WO2016148442A1 - 송풍 시스템 - Google Patents

송풍 시스템 Download PDF

Info

Publication number
WO2016148442A1
WO2016148442A1 PCT/KR2016/002424 KR2016002424W WO2016148442A1 WO 2016148442 A1 WO2016148442 A1 WO 2016148442A1 KR 2016002424 W KR2016002424 W KR 2016002424W WO 2016148442 A1 WO2016148442 A1 WO 2016148442A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
blower
cooling
flow path
inverter
Prior art date
Application number
PCT/KR2016/002424
Other languages
English (en)
French (fr)
Inventor
김경수
Original Assignee
주식회사 티앤이코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤이코리아 filed Critical 주식회사 티앤이코리아
Priority to JP2017540631A priority Critical patent/JP6473513B2/ja
Priority to US15/546,058 priority patent/US10443621B2/en
Priority to CN201680007320.7A priority patent/CN107208661B/zh
Publication of WO2016148442A1 publication Critical patent/WO2016148442A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven

Definitions

  • the present invention relates to a blowing system, and more particularly, to a blowing system capable of rapidly cooling an inverter only by gas flow generated by suction force of an impeller without having a separate cooling fan for cooling the inverter.
  • a turbo blower or turbo compressor is a centrifugal pump that sucks and compresses external air or gas by blowing an impeller at a high speed, and blows the air to the outside. It is widely used for aeration in water and sewage treatment plants.
  • turbo blowers have a product that rotates the impeller with the rotational force of an electric motor, and such a turbo blower requires an apparatus called an inverter (inverter) to generate a high-speed current waveform for controlling the speed of the motor and supply it to the motor.
  • inverter inverter
  • the inverters include a heating element called an insulated gate bipolar transistor (IGBT), and the insulated gate bipolar transistor (IGBT) is an electric element that produces a high-speed current waveform, and is electrically switched. Since a large amount of heat is generated by switching, continuous cooling of the insulation gate bipolar transistor (IGBT) is required for continuous operation of the motor. In addition, the amount of heat generated by the bipolar transistor IGBT increases in proportion to the switching frequency.
  • turbo blowers use a method of cooling an inverter by rotating a cooling fan to cool the inverter by air (forced air cooling) or by cooling a inverter by using a refrigerant such as cooling water (water cooling).
  • the conventional turbo blower has a problem that the heat generated by the inverter and the heat generated by the motor can be mixed with each other, the gas heated by the motor can be sucked into the impeller.
  • the present invention has been made to solve the above problems, the object is to improve the structure so that the inverter can be quickly cooled only by the gas flow generated by the suction force of the impeller without having a separate cooling fan for cooling the inverter To provide a customized blowing system.
  • a blower system comprises: a blower system for compressing a gas such as air and supplying it to the outside, a blower suction port through which the gas is sucked; An impeller for compressing the gas introduced through the blower inlet; A blower blower for discharging the gas compressed by the impeller to the outside; A blower accommodating part accommodating a heat generating part of the blower; A gas suction port through which the gas is sucked from the outside; A gas flow passage connected from the gas intake port to the blower intake port; A case having an inverter accommodating part in which an electric component including an inverter is installed; A member for cooling the inverter by air, one end of which is coupled to the inverter and the other end of which is exposed to the gas flow path; wherein the blower accommodating part is spatially separated from the gas flow path The gas flows through the gas flow path by the suction force generated by the impeller, and the cooling member is cooled by the gas.
  • the cooling member the base coupled to the inverter; It is preferable to include; a plurality of cooling fins protruding from the base portion and arranged in a state spaced apart from each other by a predetermined interval.
  • the gas flow passage may include a first space portion communicating with the gas suction port; A second space portion communicating with the other end of the cooling member; And a third space portion communicating with the blower suction port.
  • the blower accommodating portion is disposed between the first space portion and the third space portion, the inverter accommodating portion is disposed under the blower accommodating portion, and the second space portion is disposed under the inverter accommodating portion, It is preferable that the said gas flow path is bent in a "U" shape.
  • the cooling air inlet formed on one surface of the blower receiving portion;
  • a cooling air outlet formed on the other surface of the blower accommodation portion;
  • a cooling fan mounted to at least one of the cooling air intake port and the cooling air outlet, for introducing air from the outside into the blower accommodation portion.
  • the second space portion the base passage through which the gas passes regardless of the pressure loss between the upstream side and the downstream side of the cooling member; It is preferable to have an additional flow path through which the gas passes only when the pressure loss between the upstream side and the downstream side of the cooling member is greater than or equal to a predetermined value.
  • the additional flow path automatically opens the additional flow path when the pressure loss between the upstream side and the downstream side of the cooling member is equal to or greater than a predetermined value, and the pressure loss between the upstream side and the downstream side of the cooling member is preliminarily.
  • a predetermined value it is preferable to be equipped with the flow volume adjusting unit which closes the said additional flow path automatically.
  • the flow rate control unit capable of rotating movement between the open position for opening the additional flow path and the closed position for closing the additional flow path; It is preferred to have bias means for biasing the flow control plate elastically or gravitationally to the closed position.
  • the other end of the cooling member is in contact with the case, it is preferable that the heat is conducted from the cooling member to the case can be discharged to the outside.
  • the gas flow path is preferably disposed outside the inner space of the case so that heat of the gas flowing along the gas flow path is conducted to the case and discharged to the outside.
  • a blower suction port through which gas is sucked;
  • An impeller for compressing the gas introduced through the blower inlet;
  • a blower blower for discharging the gas compressed by the impeller to the outside;
  • a blower accommodating part accommodating a heat generating part of the blower;
  • a gas suction port through which the gas is sucked from the outside;
  • a gas flow passage connected from the gas intake port to the blower intake port;
  • the blower accommodating part is spatially separated from the gas flow path Since the gas flows through the gas flow path by the suction force generated by the impeller, and the cooling member is cooled by the gas, the gas flows through the suction force of the impeller without having a separate cooling fan for cooling the inverter.
  • FIG. 1 is a perspective view of a blowing system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the blowing system shown in FIG. 1 viewed from another angle.
  • FIG. 2 is a perspective view of the blowing system shown in FIG. 1 viewed from another angle.
  • FIG. 3 is a perspective view illustrating a blower of the blower system shown in FIG. 1.
  • FIG. 4 is a front view of the blowing system shown in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line A-A of the blowing system shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line B-B of the blowing system shown in FIG.
  • FIG. 7 is a partial cross-sectional view of the blowing system shown in FIG. 6.
  • FIG. 8 is a front view of the blowing system shown in FIG. 7.
  • FIG. 9 is a cross-sectional view taken along the line C-C of the flow control unit shown in FIG.
  • FIG. 10 is a view illustrating an open state of the flow regulating plate of the flow regulating unit illustrated in FIG. 9.
  • FIG. 1 is a perspective view of a blowing system according to an embodiment of the present invention
  • Figure 2 is a perspective view of the blowing system shown in Figure 1 viewed from another angle
  • 3 is a perspective view illustrating a blower of the blower system shown in FIG. 1.
  • the blower system 100 is an electric blower system for sucking and compressing a gas such as air and then supplying it to the outside. It is widely used for aeration.
  • This blowing system 100 includes a blower 10, a case 20, an inverter H, a cooling member 30, and a flow rate adjusting unit 40. In the following it is assumed that the gas is air.
  • the blower 10 is a type of so-called turbo blower or turbo compressor, and sucks external air by compressing the impeller at high speed by using a rotational force of a motor, and then compresses external air. It is a centrifugal pump that blows air with
  • This blower 10 includes an impeller 11, a motor 12, a blower suction port 13, and a blower blower port 14.
  • the impeller 11 is a wheel having a plurality of wings having a curved surface as a main configuration of a centrifugal pump, which is mounted inside the metal housing to enable high speed rotation, and is introduced through the blower suction port 13. Compress the gas.
  • the motor 12 is an electric motor that generates a rotational force, and is mounted to supply a high speed rotational force to the impeller 11.
  • a plurality of motor cooling fins 121 for cooling are arranged in a protruding state.
  • the motor 12 and the bearing (not shown) form the main heat source of the blower 10.
  • the blower suction port 13 is a passage through which the gas to be blown is sucked, and communicates with the front end of the impeller 11 so that the gas can be transferred to the impeller 11.
  • the blower blower port 14 is a passage through which the gas compressed at high pressure by the impeller 11 is discharged to the outside, and communicates with an upper end of the impeller 11.
  • One end of the motor cooling air inlet 15 is coupled to a rear end of the motor 12, and the other end of the motor cooling air inlet 15 is disposed in the first space S1 to be described later. have.
  • the gas sucked into the other end of the motor cooling air inlet 15 is discharged to the blower accommodating part 22 which will be described later through the inside of the motor 12.
  • the case 20 is a metal box for accommodating the blower 10, and is manufactured by processing a thin metal plate.
  • the case 20 includes a first main body 20a, a second main body 20b, a third main body 20c, a cover member 20d, a rear wall 20e, and a pedestal 20f. Include.
  • the first main body 20a is a box member having a rectangular cross section extending vertically, and is disposed on the upper right side of the pedestal 20f in a vertically standing state as shown in FIG. 1.
  • the said base 20f is an iron frame member arrange
  • the first vertical partitions 27 extend vertically long.
  • a gas suction port 21 Through which the gas can be sucked from the outside is formed.
  • the gas inlet 21 is equipped with a filter 214 for removing foreign matter from the gas to be sucked as shown in FIG.
  • the 1st space part S1 which is an internal space which communicates with the said gas suction port 21 is provided.
  • a first through hole 211 communicating with the first space S1 is formed at a lower end of the first vertical partition wall 27.
  • the second main body 20b is a tubular member having a rectangular cross section extending left and right, and is disposed on an upper surface of the middle portion of the pedestal 20f in a horizontally lying state as shown in FIG. 3.
  • a second space S2 which is an internal space through which the gas can flow, is formed to be long left and right.
  • the right end of the second space S2 communicates with the first through hole 211 of the first body 20a.
  • the third main body 20c is a box member having a rectangular cross section extending vertically, and is disposed on the upper left surface of the pedestal 20f in a vertically standing state as shown in FIG. 1.
  • the second vertical partition wall 28 extends vertically.
  • a third space S3 which is an internal space through which the gas can flow, is provided vertically long.
  • a third through hole 213 communicating with the blower suction port 13 is formed at an upper end of the second vertical partition wall 28.
  • a second through hole 212 communicating with the left end of the second space S2 is formed at the lower end of the second vertical partition wall 28.
  • the bottom member 29 which is a flat plate member arrange
  • a left end of the bottom member 29 is coupled to a lower end of the second vertical partition wall 28, and a right end of the bottom member 29 is a lower end of the first vertical partition wall 27. Is coupled to
  • the cover member 20d is a plate-shaped member bent in a "b" shape and is a member for covering the blower accommodating portion 22 so that the blower 10 is not exposed to the outside.
  • the front surface of the cover member 20d is formed with a cooling air outlet 25 for communicating the blower accommodating portion 22 with the outside.
  • the left end of the cover member 20d is detachably coupled to the upper end of the third main body 20c, and the right end of the cover member 20d is detachably coupled to the upper end of the first main body 20a.
  • the lower end of the cover member 20d is detachably coupled to the lower ends of the third body 20c and the first body 20a.
  • the rear wall 20e is a flat member disposed perpendicular to the rear of the cover member 20d as shown in FIG. 2.
  • a cooling air intake port 24 for communicating with the blower accommodation portion 22 and the outside is formed.
  • the cooling air intake port 24 is formed at a position corresponding to the cooling air outlet 25 linearly.
  • a cooling fan 26 that sucks air from the outside and flows it into the blower accommodating portion 22 is mounted.
  • a small fan having a direct current (DC) motor having a relatively small power consumption characteristic is used as the cooling fan 26.
  • the left end of the rear wall 20e is detachably coupled to the third body 20c, and the right end of the rear wall 20e is detachably coupled to the first body 20a.
  • the blower accommodating part 22 is a space for accommodating a heat source of the blower 10 like the motor 12 and the bearing (not shown). In this embodiment, the impeller 11 The entire blower 10 including a) is accommodated.
  • the blower accommodating part 22 cooperates with the first vertical partition 27, the second vertical partition 28, the bottom member 29, the cover member 20d, and the rear wall 20e. Is formed.
  • the blower accommodating part 22 is arrange
  • an inverter accommodating box 20g is arranged horizontally.
  • the inverter accommodating box 20g is provided with an inverter accommodating portion 23 in which an electric equipment including the inverter H is provided.
  • the inverter accommodating part 23 is disposed under the blower accommodating part 22, and the second space S2 is disposed under the inverter accommodating part 23. .
  • a fourth through hole 231 is formed in the bottom surface of the inverter accommodating portion 23 in communication with the second space S2 as a rectangular hole.
  • the gas flow path R is bent in a "U" shape from the gas inlet 21 to the blower inlet 13 as shown in FIG. 5.
  • the case of the gas flow path R may allow the heat of the gas flowing along the gas flow path R to be conducted to the case 20 and discharged to the outside. It is arrange
  • blower accommodating part 22 Since the blower accommodating part 22 is spatially separated from the gas flow path R, an airtight structure in which air heated by the heat generating part of the blower 10 cannot penetrate into the gas flow path R is prevented.
  • the inverter H is a device for generating a high-speed current waveform for controlling the speed of the motor 12 and supplying it to the motor 12.
  • the inverter H generates an insulated gate bipolar transistor (IGBT). Contains parts.
  • the insulated gate bipolar transistor is an electrical device that generates a high-speed current waveform, and a large amount of heat is generated by electrical switching, and the amount of heat is increased in proportion to the switching frequency. Since the insulated gate bipolar transistor IGBT is limited in use temperature, continuous cooling of the insulated gate bipolar transistor IGBT is required for continuous operation of the motor 12.
  • the cooling member 30 is a metal member for cooling the inverter H by air, and includes a base 31 and a cooling fin 32.
  • the base portion 31 is a metal flat member, and an upper surface thereof is coupled to a lower surface of the inverter H.
  • the cooling fins 32 are rectangular plate-shaped members protruding downward from the base portion 31, and extend in a left-right direction as shown in FIG. 5, and are provided in plural as shown in FIG. 7. They are arranged spaced apart by a fixed interval.
  • An upper end of the cooling fin 32 is coupled to a lower surface of the base 31, and a lower end of the cooling fin 32 is downward through the fourth through hole 231 of the inverter accommodating box 20g. By exposure, it contacts the bottom of the said 2nd space part S2.
  • the lower end of the cooling member 30 is in contact with the upper surface of the pedestal 20f, heat can be directly conducted from the cooling member 30 to the pedestal 20f to be discharged to the outside.
  • the basic flow path R1 is positioned at the center of the second space S2, and the gas is independent of the pressure loss between the upstream side and the downstream side of the cooling member 30. Is always open for passage.
  • Additional flow paths R2 are formed on the left and right sides of the basic flow path R1 of the second space S2, and the basic flow path R1 and the additional flow path R2 are spatially isolated so that internal gases are not mixed. have.
  • the additional flow path R2 is a flow path that allows the gas to pass only when the pressure loss between the upstream side and the downstream side of the cooling member 30 is equal to or greater than a predetermined value.
  • the gas flow path R of the second space S2 includes a pair of additional flow paths disposed on the left and right sides of the basic flow path R1 and the basic flow path R1 of the central portion. R2).
  • the flow rate control unit 40 is a device for automatically opening the additional flow path R2 only when the pressure loss between the upstream side and the downstream side of the cooling member 30 is equal to or greater than a predetermined value, and the flow rate control plate 41 ), An elastic member 42 and a weight member 43 are included.
  • the flow regulating unit 40 is attached to an additional flow path R2 located downstream of the cooling member 30 as shown in FIGS. 5 and 6.
  • the flow regulating plate 41 is a rectangular flat plate member, and the upper end portion is coupled to the upper end portion of the second through hole 212 so as to be rotatable.
  • the flow rate control plate 41 is configured to open the additional flow path R2 and to close the additional flow path R2 about the rotation center C1 positioned at the upper end of the second through hole 212. Rotational movement is possible between closed positions.
  • the elastic member 42 is a biasing means for elastically biasing the flow regulating plate 41 to the closed position.
  • a torsion spring mounted to the rotation center C1 is used.
  • the weight member 43 includes a rod portion 431 and a weight 432 as bias means for biasing the flow rate regulating plate 41 to the closed position by gravity.
  • the rod portion 431 is a rod protruding to the left from the flow control plate 41 as shown in FIG. 9.
  • the weight 432 is a metal weight having a predetermined mass and is coupled to the distal end of the rod 431.
  • the gas pressure (P) has a value that can cancel the elastic force or gravity of the elastic member 42 and the weight member 43.
  • the gas pressure P as shown in FIG. 9 has a predetermined value or less, and the flow rate control plate ( 41) to maintain the closed position.
  • the gas pressure (P) has a value smaller than the value that can cancel the elastic force or gravity of the elastic member 42 and the weight member 43.
  • the gas that was outside is introduced into the first space S1 through the gas suction port 21, and the first space S1. After the gas flows down, it enters the right end of the second space S2 through the first through hole 211.
  • the gas entering the second space S2 cools the cooling fin 32 of the cooling member 30 while flowing through the basic flow path R1.
  • the flow rate adjusting plate 41 maintains the closed position, the gas entering the second space (S2) All of them flow through only the basic flow path R1.
  • the additional flow path R2 is automatically opened to supply additional gas to the blower 10.
  • the gas passing through the second space S2 enters the third space S3 through the second through hole 212, and the gas entering the third space S3 rises. Thus, it is introduced into the blower suction port 13 through the third through hole 213.
  • the gas introduced into the blower inlet 13 is compressed by the impeller 11 and then discharged to the outside through the blower blower 14.
  • the air introduced into the cooling air inlet 24 is discharged to the outside through the cooling air outlet 25, in this process the motor 12 and the main heat generating part of the blower 10 and The bearing (not shown) is cooled.
  • Blowing system 100 of the above-described configuration the blower suction port 13 through which the gas is sucked; An impeller 11 for compressing the gas introduced through the blower inlet 13; A blower 10 having a blower air outlet 14 through which the gas compressed by the impeller 11 is discharged to the outside; A blower accommodating part 22 accommodating a heat generating part of the blower 10; A gas suction port 21 through which the gas is sucked from the outside; A gas flow path (R) connected from the gas intake port (21) to the blower intake port (13); A case 20 having an inverter accommodating part 23 in which electrical equipment including an inverter H is installed; A member for cooling the inverter H by air, one end of which is coupled to the inverter H and the other end of which is a cooling member 30 exposed to the gas flow path R; The blower accommodating part 22 is spatially separated from the gas flow path R, and the gas flows through the gas flow path R by the suction force generated by the impeller 11, and the cooling member 30.
  • the cooling member 30, the base portion 31 is coupled to the inverter (H); Protruding from the base portion 31 and having a plurality of cooling fins 32 arranged in a state spaced apart from each other by a predetermined interval; having a surface area in contact with the gas has an advantage of increasing the cooling efficiency .
  • blowing system 100 The gas flow path (R), the first space portion (S1) in communication with the gas suction port 21; A second space portion S2 in communication with the other end of the cooling member 30; Since the third space portion (S3) in communication with the blower suction port 13; includes, there is an advantage that it is easy to increase the length of the gas flow path (R) and to be complicated.
  • the blower housing 22 is disposed between the first space S1 and the third space S3, and the inverter housing 23 is the blower. It is disposed below the accommodating part 22, and the said 2nd space part S2 is arrange
  • the second space portion S2 in which the cooling member 30 is disposed may be disposed at the outermost bottom of the case 20 to increase the cooling efficiency, and the blower suction port located at the distal end of the gas flow path R may include: 13) there is an advantage that the turbulent noise generated in the vicinity is almost discharged to the outside through the gas flow path (R).
  • the blowing system 100 the cooling air intake port 24 formed on one surface of the blower receiving portion 22; Cooling air outlet 25 formed on the other surface of the blower accommodation portion 22; And a cooling fan 26 mounted to at least one of the cooling air intake port 24 and the cooling air discharge port 25 to introduce air from the outside into the blower accommodation portion 22. Since the accommodating part 22 is spatially separated from the gas flow path R, the air heated by the motor 12 and the bearing (not shown) forming the main heat generating part of the blower 10 is transferred to the gas. There is an advantage that the air heated by the motor 12 and the bearing (not shown) can be quickly discharged to the outside without penetrating the flow path R and degrading the performance of the blower 10.
  • the blower system 100 includes: a basic flow path R1 through which the gas passes, regardless of the pressure loss between the upstream side and the downstream side of the cooling member 30; Since the gas flows only when the pressure loss between the upstream side and the downstream side of the cooling member 30 is greater than or equal to a predetermined value; and the flow path of the gas sucked by the impeller 11 is increased.
  • the additional flow path R2 may be opened to prevent an excessive increase in pressure loss between the upstream side and the downstream side of the cooling member 30.
  • the blowing system 100 automatically opens the additional flow path R2 in the additional flow path R2 when the pressure loss between the upstream side and the downstream side of the cooling member 30 is equal to or greater than a predetermined value.
  • the flow rate adjusting unit 40 is automatically mounted so that the additional flow path R2 is automatically closed. Even if it does not have the advantage that the automatic opening and closing of the additional flow path (R2) is possible.
  • the blower system 100 includes a flow control plate 41 in which the flow rate control unit 40 is rotatable between an open position in which the additional flow path R2 is opened and a closed position in which the additional flow path R2 is closed. ); Bias means 42, 43 for biasing the flow control plate 41 elastically or gravitationally to the closed position, the pressure loss between the upstream and downstream sides of the cooling member 30 is determined in advance.
  • the value is less than the value has the advantage that the additional flow path (R2) can be stably fixed in the closed position.
  • the air blowing system 100 conducts heat from the cooling member 30 to the case 20 so as to be external. It has the advantage that it can be discharged quickly.
  • the gas flow path R is disposed outside the inner space of the case 20, the heat of the gas flowing along the gas flow path R is transferred to the case 20. There is an advantage that can be quickly discharged to the outside is conducted to.
  • both the elastic member 42 and the weight member 43 are used as the biasing means, but only one of the elastic member 42 and the weight member 43 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 송풍 시스템에 관한 것으로서, 공기 등의 기체를 압축하여 외부로 공급하는 송풍 시스템으로서, 상기 기체가 흡입되는 블로어 흡입구; 상기 블로어 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 블로어 송풍구;를 구비하는 블로어; 상기 블로어의 발열부를 수용하는 블로어 수용부; 외부로부터 상기 기체가 흡입되는 기체 흡입구; 상기 기체 흡입구로부터 상기 블로어 흡입구까지 연결되어 있는 기체 유로; 인버터를 포함한 전장품이 설치되는 인버터 수용부;를 구비하는 케이스; 상기 인버터를 공기에 의하여 냉각하기 위한 부재로서, 일단부는 상기 인버터와 결합되어 있으며 타단부는 상기 기체 유로에 노출되어 있는 냉각 부재;를 포함하며, 상기 블로어 수용부는 상기 기체 유로와 공간적으로 분리되어 있으며, 상기 임펠러가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로를 유동하며, 상기 냉각 부재가 상기 기체에 의하여 냉각되는 것을 특징으로 한다. 본 발명에 따르면, 인버터를 냉각하기 위한 별도의 냉각팬을 구비하지 않고서도, 상기 임펠러의 흡입력으로 발생되는 기체 유동만으로 상기 인버터를 신속하게 냉각시킬 수 있는 효과가 있다.

Description

송풍 시스템
본 발명은 송풍 시스템에 관한 것으로서, 특히 인버터를 냉각하기 위한 별도의 냉각팬을 구비하지 않고서도 임펠러의 흡입력으로 발생되는 기체 유동만으로 인버터를 신속하게 냉각시킬 수 있는 송풍 시스템에 관한 것이다.
터보 블로어(turbo blower) 또는 터보 압축기(turbo compressor)는, 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 공기나 가스를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프로서, 분체(powder) 이송용이나 하수 처리장 등에서 폭기(爆氣)용으로 많이 사용되고 있다.
종래의 터보 블로어에는 전기 모터의 회전력으로 임펠러를 회전시키는 제품이 있는데, 이러한 터보 블로어에는 모터의 속도를 제어하기 위한 고속의 전류 파형을 만들어서 모터로 공급하는 인버터(inverter)라는 장치가 필수적으로 필요하다.
그러나, 인버터의 대부분은, 절연 게이트 쌍극성 트랜지스터(IGBT; Insulated Gate Bipolar Transistor)라는 발열 부품을 포함하고 있고, 상기 절연 게이트 쌍극성 트랜지스터(IGBT)는 고속의 전류 파형을 만드는 전기 소자로서, 전기적 스위칭(Switching)에 의한 다량의 열이 발생하게 되므로, 모터의 지속적인 운용을 위해서는 상기 절연 게이트 쌍극성 트랜지스터(IGBT)의 지속적인 냉각이 필요하다. 더구나, 상기 쌍극성 트랜지스터(IGBT)의 발열량은 스위칭 주파수에 비례하여 증가하게 된다.
종래의 터보 블로어는 인버터의 냉각을 위하여, 냉각팬을 회전시켜 공기에 의하여 인버터를 냉각시키는 방법(강제 공냉식) 또는 냉각수와 같은 냉매를 이용하여 인버터를 냉각시키는 방법(수냉식)을 사용하였다.
그러나 강제 공냉식의 경우에는, 비교적 작은 전력 소모 특성을 가진 직류(DC) 모터가 장착된 소형 냉각팬이 일반적으로 사용되는데, 이러한 소형 냉각팬은 냉각 공기의 공급능력이 비교적 낮고, 제품 수명이 매우 짧다는 문제점이 있다.
또한 수냉식의 경우에는, 비교적 냉각 효율은 높으나, 물탱크와 라디에이터와 같은 복잡한 구조를 사용해야 하고, 냉각수의 누수의 위험이 높다는 문제점이 여전히 발생한다.
아울러, 종래의 터보 블로어는, 인버터에서 발생되는 열기와 모터에서 발생되는 열기가 서로 혼합될 수 있는 구조인 바, 모터에 의하여 가열된 기체가 임펠러에 흡입될 수 있는 문제점도 있다.
본 발명은 상기 문제를 해결하기 위해 안출된 것으로서, 그 목적은 인버터를 냉각하기 위한 별도의 냉각팬을 구비하지 않고서도 임펠러의 흡입력으로 발생되는 기체 유동만으로 인버터를 신속하게 냉각시킬 수 있도록 구조가 개선된 송풍 시스템을 제공하기 위함이다.
상기 목적을 달성하기 위하여 본 발명에 따른 송풍 시스템은, 공기 등의 기체를 압축하여 외부로 공급하는 송풍 시스템으로서, 상기 기체가 흡입되는 블로어 흡입구; 상기 블로어 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 블로어 송풍구;를 구비하는 블로어; 상기 블로어의 발열부를 수용하는 블로어 수용부; 외부로부터 상기 기체가 흡입되는 기체 흡입구; 상기 기체 흡입구로부터 상기 블로어 흡입구까지 연결되어 있는 기체 유로; 인버터를 포함한 전장품이 설치되는 인버터 수용부;를 구비하는 케이스; 상기 인버터를 공기에 의하여 냉각하기 위한 부재로서, 일단부는 상기 인버터와 결합되어 있으며 타단부는 상기 기체 유로에 노출되어 있는 냉각 부재;를 포함하며, 상기 블로어 수용부는 상기 기체 유로와 공간적으로 분리되어 있으며, 상기 임펠러가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로를 유동하며, 상기 냉각 부재가 상기 기체에 의하여 냉각되는 것을 특징으로 한다.
여기서, 상기 냉각 부재는, 상기 인버터와 결합되는 기초부; 상기 기초부로부터 돌출되어 있으며 미리 정한 간격만큼 서로 이격된 상태로 복수 개 나열되어 있는 냉각핀;을 구비하는 것이 바람직하다.
여기서, 상기 기체 유로는, 상기 기체 흡입구와 연통되어 있는 제1 공간부; 상기 냉각 부재의 타단부와 연통되어 있는 제2 공간부; 상기 블로어 흡입구와 연통되어 있는 제3 공간부;를 포함하는 것이 바람직하다.
여기서, 상기 블로어 수용부는 상기 제1 공간부와 상기 제3 공간부 사이에 배치되며, 상기 인버터 수용부는 상기 블로어 수용부의 하측에 배치되고, 상기 제2 공간부는 상기 인버터 수용부의 하측에 배치되어 있으며, 상기 기체 유로는, "U"자 형태로 절곡되어 있는 것이 바람직하다.
여기서, 상기 블로어 수용부의 일면에 형성된 냉각용 공기 흡입구; 상기 블로어 수용부의 타면에 형성된 냉각용 공기 배출구; 상기 냉각용 공기 흡입구와 상기 냉각용 공기 배출구 중 적어도 하나에 장착되며, 외부로부터 공기를 상기 블로어 수용부로 유입시키는 냉각팬;을 포함하는 것이 바람직하다.
여기서, 상기 제2 공간부는, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실과 무관하게 상기 기체가 지나가는 기본 유로; 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때만 상기 기체가 지나가는 추가 유로;를 구비하는 것이 바람직하다.
여기서, 상기 추가 유로에는, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때에는 상기 추가 유로를 자동적으로 개방하고, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때에는 상기 추가 유로를 자동적으로 폐쇄하는 유량 조절 유닛이 장착되어 있는 것이 바람직하다.
여기서, 상기 유량 조절 유닛은, 상기 추가 유로를 개방하는 개방 위치와 상기 추가 유로를 폐쇄하는 폐쇄 위치 사이에서 회전 운동 가능한 유량 조절판; 상기 유량 조절판을 탄성적으로 또는 중력적으로 상기 폐쇄 위치로 바이어스시키는 바이어스 수단을 구비하는 것이 바람직하다.
여기서, 상기 냉각 부재의 타단부가 상기 케이스와 접촉함으로써, 상기 냉각 부재로부터 상기 케이스로 열이 전도되어 외부로 배출될 수 있는 것이 바람직하다.
여기서, 상기 기체 유로는, 상기 기체 유로를 따라 유동하는 기체의 열이 상기 케이스에 전도되어 외부로 배출될 수 있도록, 상기 케이스의 내부 공간의 외곽에 배치되어 있는 것이 바람직하다.
본 발명에 따르면, 기체가 흡입되는 블로어 흡입구; 상기 블로어 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 블로어 송풍구;를 구비하는 블로어; 상기 블로어의 발열부를 수용하는 블로어 수용부; 외부로부터 상기 기체가 흡입되는 기체 흡입구; 상기 기체 흡입구로부터 상기 블로어 흡입구까지 연결되어 있는 기체 유로; 인버터를 포함한 전장품이 설치되는 인버터 수용부;를 구비하는 케이스; 상기 인버터를 공기에 의하여 냉각하기 위한 부재로서, 일단부는 상기 인버터와 결합되어 있으며 타단부는 상기 기체 유로에 노출되어 있는 냉각 부재;를 포함하며, 상기 블로어 수용부는 상기 기체 유로와 공간적으로 분리되어 있으며, 상기 임펠러가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로를 유동하며, 상기 냉각 부재가 상기 기체에 의하여 냉각되므로, 인버터를 냉각하기 위한 별도의 냉각팬을 구비하지 않고서도, 상기 임펠러의 흡입력으로 발생되는 기체 유동만으로 상기 인버터를 신속하게 냉각시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 송풍 시스템의 사시도이다.
도 2는 도 1에 도시된 송풍 시스템을 다른 각도에서 바라본 사시도이다.
도 3은 도 1에 도시된 송풍 시스템의 블로어를 나타내는 사시도이다.
도 4는 도 3에 도시된 송풍 시스템의 정면도이다.
도 5는 도 1에 도시된 송풍 시스템의 A-A선 단면도이다.
도 6은 도 1에 도시된 송풍 시스템의 B-B선 단면도이다.
도 7은 도 6에 도시된 송풍 시스템의 부분 단면도이다.
도 8은 도 7에 도시된 송풍 시스템의 정면도이다.
도 9는 도 6에 도시된 유량 조절 유닛의 C-C선 단면도이다.
도 10은 도 9에 도시된 유량 조절 유닛의 유량 조절판이 개방된 상태를 나타내는 도면이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 송풍 시스템의 사시도이며, 도 2는 도 1에 도시된 송풍 시스템을 다른 각도에서 바라본 사시도이다. 도 3은 도 1에 도시된 송풍 시스템의 블로어를 나타내는 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 송풍 시스템(100)은, 공기 등의 기체를 흡입하여 압축한 후 외부로 공급하는 전기 송풍 시스템으로서, 분체 이송용이나 하수처리장 등에서 폭기(爆氣)용으로 많이 사용되고 있다. 이 송풍 시스템(100)은, 블로어(10)와, 케이스(20)와, 인버터(H)와, 냉각 부재(30)와, 유량 조절 유닛(40)을 포함하여 구성된다. 이하에서 상기 기체는 공기인 것을 전제로 한다.
상기 블로어(10)는, 소위 터보 블로어(turbo blower) 또는 터보 압축기(turbo compressor)의 일종으로서, 모터의 회전력을 이용하여 임펠러(impeller)를 고속으로 회전시킴으로써 외부의 공기를 흡입하여 압축한 후 외부로 송풍하는 원심형 펌프이다.
이 블로어(10)는, 임펠러(11)와, 모터(12)와, 블로어 흡입구(13)와, 블로어 송풍구(14)를 포함한다.
상기 임펠러(11)는, 원심형 펌프의 주요 구성으로 곡면을 지닌 날개를 복수 개 구비한 바퀴로서, 고속 회전이 가능하도록 금속 하우징의 내부에 장착되어 있으며, 상기 블로어 흡입구(13)를 통하여 유입된 기체를 압축한다.
상기 모터(12)는, 회전력을 발생시키는 전기 모터로서, 상기 임펠러(11)에 고속 회전력을 공급하도록 장착되어 있다.
상기 모터(12)의 외주면에는, 도 4에 도시된 바와 같이 냉각을 위한 복수 개의 모터 냉각핀(121)이 돌출된 상태로 배열되어 있다.
상기 임펠러(11) 및 모터(12)의 고속 회전에 의하여 발생되는 마찰력을 감소시키기 위하여, 상기 블로어(10)의 내부에는 다양한 형태의 베어링(미도시)이 장착되어 있다.
상기 모터(12) 및 상기 베어링(미도시) 등이 상기 블로어(10)의 주요 발열부(heat source)를 형성하게 된다.
상기 블로어 흡입구(13)는, 송풍의 대상이 되는 기체가 흡입되는 통로로서, 상기 기체가 상기 임펠러(11)로 이송될 수 있도록 상기 임펠러(11)의 전단부와 연통되어 있다.
상기 블로어 송풍구(14)는, 상기 임펠러(11)에 의하여 고압으로 압축된 기체가 외부로 배출되는 통로로서, 상기 임펠러(11)의 상단부와 연통되어 있다.
상기 모터(12)의 후단부에는, 도 5에 도시된 바와 같이 모터의 내부를 냉각하기 위한 기체가 흡입되는 모터 냉각용 공기 흡입구(15)가 형성되어 있다.
상기 모터 냉각용 공기 흡입구(15)의 일단부는 상기 모터(12)의 후단부에 결합되어 있으며, 상기 모터 냉각용 공기 흡입구(15)의 타단부는 후술할 제1 공간부(S1)에 배치되어 있다.
상기 모터 냉각용 공기 흡입구(15)의 타단부로 흡입된 기체는, 상기 모터(12)의 내부를 거쳐서 후술할 블로어 수용부(22)로 배출된다.
상기 케이스(20)는, 상기 블로어(10)를 수납하기 위한 금속 상자로서, 얇은 금속 판재를 가공하여 제작된다. 이 케이스(20)는, 제1 본체(20a)와, 제2 본체(20b)와, 제3 본체(20c)와, 커버 부재(20d)와, 후방 벽체(20e)와, 받침대(20f)를 포함한다.
상기 제1 본체(20a)는, 사각 단면이 상하로 길게 연장된 박스 부재로서, 도 1에 도시된 바와 같이 수직하게 세워진 상태로, 상기 받침대(20f)의 우측 상면에 배치되어 있다. 여기서, 상기 받침대(20f)는 설치 장소에 배치되는 철제 프레임 부재이다.
상기 제1 본체(20a)의 좌측면에는 제1 수직 격벽(27)이 상하로 길게 연장되어 있다.
상기 제1 본체(20a)의 우측면에는, 외부로부터 상기 기체가 내부로 흡입될 수 있는 기체 흡입구(21)가 형성되어 있다.
상기 기체 흡입구(21)에는, 도 5에 도시된 바와 같이 흡입되는 기체로부터 이물질을 제거하기 위한 필터(214)가 장착되어 있다.
상기 제1 본체(20a)의 내부에는, 상기 기체 흡입구(21)와 연통되어 있는 내부 공간인 제1 공간부(S1)가 마련되어 있다.
상기 제1 수직 격벽(27)의 하단부에는, 도 5에 도시된 바와 같이 상기 제1 공간부(S1)과 연통하는 제1 관통공(211)이 형성되어 있다.
상기 제2 본체(20b)는, 사각 단면이 좌우로 길게 연장된 관형 부재로서, 도 3에 도시된 바와 같이 수평하게 눕혀진 상태로, 상기 받침대(20f) 중간부 상면에 배치되어 있다.
상기 제2 본체(20b)의 내부에는, 상기 기체가 유동할 수 있는 내부 공간인 제2 공간부(S2)가 좌우로 길게 형성되어 있다.
상기 제2 공간부(S2)의 우단부는 도 4에 도시된 바와 같이 상기 제1 본체(20a)의 제1 관통공(211)과 연통되어 있다.
상기 제3 본체(20c)는, 사각 단면이 상하로 길게 연장된 박스 부재로서, 도 1에 도시된 바와 같이 수직하게 세워진 상태로, 받침대(20f)의 좌측 상면에 배치되어 있다.
상기 제3 본체(20c)의 우측면에는 제2 수직 격벽(28)이 상하로 길게 연장되어 있다.
상기 제3 본체(20c)의 내부에는, 상기 기체가 유동할 수 있는 내부 공간인 제3 공간부(S3)가 상하로 길게 마련되어 있다.
상기 제2 수직 격벽(28)의 상단부에는, 상기 블로어 흡입구(13)와 연통되어 있는 제3 관통공(213)이 형성되어 있다.
상기 제2 수직 격벽(28)의 하단부에는, 도 5에 도시된 바와 같이 상기 제2 공간부(S2)의 좌단부와 연통되어 있는 제2 관통공(212)이 형성되어 있다.
상기 제1 수직 격벽(27)와 상기 제2 수직 격벽(28)의 사이에는, 수평하게 배치된 평판 부재인 바닥 부재(29)가 배치되어 있다.
도 5에 도시된 바와 같이 상기 바닥 부재(29)의 좌단부는 상기 제2 수직 격벽(28)의 하단부에 결합되어 있으며, 상기 바닥 부재(29)의 우단부는 상기 제1 수직 격벽(27)의 하단부에 결합되어 있다.
상기 커버 부재(20d)는, "ㄱ"자형으로 절곡된 판형 부재로서, 상기 블로어(10)가 외부에 노출되지 않도록 블로어 수용부(22)를 커버하기 위한 부재이다.
상기 커버 부재(20d)의 앞면에는 상기 블로어 수용부(22)와 외부를 연통시키는 냉각용 공기 배출구(25)가 형성되어 있다.
상기 커버 부재(20d)의 좌단부는 상기 제3 본체(20c)의 상단부에 탈착 가능하게 결합되고, 상기 커버 부재(20d)의 우단부는 상기 제1 본체(20a)의 상단부에 탈착 가능하게 결합되며, 상기 커버 부재(20d)의 하단부는 상기 제3 본체(20c) 및 제1 본체(20a)의 하단부에 탈착 가능하게 결합된다.
상기 후방 벽체(20e)는, 도 2에 도시된 바와 같이 상기 커버 부재(20d)의 후방에 수직하게 배치된 평판 부재이다.
상기 후방 벽체(20e)의 중앙부에는 상기 블로어 수용부(22)와 외부를 연통시키는 냉각용 공기 흡입구(24)가 형성되어 있다.
상기 냉각용 공기 흡입구(24)는, 상기 냉각용 공기 배출구(25)와 직선적으로 대응되는 위치에 형성되어 있다.
상기 냉각용 공기 흡입구(24)의 내면에는, 외부로부터 공기를 흡입하여 상기 블로어 수용부(22)로 유입시키는 냉각팬(26)이 장착되어 있다.
본 실시예에서는, 상기 냉각팬(26)으로서 비교적 작은 전력 소모 특성을 가진 직류(DC) 모터를 구비한 소형 팬이 사용되고 있다.
상기 후방 벽체(20e)의 좌단부는 상기 제3 본체(20c)에 탈착 가능하게 결합되고, 상기 후방 벽체(20e)의 우단부는 상기 제1 본체(20a)에 탈착 가능하게 결합된다.
상기 블로어 수용부(22)는, 상기 모터(12) 및 상기 베어링(미도시)과 같이 상기 블로어(10)의 발열부(heat source)를 수용하기 위한 공간으로서, 본 실시예에서는 상기 임펠러(11)를 포함하는 상기 블로어(10) 전체를 수용하고 있다.
상기 블로어 수용부(22)는, 상기 제1 수직 격벽(27)과 상기 제2 수직 격벽(28)과 상기 바닥 부재(29)와 상기 커버 부재(20d) 및 상기 후방 벽체(20e)가 협력하여 형성된다.
따라서, 상기 블로어 수용부(22)는, 상기 제1 공간부(S1)의 상단부와 상기 제3 공간부(S3)의 상단부 사이에 배치되어 있다.
상기 바닥 부재(29)의 하면에는, 인버터 수용 박스(20g)가 수평하게 배치되어 있다.
상기 인버터 수용 박스(20g)는, 직육면체 박스 부재로서 내부에는, 상기 인버터(H)를 포함한 전장품이 설치되는 인버터 수용부(23)가 마련되어 있다.
상기 인버터 수용부(23)는 도 5에 도시된 바와 같이 상기 블로어 수용부(22)의 하측에 배치되고, 상기 제2 공간부(S2)는 상기 인버터 수용부(23)의 하측에 배치되어 있다.
상기 인버터 수용부(23)의 바닥면에는 사각형 구멍으로서 상기 제2 공간부(S2)와 연통되어 있는 제4 관통공(231)이 형성되어 있다.
따라서, 상기 제1 공간부(S1)와 상기 제2 공간부(S2) 및 상기 제3 공간부(S3)에 의하여, 상기 기체 흡입구(21)로부터 상기 블로어 흡입구(13)까지 연결되어 있는 기체 유로(R)가 형성된다.
본 실시예에서 상기 기체 유로(R)는, 도 5에 도시된 바와 같이 상기 기체 흡입구(21)로부터 상기 블로어 흡입구(13)까지 "U"자 형태로 절곡되어 있다.
본 실시예에서 상기 기체 유로(R)는, 도 5에 도시된 바와 같이 상기 기체 유로(R)를 따라 유동하는 기체의 열이 상기 케이스(20)에 전도되어 외부로 배출될 수 있도록, 상기 케이스(20)의 내부 공간의 가장 외곽에 배치되어 있다.
그리고, 상기 블로어 수용부(22)는 상기 기체 유로(R)와 공간적으로 분리되어 있으므로, 상기 블로어(10)의 발열부에 의하여 가열된 공기가 상기 기체 유로(R)로 침투할 수 없는 기밀 구조를 가진다.
상기 인버터(H)는, 상기 모터(12)의 속도를 제어하기 위한 고속의 전류 파형을 만들어서 상기 모터(12)로 공급하는 장치로서, 절연 게이트 쌍극성 트랜지스터(IGBT; Insulated Gate Bipolar Transistor)라는 발열 부품을 포함하고 있다.
상기 절연 게이트 쌍극성 트랜지스터(IGBT)는, 고속의 전류 파형을 만드는 전기 소자로서, 전기적 스위칭(Switching)에 의한 다량의 열이 발생하게 되며, 이러한 발열량은 스위칭 주파수에 비례하여 증가하게 된다. 상기 절연 게이트 쌍극성 트랜지스터(IGBT)는 사용 온도의 제한이 있기 때문에, 상기 모터(12)의 지속적인 운용을 위해서는 상기 절연 게이트 쌍극성 트랜지스터(IGBT)의 지속적인 냉각이 필요하다.
상기 냉각 부재(30)는, 상기 인버터(H)를 공기에 의하여 냉각하기 위한 금속 부재로서, 기초부(31)와 냉각핀(32)을 포함한다.
상기 기초부(31)는, 금속 평판 부재로서, 상면이 상기 인버터(H)의 하면과 결합되어 있다.
상기 냉각핀(32)은, 상기 기초부(31)로부터 하방으로 돌출되어 있는 사각 판형 부재로서, 도 5에 도시된 바와 같이 좌우로 길게 연장되어 있으며, 도 7에 도시된 바와 같이 복수 개 마련되어 미리 정한 간격만큼 이격된 상태로 배열되어 있다.
상기 냉각핀(32)의 상단부는 상기 기초부(31)의 하면에 결합되어 있으며, 상기 냉각핀(32)의 하단부는 상기 인버터 수용 박스(20g)의 제4 관통공(231)을 통하여 하방으로 노출됨으로써, 상기 제2 공간부(S2)의 바닥에 접촉한다.
본 실시예에서 상기 냉각 부재(30)의 하단부는 상기 받침대(20f)의 상면과 접촉함으로써, 상기 냉각 부재(30)로부터 상기 받침대(20f)로 열이 직접 전도되어 외부로 배출될 수 있다.
상기 냉각핀(32)들 중 인접한 냉각핀(32)들 사이의 공간들을 통하여 기체가 유동하게 되며, 상기 인접한 냉각핀(32)들에 의하여 형성되는 상기 제2 공간부(S2)의 기체 유로(R)가 기본 유로(R1)가 된다.
상기 기본 유로(R1)는, 도 8에 도시된 바와 같이 상기 제2 공간부(S2)의 중앙부에 위치하며, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실과 무관하게 상기 기체가 지나갈 수 있도록 항상 개방되어 있다.
상기 제2 공간부(S2)의 기본 유로(R1) 좌우에는 추가 유로(R2)가 각각 형성되어 있으며, 상기 기본 유로(R1)와 추가 유로(R2)는 내부 기체가 혼합되지 않도록 공간적으로 격리되어 있다.
상기 추가 유로(R2)는, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때만 상기 기체가 지나가도록 허용하는 유로이다.
즉, 상기 제2 공간부(S2)의 기체 유로(R)는, 도 8에 도시된 바와 같이 중앙부의 기본 유로(R1)와 상기 기본 유로(R1)의 좌우에 배치된 한 쌍의 추가 유로(R2)로 이루어져 있다.
상기 유량 조절 유닛(40)은, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때에만 상기 추가 유로(R2)를 자동적으로 개방하는 장치로서, 유량 조절판(41)과, 탄성 부재(42)와, 중량 부재(43)를 포함하고 있다.
상기 유량 조절 유닛(40)은, 도 5 및 도 6에 도시된 바와 같이 상기 냉각 부재(30)의 하류 측에 위치한 추가 유로(R2)에 장착되어 있다.
상기 유량 조절판(41)은, 도 9에 도시된 바와 같이 사각 평판 부재로서, 상단부가 회전 운동 가능하게 상기 제2 관통공(212)의 상단부에 결합되어 있다.
상기 유량 조절판(41)은, 상기 제2 관통공(212)의 상단부에 위치한 회전 중심(C1)을 중심으로,상기 추가 유로(R2)를 개방하는 개방 위치와 상기 추가 유로(R2)를 폐쇄하는 폐쇄 위치 사이에서 회전 운동 가능하다.
상기 탄성 부재(42)는, 상기 유량 조절판(41)을 상기 폐쇄 위치로 탄성적으로 바이어스시키는 바이어스 수단으로서, 본 실시예에서는 상기 회전 중심(C1)에 장착된 토션 스프링이 사용되고 있다.
상기 중량 부재(43)는, 상기 유량 조절판(41)을 상기 폐쇄 위치로 중력에 의하여 바이어스시키는 바이어스 수단으로서, 막대부(431)와 중량추(432)를 포함하고 있다.
상기 막대부(431)는, 도 9에 도시된 바와 같이 상기 유량 조절판(41)으로부터 좌측으로 길게 돌출된 막대이다.
상기 중량추(432)는, 미리 정한 질량을 가진 금속 추로서, 상기 막대부(431)의 말단부에 결합되어 있다.
따라서, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상으로 증가하여, 도 9에 도시된 바와 같은 기체 압력(P)이 미리 정한 값 이상으로 증가하게 되면, 도 10에 도시된 바와 같이 상기 기체 압력(P)에 의하여 상기 유량 조절판(41)이 개방 위치로 회전하여, 상기 추가 유로(R2)가 개방된다.
이때, 상기 기체 압력(P)은 상기 탄성 부재(42) 및 중량 부재(43)의 탄성력이나 중력을 상쇄시킬 수 있을 정도의 값을 가진다.
반대로, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때에는, 도 9에 도시된 바와 같은 기체 압력(P)이 미리 정한 값 이하를 가지게 되어, 상기 유량 조절판(41)이 폐쇄 위치를 유지하게 된다.
이때, 상기 기체 압력(P)은 상기 탄성 부재(42) 및 중량 부재(43)의 탄성력이나 중력을 상쇄시킬 수 있는 값보다 작은 값을 가진다.
이하에서는, 상술한 구성의 송풍 시스템(100)이 작동하는 작동 원리의 일례를 설명하기로 한다.
먼저 상기 모터(12)가 구동되면 상기 임펠러(11)가 고속으로 회전하게 되고, 이렇게 상기 임펠러(11)가 회전하게 되면, 상기 임펠러(11)가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로(R)를 유동하게 된다.
상기 기체의 전체적인 흐름 경로를 살펴보면, 도 5에 도시된 바와 같이 외부에 있던 기체가 상기 기체 흡입구(21)를 통하여 상기 제1 공간부(S1)의 내부로 유입되고, 상기 제1 공간부(S1)으로 유입된 기체는 아래로 하강한 후 상기 제1 관통공(211)을 통하여 상기 제2 공간부(S2)의 우단부로 진입하게 된다.
상기 제2 공간부(S2)로 진입한 기체는, 상기 기본 유로(R1)를 통하여 유동하면서 상기 냉각 부재(30)의 냉각핀(32)을 냉각시키게 된다. 이때, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때에는, 상기 유량 조절판(41)이 폐쇄 위치를 유지하므로, 상기 제2 공간부(S2)로 진입한 기체 전부가 상기 기본 유로(R1)만을 통하여 유동하게 된다.
반대로, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상으로 증가하면, 도 10에 도시된 바와 같이 상기 유량 조절판(41)이 회전하여 상기 추가 유로(R2)가 개방되므로, 상기 제2 공간부(S2)로 진입한 기체의 대부분은 상기 기본 유로(R1)를 통하여 유동하고, 상기 제2 공간부(S2)로 진입한 기체의 일부분은 상기 추가 유로(R2)를 통하여 유동하게 된다.
즉, 상기 기본 유로(R1)만으로는 충분한 기체가 상기 블로어(10)에 공급되지 못하는 상황에서는 상기 추가 유로(R2)가 자동적으로 개방되어 추가적인 기체가 상기 블로어(10)에 공급되는 구조이다.
이렇게 상기 제2 공간부(S2)를 지나온 기체는, 상기 제2 관통공(212)을 통하여 상기 제3 공간부(S3)로 진입하고, 상기 제3 공간부(S3)로 진입한 기체는 상승하여 상기 제3 관통공(213)을 통하여 상기 블로어 흡입구(13)로 유입된다.
이렇게 상기 블로어 흡입구(13)로 유입된 기체는 상기 임펠러(11)에 의하여 압축된 후 상기 블로어 송풍구(14)를 통하여 외부로 배출된다.
한편, 상기 냉각용 공기 흡입구(24)로 유입된 공기는 상기 냉각용 공기 배출구(25)를 통하여 외부로 배출되는데, 이 과정에서 상기 블로어(10)의 주요 발열부를 형성하는 상기 모터(12) 및 상기 베어링(미도시)가 냉각된다.
상술한 구성의 송풍 시스템(100)은, 기체가 흡입되는 블로어 흡입구(13); 상기 블로어 흡입구(13)를 통하여 유입된 기체를 압축하는 임펠러(11); 상기 임펠러(11)에 의하여 압축된 상기 기체가 외부로 배출되는 블로어 송풍구(14);를 구비하는 블로어(10); 상기 블로어(10)의 발열부를 수용하는 블로어 수용부(22); 외부로부터 상기 기체가 흡입되는 기체 흡입구(21); 상기 기체 흡입구(21)로부터 상기 블로어 흡입구(13)까지 연결되어 있는 기체 유로(R); 인버터(H)를 포함한 전장품이 설치되는 인버터 수용부(23);를 구비하는 케이스(20); 상기 인버터(H)를 공기에 의하여 냉각하기 위한 부재로서, 일단부는 상기 인버터(H)와 결합되어 있으며 타단부는 상기 기체 유로(R)에 노출되어 있는 냉각 부재(30);를 포함하며, 상기 블로어 수용부(22)는 상기 기체 유로(R)와 공간적으로 분리되어 있으며, 상기 임펠러(11)가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로(R)를 유동하며, 상기 냉각 부재(30)가 상기 기체에 의하여 냉각되므로, 인버터(H)를 냉각하기 위한 별도의 냉각팬을 구비하지 않고서도, 상기 임펠러(11)의 흡입력으로 발생되는 기체 유동만으로 상기 인버터(H)를 신속하게 냉각시킬 수 있고, 사용 수명이 짧고 고장이 잦은 냉각팬을 사용하지 않으므로 전체적인 제품 수명이 증가하는 장점이 있다.
그리고 상기 송풍 시스템(100)은, 상기 냉각 부재(30)가, 상기 인버터(H)와 결합되는 기초부(31); 상기 기초부(31)로부터 돌출되어 있으며 미리 정한 간격만큼 서로 이격된 상태로 복수 개 나열되어 있는 냉각핀(32);을 구비하므로, 기체와 접촉하는 표면적이 넓어져 냉각 효율이 증가하는 장점이 있다.
또한 상기 송풍 시스템(100)은,상기 기체 유로(R)가, 상기 기체 흡입구(21)와 연통되어 있는 제1 공간부(S1); 상기 냉각 부재(30)의 타단부와 연통되어 있는 제2 공간부(S2); 상기 블로어 흡입구(13)와 연통되어 있는 제3 공간부(S3);를 포함하므로, 상기 기체 유로(R)의 길이를 증가시키고 복잡하게 절곡시키기 용이하다는 장점이 있다.
그리고 상기 송풍 시스템(100)은, 상기 블로어 수용부(22)가, 상기 제1 공간부(S1)와 상기 제3 공간부(S3) 사이에 배치되며, 상기 인버터 수용부(23)는 상기 블로어 수용부(22)의 하측에 배치되고, 상기 제2 공간부(S2)는 상기 인버터 수용부(23)의 하측에 배치되어 있으며, 상기 기체 유로(R)가 "U"자 형태로 절곡되어 있으므로, 상기 냉각 부재(30)가 배치되는 제2 공간부(S2)를 상기 케이스(20)의 최하단 외곽에 배치하여 냉각 효율을 증가시킬 수 있으며, 상기 기체 유로(R)의 말단부에 위치한 블로어 흡입구(13) 근처에서 발생하는 난류 소음이 상기 기체 유로(R)를 통하여 외부로 거의 배출되지 않는 장점이 있다.
또한 상기 송풍 시스템(100)은, 상기 블로어 수용부(22)의 일면에 형성된 냉각용 공기 흡입구(24); 상기 블로어 수용부(22)의 타면에 형성된 냉각용 공기 배출구(25); 상기 냉각용 공기 흡입구(24)와 상기 냉각용 공기 배출구(25) 중 적어도 하나에 장착되며, 외부로부터 공기를 상기 블로어 수용부(22)로 유입시키는 냉각팬(26);을 포함하고, 상기 블로어 수용부(22)는 상기 기체 유로(R)와 공간적으로 분리되어 있으므로, 상기 블로어(10)의 주요 발열부를 형성하는 상기 모터(12) 및 상기 베어링(미도시)에 의하여 가열된 공기가 상기 기체 유로(R)에 침투하여 상기 블로어(10)의 성능을 저하시키지 않으며, 상기 모터(12) 및 상기 베어링(미도시)에 의하여 가열된 공기가 신속하게 외부로 배출시킬 수 있는 장점이 있다.
그리고 상기 송풍 시스템(100)은, 상기 제2 공간부(S2)가, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실과 무관하게 상기 기체가 지나가는 기본 유로(R1); 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때만 상기 기체가 지나가는 추가 유로(R2);를 구비하므로, 상기 임펠러(11)에 의하여 흡입되는 기체의 유량이 증가할 경우에는 상기 추가 유로(R2)가 개방되어, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 과도하게 증가하는 것을 방지할 수 있는 장점이 있다.
또한 상기 송풍 시스템(100)은, 상기 추가 유로(R2)에는, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때에는 상기 추가 유로(R2)를 자동적으로 개방하고, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때에는 상기 추가 유로(R2)를 자동적으로 폐쇄하는 유량 조절 유닛(40)이 장착되어 있으므로, 작업자가 별도로 조작하지 않더라도 상기 추가 유로(R2)의 자동적 개폐가 가능하다는 장점이 있다.
그리고 상기 송풍 시스템(100)은, 상기 유량 조절 유닛(40)이, 상기 추가 유로(R2)를 개방하는 개방 위치와 상기 추가 유로(R2)를 폐쇄하는 폐쇄 위치 사이에서 회전 운동 가능한 유량 조절판(41); 상기 유량 조절판(41)을 탄성적으로 또는 중력적으로 상기 폐쇄 위치로 바이어스시키는 바이어스 수단(42, 43)을 구비하므로, 상기 냉각 부재(30)의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때 상기 추가 유로(R2)가 폐쇄 위치에서 안정적으로 위치 고정될 수 있는 장점이 있다.
또한 상기 송풍 시스템(100)은, 상기 냉각 부재(30)의 하단부가 상기 케이스(20)의 받침대(20f)와 접촉하므로, 상기 냉각 부재(30)로부터 상기 케이스(20)로 열이 전도되어 외부로 신속하게 배출될 수 있는 장점이 있다.
그리고 상기 송풍 시스템(100)은, 상기 기체 유로(R)가 상기 케이스(20)의 내부 공간의 외곽에 배치되어 있으므로, 상기 기체 유로(R)를 따라 유동하는 기체의 열이 상기 케이스(20)에 전도되어 외부로 신속하게 배출될 수 있는 장점이 있다.
본 실시예에서는, 상기 바이어스 수단으로 상기 탄성 부재(42) 및 중량 부재(43)가 모두 사용되고 있으나, 상기 탄성 부재(42) 및 중량 부재(43) 중에 어느 하나만이 사용될 수도 있음은 물론이다.
이상으로 본 발명을 설명하였는데, 본 발명의 기술적 범위는 상술한 실시예에 기재된 내용으로 한정되는 것은 아니며, 해당 기술 분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 본 발명의 기술적 사상의 범위를 벗어나지 않는 것임은 명백하다.

Claims (10)

  1. 공기 등의 기체를 압축하여 외부로 공급하는 송풍 시스템으로서,
    상기 기체가 흡입되는 블로어 흡입구; 상기 블로어 흡입구를 통하여 유입된 기체를 압축하는 임펠러; 상기 임펠러에 의하여 압축된 상기 기체가 외부로 배출되는 블로어 송풍구;를 구비하는 블로어;
    상기 블로어의 발열부를 수용하는 블로어 수용부; 외부로부터 상기 기체가 흡입되는 기체 흡입구; 상기 기체 흡입구로부터 상기 블로어 흡입구까지 연결되어 있는 기체 유로; 인버터를 포함한 전장품이 설치되는 인버터 수용부;를 구비하는 케이스;
    상기 인버터를 공기에 의하여 냉각하기 위한 부재로서, 일단부는 상기 인버터와 결합되어 있으며 타단부는 상기 기체 유로에 노출되어 있는 냉각 부재;
    를 포함하며,
    상기 블로어 수용부가 상기 기체 유로와 공간적으로 분리됨으로써, 상기 블로어의 발열부에 의하여 가열된 기체가 상기 블로어 수용부로부터 상기 기체 유로로 침투할 수 없으며, 상기 임펠러가 발생시키는 흡입력에 의하여 상기 기체가 상기 기체 유로를 유동하면서 상기 냉각 부재를 냉각시키는 것을 특징으로 하는 송풍 시스템
  2. 제 1항에 있어서,
    상기 냉각 부재는, 상기 인버터와 결합되는 기초부; 상기 기초부로부터 돌출되어 있으며 미리 정한 간격만큼 서로 이격된 상태로 복수 개 나열되어 있는 냉각핀;을 구비하는 것을 특징으로 하는 송풍 시스템
  3. 제 1항에 있어서,
    상기 기체 유로는, 상기 기체 흡입구와 연통되어 있는 제1 공간부; 상기 냉각 부재의 타단부와 연통되어 있는 제2 공간부; 상기 블로어 흡입구와 연통되어 있는 제3 공간부;를 포함하는 것을 특징으로 하는 송풍 시스템
  4. 제 3항에 있어서,
    상기 블로어 수용부는 상기 제1 공간부와 상기 제3 공간부 사이에 배치되며, 상기 인버터 수용부는 상기 블로어 수용부의 하측에 배치되고, 상기 제2 공간부는 상기 인버터 수용부의 하측에 배치되어 있으며,
    상기 기체 유로는, "U"자 형태로 절곡되어 있는 것을 특징으로 하는 송풍 시스템
  5. 제 1항에 있어서,
    상기 블로어 수용부의 일면에 형성된 냉각용 공기 흡입구; 상기 블로어 수용부의 타면에 형성된 냉각용 공기 배출구; 상기 냉각용 공기 흡입구와 상기 냉각용 공기 배출구 중 적어도 하나에 장착되며, 외부로부터 공기를 상기 블로어 수용부로 유입시키는 냉각팬;을 포함하는 것을 특징으로 하는 송풍 시스템
  6. 제 3항에 있어서,
    상기 제2 공간부는, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실과 무관하게 상기 기체가 지나가는 기본 유로; 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때만 상기 기체가 지나가는 추가 유로;를 구비하는 것을 특징으로 하는 송풍 시스템
  7. 제 6항에 있어서,
    상기 추가 유로에는, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 이상일 때에는 상기 추가 유로를 자동적으로 개방하고, 상기 냉각 부재의 상류 측과 하류 측 사이의 압력손실이 미리 정한 값 미만일 때에는 상기 추가 유로를 자동적으로 폐쇄하는 유량 조절 유닛이 장착되어 있는 것을 특징으로 하는 송풍 시스템
  8. 제 7항에 있어서,
    상기 유량 조절 유닛은, 상기 추가 유로를 개방하는 개방 위치와 상기 추가 유로를 폐쇄하는 폐쇄 위치 사이에서 회전 운동 가능한 유량 조절판; 상기 유량 조절판을 탄성적으로 또는 중력적으로 상기 폐쇄 위치로 바이어스시키는 바이어스 수단을 구비하는 것을 특징으로 하는 송풍 시스템
  9. 제 1항에 있어서,
    상기 냉각 부재의 타단부가 상기 케이스와 접촉함으로써, 상기 냉각 부재로부터 상기 케이스로 열이 전도되어 외부로 배출될 수 있는 것을 특징으로 하는 송풍 시스템
  10. 제 1항에 있어서,
    상기 기체 유로는, 상기 기체 유로를 따라 유동하는 기체의 열이 상기 케이스에 전도되어 외부로 배출될 수 있도록, 상기 케이스의 내부 공간의 외곽에 배치되어 있는 것을 특징으로 하는 송풍 시스템
PCT/KR2016/002424 2015-03-13 2016-03-11 송풍 시스템 WO2016148442A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017540631A JP6473513B2 (ja) 2015-03-13 2016-03-11 送風システム
US15/546,058 US10443621B2 (en) 2015-03-13 2016-03-11 Blowing system
CN201680007320.7A CN107208661B (zh) 2015-03-13 2016-03-11 送风系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0035150 2015-03-13
KR1020150035150A KR101559536B1 (ko) 2015-03-13 2015-03-13 송풍 시스템

Publications (1)

Publication Number Publication Date
WO2016148442A1 true WO2016148442A1 (ko) 2016-09-22

Family

ID=54357017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002424 WO2016148442A1 (ko) 2015-03-13 2016-03-11 송풍 시스템

Country Status (5)

Country Link
US (1) US10443621B2 (ko)
JP (1) JP6473513B2 (ko)
KR (1) KR101559536B1 (ko)
CN (1) CN107208661B (ko)
WO (1) WO2016148442A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841367B1 (ko) * 2016-11-14 2018-03-22 (주) 에이스터보 터보 블로워 장치
JP2020184845A (ja) * 2019-05-09 2020-11-12 三笠産業株式会社 コンクリートバイブレータの電源部
KR102153696B1 (ko) * 2019-08-09 2020-09-08 이원석 분리형 터보 블로워 외함
KR102157459B1 (ko) * 2020-03-05 2020-09-17 (주) 터보맥스 고효율 터보송풍기
KR102369869B1 (ko) * 2020-05-22 2022-03-02 박창진 터보블로워의 효율이 향상되는 냉각 구조로 형성된 터보블로워의 외함
CN115405484A (zh) * 2021-07-29 2022-11-29 烟台杰瑞石油装备技术有限公司 驱动装置散热系统及井场设备
KR102617330B1 (ko) 2021-08-10 2023-12-27 이원석 내부순환 구조를 갖는 터보 블로워 장치
CN113834147A (zh) * 2021-09-08 2021-12-24 深圳市英维克科技股份有限公司 温度控制装置
KR102596520B1 (ko) * 2021-11-08 2023-11-01 주식회사 뉴로스 터보 블로워 패키지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284831A (ja) * 1995-04-14 1996-10-29 Kawamoto Seisakusho:Kk ポンプ運転用制御盤およびこれを用いたポンプ装置
KR100572850B1 (ko) * 2004-11-05 2006-04-24 주식회사 뉴로스 터보 블로워의 외함구조
KR100675821B1 (ko) * 2006-10-30 2007-01-30 이기호 고속모터를 갖는 터보기기의 냉각 구조
KR100898911B1 (ko) * 2008-01-15 2009-05-26 주식회사 뉴로스 터보 블로워의 외함
KR20130140454A (ko) * 2012-06-14 2013-12-24 엘에스산전 주식회사 인버터의 발열소자 냉각장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163493U (ko) 1979-05-11 1980-11-25
JPH03178619A (ja) * 1989-12-07 1991-08-02 Mitsubishi Electric Corp インバータ制御型電動送風機
JP2563462Y2 (ja) 1992-05-19 1998-02-25 株式会社ユニシアジェックス 流体ポンプ
JP3650497B2 (ja) * 1996-12-20 2005-05-18 株式会社荏原製作所 消音ボックス付多翼ファン
JP2001245478A (ja) 1999-09-21 2001-09-07 Toyota Motor Corp インバータの冷却装置
JP5433643B2 (ja) * 2011-07-15 2014-03-05 三菱重工業株式会社 電動過給装置及び多段過給システム
JP2013128051A (ja) * 2011-12-19 2013-06-27 Mahle Filter Systems Japan Corp インバータ回路の冷却装置
KR20150011176A (ko) * 2013-07-22 2015-01-30 엘에스산전 주식회사 냉각 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284831A (ja) * 1995-04-14 1996-10-29 Kawamoto Seisakusho:Kk ポンプ運転用制御盤およびこれを用いたポンプ装置
KR100572850B1 (ko) * 2004-11-05 2006-04-24 주식회사 뉴로스 터보 블로워의 외함구조
KR100675821B1 (ko) * 2006-10-30 2007-01-30 이기호 고속모터를 갖는 터보기기의 냉각 구조
KR100898911B1 (ko) * 2008-01-15 2009-05-26 주식회사 뉴로스 터보 블로워의 외함
KR20130140454A (ko) * 2012-06-14 2013-12-24 엘에스산전 주식회사 인버터의 발열소자 냉각장치

Also Published As

Publication number Publication date
US10443621B2 (en) 2019-10-15
KR101559536B1 (ko) 2015-10-15
JP6473513B2 (ja) 2019-02-20
JP2018506679A (ja) 2018-03-08
CN107208661A (zh) 2017-09-26
US20180023592A1 (en) 2018-01-25
CN107208661B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2016148442A1 (ko) 송풍 시스템
WO2018074718A1 (ko) 공기조화기
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2015005565A1 (en) Digital sign and method of driving the same
WO2018093174A2 (en) Air conditioner
WO2011046289A2 (en) Air conditioner
WO2018135790A1 (en) Refrigerator
WO2016099080A1 (ko) 차량용 공조장치 및 그 제어방법
WO2019143009A1 (en) Air conditioner
WO2018084463A1 (ko) 후드 겸용 조리기기
WO2022154340A1 (ko) 공기조화기
WO2021071276A1 (en) Air conditioner and ventilation apparatus for the same
WO2010107209A2 (en) Air conditioner
WO2015053577A1 (ko) 가정용 공기 흐름 발생장치
EP3631307A1 (en) Air conditioner
WO2021045408A1 (ko) 의류건조기
WO2019017610A1 (en) AIR CONDITIONER
WO2019132551A1 (en) Air conditioner
WO2020122529A1 (en) Cooking appliance having cooling system
WO2015142047A1 (en) Outdoor unit of an air conditioner and method of manufacturing the same
WO2017086716A1 (ko) 공기 조화기의 실내기
WO2021251604A1 (ko) 모터 어셈블리 및 이를 포함하는 청소기
WO2018164434A1 (ko) 공기조화기의 실외기
WO2022039374A1 (ko) 냉장고
EP3911898A1 (en) Ceiling type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546058

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017540631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 01/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16765198

Country of ref document: EP

Kind code of ref document: A1