WO2024034868A1 - 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기 - Google Patents

용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기 Download PDF

Info

Publication number
WO2024034868A1
WO2024034868A1 PCT/KR2023/009614 KR2023009614W WO2024034868A1 WO 2024034868 A1 WO2024034868 A1 WO 2024034868A1 KR 2023009614 W KR2023009614 W KR 2023009614W WO 2024034868 A1 WO2024034868 A1 WO 2024034868A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric propulsion
propulsion motor
capacity electric
variable capacity
cooling
Prior art date
Application number
PCT/KR2023/009614
Other languages
English (en)
French (fr)
Inventor
성소영
박정형
심형원
김윤호
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2024034868A1 publication Critical patent/WO2024034868A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges

Definitions

  • the present invention relates to a cooling structure for a variable capacity electric propulsion motor and a variable capacity electric propulsion motor employing the same. Specifically, the present invention relates to a cooling structure that can maximize cooling efficiency without affecting the characteristics of the motor and an additional cooling structure according to the variable capacity. This relates to a cooling structure for a variable-capacity electric propulsion motor that requires no design and a variable-capacity electric propulsion motor employing the same.
  • Electric motors are largely classified into direct current motors and alternating current motors.
  • a direct current motor rotates by receiving direct current supplied to the armature (rotor), and includes series motors, shunt winding motors, and double wound motors.
  • AC motors rotate with AC power and include induction motors, synchronous motors, and AC commutator motors.
  • the heat generated at this time has a negative effect on the operating characteristics of the electric motor, and in severe cases, results in coil burnout.
  • Figure 1 is an exploded perspective view showing a housing with an integrated cooling device in a cooling structure for an electric motor according to the prior art
  • Figure 2 is a cross-sectional view of a cooling structure for an electric motor according to the prior art.
  • the conventional cooling structure for an electric motor has a structure in which a cooling device for cooling the stator 10 is integrated into the housing 20, and is connected to the outer surface of the stator 10 without an air gap. It is characterized in that a convex-convex flow path 22 is formed on the inner peripheral surface of the housing 20 to ensure close contact.
  • the coolant supply means has coolant supply holes 24 formed at both ends of each flow path 22 for supplying coolant, and after collecting coolant at both ends of the housing 20, the coolant supply holes 24 are formed. It is provided with an end portion 25 having a water collecting portion 25a for supplying water into the flow path 22 through the end portion 25.
  • the housing 20 in which the cooling device is integrated is integrated so that the stator 10 and the inner peripheral surface of the housing 20 do not have a gap, and the passage 22 through which the coolant flows is in surface contact with the outer surface of the stator 10. , the heat generated when the electric motor is driven is cooled.
  • the conventional cooling structure for an electric motor has a problem in that it is not easy to customize the cooling structure according to the capacity when the capacity of the electric motor varies.
  • the present invention was developed to solve various conventional problems as described above, and is a variable capacity electric propulsion motor that can maximize cooling efficiency without affecting the characteristics of the motor and does not require additional cooling structure design according to the variable capacity.
  • the purpose is to provide a cooling structure and a variable capacity electric propulsion motor employing the same.
  • the cooling structure of the variable capacity electric propulsion motor includes a rotor shaft; A rotor core formed in the form of a circular plate through which the rotor shaft is coupled through the center; a plurality of permanent magnets embedded along the circumferential direction of the rotor core; a winding coil arranged to surround the outer periphery of the rotor core; a stator core arranged to surround the outer periphery of the winding coil and reacting magnetically with the permanent magnet; a motor housing in the form of a hollow cylinder arranged to surround the outer periphery of the stator core and open on both sides; And a pair of covers each coupled to both open sides of the motor housing, the rotor shaft penetratingly coupled to the center, and a receiving space formed therein; for cooling a variable capacity electric propulsion motor comprising a.
  • a plurality of cooling holes are formed penetrating at regular intervals along the circumferential direction on both sides of the stator core located in the same direction as the axial direction of the rotor shaft, and cooling tubes are coupled to each of the plurality of cooling holes, and the one of the above The coolant flowing in through one of the pair of covers passes through the cooling tube and is then discharged through the other cover.
  • the cover includes an inner cover coupled to the open side of the motor housing, and an outer cover coupled to the inner cover and having a shape corresponding to the inner cover.
  • the inner cover is formed to include a bottom portion that covers the open side of the motor housing, and an edge portion extending a predetermined length from an edge of the bottom portion in the axial direction of the rotor shaft.
  • a plurality of fitting holes are formed in the bottom at positions corresponding to the plurality of cooling tubes, and ends of the cooling tubes are inserted into the fitting holes.
  • a heat dissipation portion is formed on the bottom to dissipate heat generated inside the variable capacity electric propulsion motor.
  • the heat dissipation portion includes a first protruding rib extending from the bottom along the circumference of the rotor shaft in the same direction as the edge portion; a second protruding rib extending from the bottom located between the first protruding rib and the fitting hole to have the same shape as the first protruding rib; and a plurality of heat dissipation ribs provided to connect the first protruding rib and the second protruding rib while being spaced apart from each other.
  • the outer cover is formed to cover between the second protruding rib and the edge portion.
  • a coolant inlet is formed in one of the pair of inner covers, and a coolant outlet is formed in the other inner cover.
  • a variable capacity electric propulsion motor includes a rotor shaft; A rotor core formed in the form of a circular plate through which the rotor shaft is coupled through the center; a plurality of permanent magnets embedded along the circumferential direction of the rotor core; a winding coil arranged to surround the outer periphery of the rotor core; a stator core arranged to surround the outer periphery of the winding coil and reacting magnetically with the permanent magnet; a motor housing in the form of a hollow cylinder arranged to surround the outer periphery of the stator core and open on both sides; and a pair of covers respectively coupled to both open sides of the motor housing, the rotor shaft penetratingly coupled to the center, and a receiving space formed therein, the same as the axial direction of the rotor shaft.
  • a plurality of cooling holes are formed penetrating at regular intervals along the circumferential direction on both sides of the stator core located in the direction, and a cooling tube
  • the cover includes an inner cover coupled to the open side of the motor housing, and an outer cover coupled to the inner cover and having a shape corresponding to the inner cover.
  • the inner cover is formed to include a bottom portion that covers the open side of the motor housing, and an edge portion extending a predetermined length from an edge of the bottom portion in the axial direction of the rotor shaft.
  • a plurality of fitting holes are formed in the bottom at positions corresponding to the plurality of cooling tubes, and ends of the cooling tubes are inserted into the fitting holes.
  • a heat dissipation portion is formed on the bottom to dissipate heat generated inside the variable capacity electric propulsion motor.
  • the heat dissipation portion includes a first protruding rib extending from the bottom along the circumference of the rotor shaft in the same direction as the edge portion; a second protruding rib extending from the bottom located between the first protruding rib and the fitting hole to have the same shape as the first protruding rib; and a plurality of heat dissipation ribs provided to connect the first protruding rib and the second protruding rib while being spaced apart from each other.
  • the outer cover is formed to cover between the second protruding rib and the edge portion.
  • a coolant inlet is formed in one of the pair of inner covers, and a coolant outlet is formed in the other inner cover.
  • a bearing is coupled between the rotor shaft and the first protruding rib.
  • the side on which the coolant inlet is formed is a non-driven end, and the side on which the coolant outlet is formed is a load side (driven end), and the coolant flows from the non-load side to the load side.
  • Capacity may vary depending on the stacking length according to the number of stacked rotor cores and stator cores.
  • the present invention has the following effects.
  • the present invention has the effect of maximizing cooling efficiency without affecting the characteristics of the electric motor by forming a plurality of cooling holes in the stator core and coupling cooling tubes to these cooling holes.
  • the present invention is a built-in permanent magnet type electric propulsion motor with a structure in which the capacity is variable depending on the length of the stack, so designing an additional cooling structure according to the variable capacity is unnecessary.
  • Figure 1 is an exploded view showing a housing in which a cooling device is integrated in a cooling structure for an electric motor according to the prior art.
  • Figure 2 is a cross-sectional view of a cooling structure for an electric motor according to the prior art.
  • Figure 3 is a diagram showing the shape of a general variable capacity electric propulsion motor.
  • Figure 4 is a diagram showing a variable capacity electric propulsion motor according to the present invention.
  • Figure 5 is a diagram showing a state in which the cooling tube is coupled to the stator core in the variable capacity electric propulsion motor according to the present invention.
  • Figure 6 is a view showing the inside of the inner cover in the variable capacity electric propulsion motor according to the present invention.
  • Figure 7 is a diagram showing the assembled state of the stator core, winding coil, rotor core, and permanent magnet combined with the cooling tube in the variable capacity electric propulsion motor according to the present invention.
  • Figure 8 is a diagram showing a state in which a stator core with a cooling hole, a rotor core, and a permanent magnet are combined in the variable capacity electric propulsion motor according to the present invention.
  • Figure 9 is a diagram showing the stator core in the variable capacity electric propulsion motor according to the present invention.
  • Figure 10 is a diagram showing the combined state and magnetic flux line distribution of a stator core, rotor core, and permanent magnet as a general electric propulsion motor.
  • Figure 11 is a diagram showing the state in which the stator core, rotor core, and permanent magnet are combined and the magnetic flux line distribution in the capacity variable electric propulsion motor according to the present invention.
  • Figure 12 is a diagram showing the cooling structure of the variable capacity electric propulsion motor according to the present invention.
  • Figures 13 to 15 are diagrams showing cooling structures according to variable capacity.
  • Figure 13 shows a capacity of 1000 kW
  • Figure 14 shows a capacity of 500 kW
  • Figure 15 shows a capacity of 300 kW.
  • Figure 16 is a diagram showing the electromagnetic heat loss analysis results of the variable capacity electric propulsion motor according to the present invention.
  • Figures 17 and 18 are diagrams showing the results of temperature distribution analysis of the variable capacity electric propulsion motor according to the present invention.
  • Figure 17 is the case of #1 in Table 9
  • Figure 18 is the case of #18 in Table 9.
  • Figures 19 to 21 are diagrams showing the results of temperature distribution analysis for the rated capacity of the variable capacity electric propulsion motor according to the present invention.
  • Figure 19 shows the capacity of 300 kW
  • Figure 20 shows the capacity of 500 kW
  • Figure 21 shows the capacity. It is 1000 kW.
  • Figures 22 to 24 are diagrams showing the results of temperature distribution analysis for the transient capacity of the variable capacity electric propulsion motor according to the present invention.
  • Figure 22 shows the capacity of 300 kW
  • Figure 23 shows the capacity of 500 kW
  • Figure 24 shows the capacity. It is 1000 kW.
  • the cooling structure of the variable capacity electric propulsion motor includes a rotor shaft; A rotor core formed in the form of a circular plate through which the rotor shaft is coupled through the center; a plurality of permanent magnets embedded along the circumferential direction of the rotor core; a winding coil arranged to surround the outer periphery of the rotor core; a stator core arranged to surround the outer periphery of the winding coil and reacting magnetically with the permanent magnet; a motor housing in the form of a hollow cylinder arranged to surround the outer periphery of the stator core and open on both sides; And a pair of covers each coupled to both open sides of the motor housing, the rotor shaft penetratingly coupled to the center, and a receiving space formed therein; for cooling a variable capacity electric propulsion motor comprising a.
  • a plurality of cooling holes are formed penetrating at regular intervals along the circumferential direction on both sides of the stator core located in the same direction as the axial direction of the rotor shaft, and cooling tubes are coupled to each of the plurality of cooling holes, and the one of the above The coolant flowing in through one of the pair of covers passes through the cooling tube and is then discharged through the other cover.
  • a component is described as being "installed within or connected to" another component, it means that this component may be installed in direct connection or contact with the other component and may be installed in contact with the other component and may be installed in contact with the other component. It may be installed at a certain distance, and in the case where it is installed at a certain distance, there may be a third component or means for fixing or connecting the component to another component. It should be noted that the description of the components or means of 3 may be omitted.
  • ... unit when used, mean a unit capable of processing one or more functions or operations, which is hardware.
  • ... unit when used, mean a unit capable of processing one or more functions or operations, which is hardware.
  • it can be implemented through software, or a combination of hardware and software.
  • Figure 3 is a diagram showing the shape of a general variable capacity electric propulsion motor.
  • the electric propulsion motor is a built-in permanent magnet type motor whose capacity varies depending on the length of the stack.
  • Figure 4 is a diagram showing a variable capacity electric propulsion motor according to the present invention
  • Figure 5 is a diagram showing a state in which a cooling tube is coupled to the stator core in the variable capacity electric propulsion motor according to the present invention.
  • the capacity variable electric propulsion motor includes a rotor shaft (RS), a rotor core (R), a plurality of permanent magnets (PM), a winding coil (WC), a stator core (S), and a motor housing (HS). ) and a pair of covers (MC).
  • the rotor core (R) is made in the form of a circular plate and the rotor shaft (RS) is coupled through it in the center.
  • This rotor core (R) is formed with a plurality of insertion holes (IH) penetrating the front and rear surfaces along the circumferential direction.
  • a plurality of permanent magnets (PM) are respectively embedded in a plurality of insertion holes (IH) formed along the circumferential direction of the rotor core (R).
  • the winding coil (WC) is arranged to surround the outer circumference of the rotor core (R).
  • the stator core (S) is arranged to surround the outer circumference of the winding coil (WC) and reacts magnetically with the permanent magnet (PM).
  • the capacity may vary depending on the stacking length according to the number of rotor cores (R) and stator cores (S) stacked.
  • the motor housing (HS) is made in the form of a hollow cylinder arranged to surround the outer circumference of the stator core (S) and is open on both sides.
  • a pair of covers (MC) are respectively coupled to both open sides of the motor housing (HS), and the rotor shaft (RS) is coupled through the center to form a receiving space therein.
  • This cover (MC) includes an inner cover (C2) coupled to the open side of the motor housing (HS), an outer cover (C1) made of a shape corresponding to the inner cover (C2) and coupled to the inner cover (C2). Includes.
  • the outer cover C1 is formed to cover the space between the second protruding rib E2 of the heat dissipation portion E, which will be described later, and the edge of the inner cover C2.
  • a coolant inlet (D1) is formed in one of the pair of inner covers (C2), and a coolant outlet (D2) is formed in the other inner cover (C2).
  • the side on which the coolant inlet D1 is formed is the non-driven end, and the side on which the coolant outlet D2 is formed is the load side (driven end), and the coolant flows from the non-load side to the load side.
  • Figure 6 is a view showing the inside of the inner cover in the variable capacity electric propulsion motor according to the present invention.
  • the inner cover C2 is formed to include a bottom portion that covers the open side of the motor housing HS and an edge portion extending a predetermined length from an edge of the bottom portion in the axial direction of the rotor shaft RS.
  • a plurality of fitting holes (TH) are formed at positions corresponding to the plurality of cooling tubes (CT), and the ends of the cooling tubes (CT) are inserted into these fitting holes (TH).
  • a heat dissipation portion (E) is formed at the bottom to dissipate heat generated inside the variable capacity electric propulsion motor.
  • the heat dissipation portion (E) includes a first protruding rib (E1) extending from the bottom along the circumference of the rotor shaft (RS) in the same direction as the edge portion, and between the first protruding rib (E1) and the fitting hole (TH).
  • a second protruding rib (E2) extending from the bottom located in the same shape as the first protruding rib (E1), and a plurality of first protruding ribs (E1) and second protruding ribs (E2) provided at a distance from each other. It includes a heat dissipation rib (E3) connecting the .
  • a bearing (BR) is coupled between the rotor shaft (RS) and the first protruding rib (E1).
  • Figure 7 is a diagram showing the assembled state of the stator core, winding coil, rotor core, and permanent magnet combined with the cooling tube in the variable capacity electric propulsion motor according to the present invention
  • Figure 8 is a diagram showing the assembled state of the variable capacity electric propulsion motor according to the present invention.
  • Figure 9 is a diagram showing the stator core in the variable capacity electric propulsion motor according to the present invention.
  • a plurality of cooling holes (CH) are formed penetrating at regular intervals along the circumferential direction on both sides of the stator core (S) located in the same direction as the axial direction of the rotor shaft (RS), and each of these cooling holes (CH) Cooling tube (CT) is combined.
  • Figure 10 is a diagram showing the state and magnetic flux line distribution of a general electric propulsion motor in which the stator core, rotor core, and permanent magnet are combined
  • Figure 11 is a diagram showing the variable capacity electric propulsion motor according to the present invention, showing the stator core, rotor core, and permanent magnet. This is a diagram showing this combined state and magnetic flux line distribution.
  • a cooling hole (CH) that does not affect the motor characteristics was formed inside the stator core (S) (stator yoke).
  • a circular cooling hole structure was applied to insert a circular rod-shaped cooling tube (CT), and cooling efficiency was maximized through the number of cooling holes (CH).
  • Figure 12 is a diagram showing the cooling structure of the variable capacity electric propulsion motor according to the present invention.
  • Figures 13 to 15 are diagrams showing cooling structures according to variable capacity.
  • Figure 13 shows a capacity of 1000 kW
  • Figure 14 shows a capacity of 500 kW
  • Figure 15 shows a capacity of 300 kW.
  • the present invention is a built-in permanent magnet electric propulsion motor with a structure in which the capacity is variable depending on the length of the stack, so there is no need to design an additional cooling structure according to the variable capacity.
  • Figure 16 is a diagram showing the electromagnetic heat loss analysis results of the variable capacity electric propulsion motor according to the present invention.
  • Table 5 below shows the electromagnetic losses of three types of motor heating elements (winding coil, core, and permanent magnet) when the load is rated and when the load is excessive.
  • the cooling effect was analyzed through the diameter, number, and flow rate of cooling tubes.
  • Figures 17 and 18 are diagrams showing the results of temperature distribution analysis of the variable capacity electric propulsion motor according to the present invention.
  • Figure 17 is the case of #1 in Table 8
  • Figure 18 is the case of #18 in Table 8.
  • Figures 19 to 21 are diagrams showing the results of temperature distribution analysis for the rated capacity of the variable capacity electric propulsion motor according to the present invention.
  • Figure 19 shows the capacity of 300 kW
  • Figure 20 shows the capacity of 500 kW
  • Figure 21 shows the capacity. It is 1000 kW.
  • Figures 22 to 24 are diagrams showing the results of temperature distribution analysis for the transient capacity of the variable capacity electric propulsion motor according to the present invention.
  • Figure 22 shows the capacity of 300 kW
  • Figure 23 shows the capacity of 500 kW
  • Figure 24 shows the capacity. It is 1000 kW.
  • the present invention relates to a cooling structure for a variable-capacity electric propulsion motor and a variable-capacity electric propulsion motor employing the same. It is configured to form a plurality of cooling holes in the stator core and couple cooling tubes to these cooling holes, thereby influencing the characteristics of the electric motor. It has the effect of maximizing cooling efficiency without affecting the cooling efficiency, and since it is a built-in permanent magnet type electric propulsion motor with a structure in which the capacity is variable depending on the length of the stack, additional cooling structure design according to the variable capacity is unnecessary. There is potential for industrial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

본 발명에 따른 용량 가변형 전기추진 전동기의 냉각구조는, 로터 샤프트; 원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어; 상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석; 상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어; 상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및 상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하는 용량 가변형 전기추진 전동기를 냉각하기 위한 구조로서, 상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고, 상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되며, 상기 한 쌍의 커버 중 어느 하나의 커버를 통해 유입되는 냉각수는 상기 냉각 튜브를 통과한 후 다른 하나의 커버를 통해 배출되도록 이루어진 것을 특징으로 한다.

Description

용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기
본 발명은 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기에 관한 것으로, 구체적으로는 전동기 특성에 영향을 미치지 않으면서 냉각 효율을 극대화할 수 있고, 가변 용량에 따른 추가적인 냉각 구조 설계가 불필요한 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기에 관한 것이다.
전동기는 크게 직류 전동기와 교류 전동기로 분류된다.
직류 전동기는 전기자(회전자)에 직류를 공급받아 회전하는 것으로, 직권 전동기, 분권 전동기, 복권 전동기 등이 있다.
교류 전동기는 교류 전원으로 회전하는 것으로, 유도 전동기, 동기 전동기, 교류 정류자 전동기 등이 있다.
이와 같은 전동기들은 공급된 전원에 의해 코일에서 전기 에너지를 소비하고, 또한 고속으로 회전하기 때문에 운전중에 통상 열을 발생하게 된다.
이때 발생된 열은 전동기의 운전 특성에 좋지 않은 영향을 미치게 되며, 심하면 코일 소손(燒損) 등의 결과를 초래하게 된다.
이에 따라, 전동기에서 발생된 열을 냉각하기 위해서 종래에 많은 연구가 진행되어 왔다.
도 1은 종래 기술에 따른 전동기용 냉각 구조체에서 냉각 장치가 일체화된 하우징을 나타낸 분해 사시도이고, 도 2는 종래 기술에 따른 전동기용 냉각 구조체의 단면도이다.
종래의 전동기용 냉각 구조체는 도 1 및 도 2에 도시된 바와 같이, 고정자(10)를 냉각하기 위한 냉각 장치가 하우징(20)에 일체화된 구조를 가지며, 고정자(10)의 외측면과 공극 없이 밀착되도록 하우징(20)의 내주면에 요철 형태의 유로(22)가 형성된 것을 특징으로 한다.
또한, 냉각수 공급수단은 각각의 유로(22) 양측 단부에 냉각수 공급을 위한 냉각수 공급홀(24)이 형성되어 있으며, 하우징(20)의 양측 단에 냉각수를 집수한 후에 냉각수 공급홀(24)을 통해 유로(22) 내부로 공급하기 위한 집수부(25a)를 갖는 엔드부(25)를 구비한다.
이처럼 냉각 장치가 일체화된 하우징(20)은 고정자(10)와 하우징(20)의 내주면이 간극을 갖지 않도록 일체화되며, 냉각수가 흐르는 유로(22)가 고정자(10)의 외측면과 면접촉되어 있으므로, 전동기의 구동시 발생되는 열이 냉각되게 된다.
그러나, 이와 같은 종래의 전동기용 냉각 구조체는 하우징에 일체화된 구조로 이루어짐으로써, 발열체(와인딩 코일 또는 영구자석 등)와의 거리가 멀어서 냉각 효율이 떨어지며, 냉각을 위한 구조가 복잡하여 제조하는데 비용이 증가하게 되는 문제점이 있다.
아울러, 종래의 전동기용 냉각 구조체는 전동기의 용량이 가변될 시에는 냉각 구조체를 용량에 따라 맞춤형으로 대응하기가 쉽지 않은 문제점이 있다.
본 발명은 전술한 바와 같은 종래의 여러 문제점들을 해결하기 위해 안출된 것으로서, 전동기 특성에 영향을 미치지 않으면서 냉각 효율을 극대화할 수 있고, 가변 용량에 따른 추가적인 냉각 구조 설계가 불필요한 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기를 제공하는데 그 목적이 있다.
상기와 같은 목적들을 달성하기 위하여, 본 발명의 제1관점에 따른 용량 가변형 전기추진 전동기의 냉각구조는, 로터 샤프트; 원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어; 상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석; 상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어; 상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및 상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하는 용량 가변형 전기추진 전동기를 냉각하기 위한 구조로서, 상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고, 상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되며, 상기 한 쌍의 커버 중 어느 하나의 커버를 통해 유입되는 냉각수는 상기 냉각 튜브를 통과한 후 다른 하나의 커버를 통해 배출되도록 이루어진 것을 특징으로 한다.
상기 커버는, 상기 모터 하우징의 개방된 측부에 결합되는 내측 커버와, 상기 내측 커버와 대응되는 형상으로 이루어져 상기 내측 커버에 결합되는 외측 커버를 포함한다.
상기 내측 커버는, 상기 모터 하우징의 개방된 측부를 덮는 바닥부와, 상기 바닥부의 가장자리로부터 상기 로터 샤프트의 축방향으로 소정 길이 만큼 연장 형성되는 테두리부를 포함하여 형성된다.
상기 바닥부에는 상기 복수의 냉각 튜브와 대응되는 위치에 복수의 끼움홀이 형성되고, 상기 끼움홀에는 상기 냉각 튜브의 단부가 끼워진다.
상기 바닥부에는 상기 용량 가변형 전기추진 전동기의 내부에서 발생된 열을 방출하도록 방열부가 형성된다.
상기 방열부는, 상기 바닥부로부터 상기 로터 샤프트 둘레를 따라 상기 테두리부와 동일한 방향으로 연장 형성되는 제1 돌출리브; 상기 제1 돌출리브와 상기 끼움홀 사이에 위치한 상기 바닥부로부터 상기 제1 돌출리브와 동일한 형태로 연장 형성되는 제2 돌출리브; 및 복수로 마련되어 상호간 이격된 채로 상기 제1 돌출리브와 상기 제2 돌출리브를 연결하는 방열리브;를 포함한다.
상기 외측 커버는, 상기 제2 돌출 리브와 상기 테두리부 사이를 덮도록 형성된다.
상기 한 쌍의 내측 커버 중 어느 하나의 내측 커버에는 냉각수 입구가 형성되고, 다른 하나의 내측 커버에는 냉각수 출구가 형성된다.
본 발명의 제2관점에 따른 용량 가변형 전기추진 전동기는, 로터 샤프트; 원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어; 상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석; 상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어; 상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및 상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하며, 상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고, 상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되는 것을 특징으로 한다.
상기 커버는, 상기 모터 하우징의 개방된 측부에 결합되는 내측 커버와, 상기 내측 커버와 대응되는 형상으로 이루어져 상기 내측 커버에 결합되는 외측 커버를 포함한다.
상기 내측 커버는, 상기 모터 하우징의 개방된 측부를 덮는 바닥부와, 상기 바닥부의 가장자리로부터 상기 로터 샤프트의 축방향으로 소정 길이 만큼 연장 형성되는 테두리부를 포함하여 형성된다.
상기 바닥부에는 상기 복수의 냉각 튜브와 대응되는 위치에 복수의 끼움홀이 형성되고, 상기 끼움홀에는 상기 냉각 튜브의 단부가 끼워진다.
상기 바닥부에는 상기 용량 가변형 전기추진 전동기의 내부에서 발생된 열을 방출하도록 방열부가 형성된다.
상기 방열부는, 상기 바닥부로부터 상기 로터 샤프트 둘레를 따라 상기 테두리부와 동일한 방향으로 연장 형성되는 제1 돌출리브; 상기 제1 돌출리브와 상기 끼움홀 사이에 위치한 상기 바닥부로부터 상기 제1 돌출리브와 동일한 형태로 연장 형성되는 제2 돌출리브; 및 복수로 마련되어 상호간 이격된 채로 상기 제1 돌출리브와 상기 제2 돌출리브를 연결하는 방열리브;를 포함한다.
상기 외측 커버는, 상기 제2 돌출 리브와 상기 테두리부 사이를 덮도록 형성된다.
상기 한 쌍의 내측 커버 중 어느 하나의 내측 커버에는 냉각수 입구가 형성되고, 다른 하나의 내측 커버에는 냉각수 출구가 형성된다.
상기 로터 샤프트와 제1 돌출 리브 사이에는 베어링이 결합된다.
상기 냉각수 입구가 형성되는 측은 반부하측(non driven end)이고, 상기 냉각수 출구가 형성되는 측은 부하측(driven end)이며, 상기 냉각수는 반부하측으로부터 부하측으로 유동한다.
상기 로터 코어와 스테이터 코어의 적층되는 개수에 따른 적층 길이에 따라 용량이 가변될 수 있다.
기타 실시예의 구체적인 사항은 "발명을 실시하기 위한 구체적인 내용" 및 첨부 "도면"에 포함되어 있다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 각종 실시예를 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 각 실시예의 구성만으로 한정되는 것이 아니라 서로 다른 다양한 형태로도 구현될 수도 있으며, 단지 본 명세서에서 개시한 각각의 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구범위의 각 청구항의 범주에 의해 정의될 뿐임을 알아야 한다.
전술한 과제의 해결수단에 의하면 본 발명은 다음과 같은 효과를 가진다.
본 발명은 스테이터 코어에 복수의 냉각홀을 형성하고 이러한 냉각홀에 냉각 튜브를 결합하도록 구성됨으로써, 전동기 특성에 영향을 미치지 않으면서 냉각 효율을 극대화할 수 있는 효과가 있다.
또한, 본 발명은 매입형 영구자석형 전기추진 전동기로서 적층 길이에 따라 용량이 가변되는 구조이므로, 가변 용량에 따른 추가적인 냉각 구조 설계가 불필요한 효과가 있다.
도 1은 종래 기술에 따른 전동기용 냉각 구조체에서 냉각 장치가 일체화된 하우징을 분해하여 나타낸 도면이다.
도 2는 종래 기술에 따른 전동기용 냉각 구조체의 단면도이다.
도 3은 일반적인 용량 가변형 전기추진 전동기의 형상을 나타낸 도면이다.
도 4는 본 발명에 따른 용량 가변형 전기추진 전동기를 나타낸 도면이다.
도 5는 본 발명에 따른 용량 가변형 전기추진 전동기에서 스테이터 코어에 냉각 튜브가 결합된 상태를 나타낸 도면이다.
도 6은 본 발명에 따른 용량 가변형 전기추진 전동기에서 내측 커버의 내부를 나타낸 도면이다.
도 7은 본 발명에 따른 용량 가변형 전기추진 전동기에서 냉각 튜브가 결합된 스테이터 코어, 와인딩 코일, 로터 코어, 영구자석이 조립된 상태를 나타낸 도면이다.
도 8은 본 발명에 따른 용량 가변형 전기추진 전동기에서 냉각홀이 형성된 스테이터 코어, 로터 코어, 영구자석이 결합된 상태를 나타낸 도면이다.
도 9는 본 발명에 따른 용량 가변형 전기추진 전동기에서 스테이터 코어를 나타낸 도면이다.
도 10은 일반적인 전기추진 전동기로서 스테이터 코어, 로터 코어, 영구자석이 결합된 상태와 자속선 분포를 나타낸 도면이다.
도 11은 본 발명에 따른 용량 가변형 전기추진 전동기로서 스테이터 코어, 로터 코어, 영구자석이 결합된 상태와 자속선 분포를 나타낸 도면이다.
도 12는 본 발명에 따른 용량 가변형 전기추진 전동기의 냉각 구조를 나타낸 도면이다.
도 13 내지 도 15는 가변 용량에 따른 냉각 구조를 나타낸 도면들로서, 도 13은 용량이 1000 kW, 도 14는 용량이 500 kW, 도 15는 용량이 300 kW 이다.
도 16은 본 발명에 따른 용량 가변형 전기추진 전동기의 전자기 열손실 해석 결과를 나타낸 도면이다.
도 17 및 도 18은 본 발명에 따른 용량 가변형 전기추진 전동기의 온도 분포 해석 결과를 나타낸 도면들로서, 도 17은 표 9의 #1의 경우이고, 도 18은 표 9의 #18의 경우이다.
도 19 내지 도 21은 본 발명에 따른 용량 가변형 전기추진 전동기의 정격용량에 대한 온도 분포 해석 결과를 나타낸 도면들로서, 도 19는 용량이 300 kW, 도 20은 용량이 500 kW, 도 21은 용량이 1000 kW 이다.
도 22 내지 도 24는 본 발명에 따른 용량 가변형 전기추진 전동기의 과도용량에 대한 온도 분포 해석 결과를 나타낸 도면들로서, 도 22는 용량이 300 kW, 도 23은 용량이 500 kW, 도 24는 용량이 1000 kW 이다.
본 발명의 일 실시예에 따른 용량 가변형 전기추진 전동기의 냉각구조는, 로터 샤프트; 원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어; 상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석; 상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어; 상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및 상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하는 용량 가변형 전기추진 전동기를 냉각하기 위한 구조로서, 상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고, 상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되며, 상기 한 쌍의 커버 중 어느 하나의 커버를 통해 유입되는 냉각수는 상기 냉각 튜브를 통과한 후 다른 하나의 커버를 통해 배출되도록 이루어진 것을 특징으로 한다.
이하, 첨부한 도면을 참고로 하여 본 발명의 바람직한 실시예에 대하여 상세히 설명하면 다음과 같다.
본 발명을 상세하게 설명하기 전에, 본 명세서에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 무조건 한정하여 해석되어서는 아니되며, 본 발명의 발명자가 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 각종 용어의 개념을 적절하게 정의하여 사용할 수 있고, 더 나아가 이들 용어나 단어는 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 알아야 한다.
즉, 본 명세서에서 사용된 용어는 본 발명의 바람직한 실시예를 설명하기 위해서 사용되는 것일 뿐이고, 본 발명의 내용을 구체적으로 한정하려는 의도로 사용된 것이 아니며, 이들 용어는 본 발명의 여러 가지 가능성을 고려하여 정의된 용어임을 알아야 한다.
또한, 본 명세서에 있어서, 단수의 표현은 문맥상 명확하게 다른 의미로 지시하지 않는 이상, 복수의 표현을 포함할 수 있으며, 유사하게 복수로 표현되어 있다고 하더라도 단수의 의미를 포함할 수 있음을 알아야 한다.
본 명세서의 전체에 걸쳐서 어떤 구성 요소가 다른 구성 요소를 "포함"한다고 기재하는 경우에는, 특별히 반대되는 의미의 기재가 없는 한 임의의 다른 구성 요소를 제외하는 것이 아니라 임의의 다른 구성 요소를 더 포함할 수도 있다는 것을 의미할 수 있다.
더 나아가서, 어떤 구성 요소가 다른 구성 요소의 "내부에 존재하거나, 연결되어 설치된다"고 기재한 경우에는, 이 구성 요소가 다른 구성 요소와 직접적으로 연결되어 있거나 접촉하여 설치되어 있을 수 있고, 일정한 거리를 두고 이격되어 설치되어 있을 수도 있으며, 일정한 거리를 두고 이격되어 설치되어 있는 경우에 대해서는 해당 구성 요소를 다른 구성 요소에 고정 내지 연결시키기 위한 제 3의 구성 요소 또는 수단이 존재할 수 있으며, 이 제 3의 구성 요소 또는 수단에 대한 설명은 생략될 수도 있음을 알아야 한다.
반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결"되어 있다거나, 또는 "직접 접속"되어 있다고 기재되는 경우에는, 제 3의 구성 요소 또는 수단이 존재하지 않는 것으로 이해하여야 한다.
마찬가지로, 각 구성 요소 간의 관계를 설명하는 다른 표현들, 즉 " ~ 사이에"와 "바로 ~ 사이에", 또는 " ~ 에 이웃하는"과 " ~ 에 직접 이웃하는" 등도 마찬가지의 취지를 가지고 있는 것으로 해석되어야 한다.
또한, 본 명세서에 있어서 "일면", "타면", "일측", "타측", "제 1", "제 2" 등의 용어는, 사용된다면, 하나의 구성 요소에 대해서 이 하나의 구성 요소가 다른 구성 요소로부터 명확하게 구별될 수 있도록 하기 위해서 사용되며, 이와 같은 용어에 의해서 해당 구성 요소의 의미가 제한적으로 사용되는 것은 아님을 알아야 한다.
또한, 본 명세서에서 "상", "하", "좌", "우" 등의 위치와 관련된 용어는, 사용된다면, 해당 구성 요소에 대해서 해당 도면에서의 상대적인 위치를 나타내고 있는 것으로 이해하여야 하며, 이들의 위치에 대해서 절대적인 위치를 특정하지 않는 이상은, 이들 위치 관련 용어가 절대적인 위치를 언급하고 있는 것으로 이해하여서는 아니된다.
더욱이, 본 발명의 명세서에서는, "…부", "…기", "모듈", "장치" 등의 용어는, 사용된다면, 하나 이상의 기능이나 동작을 처리할 수 있는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어, 또는 하드웨어와 소프트웨어의 결합으로 구현될 수 있음을 알아야 한다.
또한, 본 명세서에서는 각 도면의 각 구성 요소에 대해서 그 도면 부호를 명기함에 있어서, 동일한 구성 요소에 대해서는 이 구성 요소가 비록 다른 도면에 표시되더라도 동일한 도면 부호를 가지고 있도록, 즉 명세서 전체에 걸쳐 동일한 참조 부호는 동일한 구성 요소를 지시하고 있다.
본 명세서에 첨부된 도면에서 본 발명을 구성하는 각 구성 요소의 크기, 위치, 결합 관계 등은 본 발명의 사상을 충분히 명확하게 전달할 수 있도록 하기 위해서 또는 설명의 편의를 위해서 일부 과장 또는 축소되거나 생략되어 기술되어 있을 수 있고, 따라서 그 비례나 축척은 엄밀하지 않을 수 있다.
또한, 이하에서, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 구성, 예를 들어, 종래 기술을 포함하는 공지 기술에 대한 상세한 설명은 생략될 수도 있다.
도 3은 일반적인 용량 가변형 전기추진 전동기의 형상을 나타낸 도면이다.
전기추진 전동기는 도 3에 도시된 바와 같이 매입형 영구자석형 전동기로서 적층길이에 따라 용량이 가변되는 구조이다.
아래 표 1에 기재된 바와 같이 설계 전류밀도가 9 ~ 10 A/㎟ 로 수냉식 냉각 구조가 필요하다,
[표 1] 일반적인 용량 가변형 전기추진 전동기의 제원
Figure PCTKR2023009614-appb-img-000001
도 4는 본 발명에 따른 용량 가변형 전기추진 전동기를 나타낸 도면이고, 도 5는 본 발명에 따른 용량 가변형 전기추진 전동기에서 스테이터 코어에 냉각 튜브가 결합된 상태를 나타낸 도면이다.
본 발명에 따른 용량 가변형 전기추진 전동기는, 로터(rotor) 샤프트(RS), 로터 코어(R), 복수의 영구자석(PM), 와인딩 코일(WC), 스테이터 코어(S), 모터 하우징(HS) 및 한 쌍의 커버(MC)를 포함하여 구성된다.
로터 코어(R)는 원형의 판 형태로 이루어져 로터 샤프트(RS)가 중앙에 관통 결합된다.
이러한 로터 코어(R)에는 원주 방향을 따라 전면과 후면을 관통하는 삽입홀(IH)이 복수로 형성된다.
복수의 영구자석(PM)은 로터 코어(R)의 원주방향을 따라 관통 형성된 복수의 삽입홀(IH)에 각각 매립된다.
와인딩 코일(WC)은 로터 코어(R)의 외주를 감싸는 형태로 배치된다.
스테이터 코어(S)는 와인딩 코일(WC)의 외주를 감싸는 형태로 배치되어 영구자석(PM)과의 자력 반응을 한다.
이와 같은 로터 코어(R)와 스테이터 코어(S)의 적층되는 개수에 따른 적층 길이에 따라 용량이 가변될 수 있다.
모터 하우징(HS)은 스테이터 코어(S)의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된다.
한 쌍의 커버(MC)는 모터 하우징(HS)의 개방된 양 측부에 각각 결합되고, 중심에는 로터 샤프트(RS)가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성된다.
이러한 커버(MC)는, 모터 하우징(HS)의 개방된 측부에 결합되는 내측 커버(C2)와, 내측 커버(C2)와 대응되는 형상으로 이루어져 내측 커버(C2)에 결합되는 외측 커버(C1)를 포함한다.
또한, 외측 커버(C1)는 후술하는 방열부(E)의 제2 돌출 리브(E2)와 내측 커버(C2)의 테두리부 사이를 덮도록 형성된다.
이때, 한 쌍의 내측 커버(C2) 중 어느 하나의 내측 커버(C2)에는 냉각수 입구(D1)가 형성되고, 다른 하나의 내측 커버(C2)에는 냉각수 출구(D2)가 형성된다.
냉각수 입구(D1)가 형성되는 측은 반부하측(non driven end)이고, 냉각수 출구(D2)가 형성되는 측은 부하측(driven end)이며, 냉각수는 반부하측으로부터 부하측으로 유동한다.
도 6은 본 발명에 따른 용량 가변형 전기추진 전동기에서 내측 커버의 내부를 나타낸 도면이다.
내측 커버(C2)는, 모터 하우징(HS)의 개방된 측부를 덮는 바닥부와, 바닥부의 가장자리로부터 로터 샤프트(RS)의 축방향으로 소정 길이 만큼 연장 형성되는 테두리부를 포함하여 형성된다.
이러한 바닥부에는 복수의 냉각 튜브(CT)와 대응되는 위치에 복수의 끼움홀(TH)이 형성되고, 이와 같은 끼움홀(TH)에는 냉각 튜브(CT)의 단부가 끼워진다.
바닥부에는 용량 가변형 전기추진 전동기의 내부에서 발생된 열을 방출하도록 방열부(E)가 형성된다.
방열부(E)는, 바닥부로부터 로터 샤프트(RS) 둘레를 따라 테두리부와 동일한 방향으로 연장 형성되는 제1 돌출리브(E1)와, 제1 돌출리브(E1)와 끼움홀(TH) 사이에 위치한 바닥부로부터 제1 돌출리브(E1)와 동일한 형태로 연장 형성되는 제2 돌출리브(E2)와, 복수로 마련되어 상호간 이격된 채로 제1 돌출리브(E1)와 제2 돌출리브(E2)를 연결하는 방열리브(E3)를 포함한다.
이때, 로터 샤프트(RS)와 제1 돌출리브(E1) 사이에는 베어링(BR)이 결합된다.
도 7은 본 발명에 따른 용량 가변형 전기추진 전동기에서 냉각 튜브가 결합된 스테이터 코어, 와인딩 코일, 로터 코어, 영구자석이 조립된 상태를 나타낸 도면이고, 도 8은 본 발명에 따른 용량 가변형 전기추진 전동기에서 냉각홀이 형성된 스테이터 코어, 로터 코어, 영구자석이 결합된 상태를 나타낸 도면이며, 도 9는 본 발명에 따른 용량 가변형 전기추진 전동기에서 스테이터 코어를 나타낸 도면이다.
로터 샤프트(RS)의 축방향과 동일한 방향에 위치한 스테이터 코어(S)의 양면에는 원주방향을 따라 복수의 냉각홀(CH)이 일정 간격으로 관통 형성되고, 이러한 복수의 냉각홀(CH)에는 각각 냉각 튜브(CT)가 결합된다.
도 10은 일반적인 전기추진 전동기로서 스테이터 코어, 로터 코어, 영구자석이 결합된 상태와 자속선 분포를 나타낸 도면이고, 도 11은 본 발명에 따른 용량 가변형 전기추진 전동기로서 스테이터 코어, 로터 코어, 영구자석이 결합된 상태와 자속선 분포를 나타낸 도면이다.
스테이터(stator) 코어(S) 내부 (스테이터 요크)에는 전동기 특성에 영향을 미치지 않는 냉각홀(CH)을 형성하였다.
원형 막대 형태의 냉각 튜브(CT)를 삽입하기 위해 원형의 냉각홀 구조를 적용하고 냉각홀(CH)의 개수를 통해 냉각 효율을 극대하하였다.
[표 2] 전기추진 전동기의 기존 모델과 본 발명에 따른 냉각 구조 모델에 대한 성능 비교
Figure PCTKR2023009614-appb-img-000002
도 12는 본 발명에 따른 용량 가변형 전기추진 전동기의 냉각 구조를 나타낸 도면이다.
반부하측(NDE)에 위치한 커버(MC)에 형성된 냉각수 입구(D1)로 냉각수가 유입되면, 반부하측 커버(MC) 내부의 수용공간에 냉각수가 채워지게 되고, 내측 커버(C2)의 끼움홀(TH)에 끼워진 냉각 튜브(CT)를 통해 냉각수는 부하측(DE)에 위치한 커버(MC) 내부의 수용공간에 채워지게 되며, 이때 부하측 커버(MC)에 형성된 냉각수 출구(D2)를 통해 냉각수가 배출되게 된다.
이처럼 스테이터 코어(S)에 형성된 냉각홀(CH)에 냉각튜브(CT)를 결합함으로써, 전기추진 전동기의 내부 발열체(와인딩 코일 또는 영구자석 등)와의 거리가 가까워져서 냉각 효율이 증가하게 된다.
[표 3] 본 발명에 따른 용량 가변형 전기추진 전동기의 제원
Figure PCTKR2023009614-appb-img-000003
도 13 내지 도 15는 가변 용량에 따른 냉각 구조를 나타낸 도면들로서, 도 13은 용량이 1000 kW, 도 14는 용량이 500 kW, 도 15는 용량이 300 kW 이다.
본 발명은 매입형 영구자석형 전기추진 전동기로서 적층 길이에 따라 용량이 가변되는 구조이므로, 가변 용량에 따른 추가적인 냉각 구조 설계가 불필요하다.
[표 4] 용량 가변형 전기추진 전동기의 주요 치수
Figure PCTKR2023009614-appb-img-000004
도 16은 본 발명에 따른 용량 가변형 전기추진 전동기의 전자기 열손실 해석 결과를 나타낸 도면이다.
아래 표 5는 전동기 발열체(와인딩 코일, 코어, 영구자석)는 3가지로 부하 정격 시(rated), 부하 과도 시(overload) 전자기 손실을 나타낸다.
[표 5] 용량 가변형 전기추진 전동기의 전자기 열손실 해석 결과
Figure PCTKR2023009614-appb-img-000005
냉각 튜브의 직경과 개수, 유량속도를 통해 냉각효과를 분석하였다.
[표 6] 냉각 튜브의 제원 (Inlet / outlet tube)
Figure PCTKR2023009614-appb-img-000006
[표 7] 냉각 튜브의 제원 (branch tubes)
Figure PCTKR2023009614-appb-img-000007
도 17 및 도 18은 본 발명에 따른 용량 가변형 전기추진 전동기의 온도 분포 해석 결과를 나타낸 도면들로서, 도 17은 표 8의 #1의 경우이고, 도 18은 표 8의 #18의 경우이다.
[표 8] 본 발명에 따른 용량 가변형 전기추진 전동기의 냉각 튜브 직경, 냉각수 속도, 와인딩 코일 온도를 조합한 다양한 케이스 (#1 ~ #18)
Figure PCTKR2023009614-appb-img-000008
도 19 내지 도 21은 본 발명에 따른 용량 가변형 전기추진 전동기의 정격용량에 대한 온도 분포 해석 결과를 나타낸 도면들로서, 도 19는 용량이 300 kW, 도 20은 용량이 500 kW, 도 21은 용량이 1000 kW 이다.
도 22 내지 도 24는 본 발명에 따른 용량 가변형 전기추진 전동기의 과도용량에 대한 온도 분포 해석 결과를 나타낸 도면들로서, 도 22는 용량이 300 kW, 도 23은 용량이 500 kW, 도 24는 용량이 1000 kW 이다.
[표 9] 전동기 용량별 (정격용량 / 과도용량) 전자기 열손실
Figure PCTKR2023009614-appb-img-000009
[표 10] 전동기 용량별 (정격용량 / 과도용량) 온도 해석
Figure PCTKR2023009614-appb-img-000010
이상, 일부 예를 들어서 본 발명의 바람직한 여러 가지 실시예에 대해서 설명하였지만, 본 "발명을 실시하기 위한 구체적인 내용" 항목에 기재된 여러 가지 다양한 실시예에 관한 설명은 예시적인 것에 불과한 것이며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이상의 설명으로부터 본 발명을 다양하게 변형하여 실시하거나 본 발명과 균등한 실시를 행할 수 있다는 점을 잘 이해하고 있을 것이다.
또한, 본 발명은 다른 다양한 형태로 구현될 수 있기 때문에 본 발명은 상술한 설명에 의해서 한정되는 것이 아니며, 이상의 설명은 본 발명의 개시 내용이 완전해지도록 하기 위한 것으로 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이며, 본 발명은 청구범위의 각 청구항에 의해서 정의될 뿐임을 알아야 한다.
본 발명은 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기에 관한 것으로, 스테이터 코어에 복수의 냉각홀을 형성하고 이러한 냉각홀에 냉각 튜브를 결합하도록 구성됨으로써, 전동기 특성에 영향을 미치지 않으면서 냉각 효율을 극대화할 수 있는 효과가 있고, 매입형 영구자석형 전기추진 전동기로서 적층 길이에 따라 용량이 가변되는 구조이므로, 가변 용량에 따른 추가적인 냉각 구조 설계가 불필요한 효과가 있다는 점에서 산업상 이용가능성이 있다.

Claims (19)

  1. 로터 샤프트; 원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어; 상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석; 상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어; 상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및 상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하는 용량 가변형 전기추진 전동기를 냉각하기 위한 구조로서,
    상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고,
    상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되며,
    상기 한 쌍의 커버 중 어느 하나의 커버를 통해 유입되는 냉각수는 상기 냉각 튜브를 통과한 후 다른 하나의 커버를 통해 배출되도록 이루어진,
    용량 가변형 전기추진 전동기의 냉각구조.
  2. 청구항 1에 있어서,
    상기 커버는,
    상기 모터 하우징의 개방된 측부에 결합되는 내측 커버와,
    상기 내측 커버와 대응되는 형상으로 이루어져 상기 내측 커버에 결합되는 외측 커버를 포함하는,
    용량 가변형 전기추진 전동기의 냉각구조.
  3. 청구항 2에 있어서,
    상기 내측 커버는,
    상기 모터 하우징의 개방된 측부를 덮는 바닥부와,
    상기 바닥부의 가장자리로부터 상기 로터 샤프트의 축방향으로 소정 길이 만큼 연장 형성되는 테두리부를 포함하여 형성되는,
    용량 가변형 전기추진 전동기의 냉각구조.
  4. 청구항 3에 있어서,
    상기 바닥부에는 상기 복수의 냉각 튜브와 대응되는 위치에 복수의 끼움홀이 형성되고,
    상기 끼움홀에는 상기 냉각 튜브의 단부가 끼워지는,
    용량 가변형 전기추진 전동기의 냉각구조.
  5. 청구항 4에 있어서,
    상기 바닥부에는 상기 용량 가변형 전기추진 전동기의 내부에서 발생된 열을 방출하도록 방열부가 형성되는,
    용량 가변형 전기추진 전동기의 냉각구조.
  6. 청구항 5에 있어서,
    상기 방열부는,
    상기 바닥부로부터 상기 로터 샤프트 둘레를 따라 상기 테두리부와 동일한 방향으로 연장 형성되는 제1 돌출리브;
    상기 제1 돌출리브와 상기 끼움홀 사이에 위치한 상기 바닥부로부터 상기 제1 돌출리브와 동일한 형태로 연장 형성되는 제2 돌출리브; 및
    복수로 마련되어 상호간 이격된 채로 상기 제1 돌출리브와 상기 제2 돌출리브를 연결하는 방열리브;를 포함하는,
    용량 가변형 전기추진 전동기의 냉각구조.
  7. 청구항 6에 있어서,
    상기 외측 커버는,
    상기 제2 돌출 리브와 상기 테두리부 사이를 덮도록 형성되는,
    용량 가변형 전기추진 전동기의 냉각구조.
  8. 청구항 2에 있어서,
    상기 한 쌍의 내측 커버 중 어느 하나의 내측 커버에는 냉각수 입구가 형성되고, 다른 하나의 내측 커버에는 냉각수 출구가 형성되는,
    용량 가변형 전기추진 전동기의 냉각구조.
  9. 로터 샤프트;
    원형의 판 형태로 이루어져 상기 로터 샤프트가 중앙에 관통 결합되는 로터 코어;
    상기 로터 코어의 원주방향을 따라 매립되는 복수의 영구자석;
    상기 로터 코어의 외주를 감싸는 형태로 배치되는 와인딩 코일; 상기 와인딩 코일의 외주를 감싸는 형태로 배치되어 상기 영구자석과의 자력 반응을 하는 스테이터 코어;
    상기 스테이터 코어의 외주를 감싸는 형태로 배치되는 중공의 원통 형태로 이루어지고 양측이 개방된 모터 하우징; 및
    상기 모터 하우징의 개방된 양 측부에 각각 결합되고, 중심에는 상기 로터 샤프트가 관통 결합되도록 이루어지며, 내부에 수용공간이 형성되는 한 쌍의 커버;를 포함하며,
    상기 로터 샤프트의 축방향과 동일한 방향에 위치한 스테이터 코어의 양면에는 원주방향을 따라 복수의 냉각홀이 일정 간격으로 관통 형성되고,
    상기 복수의 냉각홀에는 각각 냉각 튜브가 결합되는 것을 특징으로 하는,
    용량 가변형 전기추진 전동기.
  10. 청구항 9에 있어서,
    상기 커버는,
    상기 모터 하우징의 개방된 측부에 결합되는 내측 커버와,
    상기 내측 커버와 대응되는 형상으로 이루어져 상기 내측 커버에 결합되는 외측 커버를 포함하는,
    용량 가변형 전기추진 전동기.
  11. 청구항 10에 있어서,
    상기 내측 커버는,
    상기 모터 하우징의 개방된 측부를 덮는 바닥부와,
    상기 바닥부의 가장자리로부터 상기 로터 샤프트의 축방향으로 소정 길이 만큼 연장 형성되는 테두리부를 포함하여 형성되는,
    용량 가변형 전기추진 전동기.
  12. 청구항 11에 있어서,
    상기 바닥부에는 상기 복수의 냉각 튜브와 대응되는 위치에 복수의 끼움홀이 형성되고,
    상기 끼움홀에는 상기 냉각 튜브의 단부가 끼워지는,
    용량 가변형 전기추진 전동기.
  13. 청구항 11에 있어서,
    상기 바닥부에는 상기 용량 가변형 전기추진 전동기의 내부에서 발생된 열을 방출하도록 방열부가 형성되는,
    용량 가변형 전기추진 전동기.
  14. 청구항 13에 있어서,
    상기 방열부는,
    상기 바닥부로부터 상기 로터 샤프트 둘레를 따라 상기 테두리부와 동일한 방향으로 연장 형성되는 제1 돌출리브;
    상기 제1 돌출리브와 상기 끼움홀 사이에 위치한 상기 바닥부로부터 상기 제1 돌출리브와 동일한 형태로 연장 형성되는 제2 돌출리브; 및
    복수로 마련되어 상호간 이격된 채로 상기 제1 돌출리브와 상기 제2 돌출리브를 연결하는 방열리브;를 포함하는,
    용량 가변형 전기추진 전동기.
  15. 청구항 14에 있어서,
    상기 외측 커버는,
    상기 제2 돌출 리브와 상기 테두리부 사이를 덮도록 형성되는,
    용량 가변형 전기추진 전동기.
  16. 청구항 10에 있어서,
    상기 한 쌍의 내측 커버 중 어느 하나의 내측 커버에는 냉각수 입구가 형성되고, 다른 하나의 내측 커버에는 냉각수 출구가 형성되는,
    용량 가변형 전기추진 전동기.
  17. 청구항 14에 있어서,
    상기 로터 샤프트와 제1 돌출 리브 사이에는 베어링이 결합되는,
    용량 가변형 전기추진 전동기.
  18. 청구항 16에 있어서,
    상기 냉각수 입구가 형성되는 측은 반부하측(non driven end)이고, 상기 냉각수 출구가 형성되는 측은 부하측(driven end)이며,
    상기 냉각수는 반부하측으로부터 부하측으로 유동하는,
    용량 가변형 전기추진 전동기.
  19. 청구항 9 내지 청구항 18 중 어느 하나의 청구항에 있어서,
    상기 로터 코어와 스테이터 코어의 적층되는 개수에 따른 적층 길이에 따라 용량이 가변되는,
    용량 가변형 전기추진 전동기.
PCT/KR2023/009614 2022-08-08 2023-07-06 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기 WO2024034868A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220098482A KR102503158B1 (ko) 2022-08-08 2022-08-08 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기
KR10-2022-0098482 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034868A1 true WO2024034868A1 (ko) 2024-02-15

Family

ID=85329934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009614 WO2024034868A1 (ko) 2022-08-08 2023-07-06 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기

Country Status (2)

Country Link
KR (1) KR102503158B1 (ko)
WO (1) WO2024034868A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102503158B1 (ko) * 2022-08-08 2023-02-23 한국해양과학기술원 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099561A (ja) * 1995-06-20 1997-01-10 Hitachi Ltd 回転電機及び電動車両
KR100544004B1 (ko) * 1998-12-31 2006-04-06 두산인프라코어 주식회사 빌트인모터의냉각장치
KR100636002B1 (ko) * 2006-03-30 2006-10-18 주식회사 한국유체기계 초고속 전동기
KR20100077427A (ko) * 2008-12-29 2010-07-08 주식회사 효성 회전기기
KR20110075824A (ko) * 2009-12-29 2011-07-06 주식회사 효성 전동기용 냉각 구조체 및 그의 제조방법
KR102503158B1 (ko) * 2022-08-08 2023-02-23 한국해양과학기술원 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099561A (ja) * 1995-06-20 1997-01-10 Hitachi Ltd 回転電機及び電動車両
KR100544004B1 (ko) * 1998-12-31 2006-04-06 두산인프라코어 주식회사 빌트인모터의냉각장치
KR100636002B1 (ko) * 2006-03-30 2006-10-18 주식회사 한국유체기계 초고속 전동기
KR20100077427A (ko) * 2008-12-29 2010-07-08 주식회사 효성 회전기기
KR20110075824A (ko) * 2009-12-29 2011-07-06 주식회사 효성 전동기용 냉각 구조체 및 그의 제조방법
KR102503158B1 (ko) * 2022-08-08 2023-02-23 한국해양과학기술원 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기

Also Published As

Publication number Publication date
KR102503158B1 (ko) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2024034868A1 (ko) 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기
WO2017213323A1 (ko) 접지 단자, 커버 조립체 및 이를 포함하는 모터
WO2018128398A1 (ko) 모터 및 변속기
WO2017150909A1 (ko) 버스바 조립체, 이를 포함하는 모터
WO2018225878A1 (ko) 모터
WO2020027436A1 (ko) 전동기
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2013125812A1 (en) Superconducting rotating electrical machine and manufacturing method for high temperature superconducting film thereof
WO2018026177A1 (ko) 리어 홀더 및 이를 포함하는 모터
WO2016002994A1 (ko) 모터
WO2021172761A1 (ko) 모터
WO2021225229A1 (ko) 모터 어셈블리
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
WO2020189825A1 (ko) 지능형 동력생성모듈
WO2019045280A1 (ko) 로터 및 이를 포함하는 모터
WO2018128487A1 (ko) 모터와 알터네이터를 융합한 구동기계
WO2019054637A1 (ko) 전동 펌프 및 모터
WO2020149626A1 (ko) 로터 및 이를 포함하는 모터
WO2010076934A1 (ko) 쌍코어 구조를 이용한 변압기
WO2020145538A1 (ko) 모터
WO2019151660A1 (ko) 로터 및 이를 구비하는 모터
WO2020004726A1 (ko) Isg 시스템용 계자권선형 모터발전기의 효율 향상을 위한 보조 영구자석을 구비하는 회전자 구조
WO2020145498A1 (ko) 모터
WO2022260460A1 (ko) 고효율 전동기
WO2021141354A1 (en) Cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852754

Country of ref document: EP

Kind code of ref document: A1