WO2022260460A1 - 고효율 전동기 - Google Patents

고효율 전동기 Download PDF

Info

Publication number
WO2022260460A1
WO2022260460A1 PCT/KR2022/008173 KR2022008173W WO2022260460A1 WO 2022260460 A1 WO2022260460 A1 WO 2022260460A1 KR 2022008173 W KR2022008173 W KR 2022008173W WO 2022260460 A1 WO2022260460 A1 WO 2022260460A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
support module
magnet support
magnets
magnetic flux
Prior art date
Application number
PCT/KR2022/008173
Other languages
English (en)
French (fr)
Inventor
이승권
Original Assignee
이승권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승권 filed Critical 이승권
Publication of WO2022260460A1 publication Critical patent/WO2022260460A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures

Definitions

  • the present invention relates to a high-efficiency electric motor, and more specifically, it is possible to efficiently manage a lot of magnets so that the characteristics of the motor can be stabilized through effective magnetic flux control, and factors that destabilize the characteristics of the motor It is possible to easily adjust the characteristics of magnets and changes in residual magnetic flux density (Br), which may vary depending on the lot, and can predict and manage a constant effective magnetic flux, so the efficiency of the motor can be greatly increased than before. It is about a high-efficiency electric motor.
  • Total flux refers to the total sum of the magnetic lines of force that pass through the coil wound in the corresponding slot of the armature and return to the opposite pole among many magnetic lines of force from one pole of the magnet.
  • 1 a method of increasing the thickness of the magnet
  • 2 a method of changing the material of the magnet to a material with a higher residual magnetic flux density (Br) than the current material
  • 3 a method of increasing the length and width of the magnet method has been used.
  • 1 is a typical structural diagram of an electric motor.
  • stator a fixed part
  • rotor a rotating part
  • field 10 is a stator
  • armature 20 is a rotor
  • armature 20 As the main parts of the motor, there are a field 10, an armature 20, a commutator 30, a brush 40, and the like, as shown by reference numerals in FIG.
  • the field 10 is also referred to as a field magnet and is responsible for generating a main magnetic flux.
  • the field 10 interacts with the armature 20 to form a magnetic circuit, and the armature 20 receives the magnetic flux created by the field 10 to obtain rotational force.
  • the field 10 since the field 10 only needs to generate the necessary magnetic flux, relatively less current flows than the armature 20, and a magnet or an electromagnet is used to generate the magnetic flux. 1 is an example using a magnet.
  • the armature 20 is also called an armature and generates torque through Fleming's left-hand rule by cutting off the magnetic flux created by the field 10.
  • the commutator 30 is also referred to as a commutator, and supplies power to the rotating part by converting direct current coming from the outside into alternating current.
  • the AC current thus changed is supplied to the armature 20 . Since the commutator 30 is connected to the armature 20, when the armature 20 rotates, it also rotates.
  • the rotating commutator 30 contacts the brush 40 in a stationary state.
  • the brush 40 is a part that contacts the commutator 30 and connects the internal circuit and the external circuit of the motor.
  • Types of the brush 40 include a carbon brush, a graphite brush, an electric graphite brush, a metal graphite brush, and the like.
  • the amount of magnetic flux formed in the motor as shown in FIG. 1 means the sum of the amount of effective magnetic flux and the amount of leakage flux. It can perform the role of the field 10 by the amount of effective magnetic flux.
  • the effective magnetic flux refers to the total sum of the magnetic lines of force that pass through the coil wound around the corresponding slot of the armature 20 and return to the opposite pole among many magnetic lines of force from one pole of the magnet.
  • the design in order to maximize the design efficiency of the motor, basically, when designing the motor, the design should be made in consideration of the leakage prevention as well as the precise calculation of the effective magnetic flux.
  • An object of the present invention is to efficiently manage a lot of magnets so that the characteristics of a motor are stable through effective magnetic flux control, and to prevent deviations depending on the lot, which is a factor that destabilizes the characteristics of a motor. It is to provide a high-efficiency motor that can easily control the characteristics of magnets and changes in residual magnetic flux density (Br) that can occur, and can predict and manage a constant effective magnetic flux to significantly increase the efficiency of the motor compared to the prior art.
  • Pr residual magnetic flux density
  • Another object of the present invention is to provide a high-efficiency electric motor capable of maximizing the permeance coefficient.
  • the above object is, at least one magnet support module disposed on the outer side of the armature in the radial direction and having a plurality of magnet insertion holes; and a plurality of magnets individually inserted into and coupled to the magnet insertion holes of the magnet support module, and effective magnetic flux due to an arrangement structure for the magnets on the magnet support module coupled to the magnet insertion holes of the magnet support module. It is achieved by a high-efficiency motor characterized in that the characteristics of the motor are induced to be stabilized through control.
  • the magnet has a disk shape, and the magnet may be selected from ferrite magnets, Sm-Co magnets, Nd-Fe-B magnets, and Sm2Fe17Nx magnets.
  • the magnet insertion hole is formed in a structure capable of clustering the magnets and preventing separation, and the magnet support module may be manufactured in a bipolar or multipole type.
  • Magnet insertion holes formed in the magnet support module may have the same shape.
  • Magnet insertion holes formed in the magnet support module may be densely arranged from a center area to both side areas of the magnet support module.
  • Magnet insertion holes formed in the magnet support module may be densely arranged from side regions on both sides of the magnet support module to a center region.
  • Magnet insertion holes formed in the magnet support module may be gradually densely arranged from a circumferential surface of the magnet support module toward a center area.
  • Magnet insertion holes formed in the magnet support module may be gradually densely arranged from a center region to a circumferential surface of the magnet support module.
  • the present invention it is possible to efficiently manage a lot of magnets so that the characteristics of the motor are stable through effective magnetic flux control, and deviations may occur depending on the lot, which is a factor that destabilizes the characteristics of the motor. It is possible to easily adjust the characteristics of the magnet and the change in the residual magnetic flux density (Br), and predictive and manage a constant effective magnetic flux, so that the efficiency of the motor can be significantly increased than before.
  • 1 is a typical structural diagram of an electric motor.
  • FIG. 2 is a structural diagram of a high-efficiency motor according to a first embodiment of the present invention.
  • FIG. 3 is an enlarged view of a main part of FIG. 2 .
  • 5 is data obtained by dividing the inner surface of a magnet into parts and measuring surface magnetic flux using a gauss meter.
  • FIG. 6 shows the measurement of the surface magnetic flux at nine points (a, b, c, d, e, f, g, h, i) of the N pole and the S pole, respectively, using two magnets as samples.
  • FIG. 8 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a second embodiment of the present invention.
  • FIG. 9 is a front view of the magnet support module of FIG. 8 .
  • FIG. 10 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a third embodiment of the present invention.
  • FIG. 11 is a front view of the magnet support module of FIG. 10;
  • FIG. 12 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a fourth embodiment of the present invention.
  • FIG. 13 is a front view of the magnet support module of FIG. 12;
  • FIG. 14 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a fifth embodiment of the present invention.
  • FIG. 15 is a front view of the magnet support module of FIG. 14;
  • 16 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a sixth embodiment of the present invention.
  • FIG. 17 is a front view of the magnet support module of FIG. 16;
  • FIG. 18 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a seventh embodiment of the present invention.
  • FIG. 19 is a front view of the magnet support module of FIG. 18;
  • FIG. 2 is a structural diagram of a high-efficiency motor according to a first embodiment of the present invention
  • FIG. 3 is an enlarged view of the main part of FIG. 2
  • FIG. 4 is a front view of a magnet support module
  • FIG. 5 is a Gaussian meta Data of measuring surface magnetic flux with a (gauss meter)
  • Figure 6 shows nine points (a, b, c, d, e, f, g, h, The measurement of the surface magnetic flux amount of i)
  • FIG. 7 is a B-H curve and a measurement site for calculating the permeance coefficient.
  • the high-efficiency motor it is possible to efficiently manage a lot of magnets so that the characteristics of the motor are stable through effective magnetic flux control, and the factor that makes the characteristics of the motor unstable It is possible to easily adjust the characteristics of magnets and changes in residual magnetic flux density (Br), which may vary depending on the lot, and can predict and manage a constant effective magnetic flux, so the efficiency of the motor can be greatly increased than before. have.
  • Br residual magnetic flux density
  • the high-efficiency motor according to the present embodiment capable of providing such an effect includes a magnet support module 140 disposed outside the armature 111 in the radial direction and having a plurality of magnet insertion holes 141, and a magnet support module 140 It includes a magnet 130, that is, a permanent magnet 130 coupled to be inserted into the magnet insertion holes 141 of ).
  • the magnet 130 forms a disk shape.
  • the magnet support module 140 to which these magnets 130 are coupled forms an annular shape, that is, an arc shape.
  • the magnet insertion hole 141 formed in the magnet support module 140 supports the magnet 130 but has a structure in which the magnet 130 can be inserted in a slot form.
  • the magnet support module 140 performs a function capable of predictive management by measuring the effective magnetic flux.
  • FIG. 2 the structure and description of the armature 111, the commutator 113, and the brush 115 are replaced with the description of FIG. 1, although the symbols are different.
  • the magnet 130 applied to the high-efficiency motor according to the present embodiment may be manufactured in a disk shape, and is inserted into the magnet insertion holes 141 formed in the magnet support module 140 to support the magnet. module 140.
  • the permeance coefficient of the edge portion is high and the central portion may be manufactured in a structure in which the permeance coefficient is relatively low. In this case, the effective magnetic flux can be secured .
  • the magnet 130 which is a permanent magnet applied to this embodiment, may be selected from ferrite magnets, Sm-Co magnets, Nd-Fe-B magnets, and Sm2Fe17Nx magnets.
  • Nd-Fe- The magnet 130 can be manufactured using a B-type magnet or the like.
  • the permeance coefficient has a meaning similar to the amount of magnetic flux, and means that the amount of magnetic flux at the periphery of the magnet is higher than that at the center.
  • Conventional methods for increasing the permeance coefficient include reducing the air gap in the motor as much as possible, using a material with low magnetic resistance as much as possible for the material of the armature and housing of the motor, or using the thickness of the housing (yoke) It is a method of eliminating leakage flux by increasing , or increasing the laminated length of the armature up to 80% of the magnet length.
  • the magnet support module 140 supports the magnet 130 .
  • the magnet support module 140 may be formed in a cylindrical shape like a conventional stator or rotor.
  • the magnet support module 140 is made of a material close to pure iron or a non-magnetic material with low magnetic resistance so that magnetic flux leakage does not occur outside the magnet support module 140 in order to prevent leakage flux of the magnet 130, or is self-contained. It can be manufactured in a way to control the thickness.
  • a plurality of magnet insertion holes 141 are formed in the magnet support module 140 . While the magnet 130 is inserted into the magnet insertion hole 141, it is coupled to the magnet support module 140.
  • the magnet insertion hole 141 may be formed in a structure capable of clustering the plurality of magnets 130 and preventing them from being separated.
  • the magnet insertion hole 141 may be formed with a structure that does not fall out in the direction in which the magnet 130 is inserted, such as a tapered structure or a hook structure, all of which should be said to fall within the scope of the present invention. will be.
  • the magnet insertion holes 141 formed in the magnet support module 140 have the same shape. Accordingly, one type of magnet 130 having the same size and shape may be prepared and individually inserted into the magnet insertion holes 141 formed in the magnet support module 140.
  • the magnet insertion holes 141 formed in the magnet support module 140 are densely arranged from the center region of the magnet support module 140 to both side regions of the magnet support module 140 . Therefore, the magnet support module 140 into which the plurality of magnets 130 are inserted enables predictive management by measuring the amount of effective magnetic flux and induces stabilization of characteristics of the motor through control of the amount of effective magnetic flux.
  • the magnet support module 140 may be manufactured in a bipolar or multipole type.
  • the high-efficiency electric motor includes at least one magnet support module 140 in which a magnet 130 and a plurality of magnet insertion holes 141 are formed so that the magnet 130 can be inserted in a slot form.
  • ( 140) is characterized by being densely arranged from the center area to both side areas.
  • Prediction management by measuring effective magnetic flux is a very convenient method for both magnet users and magnet suppliers. This is because efficient lot management of magnets becomes possible when the characteristics of the motor are stable.
  • magnet characteristics may vary depending on the lot, and in the case of residual magnetic flux density (Br), there may be a characteristic change of about ⁇ 3 to 4%.
  • the effective magnetic flux When managed tightly, the deviation of the effective magnetic flux is very large, and as a result, it acts as a factor that destabilizes the characteristics of the motor.
  • the magnet support module 140 into which the plurality of magnets 130 are inserted can be usefully utilized through a flux meter during repair or maintenance from the design of the motor.
  • the management of the motor performance by the effective magnetic flux is equivalent to giving up. This is because it is not easy for magnet suppliers to change the thickness (permeance coefficient due to air gap) to match the effective magnetic flux within such a tight tolerance range.
  • This phenomenon appears higher as the shortest distance from the measurement site to the opposite pole is shorter. This is a phenomenon that comes from the difference in permeance coefficient, and more magnetic flux comes out at the part where the permeance coefficient is large, and it can be seen that the permeance coefficient increases as the shortest distance from the measured part to the opposite pole is short.
  • the permeance coefficient is a value determined by the material, shape, size, and direction of the magnetic field of the magnet. Even with the same magnet, the surface gauss is not constant depending on the position of the magnet surface. This is caused by the difference in the shortest distance from the opposite pole.
  • a larger amount of magnetic flux is produced in a region with a large permeance coefficient, and the permeance coefficient is larger as the shortest distance from the measured region to the opposite pole is short.
  • the plurality of magnets 130 according to the present invention may perform a function of maximizing the permeance coefficient.
  • the permeance coefficient refers to a value obtained by dividing the magnetic flux density B by the coercive force Hc.
  • the permeance coefficient is a very important factor, and is a value determined according to the material, shape, size, and magnetic field direction of the magnet.
  • This value calculates the operating point, obtains the operating point magnetic flux density (Bd), and calculates the magnetic flux amount ( ⁇ : Maxwell).
  • S is the total surface area
  • Am is the cross-sectional area of the magnet orthogonal to the magnetization direction
  • Lm is the length of the magnetization direction
  • ⁇ r is the reversible magnetic permeability. That is, the higher the permeance coefficient, the higher the total magnetic flux.
  • the permeance coefficient (magnetic flux density B / coercive force Hc) of point A becomes B/Hc of point A where the B-H curve intersects 1,200 gauss in (B).
  • the permeance (B/Hc) PA and PB of point A and point B at this time appear to be the same, and the value is 2,500 G / 1,450 oe, which is 1.72.
  • the surface gauss is not constant depending on the position of the magnet surface, which is caused by the difference in the shortest distance from the opposite pole. In other words, in order to raise the permeance coefficient, it is possible to simply reduce the air gap with the opposite pole.
  • the magnet 130 applied to the present invention is a structure for increasing the permeance coefficient, and clustering a plurality of magnets 130 without using a method such as stacking to affect the volume or structure of the motor It is possible to increase the permeance coefficient without going crazy.
  • the present embodiment which works based on the structure described above, it is possible to efficiently manage a lot of magnets so that the characteristics of the motor are stable through effective magnetic flux control, and the characteristics of the motor are unstable. It is possible to easily adjust the change in magnet characteristics and residual magnetic flux density (Br), which can cause deviation depending on the lot, which is a factor that causes deviation, and can predict and manage a constant effective magnetic flux, so the efficiency of the motor is much higher than before. can be raised In addition, according to the present embodiment, the permeance coefficient can be maximized.
  • FIG. 8 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency electric motor according to a second embodiment of the present invention
  • FIG. 9 is a front view of the magnet support module of FIG. 8 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 240 disposed outside the armature 111 (see FIG. 2) in the radial direction and having a plurality of magnet insertion holes 241 and ,
  • a magnet support module including a plurality of magnets 230 individually inserted into and coupled to the magnet insertion holes 241 of the magnet support module 240 but coupled to the magnet insertion holes 241 of the magnet support module 240 Due to the arrangement structure of the magnets 230 on the 240, the characteristics of the electric motor through effective magnetic flux control can be induced to be stabilized.
  • the magnet insertion holes 241 formed in the magnet support module 240 have the same shape. Accordingly, one type of magnet 230 having the same size and shape may be prepared and individually inserted into the magnet insertion holes 241 formed in the magnet support module 240.
  • the magnet insertion holes 241 formed in the magnet support module 240 are densely arranged from side regions on both sides of the magnet support module 240 toward the center region. Therefore, the magnet support module 240 into which the plurality of magnets 230 are inserted not only enables predictive management by measuring the effective magnetic flux amount, but also induces stabilization of characteristics of the motor through effective magnetic flux control.
  • the magnet support module 240 may be manufactured in a bipolar or multipole type.
  • the high-efficiency motor includes at least one magnet support module 240 in which a magnet 230 and a plurality of magnet insertion holes 241 are formed so that the magnet 230 can be inserted in a slot form.
  • ( 240) is characterized by being densely arranged as it goes from the side regions on both sides to the center region.
  • FIG. 10 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency electric motor according to a third embodiment of the present invention
  • FIG. 11 is a front view of the magnet support module of FIG. 10 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 340 disposed radially outside the armature 111 (see FIG. 2) and having a plurality of magnet insertion holes 341 and , A magnet support module including a plurality of magnets 330 individually inserted into and coupled to the magnet insertion holes 341 of the magnet support module 340, but coupled to the magnet insertion holes 341 of the magnet support module 340 Due to the arrangement structure of the magnets 330 on the 340, the characteristics of the electric motor through effective magnetic flux control can be induced to be stabilized.
  • the magnet insertion holes 341 formed in the magnet support module 340 have the same shape. Accordingly, one type of magnet 330 having the same size and shape may be prepared and individually inserted into the magnet insertion holes 341 formed in the magnet support module 340.
  • the magnet insertion holes 341 formed in the magnet support module 340 are gradually densely arranged from the circumferential surface of the magnet support module 340 toward the center area. Therefore, the magnet support module 340 into which the plurality of magnets 330 are inserted enables predictive management by measuring the amount of effective magnetic flux and induces stabilization of characteristics of the motor through control of the amount of effective magnetic flux.
  • the magnet support module 340 may be manufactured in a bipolar or multipole type.
  • the high-efficiency electric motor includes at least one magnet support module 340 in which a magnet 330 and a plurality of magnet insertion holes 341 are formed so that the magnet 330 can be inserted in a slot form.
  • ( 340) is characterized by being gradually densely arranged as it goes from the circumferential surface to the center area.
  • FIG. 12 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a fourth embodiment of the present invention
  • FIG. 13 is a front view of the magnet support module of FIG. 12 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 440 disposed outside the armature 111 (see FIG. 2) in the radial direction and having a plurality of magnet insertion holes 441 and ,
  • a magnet support module including a plurality of magnets 430 individually inserted into and coupled to the magnet insertion holes 441 of the magnet support module 440 but coupled to the magnet insertion holes 441 of the magnet support module 440 Due to the arrangement structure of the magnets 430 on the 440, the characteristics of the electric motor through effective magnetic flux control can be induced to be stabilized.
  • the magnet insertion holes 441 formed in the magnet support module 440 have the same shape. Accordingly, one type of magnet 430 having the same size and shape may be prepared and individually inserted into the magnet insertion holes 441 formed in the magnet support module 440.
  • the magnet insertion holes 441 formed in the magnet support module 440 are gradually densely arranged from the center region of the magnet support module 440 toward the circumferential surface. Therefore, the magnet support module 440 into which the plurality of magnets 430 are inserted not only enables predictive management by measuring the effective magnetic flux amount, but also induces stabilization of characteristics of the motor through effective magnetic flux control.
  • the magnet support module 440 may be manufactured in a bipolar or multipole type.
  • the high-efficiency motor includes at least one magnet support module 440 in which a magnet 430 and a plurality of magnet insertion holes 441 are formed so that the magnet 430 can be inserted in a slot form.
  • ( 440) is characterized by being gradually densely arranged as it goes from the center area to the circumferential surface.
  • FIG. 14 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency electric motor according to a fifth embodiment of the present invention
  • FIG. 15 is a front view of the magnet support module of FIG. 14 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 540 disposed radially outside the armature 111 (see FIG. 2) and having a plurality of magnet insertion holes 541 and , Magnet support module including a plurality of magnets 530 individually inserted into and coupled to the magnet insertion holes 541 of the magnet support module 540, but coupled to the magnet insertion holes 541 of the magnet support module 540 Due to the arrangement structure of the magnets 530 on the 540, the characteristics of the motor can be induced to be stabilized through effective magnetic flux control.
  • the magnet insertion holes 541 formed in the magnet support module 540 are provided with different shapes.
  • the magnet insertion holes 541 formed in the magnet support module 540 are formed to gradually decrease in size from the center region of the magnet support module 540 to the circumferential surface, and accordingly, the magnet ( 530) can be combined. Therefore, the magnet support module 540 into which the plurality of magnets 530 are inserted not only enables predictive management by measuring the effective magnetic flux amount, but also induces stabilization of characteristics of the motor through effective magnetic flux control.
  • the magnet support module 540 may be manufactured in a bipolar or multipole type.
  • the high-efficiency motor includes at least one magnet support module 540 in which a magnet 530 and a plurality of magnet insertion holes 541 are formed so that the magnet 530 can be inserted in a slot form.
  • ( 540) is characterized in that its size gradually decreases as it goes from the center area to the circumferential surface.
  • FIG. 16 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency motor according to a sixth embodiment of the present invention
  • FIG. 17 is a front view of the magnet support module of FIG. 16 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 640 disposed radially outside the armature 111 (see FIG. 2) and having a plurality of magnet insertion holes 641 and , Magnet support module including a plurality of magnets 630 individually inserted into and coupled to the magnet insertion holes 641 of the magnet support module 640, but coupled to the magnet insertion holes 641 of the magnet support module 640 Due to the arrangement structure of the magnets 630 on the 640, the characteristics of the motor through effective magnetic flux control can be induced to be stabilized.
  • the shapes of the magnet insertion holes 641 formed in the magnet support module 640 are provided differently from each other, as in the above-described fifth embodiment.
  • the magnet insertion holes 641 formed in the magnet support module 640 are formed to gradually decrease in size from the circumferential surface of the magnet support module 640 to the center area, and accordingly, the magnet ( 630) can be combined. Therefore, the magnet support module 640 into which the plurality of magnets 630 are inserted not only enables predictive management by measuring the effective magnetic flux amount, but also induces stabilization of characteristics of the electric motor through effective magnetic flux control.
  • the magnet support module 640 may be manufactured in a bipolar or multipole type.
  • the high-efficiency motor includes at least one magnet support module 640 in which a magnet 630 and a plurality of magnet insertion holes 641 are formed so that the magnet 630 can be inserted in a slot form.
  • ( 640) is characterized in that its size gradually decreases as it goes from the circumferential surface to the center area.
  • FIG. 18 is a perspective view of the arrangement of magnet support modules applied to a high-efficiency electric motor according to a seventh embodiment of the present invention
  • FIG. 19 is a front view of the magnet support module of FIG. 18 .
  • the high-efficiency electric motor also includes a plurality of magnet support modules 740 disposed radially outside the armature 111 (see FIG. 2) and having a plurality of magnet insertion holes 741 and , A magnet support module including a plurality of magnets 730 individually inserted into and coupled to the magnet insertion holes 741 of the magnet support module 740, but coupled to the magnet insertion holes 741 of the magnet support module 740 Due to the arrangement structure of the magnets 730 on the 740, the characteristics of the electric motor through effective magnetic flux control can be induced to be stabilized.
  • the shapes of the magnet insertion holes 741 formed in the magnet support module 740 are different from each other, as in the fifth and sixth embodiments described above. That is, the magnet insertion holes 741 are formed in two sizes, one large and one small.
  • the magnet insertion holes 741 formed in the magnet support module 740 form a structure in which small-sized ones are arranged between large-sized ones, and the magnet 730 can be coupled accordingly.
  • the magnet support module 740 into which a plurality of magnets 730 are inserted enables predictive management by measuring the effective magnetic flux and controls the effective magnetic flux. Through this, the characteristics of the motor can be induced to be stabilized.
  • the magnet support module 740 may be manufactured in a bipolar or multipole type.
  • the high-efficiency motor according to the present embodiment includes at least one magnet support module 740 in which a magnet 730 and a plurality of magnet insertion holes 741 are formed so that the magnet 730 can be inserted in a slot form. ), but the magnet insertion holes 741 formed in the magnet support module 740 are provided with different shapes, and the magnet insertion holes 741 formed in the magnet support module 740 are small in size. It constitutes a structural feature arranged between those of larger size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

고효율 전동기에 관한 발명이다. 본 발명의 고효율 전동기는, 전기자의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀을 구비하는 적어도 하나의 자석 지지모듈; 및 상기 자석 지지모듈의 자석 삽입홀들에 개별적으로 삽입 결합하는 복수 개의 자석을 포함하며, 상기 자석 지지모듈의 자석 삽입홀들에 결합하는 상기 자석 지지모듈 상의 자석에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도하는 것을 특징으로 한다.

Description

고효율 전동기
본 발명은, 고효율 전동기에 관한 것으로서, 더욱 구체적으로는, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는, 고효율 전동기에 관한 것이다.
유효자속량(Total flux)이란 자석의 한 극에서 나온 많은 자력선 중에서 전기자의 해당 슬롯에 감겨 있는 코일을 통과해 반대 극으로 돌아가는 자력선의 총합계를 의미한다.
자석에서 방출되는 자속량이 아무리 많아도 전기자의 해당 슬롯 내의 코일을 통과해 반대 극으로 돌아가는 유효자속량이 적으면 나머지 자속량은 손실된다.
따라서, 되도록 자석이 방출하는 모든 자속량을 유효자속량화 하는 것이 모터, 즉 전동기 내에서의 자석을 경제적이며 효율적으로 사용하는 것이다.
한편, 전동기(motor)에 있어서 유효자속량이 미달상태가 되면 무부하 시 전동기 회전수(rpm)가 상승하고 전동기의 회전력(torque)이 떨어지며 전류치(ampere)가 상승하고 전동기의 코일에서 열 발생이 심해진다.
이를 해결하기 위해 종래의 방법으로서 ①자석의 두께를 크게 하는 방법, ②자석의 재질을 현재의 재질보다 잔류자속밀도(Br)를 한 단계 높은 재질로 변경시키는 방법, ③자석의 길이와 폭을 크게 하는 방법을 사용한 바 있다.
하지만, 이들 방법은 금형 비용 등이 추가로 발생한다는 점에서 비경제적인 대안일 수밖에 없다.
이를 해결하기 위한 또 다른 방법으로 외면 착자를 시키거나 포화(Full) 착자를 시킬 수도 있지만, 내면 착자에서 일어날 수 있는 퍼미언스 계수의 일시 하락으로 인한 감자 문제와 착자 전원 및 착자기의 업그레이드(upgrade) 문제가 있어 좋은 대안이 될 수 없다는 점에서 이에 대한 기술 개발이 요구된다.
그뿐만 아니라 통상의 전동기기는 여러 면에서 관리되어야 할 부분이 상당하다. 이에 대해 도 1을 참조하여 설명한다.
도 1은 전동기의 통상적인 구조도이다.
이를 참조하면, 통상의 전동기에서 고정되는 부분을 고정자(Stator)라고 부르고 회전하는 부분을 회전자(Rotor)라고 한다. 계자(10)가 고정자이고 전기자(20)가 회전자인 것이 일반적이다.
전동기의 주요 부분으로서 도 1에 도면 참조부호로 나타낸 것처럼 계자(10), 전기자(20), 정류자(30), 브러시(40, Brush) 등이 있다.
계자(10)는 필드 마그넷(Field Magnet)이라고도 하며, 주 자속의 생성을 담당한다. 계자(10)는 전기자(20)와 상호작용하여 자기회로를 구성하는데 계자(10)가 만들어준 자속을 전기자(20)가 받아 회전력을 얻는다.
이러한 계자(10)는 필요한 자속만 생성해주기만 하면 되기에 전기자(20)보다는 전류가 비교적 적게 흐르며 자속을 만들기 위해 자석을 이용하거나 전자석을 이용한다. 도 1은 자석을 이용한 예이다.
이때, 도 1처럼 자석으로 계자(10)를 적용하면 별도의 권선없이 자속을 만들어 낼 수 있는 이점이 있다. 하지만, 자속을 제어하지 못하여 속도 조절이 어렵다는 문제점도 내포한다.
전기자(20)는 아마츄어(Armature)라고도 하며 계자(10)가 만들어낸 자속을 끊어내어 플레밍의 왼손 법칙을 통해 토크를 생성한다.
전동기에 전원을 공급해주면 전동기가 회전하는데 이때 전원의 전류가 흐르는 곳이 바로 이 전기자(20)인 것이다.
전기자(20)는 공급하는 전류가 직접 흐르는 곳이기 때문에 대용량일수록 선이 굵고 복잡하게 설계된다.
정류자(30)는 코뮤테이터(Commutator)라고도 하며, 외부로부터 들어오는 직류전류를 교류전류로 바꾸어 회전부에 전원을 공급한다.
직류전류를 교류전류로 바꾸어주는 이유는 전동기는 전류의 방향이 수시로 바뀌면서 플레밍의 왼손 법칙에 의한 힘도 수시로 바뀌어야 회전하기 때문이다.
이렇게 바뀐 교류전류를 전기자(20)에 공급한다. 정류자(30)는 전기자(20)와 연결되어 있으므로 전기자(20)가 회전하면 같이 회전한다.
회전하는 정류자(30)는 정지된 상태의 브러시(40)와 접촉한다. 브러시(40)는 정류자(30)와 접촉하여 전동기 내부회로와 외부회로를 연결하는 부분이다.
브러시(40)의 종류에는 탄소 브러시, 흑연 브러시, 전기 흑연 브러시, 금속 흑연 브러시 등이 있다.
한편, 도 1과 같은 전동기에 형성되는 자속량은 유효자속량과 누설자속량을 합한 양을 의미한다. 유효자속량에 의해 계자(10)의 역할을 수행할 수 있다.
앞서 기술한 것처럼 유효자속량은 자석의 한 극에서 나온 많은 자력선 중에서 전기자(20)의 해당 슬롯에 감겨 있는 코일을 통과해 반대 극으로 돌아가는 자력선의 총합계를 의미한다.
계자(10)인 자석에서 방출되는 자속량이 아무리 많아도 전기자(20)의 해당 슬롯 내의 코일을 통과해 반대 극으로 돌아가는 유효자속량이 적으면 나머지 자속량은 손실되는데, 되도록 자석이 방출하는 모든 자속량을 유효자속량화 하는 것이 전동기 내에서의 자석을 경제적이며 효율적으로 사용하는 것일 수 있다.
다시 말해, 전동기의 설계효율을 극대화하기 위해서는 기본적으로 전동기 설계 시 유효자속량에 대한 치밀한 계산과 더불어 누설방지를 고려하여 설계가 이루어져야 한다.
특히, 전동기에서 회전력(Torque)이나 회전수(RPM) 또는 전류(Ampere)의 관리가 매우 중요하다. 이러한 각 특성의 관리를 위해서는 자석의 특성 중 잔류자속밀도(Br), 보자력(iHc, bHc), 최대에너지적(BHmax) 등을 자세히 검토하고 관리하여야 하는데, 현존 기술로는 이에 부합하기 어렵다는 점에서 신개념의 전동기에 대한 필요성이 대두된다.
본 발명의 목적은, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는, 고효율 전동기를 제공하는 것이다.
본 발명의 다른 목적은, 퍼미언스 계수를 극대화할 수 있는, 고효율 전동기를 제공하는 것이다.
상기 목적은, 전기자의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀을 구비하는 적어도 하나의 자석 지지모듈; 및 상기 자석 지지모듈의 자석 삽입홀들에 개별적으로 삽입 결합하는 복수 개의 자석을 포함하며, 상기 자석 지지모듈의 자석 삽입홀들에 결합하는 상기 자석 지지모듈 상의 자석에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도하는 것을 특징으로 하는 고효율 전동기에 의해 달성된다.
상기 자석은 원반 형상을 이루며, 상기 자석이 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석, Sm2Fe17Nx계 자석 등에서 선택될 수 있다.
상기 자석 삽입홀은 상기 자석을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성되며, 상기 자석 지지모듈이 2극형 이상의 다극형으로 제작될 수 있다.
상기 자석 지지모듈에 형성되는 자석 삽입홀들의 형상이 동일하게 마련될 수 있다.
상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 중심부(center) 영역에서 양측 사이드(side) 영역으로 갈수록 조밀하게 배열될 수 있다.
상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 양측 사이드(side) 영역에서 중심부(center) 영역으로 갈수록 조밀하게 배열될 수 있다.
상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 조밀하게 배열될 수 있다.
상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 중심부(center) 영역에서 둘레면으로 갈수록 점진적으로 조밀하게 배열될 수 있다.
본 발명에 따르면, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는 효과가 있다.
또한, 본 발명에 따르면, 퍼미언스 계수를 극대화할 수 있는 효과가 있다.
도 1은 전동기의 통상적인 구조도이다.
도 2는 본 발명의 제1 실시예에 따른 고효율 전동기의 구조도이다.
도 3은 도 2의 요부 확대도이다.
도 4는 자석 지지모듈의 정면도이다.
도 5는 자석의 내면을 부위별로 나누어 가우스 메타(gauss meter)로써 표면자속량을 측정한 데이터이다.
도 6은 2개의 자석을 시료로 하여 각각 N극과 S극의 9개 지점(a,b,c,d,e,f,g,h,i)의 표면자속량을 측정한 것이다.
도 7은 퍼미언스 계수를 산출하기 위한 B-H 곡선과 측정 부위이다.
도 8은 본 발명의 제2 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 9는 도 8의 자석 지지모듈의 정면도이다.
도 10은 본 발명의 제3 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 11은 도 10의 자석 지지모듈의 정면도이다.
도 12는 본 발명의 제4 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 13은 도 12의 자석 지지모듈의 정면도이다.
도 14는 본 발명의 제5 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 15는 도 14의 자석 지지모듈의 정면도이다.
도 16은 본 발명의 제6 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 17은 도 16의 자석 지지모듈의 정면도이다.
도 18은 본 발명의 제7 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이다.
도 19는 도 18의 자석 지지모듈의 정면도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 쉽게 실시할 수 있도록 상세히 설명한다.
그러나 본 발명에 관한 설명은 구조적이나 기능적 설명을 위한 실시예에 불과하므로 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다.
예컨대, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있어서 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.
또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 명세서에서, 본 실시예는 본 발명의 개시가 완전하여지도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 그리고 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
따라서 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하려고 구체적으로 설명되지 않는다.
한편, 본 발명에서 서술되는 용어의 의미는 사전적 의미에 제한되지 않으며, 다음과 같이 이해되어야 할 것이다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접 연결될 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성 요소 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
여기서 사용되는 모든 용어는 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 같은 의미가 있다.
일반적으로 사용되는 사전에 정의된 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
이하, 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 실시예의 설명 중 같은 구성에 대해서는 같은 참조부호를 부여하도록 하며, 때에 따라 같은 참조부호에 대한 설명은 생략하도록 한다.
(제1 실시예)
도 2는 본 발명의 제1 실시예에 따른 고효율 전동기의 구조도, 도 3은 도 2의 요부 확대도, 도 4는 자석 지지모듈의 정면도, 도 5는 자석의 내면을 부위별로 나누어 가우스 메타(gauss meter)로써 표면자속량을 측정한 데이터, 도 6은 2개의 자석을 시료로 하여 각각 N극과 S극의 9개 지점(a,b,c,d,e,f,g,h,i)의 표면자속량을 측정한 것, 도 7은 퍼미언스 계수를 산출하기 위한 B-H 곡선과 측정 부위이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기에 의하면 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
이러한 효과를 제공할 수 있는 본 실시예에 따른 고효율 전동기는 전기자(111)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(141)을 구비하는 자석 지지모듈(140)과, 자석 지지모듈(140)의 자석 삽입홀(141)들에 삽입되게 결합하는 자석(130), 즉 영구자석(130)을 포함한다.
본 실시예에서 자석(130)은 원반 형상을 이룬다. 그리고, 이러한 자석(130)들이 결합하는 자석 지지모듈(140)이 환형, 즉 아크형상을 이룬다. 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)은 자석(130)을 지지하되 자석(130)을 슬롯 형태로 삽입할 수 있는 구조를 취한다. 자석 지지모듈(140)은 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행한다.
도 2에서 전기자(111), 정류자(113) 및 브러시(115)의 구성, 설명은 부호는 다르지만 도 1의 설명으로 대체한다.
앞서 기술한 것처럼 본 실시예에 따른 고효율 전동기에 적용되는 자석(130)은 원반 형상으로 제작될 수 있으며, 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들에 삽입되는 형태로 자석 지지모듈(140)에 결합할 수 있다.
물론, 이러한 자석(130)을 제작함에 있어서 그 테두리 부분의 퍼미언스 계수는 높고 중앙부위는 상대적으로 퍼미언스 계수가 낮은 구조로 제작할 수도 있을 것인데, 이럴 경우, 유효자속량을 확보할 수 있다.
본 실시예에 적용되는 영구자석인 자석(130)은 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석, Sm2Fe17Nx계 자석 등에서 선택될 수 있는데, 특히 잔류자속 밀도가 높은 Nd-Fe-B계 자석 등을 사용하여 자석(130)을 제작할 수 있다. 여기서, 퍼미언스 계수는 자속량과 유사한 의미로서, 자석의 중앙보다 주변 측의 자속량이 높다는 것을 의미한다.
이러한 퍼미언스 계수를 높이기 위한 종래의 방법으로는 전동기 내의 에어 갭(air gap)을 최대한 줄이거나, 전동기의 전기자 및 하우징의 재질을 되도록 자기저항이 적은 재질을 사용하거나, 하우징(yoke)의 두께를 증가시켜 누설자속을 없애거나, 자석 길이의 80%까지 전기자의 적층 길이를 늘이는 방법이다.
자석 지지모듈(140)은 자석(130)을 지지한다. 이러한 자석 지지모듈(140)은 통상의 고정자 혹은 회전자와 같은 원통 형상으로 형성될 수 있다.
자석 지지모듈(140)은 자석(130)의 누설자속을 막기 위해 자석 지지모듈(140) 밖으로 누설자속이 발생하지 않도록 자기저항이 적은 순철(純鐵)에 가까운 재질 또는 비자성 재질로 제작되거나 자체 두께를 조절하는 방식으로 제작될 수 있다.
자석 지지모듈(140)에 복수 개의 자석 삽입홀(141)이 형성된다. 이러한 자석 삽입홀(141)에 자석(130)이 삽입되면서 자석 지지모듈(140)에 결합한다.
자세히 도시하지는 않았지만, 자석 삽입홀(141)은 복수의 자석(130)을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성될 수도 있다. 예컨대, 자석(130)이 삽입되는 방향으로 빠지지 않는 구조, 예컨대 테이퍼 구조라든지 혹은 후크 구조 등으로 자석 삽입홀(141)이 형성될 수도 있는데, 이러한 사항 모두가 본 발명의 권리범위에 속한다고 하여야 할 것이다.
한편, 본 실시예의 경우, 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들의 형상이 동일하게 마련된다. 이에, 동일한 사이즈와 형상을 갖는 한 종류의 자석(130)을 준비해서 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들에 개별적으로 끼워 결합하면 된다.
특히, 본 실시예의 경우, 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들이 자석 지지모듈(140)의 중심부(center) 영역에서 양측 사이드(side) 영역으로 갈수록 조밀하게 배열된다. 따라서, 복수의 자석(130)이 삽입된 자석 지지모듈(140)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(140)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(130), 자석(130)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(141)이 형성되는 적어도 하나의 자석 지지모듈(140)을 포함할 수 있는데, 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들의 형상이 동일하게 마련되고, 자석 지지모듈(140)에 형성되는 자석 삽입홀(141)들이 자석 지지모듈(140)의 중심부(center) 영역에서 양측 사이드(side) 영역으로 갈수록 조밀하게 배열되는 특징을 이룬다.
유효자속량 측정에 의한 예측 관리는 자석 사용자나 자석 공급자에게 모두 매우 편리한 방법이다. 전동기의 특성이 안정되면 자석의 효율적인 로트(lot) 관리가 가능해지기 때문이다.
참고로, 자석의 특성은 로트(lot)에 따라 편차가 발생할 수 있으며, 잔류자속밀도(Br)의 경우 ±3∼4% 정도의 특성 변화가 있을 수 있는데 수축률의 변화까지 생각하면 유효자속량을 타이트하게 관리할 때 유효자속량의 편차는 매우 크므로 결과적으로 전동기의 특성을 불안정하게 하는 요인으로 작용한다.
이러한 상황에서 전동기의 제반 특성을 안정적으로 관리하려면 항상 일정한 유효자속량이 나올 수 있도록 관리하여야 하는데 자속량과 전기자(111)와의 간섭을 일으키지 않는 범위 내에서 될 수 있으면 여유 있게 규정해야만 유효자속량의 예측 관리가 가능하게 된다.
따라서, 복수의 자석(130)이 삽입된 자석 지지모듈(140)은 전동기 설계시부터 수리 또는 유지 시 플러스 메타(flux meter)를 통해 유용하게 활용될 수 있다.
일례로 만일 자속량 공차를 ±0.10과 같이 타이트하게 관리하면 유효자속량에 의한 전동기 성능 관리는 포기하는 것이나 다름없다. 이렇게 타이트한 공차 범위 안에서 자석 공급업체가 두께(에어 갭(air gap)에 의한 퍼미언스 계수)를 변화시켜 유효자속량을 맞추기란 쉽지 않기 때문이다.
이러한 작용에 대해 부연 설명한다. 도 5 및 도 6을 참조하면, 자석의 중앙보다 주변 측의 자속량이 더 높게 나오는 것을 볼 수 있다.
이러한 현상은 측정 부위에서 반대 극까지의 최단거리가 짧을수록 높게 나타나는 것이다. 이것은 퍼미언스 계수의 차이에서 오는 현상으로 퍼미언스 계수가 큰 부위에서는 더 많은 자속량이 나오게 되며, 퍼미언스 계수는 측정 부위에서 반대 극까지의 최단거리가 짧을수록 크다는 것을 알 수 있다.
퍼미언스 계수는 자석의 재질, 형상, 크기, 자장 방향에 따라서 결정되는 값으로 같은 자석이라도 자석 표면의 위치에 따라 표면가우스는 일정하지 않은데 이것은 반대 극과의 최단거리의 차 때문에 발생한다.
퍼미언스 계수가 큰 부위에서는 더 많은 자속량이 나오게 되며, 퍼미언스 계수는 측정 부위에서 반대극까지의 최단거리가 짧을수록 크다.
본 발명에 따른 복수의 자석(130)은 퍼미언스 계수를 극대화할 수 있는 기능을 수행할 수 있다.
한편, 퍼미언스 계수는 자속밀도 B를 보자력 Hc로 나눈 값을 말한다. 퍼미언스 계수는 매우 중요한 팩터(Factor)로, 자석의 재질, 형상, 크기, 자장 방향에 따라서 결정되는 값이다.
이 수치는 동작점을 산출해서 동작점 자속밀도(Bd)를 구하고, 자속량(Φ : Maxwell)을 산출한다.
동작점(퍼미언스 계수)은 Pc = √π . √S/2 x Lm/Am로 그 값을 구하며, 동작점 표면자속밀도는 Bd = Br x Pc/ ( Pc + μr ) (Gauss)로 그 값을 구한다. 총자속량은 Φo = Bd x Am(Maxwell)로 그 값을 구한다.
여기서, S는 전 표면적을, Am은 자화방향에 직교한 자석단면적을, Lm은 자화 방향의 길이를, μr 은 가역 투자율을 말한다. 즉, 퍼미언스 계수가 높을수록 총 자속량은 증가한다.
도 7을 참조하면, (가)의 a처럼 착자된 자석에서 가우스 메타(gauss meter)를 이용하여 측정한 결과, 점 A에서는 1,200gauss, 점 B에서는 1300gauss였다고 가정하면, 실제로 점 B에서 나온 자력선이 점 A에서 나온 자력선보다 반대편 S극으로 돌아가는 에어 갭(air gap)의 최단거리가 L1만큼 짧기 때문에 당연히 가우스 측정치는 반대 극이 가까운 점 B가 점 A보다 크게 나온다.
이때, 점 A의 퍼미언스 계수(자속밀도 B / 보자력 Hc)는 (나)에서 B-H곡선이 1,200gauss와 만나는 점 A의 B/Hc가 된다.
원점과 A점을 연결한 직선이 자석 점 A에서의 퍼미언스선이 되며, A점에서 수직으로 내려 만난 Hc값이 2750oe였다면, 이때의 퍼미언스 계수는 B/Hc이므로 1,200 gauss / 2,750 oe=0.436이 된다. 동일한 방법으로 자석 점 B에서의 퍼미언스 계수도 계산해보면 1,300gauss / 2,600oe=0.50이 된다.
도 5의 b와 같이 서로 면이 평행하게 마주 보도록 아주 가깝게 하면 점 A나 점 B에서 반대 극까지의 거리(air gap)가 동일하게 된다(L3).
그뿐만 아니라 아주 짧기 때문에 점 A나 점 B의 표면가우스는 동일하면서도 크게 나타나게 된다.
두 점에서의 측정치가 모두 2,500G로 되었다고 하면 이때의 점 A 및 점 B의 퍼미언스(B/Hc) PA와 PB는 같게 나타나며, 그 값은 2,500 G / 1,450 oe로 1.72가 된다.
같은 자석이라도 자석 표면의 위치에 따라 표면가우스는 일정하지 않은데 이것은 반대 극과의 최단거리의 차 때문에 발생한다. 바꾸어 말하면 퍼미언스 계수를 끌어올리기 위해서는 단순히 반대 극과의 극간거리(air gap)를 줄이는 것으로도 가능하게 되는 것이다.
본 발명에 적용되는 자석(130)은 앞서 기술한 것처럼 퍼미언스 계수를 높이기 위한 구조로써, 복수의 자석(130)을 적층 등의 방법을 사용하지 않고 클러스팅 하여 전동기의 부피 또는 구조 등에 영향을 미치지 않고서도 퍼미언스 계수를 높일 수 있다.
이상 설명한 바와 같은 구조를 기반으로 작용을 하는 본 실시예에 따르면, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다. 그뿐만 아니라 본 실시예에 따르면, 퍼미언스 계수를 극대화할 수 있다.
(제2 실시예)
도 8은 본 발명의 제2 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 9는 도 8의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(241)을 구비하는 복수 개의 자석 지지모듈(240)과, 자석 지지모듈(240)의 자석 삽입홀(241)들에 개별적으로 삽입 결합하는 복수 개의 자석(230)을 포함하되 자석 지지모듈(240)의 자석 삽입홀(241)들에 결합하는 자석 지지모듈(240) 상의 자석(230)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우에도 자석 지지모듈(240)에 형성되는 자석 삽입홀(241)들의 형상이 동일하게 마련된다. 이에, 동일한 사이즈와 형상을 갖는 한 종류의 자석(230)을 준비해서 자석 지지모듈(240)에 형성되는 자석 삽입홀(241)들에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(240)에 형성되는 자석 삽입홀(241)들이 자석 지지모듈(240)의 양측 사이드(side) 영역에서 중심부(center) 영역으로 갈수록 조밀하게 배열된다. 따라서, 복수의 자석(230)이 삽입된 자석 지지모듈(240)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(240)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(230), 자석(230)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(241)이 형성되는 적어도 하나의 자석 지지모듈(240)을 포함할 수 있는데, 자석 지지모듈(240)에 형성되는 자석 삽입홀(241)들의 형상이 동일하게 마련되고, 자석 지지모듈(240)에 형성되는 자석 삽입홀(241)들이 자석 지지모듈(240)의 양측 사이드(side) 영역에서 중심부(center) 영역으로 갈수록 조밀하게 배열되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(제3 실시예)
도 10은 본 발명의 제3 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 11은 도 10의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(341)을 구비하는 복수 개의 자석 지지모듈(340)과, 자석 지지모듈(340)의 자석 삽입홀(341)들에 개별적으로 삽입 결합하는 복수 개의 자석(330)을 포함하되 자석 지지모듈(340)의 자석 삽입홀(341)들에 결합하는 자석 지지모듈(340) 상의 자석(330)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우에도 자석 지지모듈(340)에 형성되는 자석 삽입홀(341)들의 형상이 동일하게 마련된다. 이에, 동일한 사이즈와 형상을 갖는 한 종류의 자석(330)을 준비해서 자석 지지모듈(340)에 형성되는 자석 삽입홀(341)들에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(340)에 형성되는 자석 삽입홀(341)들이 자석 지지모듈(340)의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 조밀하게 배열된다. 따라서, 복수의 자석(330)이 삽입된 자석 지지모듈(340)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(340)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(330), 자석(330)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(341)이 형성되는 적어도 하나의 자석 지지모듈(340)을 포함할 수 있는데, 자석 지지모듈(340)에 형성되는 자석 삽입홀(341)들의 형상이 동일하게 마련되고, 자석 지지모듈(340)에 형성되는 자석 삽입홀(341)들이 자석 지지모듈(340)의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 조밀하게 배열되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(제4 실시예)
도 12는 본 발명의 제4 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 13은 도 12의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(441)을 구비하는 복수 개의 자석 지지모듈(440)과, 자석 지지모듈(440)의 자석 삽입홀(441)들에 개별적으로 삽입 결합하는 복수 개의 자석(430)을 포함하되 자석 지지모듈(440)의 자석 삽입홀(441)들에 결합하는 자석 지지모듈(440) 상의 자석(430)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우에도 자석 지지모듈(440)에 형성되는 자석 삽입홀(441)들의 형상이 동일하게 마련된다. 이에, 동일한 사이즈와 형상을 갖는 한 종류의 자석(430)을 준비해서 자석 지지모듈(440)에 형성되는 자석 삽입홀(441)들에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(440)에 형성되는 자석 삽입홀(441)들이 자석 지지모듈(440)의 중심부(center) 영역에서 둘레면으로 갈수록 점진적으로 조밀하게 배열된다. 따라서, 복수의 자석(430)이 삽입된 자석 지지모듈(440)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(440)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(430), 자석(430)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(441)이 형성되는 적어도 하나의 자석 지지모듈(440)을 포함할 수 있는데, 자석 지지모듈(440)에 형성되는 자석 삽입홀(441)들의 형상이 동일하게 마련되고, 자석 지지모듈(440)에 형성되는 자석 삽입홀(441)들이 자석 지지모듈(440)의 중심부(center) 영역에서 둘레면으로 갈수록 점진적으로 조밀하게 배열되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(제5 실시예)
도 14는 본 발명의 제5 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 15는 도 14의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(541)을 구비하는 복수 개의 자석 지지모듈(540)과, 자석 지지모듈(540)의 자석 삽입홀(541)들에 개별적으로 삽입 결합하는 복수 개의 자석(530)을 포함하되 자석 지지모듈(540)의 자석 삽입홀(541)들에 결합하는 자석 지지모듈(540) 상의 자석(530)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우, 전술한 실시예들과 달리 자석 지지모듈(540)에 형성되는 자석 삽입홀(541)들의 형상이 서로 다르게 마련된다.
따라서, 자석 삽입홀(541)들의 형상 또는 사이즈에 부합하는 서로 다른 여러 종류의 자석(530)을 준비해서 자석 지지모듈(540)에 형성되는 자석 삽입홀(541)들의 해당 위치에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(540)에 형성되는 자석 삽입홀(541)들이 자석 지지모듈(540)의 중심부(center) 영역에서 둘레면으로 갈수록 점진적으로 그 크기가 작아지게 형성되며, 이에 부합하게 자석(530)이 결합할 수 있다. 따라서, 복수의 자석(530)이 삽입된 자석 지지모듈(540)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(540)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(530), 자석(530)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(541)이 형성되는 적어도 하나의 자석 지지모듈(540)을 포함할 수 있는데, 자석 지지모듈(540)에 형성되는 자석 삽입홀(541)들의 형상이 서로 다르게 마련되고, 자석 지지모듈(540)에 형성되는 자석 삽입홀(541)들이 자석 지지모듈(540)의 중심부(center) 영역에서 둘레면으로 갈수록 점진적으로 그 크기가 작아지게 형성되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(제6 실시예)
도 16은 본 발명의 제6 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 17은 도 16의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(641)을 구비하는 복수 개의 자석 지지모듈(640)과, 자석 지지모듈(640)의 자석 삽입홀(641)들에 개별적으로 삽입 결합하는 복수 개의 자석(630)을 포함하되 자석 지지모듈(640)의 자석 삽입홀(641)들에 결합하는 자석 지지모듈(640) 상의 자석(630)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우, 전술한 제5 실시예처럼 자석 지지모듈(640)에 형성되는 자석 삽입홀(641)들의 형상이 서로 다르게 마련된다.
따라서, 자석 삽입홀(641)들의 형상 또는 사이즈에 부합하는 서로 다른 여러 종류의 자석(630)을 준비해서 자석 지지모듈(640)에 형성되는 자석 삽입홀(641)들의 해당 위치에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(640)에 형성되는 자석 삽입홀(641)들이 자석 지지모듈(640)의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 그 크기가 작아지게 형성되며, 이에 부합하게 자석(630)이 결합할 수 있다. 따라서, 복수의 자석(630)이 삽입된 자석 지지모듈(640)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(640)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(630), 자석(630)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(641)이 형성되는 적어도 하나의 자석 지지모듈(640)을 포함할 수 있는데, 자석 지지모듈(640)에 형성되는 자석 삽입홀(641)들의 형상이 서로 다르게 마련되고, 자석 지지모듈(640)에 형성되는 자석 삽입홀(641)들이 자석 지지모듈(640)의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 그 크기가 작아지게 형성되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(제7 실시예)
도 18은 본 발명의 제7 실시예에 따른 고효율 전동기에 적용되는 자석 지지모듈들의 배치 사시도이고, 도 19는 도 18의 자석 지지모듈의 정면도이다.
이들 도면을 참조하면, 본 실시예에 따른 고효율 전동기 역시, 전기자(111, 도 2 참조)의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀(741)을 구비하는 복수 개의 자석 지지모듈(740)과, 자석 지지모듈(740)의 자석 삽입홀(741)들에 개별적으로 삽입 결합하는 복수 개의 자석(730)을 포함하되 자석 지지모듈(740)의 자석 삽입홀(741)들에 결합하는 자석 지지모듈(740) 상의 자석(730)에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다.
한편, 본 실시예의 경우, 전술한 제5 및 제6 실시예처럼 자석 지지모듈(740)에 형성되는 자석 삽입홀(741)들의 형상이 서로 다르게 마련된다. 즉 큰 사이즈와 작은 사이즈의 2가지로 자석 삽입홀(741)들이 형성된다.
따라서, 자석 삽입홀(741)들의 형상 또는 사이즈에 부합하는 서로 다른 여러 종류의 자석(730)을 준비해서 자석 지지모듈(740)에 형성되는 자석 삽입홀(741)들의 해당 위치에 개별적으로 끼워 결합하면 된다.
이때, 자석 지지모듈(740)에 형성되는 자석 삽입홀(741)들 작은 사이즈의 것들이 큰 사이즈의 것들 사이사이에 배열되는 구조를 이루며, 이에 부합하게 자석(730)이 결합할 수 있다.
이럴 경우, 단위 면적당 자석(730)의 개수를 늘릴 수 있으며, 이에 따라 복수의 자석(730)이 삽입된 자석 지지모듈(740)은 유효자속량 측정에 의한 예측 관리가 가능해질뿐더러 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도할 수 있다. 본 실시예에서 자석 지지모듈(740)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예에 따른 고효율 전동기는 자석(730), 자석(730)을 슬롯 형태로 삽입할 수 있도록 제작된 복수의 자석 삽입홀(741)이 형성되는 적어도 하나의 자석 지지모듈(740)을 포함할 수 있는데, 자석 지지모듈(740)에 형성되는 자석 삽입홀(741)들의 형상이 서로 다르게 마련되고, 자석 지지모듈(740)에 형성되는 자석 삽입홀(741)들은 작은 사이즈의 것들이 큰 사이즈의 것들 사이사이에 배열되는 구조되는 특징을 이룬다.
본 실시예가 적용되더라도 유효자속량 제어를 통해 전동기의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
이처럼 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 청구범위에 속한다고 하여야 할 것이다.

Claims (7)

  1. 전기자의 반경 방향 외측에 배치되되 복수 개의 자석 삽입홀을 구비하는 적어도 하나의 자석 지지모듈; 및
    상기 자석 지지모듈의 자석 삽입홀들에 개별적으로 삽입 결합하는 복수 개의 자석을 포함하며,
    상기 자석 지지모듈의 자석 삽입홀들에 결합하는 상기 자석 지지모듈 상의 자석에 대한 배열 구조로 인해 유효자속량 제어를 통한 전동기의 특성이 안정화되게 유도하는 것을 특징으로 하는 고효율 전동기.
  2. 제1항에 있어서,
    상기 자석은 원반 형상을 이루며,
    상기 자석이 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석, Sm2Fe17Nx계 자석 등에서 선택되는 것을 특징으로 하는, 고효율 전동기.
  3. 제1항에 있어서,
    상기 자석 삽입홀은 상기 자석을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성되며,
    상기 자석 지지모듈이 2극형 이상의 다극형으로 제작되는 것을 특징으로 하는 고효율 전동기.
  4. 제1항에 있어서,
    상기 자석 지지모듈에 형성되는 자석 삽입홀들의 형상이 동일하게 마련되는 것을 특징으로 하는 고효율 전동기.
  5. 제1항에 있어서,
    상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 중심부(center) 영역에서 양측 사이드(side) 영역으로 갈수록 조밀하게 배열되는 것을 특징으로 하는 고효율 전동기.
  6. 제1항에 있어서,
    상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 양측 사이드(side) 영역에서 중심부(center) 영역으로 갈수록 조밀하게 배열되는 것을 특징으로 하는 고효율 전동기.
  7. 제1항에 있어서,
    상기 자석 지지모듈에 형성되는 자석 삽입홀들이 상기 자석 지지모듈의 둘레면에서 중심부(center) 영역으로 갈수록 점진적으로 조밀하게 배열되는 것을 특징으로 하는 고효율 전동기.
PCT/KR2022/008173 2021-06-10 2022-06-09 고효율 전동기 WO2022260460A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0075345 2021-06-10
KR20210075345 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022260460A1 true WO2022260460A1 (ko) 2022-12-15

Family

ID=84426232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008173 WO2022260460A1 (ko) 2021-06-10 2022-06-09 고효율 전동기

Country Status (1)

Country Link
WO (1) WO2022260460A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278364A (ja) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd 直流電動機
JP2017208935A (ja) * 2016-05-18 2017-11-24 北田回転機関合同会社 電気回転機及びバルク着磁方法
KR102099891B1 (ko) * 2018-11-30 2020-04-13 김희근 마그넷 발전기
KR102099897B1 (ko) * 2018-11-30 2020-05-15 김희근 마그넷 발전기
KR102112643B1 (ko) * 2019-12-27 2020-05-19 이우종 영구자석이 결착된 고정자를 포함하는 모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278364A (ja) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd 直流電動機
JP2017208935A (ja) * 2016-05-18 2017-11-24 北田回転機関合同会社 電気回転機及びバルク着磁方法
KR102099891B1 (ko) * 2018-11-30 2020-04-13 김희근 마그넷 발전기
KR102099897B1 (ko) * 2018-11-30 2020-05-15 김희근 마그넷 발전기
KR102112643B1 (ko) * 2019-12-27 2020-05-19 이우종 영구자석이 결착된 고정자를 포함하는 모터

Similar Documents

Publication Publication Date Title
WO2017078431A1 (en) Motor
US20070001533A1 (en) System and method for protecting magnetic elements from demagnetization
WO2018169203A1 (ko) 가변자속 모터
WO2018147610A1 (ko) 스테이터 및 이를 포함하는 모터
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2022260460A1 (ko) 고효율 전동기
WO2016002994A1 (ko) 모터
WO2017204425A1 (ko) 비균일 자극 길이를 가지는 영구자석 전기기기
WO2017131296A1 (ko) 회전전기기계
WO2018139791A1 (ko) 모터
Lyu et al. Influence of design parameters on on-load demagnetization characteristics of switched flux hybrid magnet memory machine
WO2022250218A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
JP2002238194A (ja) 永久磁石電動機の回転子構造
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
WO2022260461A1 (ko) 고효율 전동기
WO2022250217A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250215A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250214A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250216A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2020004726A1 (ko) Isg 시스템용 계자권선형 모터발전기의 효율 향상을 위한 보조 영구자석을 구비하는 회전자 구조
WO2020149626A1 (ko) 로터 및 이를 포함하는 모터
WO2021187820A1 (ko) 고정자 비대칭 슈를 이용한 전동기 및 그 제작 방법
WO2020145538A1 (ko) 모터
WO2020209650A1 (ko) Pm-assist 구조를 이용한 계자권선형 모터 제너레이터 및 그 제작 방법
WO2024080774A1 (ko) 영구 자석이 포함된 스위치드 릴럭턴스 전동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE