 본 발명의 일실시예에 따른 모터의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 로터의 상면도이다.
도 4는 본 발명의 일 실시예에 따른 로터의 하면도이다.
도 5는 본 발명의 일 실시예에 따른 로터의 단면도이다.
도 6은 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치 구조를 갖는 스테이터의 사시도이다.
도 7은 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치구조를 갖는 스테이터의 하면도이다.
도 8은 본 발명의 다른 실시예에 따른 홀 센서 조립체의 상면도이다.
도 9는 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치구조를 갖는 스테이터의 단면도이다.
도 10은 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치구조를 갖는 스테이터의 상면도이다.
도 11은 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치구조를 갖는 스테이터의 측면도이다.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명의 일실시예에 따른 모터의 단면도이다.
도 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 모터는 다수의 코어(111)와, 코어(111)의 외주면에 권선되는 코일(112)을 구비한 스테이터(110)와, 스테이터(110)의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터(120)와, 상기 더블 로터(120)와 일체로 형성되고 회전축이 고정되는 로터 지지체(130)를 포함한다.
더블 로터(120)는 스테이터(110)의 외면에 일정 갭을 두고 배치되는 외부 로터(120a)와, 스테이터(110)의 내면에 일정 갭을 두고 배치되는 내부 로터(120b)를 포함한다.
외부 로터(120a)는 로터 지지체(130)의 바깥쪽에 장착되는 외부 백요크(121a)와, 외부 백요크(212a)의 내면에 장착되는 외부 영구자석(122a)를 포함한다.
그리고, 내부 로터(120b)는 로터 지지체(130)의 안쪽에 장착되는 내부 백요크(121b)와, 내부 백요크(121b)의 외면에 장착되는 내부 영구자석(122b)를 포함한다.
상기 로터 지지체(130)의 중앙에는 지지 프레임(300)이 고정되고, 이 지지 프레임(300)에 회전축이 고정된다.
도 3은 본 발명의 일 실시예에 따른 로터의 상면도이고, 도 4는 본 발명의 일 실시예에 따른 로터의 하면도이고, 도 5는 본 발명의 일 실시예에 따른 로터의 단면도이다.
로터 지지체(130)는 스테이터(110)를 수용하기 위한 도넛 형태의 스테이터 수용홈(134)를 형성하는데, 스테이터 수용홈(134)의 도면상 상단에 외부 공기가 로터 지지체(130) 내부로 유입되는 복수의 공기 통로(128)가 방사상으로 형성된다.
여기에서, 로터 지지체(130)에 복수의 공기 통로(128)를 형성하게 되면, 외부공기가 내부로 유입되는 공기통로를 역할을 함과 아울러 로터의 무게를 줄일 수 있어 경량화 설계가 가능하다.
로터 지지체(130)에는 더블 로터(120)가 회전되면 공기 통로(128)로 공기를 강제 흡입시켜 스테이터(110)를 방열시키는 방열 유닛이 구비된다.
방열 유닛은 로터 지지체(130)의 외면에 형성되어 로터가 회전되면 공기 통로(128)로 공기를 강제 송풍하는 외부 블레이드(132)와, 로터 지지체(130)의 내면에 형성되어 공기 통로(128)로 유입된 공기를 스테이터(110)로 강제 송풍하는 내부 블레이드(132)를 포함한다.
외부 블레이드(131)는 복수의 공기통로(128) 사이에 형성되는 지지 리브(126)에서 일정 높이로 수직으로 돌출되고, 로터 지지체(130)의 원주방향으로 방사상으로 배열된다.
외부 블레이드(132)의 일측에는 외부 블레이드(132)에 의해 송풍되는 공기를 공기 통로(128)로 가이드하는 가이드 돌기(133)가 형성된다.
가이드 돌기(133)는 외부 블레이드(132)의 양쪽 측면에서 원주방향으로 일정 길이만큼 형성되고, 외부 블레이드(132)와 동일한 높이를 갖는다.
이러한 가이드 돌기(133)는 공기 통로(128)의 외측 양쪽 모서리 부위에 형성되어 외부 블레이드에 의해 송풍되는 공기가 공기 통로(128)로 유입되도록 가이드한다.
내부 블레이드(131)는 복수의 공기통로(128) 사이에 형성되는 지지 리브(126)의 내면에서 일정 높이로 수직으로 돌출되고, 로터 지지체(130)의 원주방향으로 방사상으로 배열된다.
가이드 돌기(133)는 내부 로터(120b)에 비해 상대적으로 외부 로터(120a)에 인접 형성하여 큰 구심력을 유도해 내부 블레이드(131) 및 외부 블레이드(132)에 의해 발생된 바람을 스테이터(110)로 이동시키는 효과를 증대시킨다. 아울러, 이러한 내부 블레이드(131), 외부 블레이드(132) 및 가이드 돌기(133)는 로터 지지체(130)에 형성되어 프레임 구조를 지지하여 전체적인 강도를 높여준다.
로터 지지체(130)는 스테이터 수용홈(134)의 도면상 하단을 개방하여 스테이터를 수용한다. 이때, 로터 지지체(130)는 스테이터 수용홈(134)의 내외부 측면에 내부 로터(120b) 및 외부 로터(120a)를 형성한다. 여기서, 스테이터(110)는 스테이터 수용홈(134)의 상단과 어느 정도의 공간을 유지하여 결합한다.
이에 따라, 가이드 돌기(133)는 회전시 내부 블레이드(131) 및 외부 블레이드(132)에 의해 발생된 바람을 스테이터(110)의 접촉 면적을 넓혀 제공하여 방열 구조를 극대화한다.
스테이터(110)는 외부 및 내부 로터(120a,120b)에 대해 소정의 간격을 유지하며 대향할 수 있도록 스테이터 지지체(114)에 의해 지지된다. 이때, 외부 로터(120a) 및 내부 로터(120b)는 하나의 스테이터(110)에 대해 내외부에 위치하는 더블 로터 구조를 형성한다.
스테이터 지지체(114)는 외부 로터(120a)의 위치 센싱을 위한 홀 센서 조립체(140)를 외측에 결합한다. 이때, 스테이터 지지체(114)는 사출 수지를 이용하여 다수의 분할 코어로 이루어지는 스테이터(110)와 일체로 성형되면서, 홀 센서 기판(142)을 수직방향(즉, 회전축의 길이 방향)으로 배치하기 위한 홀 센서 조립체(140)의 취부 구조로서 조립체 설치부(132a)를 외측에 구비한다.
구체적으로, 홀 센서 조립체(140)는 홀 센서(141), 홀 센서 기판(142), 터미널 단자(143), 홀 센서 홀더(144), 나사 또는 볼트(145)를 포함한다.
홀 센서(141)는 3상 구동방식인 경우 적어도 2개, 통상적으로 3개가 홀 센서 기판(142)에 다른 부품과 함께 표면 실장된다. 즉, 홀 센서(141)는 SMD(Surface Mount Device) 부품으로 제작된다. 이때, 홀 센서 기판(142)은 홀 센서 홀더(144)에 삽입 및 고정되며, 홀 센서 홀더(144)는 스테이터 지지체(114)에 수직 방향으로 결합되므로, 결과적으로 홀 센서(141)는 외부 로터(120a)에 대향하도록 배치된다. 이는 홀 센서(141)가 외부 로터(120a)의 자력을 감지하기 위해 별도로 배치 방향을 조정할 필요가 없다는 것을 의미한다.
또한, 이는 홀 센서(141)가 홀 센서 기판(142)에 실장된 타 부품(일례로, 저항, 콘덴서 등)과 같이 SMD 부품이 사용될 수 있고, 타 부품과 동시에 표면 실장 작업이 진행되어 실장될 수 있기 때문에, 작업 단가를 낮추고 별도의 수삽 공정을 제거하여 신뢰성 및 양산성을 향상할 수 있음을 의미한다. 여기서, 홀 센서(141)는 스테이터(110)와 상호작용하여 회전하는 외부 로터(120a)의 자속을 감지한다.
또한, 터미널 단자(143)는 홀 센서 기판(142)에 삽입 결합된다. 이때, 터미널 단자(143)는 홀 센서 기판(142)의 배면에 솔더링(soldering)되어 전기적 및 물리적으로 결합될 수 있다. 여기서, 터미널 단자(143)는 핀타입으로 드라이버와의 사이에 케이블을 이용하여 용이하게 착탈 가능하다. 이 경우, 터미널 단자(143)는 드라이버와 같은 제어장치와의 연결을 위해 암커넥터로 이루어질 수 있다.
홀 센서 홀더(144)는 조립체 설치부(132a)의 표면을 따라 면 접촉하는 형상을 가지며, 홀 센서 기판(142)이 삽입 및 수용된 상태에서 측방으로 유동하지 않도록 고정하기 위해 수직방향으로 형성되는 수용부(144a)와 조립체 설치부(132a)에 나사 또는 볼트(145)에 의한 결합을 위해 수평방향으로 형성되는 결합부(144b)로 이루어진 프레임을 형성한다.
구체적으로, 홀 센서 홀더(144)의 수용부(144a)는 조립체 설치부(132a)에 결합시 외부로 돌출 없이 외부 로터(120a)에 대향하는 표면을 코어(111)의 적층면 일직선상에 배치한다. 다음으로, 홀 센서 홀더(144)의 결합부(144b)는 스테이터 지지체(132)에 대한 면접촉성을 높여 모터의 진동으로 인한 움직임 없이 고정될 수 있도록 절곡부를 형성하여 조립체 설치부(132a)에 면접촉한 후 나사 또는 볼트(145)에 의해 조립체 설치부(132a)에 결합된다.
여기서, 조립체 설치부(132a)는 홀 센서 조립체(140)의 홀 센서(141)를 외부 로터(120a)에 근접 배치하기 위해, 홀 센서 홀더(140)의 수용부(144a)를 스테이터(110)의 코어(111)에 접촉시키는 지점까지 형성된다. 즉, 스테이터(110)는 조립체 설치부(132a)의 형성을 위해 코일(112)의 권선부분 폭이 줄어든다. 이는 홀 센서 조립체(140)의 홀 센서(141)가 외부 로터(120a)의 외부 영구자석(122a)에 의해 형성되는 자력을 양호하게 감지할 수 있도록 하기 위함이다.
또한, 조립체 설치부(132a)는 홀 센서 조립체(140)의 홀 센서(141)를 외부 로터(120a)에 대향하기 위해 스테이터 지지체(132)의 외측에 형성하였으나, 이와 반대로 스테이터 지지체(114)의 내측에 형성할 수도 있다.
한편, 홀 센서 조립체(140)는 스테이터(110)의 코일(112)에 전원을 인가하기 위한 전원 공급부(150)와 분리하여 배치한다. 이는 홀 센서 조립체(140) 및 전원 공급부(150) 중 어느 하나에 이상이 발생하는 경우에 일체화되어 있지 않기 때문에 전부를 교체하지 않아도 되며, 그에 따라 불필요한 비용이 발생하는 것을 방지할 수 있다.
이와 같이, 홀 센서 조립체(140)에서는 홀 센서(141)가 홀 센서 기판(142)의 다른 부품과 함께 표면 실장되고 홀 센서 기판(142)이 바로 외부 로터(120a)에 대향할 수 있는 수직 방향으로 결합된다. 이는 홀 센서(141)의 삽입 방향을 고려하여 조립하는 별도의 공정이 필요 없기 때문에, 홀 센서(141)의 조립 공정에 필요한 추가 비용 발생을 방지하며, 홀 센서 조립체(140)의 대량 생산에 있어 용이한 구조를 제공한다.
또한, 홀 센서 조립체(140)는 전원 공급부(150)와 분리하여 설치함으로써 각각에 대해 이상이 발생할 때 별도로 수리할 수 있기 때문에 불필요한 비용 발생을 방지할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치 구조를 나타낸 스테이터의 사시도이고, 도 7은 본 발명의 다른 실시예에 따른 스테이터의 하면도이고, 도 8은 본 발명의 다른 실시예에 따른 홀 센서 조립체의 상면도이고, 도 9는 본 발명의 다른 실시예에 따른 스테이터의 단면도이고, 도 10은 본 발명의 다른 실시예에 따른 스테이터의 상면도이고, 도 11은 본 발명의 다른 실시예에 따른 스테이터의 측면도이다.
도 6 내지 도 11에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 홀 센서 조립체 설치 구조는, 로터가 더블 로터인 경우에 내부 로터의 위치 센싱을 위한 홀 센서 조립체(240)를 내측에 결합한다.
홀 센서 조립체(240)는 홀 센서(241), 홀 센서 기판(242), 터미널 단자(243), 홀 센서 홀더(244), 나사 또는 볼트(245)를 포함한다. 이러한 홀 센서 조립체(240)의 구조는 위의 일 실시예에서 설명한 홀 센서 조립체(140)의 구조와 동일하므로, 그 자세한 설명은 생략한다.
또한, 스테이터 지지체(232)는 사출 수지를 이용하여 스테이터(210)와 일체로 성형하면서, 홀 센서 기판(242)을 수직방향(즉, 회전축의 길이 방향)으로 배치하기 위한 홀 센서 조립체(240)의 취부 구조로서 조립체 설치부(232a)를 내주면에 구비한다. 여기서, 스테이터 지지체(232)에는 홀 센서 조립체(240)를 조립체 설치부(232a)에 삽입할 수 있는 제1 조립용 개방구(A)가 형성되며, 조립용 개방구(A)의 반대편에 회전축의 단속 및 단속 해제를 위한 클러치를 삽입하기 위한 제2 조립용 개방구(B)가 형성된다.
한편, 홀 센서 조립체(140)는 스테이터 지지체(232)의 원주상에 전원 공급부(250)와 동일한 지점에 설치하지만, 조립용 프레임(260)을 통해 전원 공급부(250)와 별도로 분리할 수 있는 이원화 구조를 구현한다. 즉, 조립용 프레임(260)은 하부에 전원 공급부(250)를 배치해 전원 공급부(250)의 보호 커버로서의 기능을 수행하여 전원 공급부(250)를 커버하며, 상면에 홀 센서 조립체(240)의 나사 또는 볼트(245)의 결합을 위한 프레임을 제공한다.
그리고 스테이터 지지체(232)에는 내주면에 홀 센서 조립체(140)의 결합을 위한 요홈이 성형되며, 그에 따라, 홀 센서 조립체(240)의 홀 센서 홀더(244)는 스테이터 지지체(232)의 내주면에 형성된 요홈에 대응하여 삽입할 수 있는 구조로 형성된다. 일례로, 여기서는 스테이터 지지체(232)의 내주면에 볼목형 요홈이 성형되며, 그에 따라 홀 센서 조립체(240)의 홀 센서 홀더(244)를 오목형 구조로 형성된다.
이러한 다른 실시예에 따른 홀 센서 조립체(240)에서는 홀 센서(241)가 홀 센서 기판(242)의 다른 부품과 함께 표면 실장되고 홀 센서 기판(242)이 바로 내부 로터에 대향할 수 있는 수직 방향으로 결합된다. 이는 홀 센서(241)의 삽입 방향을 고려하여 조립하는 별도의 수삽 공정이 필요 없기 때문에, 홀 센서(241)의 수삽 공정에 필요한 추가 비용 발생을 방지하며, 홀 센서 조립체(240)의 대량 생산에 있어 용이한 구조를 제공한다.
또한, 홀 센서 조립체(240)는 전원 공급부(250)와 분리하여 설치함으로써 각각에 대해 이상이 발생할 때 별도로 수리할 수 있기 때문에 불필요한 비용 발생을 방지할 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
상기한 바와 같이 구성되는 모터는 세탁기, 자동차의 워터 펌프, 구동장치 등 회전력을 필요로 하는 다양한 분야에서 사용이 가능하다.
또한, 본 발명의 모터는 더블 로터 타입이기 때문에 동일한 전원을 인가하더라도 회전 토크를 증대시킬 수 있어 모터 효율을 향상시킬 수 있다.

Claims (15)

  1. 스테이터;
    상기 스테이터의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터;
    상기 더블 로터가 일체로 형성되고 방사상으로 복수의 공기통로가 관통되게 형성되는 로터 지지체; 및
    상기 로터 지지체에 일체로 형성되어 상기 로터 회전시 상기 공기 통로로 외부 공기를 강제 송풍하여 상기 스테이터를 방열하는 방열 유닛을 포함하는 더블 로터 타입 모터.
  2. 제1항에 있어서,
    상기 방열 유닛은 상기 로터 지지체의 외면에 형성되어 로터 회전시 상기 공기 통로로 외부 공기를 송풍하는 외부 블레이드와,
    상기 로터 지지체의 내면에 형성되어 상기 공기 통로로 유입되는 공기를 상기 스테이터로 송풍하는 내부 블레이드를 포함하는 더블 로터 타입 모터.
  3. 제2항에 있어서,
    상기 외부 블레이드는 상기 공기 통로들 사이를 구획하는 지지 리브의 외면에 수직으로 돌출되게 형성되고, 방사상으로 배열되는 것을 특징으로 하는 더블 로터 타입 모터.
  4. 제3항에 있어서,
    상기 외부 블레이드의 일측에는 외부 블레이드에 의해 송풍되는 공기를 상기 공기 통로로 가이드하는 가이드 돌기가 형성되는 것을 특징으로 하는 더블 로터 타입 모터.
  5. 제4항에 있어서,
    상기 가이드 돌기는 상기 외부 블레이드의 양쪽 측면에서 원주방향으로 연장되게 형성되고, 상기 외부 블레이드와 동일한 높이를 갖는 것을 특징으로 하는 더블 로터 타입 모터.
  6. 제1항에 있어서,
    상기 내부 블레이드는 상기 공기 통로들 사이를 구획하는 지지 리브의 내면에 수직으로 돌출되게 형성되고, 방사상으로 배열되는 것을 특징으로 하는 더블 로터 타입 모터.
  7. 스테이터;
    상기 스테이터의 외면 및 내면에 일정 갭을 두고 배치되는 더블 로터;
    상기 더블 로터가 일체로 형성되고 방사상으로 복수의 공기통로가 관통되게 형성되는 로터 지지체;
    상기 로터 지지체에 형성되어 상기 로터 회전시 상기 공기 통로로 외부 공기를 강제 송풍하여 상기 스테이터를 방열하는 방열 유닛; 및
    상기 스테이터를 형성하는 스테이터 지지체에 설치되는 홀 센서 조립체를 포함하고,
    상기 홀 센서 조립체는 상기 더블 로터의 영구자석과 마주보게 배치되는 홀 센서와, 상기 홀 센서가 표면 실장된 홀 센서 기판과, 상기 홀 센서 기판이 삽입되고 스테이터에 장착되는 홀 센서 홀더를 포함하고,
    상기 스테이터 지지체에는 상기 홀 센서 기판이 축 방향과 수평한 수직방향으로 배치되도록 상기 홀 센서 조립체가 설치되는 조립체 설치부가 형성되는 것을 특징으로 하는 더블 로터 타입 모터.
  8. 제7항에 있어서,
    상기 홀 센서 조립체는 외부 단자와 연결을 위해 핀 타입 터미널 단자를 포함하는 더블 로터 타입 모터.
  9. 제7항에 있어서,
    상기 홀 센서 홀더는 상기 홀 센서 조립체를 수용하기 위해 수직 방향의 수용부와, 상기 스테이터 지지체에 결합되는 수평 방향의 결합부로 이루어지며,
    상기 결합부는 상기 조립체 설치부에 면 접촉성을 높이기 위해 다수번 절곡되게 형성되고, 상기 조립체 설치부에 결합되는 것을 특징으로 하는 더블 로터 타입 모터.
  10. 제9항에 있어서,
    상기 홀 센서 홀더의 수용부는 상기 스테이터의 코어에 접촉 지점까지 형성되는 것을 특징으로 하는 더블 로터 타입 모터.
  11. 제7항에 있어서,
    상기 홀 센서는 상기 홀 센서 기판의 타 부품과 동시에 표면 실장되는 SMD(Surface Mount Device) 부품인 것을 특징으로 하는 더블 로터 타입 모터.
  12. 제7항에 있어서,
    상기 홀 센서 조립체는 스테이터의 코일에 전원을 인가하기 위한 전원 공급부와 분리되어 배치되는 것을 특징으로 하는 더블 로터 타입 모터.
  13. 제7항에 있어서,
    상기 스테이터 지지체에는 조립용 프레임이 설치되고, 상기 조립용 프레임의 상면에는 홀 센서 조립체가 장착되고, 상기 조립용 프레임의 하면에는 전원 공급부가 장착되는 것을 특징으로 하는 더블 로터 타입 모터.
  14. 제13항에 있어서,
    상기 홀 센서 조립체는 상기 스테이터 지지체의 원주상에 상기 전원 공급부와 동일한 지점에 설치되고, 상기 전원 공급부와 별도로 분리할 수 있는 것을 특징으로 하는 더블 로터 타입 모터.
  15. 제13항에 있어서,
    상기 홀 센서 홀더는 상기 스테이터 지지체의 내주면에 형성된 요홈에 대응하여 삽입할 수 있는 구조로 형성되는 것을 특징으로 하는 더블 로터 타입 모터.
PCT/KR2011/008513 2010-11-09 2011-11-09 더블 로터 타입 모터 WO2012064103A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180053603.2A CN103238266B (zh) 2010-11-09 2011-11-09 双转子马达
US13/873,519 US9419497B2 (en) 2010-11-09 2013-04-30 Double-rotor motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100110840 2010-11-09
KR10-2010-0110840 2010-11-09
KR10-2010-0135482 2010-12-27
KR1020100135482A KR101267945B1 (ko) 2010-12-27 2010-12-27 홀 센서 조립체를 구비한 세탁기용 모터

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/873,519 Continuation US9419497B2 (en) 2010-11-09 2013-04-30 Double-rotor motor

Publications (2)

Publication Number Publication Date
WO2012064103A2 true WO2012064103A2 (ko) 2012-05-18
WO2012064103A3 WO2012064103A3 (ko) 2012-07-19

Family

ID=46051422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008513 WO2012064103A2 (ko) 2010-11-09 2011-11-09 더블 로터 타입 모터

Country Status (3)

Country Link
US (1) US9419497B2 (ko)
CN (1) CN103238266B (ko)
WO (1) WO2012064103A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011145B1 (fr) * 2013-09-20 2017-04-14 Valeo Equip Electr Moteur Dispositif de determination d'une position angulaire et/ou de la vitesse de rotation d'un rotor d'un moteur electrique polyphase et moteur electrique correspondant
CN103825405B (zh) * 2014-03-19 2017-04-19 浙江钱江摩托股份有限公司 一种双转子电机的散热结构
DE102014217298A1 (de) 2014-08-29 2016-03-03 Robert Bosch Gmbh Antriebseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug
TW201643381A (zh) * 2015-06-09 2016-12-16 建準電機工業股份有限公司 氣流感知器及氣流偵測裝置
JP2018143473A (ja) * 2017-03-06 2018-09-20 三星電子株式会社Samsung Electronics Co.,Ltd. ファンユニット及びこれを搭載した掃除機
WO2018164447A1 (en) * 2017-03-06 2018-09-13 Samsung Electronics Co., Ltd. Fan unit and cleaner having the same
WO2019049361A1 (ja) * 2017-09-11 2019-03-14 三菱電機株式会社 電動機、及び電動機を備えた空気調和機
CN109245469A (zh) * 2018-11-15 2019-01-18 徐晓东 一种高效电机及其模具和组装方法
KR20240041692A (ko) * 2022-09-23 2024-04-01 뉴모텍(주) 세탁기용 모터
KR20240041693A (ko) * 2022-09-23 2024-04-01 뉴모텍(주) 세탁기용 모터

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663641B1 (ko) * 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
KR20080094274A (ko) * 2007-04-19 2008-10-23 주식회사 아모텍 Bldc 모터용 스테이터 및 이를 이용한 더블 로터/싱글스테이터 구조의 bldc 모터
JP2010098802A (ja) * 2008-10-15 2010-04-30 Panasonic Corp デュアルロータモータ
JP2010104160A (ja) * 2008-10-24 2010-05-06 Panasonic Corp デュアルロータモータおよびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284641A (ja) * 1993-03-30 1994-10-07 Toshiba Lighting & Technol Corp エンコーダ
JP3441242B2 (ja) * 1995-06-15 2003-08-25 財団法人鉄道総合技術研究所 車輪一体形回転電機
JP4578049B2 (ja) * 2002-07-11 2010-11-10 三菱電機株式会社 ブラシレスdcモータ
CN200982308Y (zh) * 2006-11-13 2007-11-28 奇鋐科技股份有限公司 风扇
KR100890891B1 (ko) * 2007-04-10 2009-04-02 주식회사 아모텍 세탁기의 구동 장치 및 이를 이용한 전자동 세탁기
JP2009033899A (ja) * 2007-07-28 2009-02-12 Sumitomo Electric Ind Ltd モータ
JP2009278751A (ja) * 2008-05-14 2009-11-26 Kokusan Denki Co Ltd スタータジェネレータ
JP2010063285A (ja) * 2008-09-04 2010-03-18 Nidec Shibaura Corp モータ及びその製造方法
CN201576968U (zh) * 2009-10-15 2010-09-08 中山大洋电机股份有限公司 一种电机转子结构
KR101130978B1 (ko) * 2010-06-23 2012-03-28 주식회사 아모텍 슬림형 스테이터와 그의 제조방법, 이를 포함하는 슬림형 모터 및 드럼세탁기용 직결식 구동장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663641B1 (ko) * 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
KR20080094274A (ko) * 2007-04-19 2008-10-23 주식회사 아모텍 Bldc 모터용 스테이터 및 이를 이용한 더블 로터/싱글스테이터 구조의 bldc 모터
JP2010098802A (ja) * 2008-10-15 2010-04-30 Panasonic Corp デュアルロータモータ
JP2010104160A (ja) * 2008-10-24 2010-05-06 Panasonic Corp デュアルロータモータおよびその製造方法

Also Published As

Publication number Publication date
US9419497B2 (en) 2016-08-16
US20130234546A1 (en) 2013-09-12
CN103238266B (zh) 2016-06-01
CN103238266A (zh) 2013-08-07
WO2012064103A3 (ko) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012064103A2 (ko) 더블 로터 타입 모터
WO2018038339A1 (ko) 클러스터 조립체 및 이를 포함하는 전동식 압축기
WO2017078455A1 (ko) 버스바, 모터, 및 이를 포함하는 동력 전달 시스템
WO2010035928A1 (ko) 냉장고용 팬 모터
US7663277B2 (en) Inner-rotor-type brushless motor having built-in bus bar
US8324769B2 (en) Motor controller for an electric motor
WO2012064119A2 (ko) 자동차용 워터 펌프
US7352092B2 (en) Integrated motor and controller assemblies for horizontal axis washing machines
WO2013070008A1 (ko) 세탁기용 모터, 세탁기용 모터 제조방법 및 이를 구비한 세탁기
WO2017119584A1 (ko) 모터 및 이를 포함하는 전동식 조향장치
KR20100070065A (ko) 스핀들 모터와 인쇄회로기판의 연결구조
WO2022092839A1 (ko) Bldc 모터를 구비한 구동모터 및 이를 이용한 액추에이터
US7263905B2 (en) Removable Hall-Effect sensor system for stator windings in a rotating electric machine
KR20080092024A (ko) 어스피레이션 모터용 스테이터, 이를 이용한 어스피레이션모터 및 인카 센서
WO2020122462A1 (ko) 모터
WO2017150886A1 (ko) 로터 및 이를 포함하는 모터
JP7384709B2 (ja) 電動パワーステアリング装置および製造方法
WO2012057523A2 (ko) 방열 구조를 구비한 슬림형 모터 및 직결식 구동 방식을 구비한 세탁기
WO2020055067A1 (ko) 모터
WO2018143764A1 (ko) 모터
WO2022108292A1 (ko) 모터
WO2012124951A2 (ko) 정전기 방전 경로를 갖는 스핀들 모터
WO2020145645A1 (ko) 모터
WO2013070007A1 (ko) 모터 및 모터 제조방법
WO2019088755A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840681

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840681

Country of ref document: EP

Kind code of ref document: A2