WO2024080774A1 - 영구 자석이 포함된 스위치드 릴럭턴스 전동기 - Google Patents
영구 자석이 포함된 스위치드 릴럭턴스 전동기 Download PDFInfo
- Publication number
- WO2024080774A1 WO2024080774A1 PCT/KR2023/015704 KR2023015704W WO2024080774A1 WO 2024080774 A1 WO2024080774 A1 WO 2024080774A1 KR 2023015704 W KR2023015704 W KR 2023015704W WO 2024080774 A1 WO2024080774 A1 WO 2024080774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- permanent magnet
- switched reluctance
- rotor
- reluctance motor
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 158
- 230000004907 flux Effects 0.000 claims abstract description 24
- 230000005284 excitation Effects 0.000 claims description 88
- 230000004888 barrier function Effects 0.000 claims description 4
- 238000004804 winding Methods 0.000 abstract description 23
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/17—Stator cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
- H02K19/10—Synchronous motors for multi-phase current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/04—Windings on magnets for additional excitation ; Windings and magnets for additional excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
Definitions
- the present disclosure relates to a switched reluctance electric motor containing a permanent magnet. More specifically, the present disclosure relates to a switched reluctance electric motor including a permanent magnet, and more specifically, by utilizing a magnetic path guide to adjust the magnetic path formed by the permanent magnet, thereby preventing cogging torque from occurring and reducing the torque of the electric motor. and a switched reluctance motor using permanent magnets with increased efficiency.
- a switched reluctance motor (SRM: Switched Reluctance Motor) is a type of electric motor that operates on the principle of reluctance torque.
- SRM consists of a rotor with salient poles and a stator with centralized windings, and is characterized by no brushes or commutators involved in the operation of the motor.
- SRM operates based on the principle that the magnetic circuit is always formed in a direction that minimizes reluctance.
- SRM when a current is applied to the stator coil, magnetic flux is set in the salient poles of the stator, and the salient poles of the rotor are connected to the salient poles of the stator. Alignment generates torque that rotates the rotor.
- Switched reluctance motors have the advantage of being able to withstand high rotational speeds and have low rotor loss due to their simple structure, but there are limits to increasing power density and noise and vibration caused by torque ripple can cause problems. Because of this, there are difficulties in using it.
- Cogging torque refers to the torque generated by an electric motor when the salient poles of the stator are not aligned with the salient poles of the rotor when the rotor is stopped. This torque is generated due to the interaction of the salient poles of the rotor and stator and can cause vibration and noise in the electric motor.
- Korean Patent No. 1604637 discloses a vacuum motor equipped with a time difference generator using bipolar balance motion.
- the present disclosure aims to provide a switched reluctance electric motor that prevents cogging torque from occurring.
- the present disclosure aims to provide a switched reluctance electric motor that includes a plurality of permanent magnet modules coupled to a stator and prevents cogging torque from occurring by adjusting the magnetic path formed by the permanent magnets. .
- the switched reluctance electric motor includes a stator including a plurality of excitation modules and a rotor that rotates about a rotation axis by magnetically interacting with the stator, and the excitation module provides cogging torque of the motor. It may include one or more permanent magnet modules that suppress torque.
- the rotor may rotate around the rotation axis within the stator.
- the permanent magnet (Stator-PM) module is located at the center of a coil wound on the excitation module, and includes one or more permanent magnets and one or more magnetic path guides coupled to the permanent magnets. (Magnetic flux path guide) may be included.
- the permanent magnet modules may be arranged at regular intervals along the circumferential direction of the stator.
- the excitation module includes a plurality of first salient poles arranged along the circumferential direction of the stator; It may include one or more first slots located between the first salient poles and a coil wound around the plurality of first salient poles.
- the spacing between the excitation modules may be equal to the width of the first salient pole, and the width of the first slot may be twice or less than the width of the first salient pole.
- the rotor includes a plurality of second salient poles, and the width of the second salient pole may be greater than or equal to the width of the first salient pole.
- the current applied to the coil may be a current applied in a direction in which the direction of the magnetic field induced by the current strengthens the magnetic field around the coil generated by the permanent magnet module.
- the stator may further include a magnetic flux barrier between the plurality of excitation modules.
- the rotor may rotate around the rotation axis outside the stator.
- the stator includes a plurality of stator modules having different phases, and the plurality of stator modules may be located on the same rotation axis.
- the electric motor structure includes a stator including a plurality of excitation modules; It includes a rotor that rotates about a rotation axis by magnetically interacting with the stator, and the excitation module may include one or more permanent magnet modules that suppress cogging torque of the electric motor.
- a stator permanent magnet includes a plurality of permanent magnet modules coupled to a stator, and the magnetic flux of the permanent magnet is formed only inside the stator by a magnetic flux path guide. It is possible to provide a switched reluctance motor that does not generate cogging torque and has high torque and power density.
- the switched reluctance electric motor of the present disclosure arranges a coil winding and a permanent magnet (Stator-PM) on the stator, arranges the coil winding as an alternate tooth winding, and adds a magnetic path guide for the permanent magnet, so that the electric motor has no generating voltage.
- Stator-PM permanent magnet
- the switched reluctance motor of the present disclosure has no bearing current compared to the conventional method, and in the case of the conventional rotor permanent magnet (Rotor-PM), there is a strong attractive force between the magnetic field generated by the permanent magnet and the stator core (ferromagnetic material).
- the stator permanent magnet (Stator-PM) of the present disclosure has no attractive force, so disassembly, assembly, and bearing replacement are easy.
- FIG. 1 is a three-dimensional diagram of a switched reluctance electric motor according to an embodiment of the present disclosure.
- Figure 2 is a three-dimensional diagram showing a rotor and a stator included in a switched reluctance electric motor according to an embodiment of the present disclosure.
- Figure 3a is a plan view showing a switched reluctance electric motor according to an embodiment of the present disclosure.
- Figure 3b is a plan view showing an excitation module of a switched reluctance electric motor according to an embodiment of the present disclosure.
- Figure 4 is a plan view showing a switched reluctance motor and coil according to an embodiment of the present disclosure.
- Figure 5 is a plan view showing a switched reluctance motor and the direction of current applied to the motor according to an embodiment of the present disclosure.
- FIG. 6 is a plan view showing a magnetic field formed by an excitation module and a magnet of a switched reluctance motor when no current is applied to the excitation module according to an embodiment of the present disclosure.
- Figure 7 is a plan view showing the magnetic field formed by the rotor excitation module and magnet of the switched reluctance electric motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- Figure 8 is a plan view showing the magnetic field formed by the rotor excitation module and magnet of the switched reluctance electric motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- Figure 9 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- Figure 10 is a three-dimensional diagram of a switched reluctance electric motor in which the rotor is located outside the stator according to an embodiment of the present disclosure.
- Figure 11 is a three-dimensional diagram showing a rotor and a stator included in a switched reluctance electric motor in which the rotor is located outside the stator according to an embodiment of the present disclosure.
- Figure 12 is a plan view showing the magnetic field formed throughout the switched reluctance electric motor whose rotor is located outside the stator when current is applied to the excitation module according to an embodiment of the present disclosure.
- Figure 13 is a three-dimensional diagram of a switched reluctance electric motor consisting of a plurality of stators according to an embodiment of the present disclosure.
- Figure 14 is a three-dimensional diagram showing a rotor and a stator included in a switched reluctance electric motor consisting of a plurality of stators according to an embodiment of the present disclosure.
- Figure 15 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the switched reluctance motor and the excitation module when the permanent magnet module according to an embodiment of the present disclosure includes two permanent magnets.
- Figure 16 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the switched reluctance motor and the excitation module when the permanent magnet module according to an embodiment of the present disclosure includes four permanent magnets.
- Figure 17 shows a switched reluctance motor whose rotor is located outside the stator when a permanent magnet module according to an embodiment of the present disclosure includes two permanent magnets, and when current is applied to the excitation module, it is formed throughout the switched reluctance motor. This is a plan view showing the magnetic field.
- FIG. 18 shows a switched reluctance motor whose rotor is located outside the stator when a permanent magnet module according to an embodiment of the present disclosure includes four permanent magnets, and when current is applied to the excitation module, the entire switched reluctance motor is formed. This is a plan view showing the magnetic field.
- Figure 19 is a conceptual diagram showing a circuit for controlling a switched reluctance motor according to an embodiment of the present disclosure.
- a switched reluctance electric motor includes a stator including a plurality of excitation modules, a rotor that rotates about a rotation axis by magnetically interacting with the stator, and a plurality of permanent magnet modules coupled to the stator. can do.
- the plurality of permanent magnet modules coupled to the stator may include permanent magnets and one or more magnetic path guides coupled to the permanent magnets.
- the permanent magnet module may be located at the center of a coil wound in a switched reluctance motor.
- a rotor-PM motor When a permanent magnet is located in the rotor, a rotor-PM motor generates cogging torque due to the attractive force between the magnetic field generated by the permanent magnet and the stator core (ferromagnetic material).
- the switched reluctance motor places a permanent magnet (Stator-PM) at the center of the coil, the coil winding is an alternate tooth winding, and the magnetic flux generated by the coil winding strengthens the magnetic flux generated by the permanent magnet.
- Stator-PM permanent magnet
- the magnetic path guide of the permanent magnet By arranging it so that the magnetic path guide of the permanent magnet is added, the magnetic field generated by the permanent magnet and the magnetic field generated by the coil wound on the stator of the electric motor can be independently controlled.
- the magnetic flux generated by the permanent magnet is generated in the air gap and rotor, but is formed only inside the stator, suppressing the cogging torque.
- a current is applied to the coil winding, the magnetic flux generated by the applied current is suppressed.
- the electromagnetic force is increased by adding the magnetic flux and the magnetic flux of the permanent magnet, resulting in higher electromagnetic torque and increased efficiency, and despite the presence of a permanent magnet, no induced voltage or cogging torque is generated.
- the term “or” is intended to mean an inclusive “or” and not an exclusive “or.” That is, unless otherwise specified or clear from context, “X utilizes A or B” is intended to mean one of the natural implicit substitutions. That is, either X uses A; X uses B; Or, if X uses both A and B, “X uses A or B” can apply to either of these cases. Additionally, the term “and/or” as used herein should be understood to refer to and include all possible combinations of one or more of the related listed items.
- the term “at least one of A or B” should be interpreted to mean “when it contains only A,” “when it contains only B,” or “when it is a combination of A and B.”
- FIG. 1 is a three-dimensional diagram of a switched reluctance electric motor according to an embodiment of the present disclosure.
- the switched reluctance motor of the present disclosure may include a stator 100 and a rotor 300.
- the rotor 300 may be located inside the stator 100, shares the same rotation axis as the stator 100, and may rotate around the rotation axis through magnetic interaction with the stator.
- a coil to which current is applied may be coupled to the stator 100 to operate a switched reluctance motor.
- the coil may be wound with an alternate tooth wound, but other winding methods may be used without limitation to produce the same effect.
- the stator 100 may include a plurality of permanent magnet modules 110.
- the permanent magnet module 110 is coupled to the stator and may play the role of adjusting the magnetic field generated by the permanent magnet according to the current applied to the coil of the stator.
- the permanent magnet module 110 may include a magnetic path guide connecting the S and N poles of the permanent magnet.
- the magnetic path guide of a permanent magnet has the same principle as the core included in an electric motor, and can guide the magnetic field formed by the permanent magnet to be concentrated only in the area around the permanent magnet.
- the permanent magnet module of the present disclosure may be located at the center of a coil wound on an electric motor.
- the center of the coil may mean the coordinates on a straight line perpendicular to the plane formed by the coil wound on the motor.
- the induced voltage or cogging torque of the electric motor can be suppressed and the power density can be increased to improve the efficiency of the electric motor.
- Figure 2 is a three-dimensional diagram showing a rotor and a stator included in a switched reluctance electric motor according to an embodiment of the present disclosure.
- the rotor 300 may be separated from the stator 100, and the rotor 300 and the stator 100 may include a plurality of protruding poles (teeth) for magnetic interaction.
- Figure 3a is a plan view showing a switched reluctance electric motor according to an embodiment of the present disclosure.
- the switched reluctance motor of the present disclosure may include a stator 100 and a rotor 300.
- the stator 100 may include an excitation module 140, which is a unit including one or more permanent magnet modules 110, and the stator may be composed of a plurality of excitation modules 140 having the same shape.
- the excitation module may be arranged in a symmetrical structure around the rotation axis of the stator.
- a magnetic flux barrier (not shown) may be disposed between each excitation module 140 constituting the stator 100.
- a magnetic flux barrier (not shown) may serve to block mutual interference caused by magnetic fields generated by each excitation module.
- Each excitation module may include a plurality of first salient poles disposed along the circumferential direction of the stator 100 and one or more first slots located between the first salient poles. Additionally, the spacing between each excitation module is the same as the width of the first salient pole, and the width of the first slot may be less than twice the width of the first salient pole.
- the rotor may include a plurality of second salient poles.
- the width of the plurality of second salient poles included in the rotor may be greater than or equal to the width of the first salient pole.
- the stator 100 may include six excitation modules, and each excitation module 140 may include one permanent magnet module 110 and four salient poles.
- the number of salient poles of the stator 100 can be calculated as in [Equation 1].
- S_teeth is the number of salient poles included in the stator
- M_p is the number of salient poles present in one excitation module.
- the number of salient poles, P may represent the number of phases composed of excitation modules with a mutually symmetrical structure, and n may represent an integer.
- the salient pole angle of the stator can be calculated as in [Equation 2].
- S_pa is the angle between the salient poles included in the stator, and at this time, P may mean the number of phases composed of excitation modules with a symmetrical structure, n may mean an integer, and d may mean a predetermined constant.
- the number of salient poles of the rotor can be calculated as in [Equation 3].
- R_p is the number of salient poles included in the rotor
- S pa is the stator salient pole angle
- R_pd can be an integer (for example, 3).
- the stator 100 is composed of six excitation modules and may include 24 salient poles, and in this case, the rotor 300 may include 22 salient poles.
- Figure 3b is a plan view showing an excitation module of a switched reluctance electric motor according to an embodiment of the present disclosure.
- the switched reluctance motor of the present disclosure may include a plurality of excitation modules 140, and each excitation module 140 may include a permanent magnet module and a plurality of salient poles 141.
- the salient poles 141 included in the excitation module 140 may contribute to rotating the rotor through magnetic interaction with the salient poles of the rotor.
- the permanent magnet module 110 of the present disclosure is located at the center of the coil 130 wound on the excitation module of the electric motor and may include one or more permanent magnets and one or more magnetic path guides coupled to the permanent magnets. As shown in FIG. 4, which will be described later, in the present disclosure, the coil 130 is wound via a plurality of first salient poles included in the excitation module, that is, included in the stator, so the permanent magnet module 110 is connected to the first salient poles adjacent to each other. It can be located in between.
- One or more permanent magnets included in the permanent magnet module 110 are magnetized from the S pole to the N pole, and can be arranged so that the direction of magnetization from the S pole to the N pole within the electric motor is perpendicular to the direction of the circumference, An embodiment in which the magnetization direction from the S pole to the N pole of the permanent magnet is arranged perpendicular to the direction of the circumference is shown in FIG. 3b.
- a plurality of permanent magnets may be arranged so that the magnetization direction from the S pole to the N pole coincides with the direction of the circumference.
- each permanent magnet can be viewed as having the same poles facing each other. That is, when one permanent magnet module 110 includes two permanent magnets, each permanent magnet is arranged symmetrically, and the N pole of the permanent magnet on the left is toward the outside of the permanent magnet module, and the N pole of the permanent magnet on the right is toward the outside of the permanent magnet module. The N pole can be placed toward the outside of the permanent magnet module.
- the magnetic path guide included in the permanent magnet module 110 may be a conductor that connects a portion close to the S pole and a portion close to the N pole of the permanent magnet included in the permanent magnet module 110.
- the magnetic path guide included in the permanent magnet module concentrates the magnetic field formed by the permanent magnet included in the permanent magnet module inside the magnetic path guide when no current is applied to the electric motor, while the magnetic path guide included in the permanent magnet module outside the permanent magnet module It can play a role in reducing the magnetic field formed in .
- Figure 4 is a plan view showing a switched reluctance motor and coil according to an embodiment of the present disclosure.
- the switched reluctance motor of the present disclosure includes a stator 100, and a coil 130 to which current is applied to some salient poles of the stator may be wound.
- the coil 130 forms a magnetic field around the rotor according to the basic principles of an electric motor, and may contribute to the rotation of the rotor through magnetic interaction with the rotor.
- the coil 130 wound on the switched reluctance motor may be in the form of an alternate tooth winding, may be in the form of a distributed winding, and may be in the form of a single layer winding. It may be in the form.
- the coil can be wound in other widely known ways through simple design changes, and the form of the coil of the present disclosure is not limited to the winding method exemplified above.
- a permanent magnet module 110 may be placed in the center of the coil 130.
- the coil 130 may be wound to surround the permanent magnet module 110.
- Figure 5 is a plan view showing a switched reluctance motor and the direction of current applied to the motor according to an embodiment of the present disclosure.
- a current may be applied to a coil wound on the stator 100, and when the current 310 applied to the coil flows in a direction coming from a plane, it may be displayed as 'O', and the current 310 applied to the coil may be displayed as 'O'.
- the current 320 flows in the direction of entering the plane, it may be displayed as 'X'.
- a current flows through a coil wound according to Ampere's law, a magnetic field is formed around the coil, and the direction of the magnetic field forms a concentric circle in the plane perpendicular to the current. Also, the direction of the magnetic field is the same as when the screw is turned to the right.
- stator 100 When the coil 130 is wound around the stator 100 as shown in FIG. 4, the stator 100 and the current flowing around the stator may be shown as shown in FIG. 5.
- FIG. 6 is a plan view showing a magnetic field formed by an excitation module and a magnet of a switched reluctance motor when no current is applied to the excitation module according to an embodiment of the present disclosure.
- the permanent magnet module 110 included in the excitation module 140.
- the permanent magnet module 110 may be arranged so that the N pole faces the center of the stator 100 and the S pole faces the outside of the stator 100.
- the magnetic field 400 generated by the permanent magnet is intensively distributed around the permanent magnet by the magnetic path guide of the permanent magnet included in the permanent magnet module 110, and is formed only inside the stator 100. . Accordingly, the rotor 300 away from the permanent magnet module 110 is not affected by the magnetic field of the permanent magnet included in the permanent magnet module 110.
- the rotor 300 may rotate or remain stationary due to inertia, and cogging torque due to an external magnetic field does not occur.
- the magnetic field formed by the permanent magnet always affects the rotor, so there is always a section during the operation of the rotor where cogging torque, which is a torque in the opposite direction to the operation of the rotor, occurs. did.
- the permanent magnet module 110 including a magnetic path guide of a permanent magnet as in the present disclosure, the magnetic field affecting the rotor can be minimized, and thus the generation of cogging torque can be excluded.
- Figure 7 is a plan view showing the magnetic field formed by the rotor excitation module and magnet of the switched reluctance electric motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- the current applied to the coil is such that the direction of the magnetic field induced by the current is around the coil generated by the permanent magnet module 110. It may have the same direction as the magnetic field.
- FIG. 7 the interaction between the magnetic field generated by the current applied to the coil and the magnetic field generated by the permanent magnet module 110 will be described.
- the magnetic field 410 from the permanent magnet interacts with the magnetic field 420 generated by the current and is induced from the salient pole of the stator 100 through the air gap and the salient pole of the rotor 300, and then by the current. It goes around the generated magnetic field 420 and finally enters the S pole. Additionally, when current is applied to the excitation module, the magnetic field generated by the permanent magnet and the current does not invade other excitation modules due to the air gap between the excitation modules constituting the electric motor.
- the switched reluctance motor operates on the principle that torque is formed in the direction that minimizes the inductance of the magnetic circuit, in the case of the present disclosure, when current is applied to the switched reluctance motor, salient poles of the stator 100 and the rotor 300 A torque in the direction in which these are aligned with each other is formed.
- the magnetic field 410 formed by the permanent magnet module at each point and the magnetic field 420 generated by the current are forced from the salient poles of the stator 100 to the air gap due to the repulsive force between the same poles, making the magnetic field 420 permanent in the air gap.
- the magnetic flux generated by the magnet and the magnetic flux generated by the winding are added to increase the strength of the magnetic field. Since the magnitude of the torque generated in the rotor is proportional to the strength of the magnetic field that the rotor is affected by, the effect of increasing the torque of the electric motor occurs.
- the switched reluctance motor of the present disclosure is asymmetric.
- a circuit such as a half bridge.
- a current can be applied to the coil to apply torque in the direction in which the salient poles coincide, that is, the direction of rotation, and at the point when the salient poles of the stator and the salient poles of the rotor coincide.
- the magnetic field affecting the rotor can be minimized and the rotor rotates according to inertia.
- cogging torque which typically occurs in a direction opposite to the direction of rotation in a direction to reduce changes in the magnetic field at the point when the salient poles of the stator and the salient poles of the rotor coincide, may not be generated. Therefore, the electric motor operates more efficiently without being affected by cogging torque.
- Figure 8 is a plan view showing the magnetic field formed by the rotor excitation module and magnet of the switched reluctance electric motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- the switched reluctance motor may be implemented in such a way that the permanent magnet module 110 is arranged such that the N pole faces the outside of the stator 100 and the S pole faces the inside of the stator 100. You can.
- the direction of the current applied to the coil wound on the stator 100 may be in the opposite direction to the embodiment shown in FIG. 7, and the magnetic field 420 generated by the current at each point of the motor is connected to the permanent magnet. The direction may be to strengthen the magnetic field 410 generated by.
- the magnetic field 410 generated by the permanent magnet starts from the N pole and spreads outside the stator, and then is guided toward the rotor along the magnetic field 420 generated by the current, and the salient poles of the rotor and stator It returns to the S pole of the permanent magnet via .
- the electric motor when implemented in this way, the electric motor can operate while excluding the influence of cogging torque, and the effect of increasing the power density, torque, and efficiency of the electric motor occurs.
- Figure 9 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the excitation module according to an embodiment of the present disclosure.
- a switched reluctance motor can be controlled by applying current only to coils wound in some excitation modules.
- the salient poles of the excitation modules included in the stator 100 and the salient poles of the rotor 300 are aligned or close to the current only in the coils of the excitation modules. can be approved. That is, in the case of FIG. 9, current can be applied only to the coils of the excitation modules at 12 o'clock and 6 o'clock directions.
- a rotational torque is formed with respect to the rotor by the magnetic field generated by the permanent magnet module and the magnetic field generated by the current at the 12 o'clock and 6 o'clock directions, and the magnetic path of the permanent magnet is formed in the excitation module in the remaining directions.
- the guide prevents the rotor from being affected by magnetic fields. Therefore, the switched reluctance motor can be controlled to generate torque in the rotation direction to the rotor but not to generate cogging torque for the remaining excitation modules.
- a switched reluctance motor may be implemented in such a way that permanent magnet modules 110 and 120 included in a plurality of excitation modules constituting a stator are alternately arranged.
- the permanent magnet module of the excitation module located at 12 o'clock is arranged so that the N pole faces the inside of the stator and the S pole faces the outside of the stator, and the excitation module located at 12 o'clock
- the permanent magnet module included in the adjacent excitation module may be arranged so that the N pole faces the outside of the stator and the S pole faces the inside of the stator.
- the directions of the magnetic field generated by the current and the magnetic field generated by the permanent magnet are formed in a direction to strengthen each other, and the induced magnetic field generated by the current and the permanent magnet are formed in a direction that reinforces each other.
- the magnetic field of the magnet is forced into the air gap due to the repulsive force between the same poles, and the magnetic field generated by the permanent magnet in the air gap is added to the magnetic field generated by the current, resulting in an effect of increasing the amount of torque.
- Figure 10 is a three-dimensional diagram of a switched reluctance electric motor in which the rotor is located outside the stator according to an embodiment of the present disclosure.
- a switched reluctance electric motor may be implemented in a form in which the rotor 300 is located outside the stator 100.
- the rotor and stator can be arranged in such a way that they share the same rotation axis.
- a magnetic field is generated by the current applied to the permanent magnet module 120 included in the stator 100 and the coil wound on the stator 100, and a torque in the rotation direction is generated in the rotor 300 under the influence of the magnetic field. do.
- the schematic shape of each component is shown in FIG. 11.
- Figure 12 is a plan view showing the magnetic field formed throughout the switched reluctance electric motor whose rotor is located outside the stator when current is applied to the excitation module according to an embodiment of the present disclosure.
- the magnetic force line coming from the N pole of the permanent magnet module included in the excitation module of the stator 100 is generated by the applied current when a current is applied.
- the induced magnetic field generated is formed to forcibly push the poles into the air gap due to the repulsive force between the poles, which is the same as the magnetic field of the permanent magnet, and goes around the rotor pole and back into the S pole. If no current is applied, the stator follows the magnetic path guide of the permanent magnet. It is formed to go directly to the S pole from the inside.
- Figure 13 is a three-dimensional diagram of a switched reluctance electric motor consisting of a plurality of stators according to an embodiment of the present disclosure.
- the switched reluctance motor of the present disclosure may be configured to include not only one stator and one rotor, but a plurality of stators and one rotor.
- the switched reluctance motor of the present disclosure may be implemented to include a first stator 100, a second stator 200, and a rotor 300.
- the switched reluctance motor can be controlled so that the current applied to each stator is different, and the switched reluctance motor can be controlled so that the direction of the torque applied to the rotor by the current applied to each stator is the same. there is.
- Each stator may include a different number of excitation modules, the arrangement of permanent magnet modules included in the excitation modules may be different, and the manner in which the coils are wound may be different.
- a switched reluctance motor When a switched reluctance motor is composed of a plurality of stators and a rotor as shown in FIG. 13, the torque applied to the rotor corresponds to the total torque generated by each stator. Therefore, when a switched reluctance motor is configured to include a plurality of stators, the output of the motor can increase.
- the first stator 100, the second stator 200, and the rotor 300 are separated, an exemplary form of each component is shown in FIG. 14.
- FIG. 15 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the switched reluctance motor and the excitation module when the permanent magnet module according to an embodiment of the present disclosure includes two permanent magnets. .
- the permanent magnet module 111 of the present disclosure may include two permanent magnets whose opposing sides have the same pole. Similar to the embodiment in which the permanent magnet module includes only one permanent magnet, the magnetic field lines coming from the N pole of each permanent magnet constituting the permanent magnet module 111 are the induced magnetic fields generated by the applied current when a current is applied.
- the magnetic field of the permanent magnet is formed to forcibly push the same poles into the air gap through the repulsive force, go around the rotor pole and return to the S pole, and when no current is applied, it flows inside the stator along the magnetic path guide of the permanent magnet module. It is formed to go directly to the S pole.
- Figure 16 is a plan view showing the magnetic field formed throughout the switched reluctance motor when current is applied to the switched reluctance motor and the excitation module when the permanent magnet module according to an embodiment of the present disclosure includes four permanent magnets.
- the permanent magnet module 112 of the present disclosure may include four permanent magnets whose opposite sides have the same pole. Similar to the embodiment in which the permanent magnet module includes only one permanent magnet, the magnetic field lines coming from the N pole of each permanent magnet constituting the permanent magnet module 112 are the induced magnetic fields generated by the applied current when a current is applied. The magnetic field of the permanent magnet is formed to forcibly push the same poles into the air gap through the repulsive force, go around the rotor pole and enter the S pole again. When no current is applied, the magnetic field of the permanent magnet follows the magnetic path guide inside the stator. It is formed to go directly to the S pole.
- the permanent magnet module included in the switched reluctance electric motor of the present disclosure may be implemented as including a plurality of permanent magnets in addition to one permanent magnet, and depending on the size and design purpose of the electric motor, the permanent magnet module included in the permanent magnet module The number of magnets may vary.
- Figure 17 shows a switched reluctance motor whose rotor is located outside the stator when a permanent magnet module according to an embodiment of the present disclosure includes two permanent magnets, and when current is applied to the excitation module, it is formed throughout the switched reluctance motor. This is a plan view showing the magnetic field.
- the permanent magnet modules included in the excitation module of the stator 100 may each include two permanent magnets. When a current is applied, the magnetic field lines coming from the N pole of each permanent magnet
- the magnetic field of the permanent magnet Due to the induced magnetic field generated by the applied current, the magnetic field of the permanent magnet is formed to force the same poles to repel each other, pushing them into the air gap, going around the rotor pole, and then returning to the S pole. If no current is applied, the permanent magnet's magnetic field The magnetic flux is formed to enter the S pole directly inside the stator along the magnetic path guide.
- FIG. 18 shows a switched reluctance motor whose rotor is located outside the stator when a permanent magnet module according to an embodiment of the present disclosure includes four permanent magnets, and when current is applied to the excitation module, the entire switched reluctance motor is formed. This is a plan view showing the magnetic field.
- the permanent magnet modules included in the excitation module of the stator 100 may each include two permanent magnets.
- the magnetic field lines coming from the N pole of each permanent magnet are drawn when a current is applied.
- the induced magnetic field generated by the applied current forces the magnetic field of the permanent magnet into the air gap through a repulsive force between the same poles, causing the rotor to move. It is formed to go around the pole and go back to the S pole, and when no current is applied, the magnetic field of the permanent magnet is formed to go straight from the inside of the stator to the S pole along the magnetic path guide.
- Figure 19 is a conceptual diagram showing a circuit for controlling a switched reluctance motor according to an embodiment of the present disclosure.
- 19 is an exemplary circuit diagram of an asymmetric half-bridge converter for controlling a switched reluctance motor according to an embodiment of the present disclosure.
- Asymmetric half-bridge converters can typically be composed of semiconductor switches (mainly MOSFETs or IGBTs). This switch can serve to control the flow of current and the operation of the converter.
- semiconductor switches mainly MOSFETs or IGBTs.
- the operation of the asymmetric half-bridge converter is largely divided into three modes: excitation mode, freewheeling mode, and demagnetization mode.
- the soft chopping control method operates only one switch and uses current pulsation, It is more advantageous than hard chopping in terms of filter capacitor capacity, noise, and efficiency, and the switching frequency is also lowered.
- the switching frequency When using a fixed applied voltage, the switching frequency further decreases as the inductance increases.
- Current can be applied to the coil of the switched reluctance motor only during a portion of the operating time of the switched reluctance motor. A magnetic field is generated around the coil during a period in which current is applied to the coil, and this magnetic field may interact with the magnetic field generated by the permanent magnet module of the present disclosure to apply torque to the rotor.
- the magnetic field due to the current is not generated around the coil, and the magnetic field generated by the permanent magnet module is also formed only around the permanent magnet module by the magnetic path guide of the permanent magnet. Therefore, the rotor is not affected by the magnetic field, and the cogging torque formed by the magnetic field does not occur during the operation of a typical switched reluctance electric motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Synchronous Machinery (AREA)
Abstract
본 개시는 영구 자석이 포함된 스위치드 릴럭턴스 전동기에 관한 것으로서, 구체적으로 고정자에 영구자석[Stator-PM]과 코일 권선을 배치하고, 코일 권선은 대체치아 권선으로 배치하고, 코일 권선의 자속과 영구자석의 자속 방향은 서로 반대 방향으로 하고, 영구자석의 자기 경로 가이드를 추가하여 코일 권선에 전류가 흐르지 않을 때 공극과 회전자를 통한 영구자석의 자속이 거의 흐르지 않고 고정자 내부로만 순환되어 코깅 토크가 억제되며, 코일 권선에 전류를 인가 할 때 인가된 전류에 의해 생성되는 유도 자속(N극)과 영구자석의 자속(N극)은 같은 극 끼리의 척력 작용으로 강제로 공극으로 밀어 공극에서 영구자석에 의해 생성된 자속과 권선에 의해 생성된 자속이 더해져 전자기력이 증가되어 더 높은 전자기 토크 및 효율이 증가하고 영구자석이 있음에도 불구하고 유도전압 이나 코깅 토크(cogging torque)를 억제하는 복수의 영구자석 모듈을 포함하는 스위치드 릴럭턴스 전동기에 관한 것이다.
Description
본 개시는 영구 자석이 포함된 스위치드 릴럭턴스 전동기에 관한 것으로서, 더욱 상세하게는, 자기 경로 가이드를 활용하여 영구자석에 의해 형성되는 자기 경로를 조절함으로써, 코깅 토크가 발생하지 않도록 하는 한편 전동기의 토크 및 효율이 증가하는, 영구자석을 활용한 스위치드 릴럭턴스 전동기에 관한 것이다.
스위치드 릴럭턴스 전동기(SRM: Switched Reluctance Motor)는 릴럭턴스 토크의 원리로 작동하는 전동기의 일종이다. SRM은 돌극이 있는 회전자 및 집중 권선이 있는 고정자로 구성되고, 전동기 작동에 관련된 브러시 또는 정류자가 없다는 특징이 있다. SRM은 자기 회로가 항상 릴럭턴스를 최소화하는 방향으로 형성된다는 원리를 기반으로 작동하는 바, SRM에서 고정자 코일에 전류가 인가되면 고정자의 돌극에 자속이 설정되고, 회전자의 돌극이 고정자의 돌극과 정렬되어 회전자를 회전시키는 토크가 발생한다. 이 때 토크의 방향은 전동기에 인가된 전류와 회전자의 위치에 따라 달라진다. 스위치드 릴럭턴스 전동기는 구조가 단순하여 높은 회전 속도를 견딜 수 있고 회전자의 손실이 적다는 장점이 있으나, 출력 밀도를 높이는 데 한계가 있으며, 토크 리플(torque ripple)에 의해 발생하는 소음 및 진동으로 인해 사용의 어려움이 존재한다.
코깅 토크는 회전자가 정지한 상태에서 고정자의 돌극이 회전자의 돌극과 정렬되지 않았을 때 전동기에서 생성되는 토크를 의미한다. 이 토크는 회전자와 고정자의 돌극의 상호 작용으로 인해 발생하며 전동기의 진동과 소음을 발생시키는 원인이 될 수 있다.
종래의 영구자석을 포함하는 전동기는 코깅 토크로 발생하는 문제를 최소화하기 위해 회전자 및 고정자의 돌극의 설계를 최적화하거나 고정자의 권선에 적용되는 전류 파형을 제어하는 등 방법이 시도되어 왔다. 그러나 이러한 방법들은 제조 비용을 현저히 증가시키고 코깅 토크를 완전히 없애지 못하는 등 여러 문제가 존재한다.
따라서, 비용이 적은 설계를 통해 코깅 토크를 완전히 제거한 스위치드 릴럭턴스 전동기에 대한 당업계의 수요가 존재한다.
한국 등록특허 1604637호는 양극평형운동을 이용한 시간차 발전기가 부착된 진공 전동기에 대해 개시한다.
본 개시는 코깅 토크가 발생하지 않도록 하는 스위치드 릴럭턴스 전동기를 제공하는 것을 해결 과제로 한다. 예를 들어, 본 개시는, 고정자와 결합된 복수의 영구 자석 모듈을 포함하여 영구자석에 의해 형성되는 자기 경로를 조절함으로써 코깅 토크가 발생하지 않도록 하는 스위치드 릴럭턴스 전동기를 제공하는 것을 해결 과제로 한다.
한편, 본 개시가 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 기술적 과제가 포함될 수 있다
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기가 개시된다. 상기 스위치드 릴럭턴스 전동기는, 복수의 여자(Excitation) 모듈을 포함하는 고정자 및 상기 고정자와 자기적 상호작용함으로써 회전축을 중심으로 회전하는 회전자를 포함하고, 상기 여자 모듈은, 전동기의 코깅 토크(cogging torque)를 억제하는 하나 이상의 영구자석 모듈을 포함할 수 있다.
본 개시의 일 실시예에 있어서, 상기 회전자는, 상기 고정자 내부에서 상기 회전축을 중심으로 회전할 수 있다.
본 개시의 일 실시예에 있어서, 상기 영구자석(Stator-PM) 모듈은 상기 여자 모듈에 권선된 코일(coil)의 중심에 위치하고, 하나 이상의 영구자석 및 상기 영구자석과 결합된 하나 이상의 자기 경로 가이드(Magnetic flux path guide)를 포함할 수 있다.
본 개시의 일 실시예에 있어서, 상기 영구자석 모듈은, 상기 고정자의 원주 방향을 따라 일정 간격으로 배치될 수 있다.
본 개시의 일 실시예에 있어서, 상기 여자 모듈은, 상기 고정자의 원주 방향을 따라 배치된 복수의 제1 돌극; 상기 제1 돌극 사이에 위치한 하나 이상의 제1 슬롯 및 상기 복수의 제1 돌극에 권선된 코일을 포함할 수 있다.
본 개시의 일 실시예에 있어서, 상기 여자 모듈 사이의 간격은 상기 제1 돌극의 폭과 동일하고, 상기 제1 슬롯의 폭은 상기 제1 돌극의 폭의 2배 이하일 수 있다.
본 개시의 일 실시예에 있어서, 상기 회전자는 복수의 제2 돌극을 포함하고, 상기 제2 돌극의 폭은 상기 제1 돌극의 폭 이상일 수 있다.
본 개시의 일 실시예에 있어서, 상기 코일에 인가되는 전류는, 상기 전류에 의해 유도되는 자기장의 방향이 상기 영구자석 모듈에 의해 생성되는 코일 주변의 자기장을 강화하는 방향으로 인가되는 전류일 수 있다.
본 개시의 일 실시예에 있어서, 상기 고정자는, 상기 복수의 여자 모듈 사이의 자속 장벽(flux barrier)을 더 포함할 수 있다.
본 개시의 일 실시예에 있어서, 상기 회전자는, 상기 고정자의 외부에서 상기 회전축을 중심으로 회전할 수 있다.
본 개시의 일 실시예에 있어서, 상기 고정자는, 위상이 다른 복수의 고정자 모듈을 포함하고, 상기 복수의 고정자 모듈은 동일한 회전축 상에 위치할 수 있다.
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따른 전동기 구조가 개시된다. 상기 전동기 구조는, 복수의 여자(Excitation) 모듈을 포함하는 고정자; 상기 고정자와 자기적 상호작용함으로써 회전축을 중심으로 회전하는 회전자를 포함하고, 상기 여자 모듈은 전동기의 코깅 토크(cogging torque)를 억제하는 하나 이상의 영구자석 모듈을 포함할 수 있다
본 개시로 인하여 코깅 토크가 발생하지 않도록 하는 스위치드 릴럭턴스 전동기를 제공할 수 있다. 예를 들어, 본 개시는, 고정자와 결합된 복수의 영구 자석 모듈을 포함하여 고정자 영구자석(Stator-PM)은 자기 경로 가이드(Magnetic Flux Path Guide)에 의해 고정자 내부로만 영구자석의 자속이 형성되어 코깅 토크가 발생하지 않고, 토크와 출력 밀도가 높은 스위치드 릴럭턴스 전동기를 제공할 수 있다.
또한, 본 개시의 스위치드 릴럭턴스 전동기는 고정자에 코일 권선과 영구자석(Stator-PM)을 배치하고,코일 권선은 대체치아 권선으로 배치하고, 영구자석의 자기 경로 가이드를 추가하여 발전 전압이 없어 전동기의 약계자 제어(Field-Weakening Control)시 에너지 소비가 적으며, 외부 자계에 의한 감자 위험이 더 적다.
또한, 본 개시의 스위치드 릴럭턴스 전동기는 종래의 방법과 비교하여 베어링 전류가 없으며, 종래 회전자 영구자석(Rotor-PM)의 경우 영구자석이 만들어 내는 자기장과 고정자 코어(강자성체)사이 강력한 인력 작용으로 분해, 조립 및 베어링 교환이 어려운 것과 비교하여 본 개시의 고정자 영구자석(Stator-PM)은 인력 작용이 없으므로 분해, 조립 및 베어링 교환이 용이하다.
한편, 본 개시의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다.
도 1은 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기의 입체도이다.
도 2는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기에 포함된 회전자와 고정자를 나타낸 입체도이다.
도 3a는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기를 나타낸 평면도이다.
도 3b는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기의 여자 모듈을 나타낸 평면도이다.
도 4는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기 및 코일을 나타낸 평면도이다.
도 5는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기 및 전동기에 인가되는 전류의 방향을 나타낸 평면도이다.
도 6은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되지 않는 경우 스위치드 릴럭턴스 전동기의 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
도 7은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기의 회전자 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
도 8은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기의 회전자 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
도 9는 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 10은 본 개시의 일 실시예에 따른 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기의 입체도이다.
도 11은 본 개시의 일 실시예에 따른 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기에 포함된 회전자와 고정자를 나타낸 입체도이다.
도 12는 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우, 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 13은 본 개시의 일 실시예에 따른 복수의 고정자로 구성된 스위치드 릴럭턴스 전동기의 입체도이다.
도 14는 본 개시의 일 실시예에 따른 복수의 고정자로 구성된 스위치드 릴럭턴스 전동기에 포함된 회전자와 고정자를 나타낸 입체도이다.
도 15는 본 개시의 일 실시예에 따른 영구자석 모듈이 2개의 영구자석을 포함하는 경우 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 16은 본 개시의 일 실시예에 따른 영구자석 모듈이 4개의 영구자석을 포함하는 경우 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 17은 본 개시의 일 실시예에 따른 영구자석 모듈이 2개의 영구자석을 포함하는 경우 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 18은 본 개시의 일 실시예에 따른 영구자석 모듈이 4개의 영구자석을 포함하는 경우 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
도 19는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기를 제어하기 위한 회로를 나타낸 개념도이다.
이하, 첨부된 도면들을 참조하여 본 개시에 따른 '영구 자석이 포함된 스위치드 릴럭턴스 전동기'를 상세하게 설명한다. 설명하는 실시예들은, 본 개시의 기술 사상을 통상의 기술자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 개시가 한정되지 않는다. 또한, 첨부된 도면에 표현된 사항들은 본 개시의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.
한편, 이하에서 표현되는 각 구성부는 본 개시를 구현하기 위한 예일 뿐이다. 따라서, 본 개시의 다른 구현에서는 본 개시의 사상 및 범위를 벗어나지 않는 범위에서 다른 구성부가 사용될 수 있다.
또한, 어떤 구성요소들을 '포함'한다는 표현은, 개방형의 표현으로서 해당 구성요소들이 존재하는 것을 단순히 지칭할 뿐이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 된다.
본 개시에 따른 스위치드 릴럭턴스 전동기는, 복수의 여자(Excitation) 모듈을 포함하는 고정자, 상기 고정자와 자기적 상호작용함으로써 회전축을 중심으로 회전하는 회전자 및 고정자와 결합된 복수의 영구자석 모듈을 포함할 수 있다. 고정자와 결합된 복수의 영구자석 모듈은 영구자석 및 영구자석과 결합되는 하나 이상의 자기 경로 가이드를 포함할 수 있다. 영구자석 모듈은 스위치드 릴럭턴스 전동기에 권선된 코일(coil)의 중심에 위치할 수 있다.
영구자석이 회전자에 있을 경우 회전자 영구자석(Rotor-PM) 전동기는 영구자석이 만들어 내는 자기장과 고정자 코어(강자성체) 사이 인력 작용으로 즉 코깅 토크(cogging torque)가 발생하였다.
본 개시에 따른 스위치드 릴럭턴스 전동기는 영구자석(Stator-PM)을 코일의 중심에 배치하고, 코일 권선은 대체 치아 권산으로 하고, 코일 권선에 의해 생성되는 자속이 영구자석에 의해 생성되는 자속을 강화하도록 배치하고, 영구자석의 자기 경로 가이드를 추가하여 영구자석이 만들어 내는 자기장과 전동기의 고정자에 권선된 코일이 만들어내는 자기장을 독립적으로 제어할 수 있다. 결과적으로 코일 권선에 전류가 흐르지 않을 때 공극과 회전자에는 영구자석의 자속이 거의 생성되지 않고 고정자 내부로만 형성되어 코깅 토크가 억제되며, 코일 권선에 전류를 인가하는 경우 인가된 전류에 의해 생성되는 자속과 영구자석의 자속 자속이 더해져 전자기력이 증가되어 더 높은 전자기 토크 및 효율이 증가하고 영구자석이 있음에도 불구하고 유도전압 이나 코깅 토크가 발생하지 않는 효과가 있다.
이하, 도 1 내지 도 14를 참조하여, 본 개시의 실시예들이 도면을 참조하여 설명된다. 본 명세서에서, 다양한 설명들이 본 개시의 이해를 제공하기 위해서 제시된다. 그러나, 이러한 실시예들은 이러한 구체적인 설명 없이도 실행될 수 있음이 명백하다.
더불어, 용어 "또는"은 배타적 "또는"이 아니라 내포적 "또는"을 의미하는 것으로 의도된다. 즉, 달리 특정되지 않거나 문맥상 명확하지 않은 경우에, "X는 A 또는 B를 이용한다"는 자연적인 내포적 치환 중 하나를 의미하는 것으로 의도된다. 즉, X가 A를 이용하거나; X가 B를 이용하거나; 또는 X가 A 및 B 모두를 이용하는 경우, "X는 A 또는 B를 이용한다"가 이들 경우들 어느 것으로도 적용될 수 있다. 또한, 본 명세서에 사용된 "및/또는"이라는 용어는 열거된 관련 아이템들 중 하나 이상의 아이템의 가능한 모든 조합을 지칭하고 포함하는 것으로 이해되어야 한다.
또한, "포함한다" 및/또는 "포함하는"이라는 용어는, 해당 특징 및/또는 구성요소가 존재함을 의미하는 것으로 이해되어야 한다. 다만, "포함한다" 및/또는 "포함하는"이라는 용어는, 하나 이상의 다른 특징, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다. 또한, 달리 특정되지 않거나 단수 형태를 지시하는 것으로 문맥상 명확하지 않은 경우에, 본 명세서와 청구범위에서 단수는 일반적으로 "하나 또는 그 이상"을 의미하는 것으로 해석되어야 한다.
그리고, “A 또는 B 중 적어도 하나”이라는 용어는, “A만을 포함하는 경우”, “B만을 포함하는 경우”, “A 와 B의 구성으로 조합된 경우”를 의미하는 것으로 해석되어야 한다.
제시된 실시예들에 대한 설명은 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 개시를 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 개시는 여기에 제시된 실시예 들로 한정되는 것이 아니다. 본 개시는 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.
도 1은 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기의 입체도이다.
*본 개시의 스위치드 릴럭턴스 전동기는 고정자(100)와 회전자(300)를 포함할 수 있다. 회전자(300)는 고정자(100)내부에 위치할 수 있으며, 고정자(100)와 동일한 회전축을 공유하고, 고정자와 자기적 상호작용을 통해 회전축을 중심으로 회전할 수 있다.
도 1에는 도시되지 않았으나, 스위치드 릴럭턴스 전동기의 동작을 위해 고정자(100)에 전류가 인가된 코일이 결합될 수 있다. 본 개시에서 코일은 대체 치 권선(Alternate Teeth wound)으로 권선될 수 있으나, 동일한 효과를 발생시키기 위한 다른 권선 방법이 제한 없이 사용될 수 있다.
고정자(100)는 복수의 영구자석 모듈(110)을 포함할 수 있다. 영구자석 모듈(110)은 고정자와 결합되어, 고정자의 코일에 인가되는 전류에 따라 영구자석에 의해 생성되는 자기장을 조정하는 역할을 수행할 수 있다. 영구 자석 모듈(110)은 영구 자석의 S극과 N극을 연결하는 자기 경로 가이드를 포함할 수 있다. 영구 자석의 자기 경로 가이드는 전동기에 포함되는 철심(core)과 같은 원리로, 영구자석에 의해 형성되는 자기장을 영구자석 주위의 영역에만 집중되도록 유도할 수 있다.
본 개시의 영구자석 모듈은 전동기에 권선된 코일의 중심에 위치할 수 있다. 이 때 코일의 중심이란, 전동기에 권선된 코일이 형성하는 평면(plane)에 대하여, 평면과 수직을 이루는 직선 상의 좌표를 의미할 수 있다.
본 개시의 전동기에 영구자석 모듈과 자기경로 가이드를 추가 배치함으로써 전동기의 유도전압 이나 코깅 토크를 억제하고, 출력 밀도를 증가시켜 전동기의 효율을 향상시킬 수 있다.
도 2는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기에 포함된 회전자와 고정자를 나타낸 입체도이다.
회전자(300)는 고정자(100)와 분리될 수 있으며, 회전자(300) 및 고정자(100)는 자기적 상호작용을 위한 복수의 돌극(teeth)을 포함할 수 있다.
도 3a는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기를 나타낸 평면도이다.
본 개시의 스위치드 릴럭턴스 전동기는 고정자(100)와 회전자(300)를 포함할 수 있다. 고정자(100)는 하나 이상의 영구자석 모듈(110)을 포함하는 단위인 여자 모듈(140)을 포함할 수 있고, 고정자는 동일한 형태를 가진 복수의 여자 모듈(140)로 구성될 수 있다. 여자 모듈은 고정자의 회전축을 중심으로 대칭 구조로 배열될 수 있다.
고정자(100) 내에서, 고정자(100)를 구성하는 각각의 여자 모듈(140) 사이 자속 장벽(Flux Barrier)(미도시)가 배치될 수 있다. 자속 장벽(미도시)은 각각의 여자 모듈이 발생시키는 자기장에 의한 상호 간섭을 차단하는 역할을 수행할 수 있다.
각각의 여자 모듈은 고정자(100)의 원주 방향을 따라 배치된 복수의 제1 돌극 및 제1 돌극 사이에 위치한 하나 이상의 제1 슬롯을 포함할 수 있다. 또한 각 여자 모듈 사이의 간격은 제1 돌극의 폭과 동일하고, 제1 슬롯의 폭은 제1 돌극의 폭의 2배 이하일 수 있다.
또한, 본 개시에서 회전자는 복수의 제2 돌극을 포함할 수 있다. 회전자에 포함된 복수의 제2 돌극의 폭은 제1 돌극의 폭 이상일 수 있다.
도 3a에 도시된 실시예의 경우, 고정자(100)는 6개의 여자 모듈을 포함할 수 있으며, 각각의 여자 모듈(140)은 하나의 영구자석 모듈(110) 및 4개의 돌극을 포함할 수 있다.
본 개시에서, 고정자(100)의 돌극의 수는 [수학식 1]과 같이 계산될 수 있다.
이 때, S_teeth는 고정자에 포함된 돌극의 수이고, M_p는 하나의 여자 모듈에 존재하는
돌극의 수, P는 서로 대칭 구조인 여자 모듈로 구성된 상(phase)의 수, n은 정수를 의미할 수 있다.
또한, 본 개시에서 고정자의 돌극 각도는 [수학식 2]와 같이 계산될 수 있다.
이 때 S_pa는 고정자에 포함된 돌극 간 각도이고, 이 때 P는 서로 대칭 구조인 여자 모듈로 구성된 상(phase)의 수, n은 정수, d는 미리 결정된 상수를 의미할 수 있다.
또한, 본 개시에서 회전자의 돌극 수는 [수학식 3]과 같이 계산될 수 있다.
이 때 R_p는 회전자에 포함된 돌극의 수이고, S pa는 고정자 돌극 각도, R_pd는 정수(예를 들어, 3)를 의미할 수 있다.
예를 들어, 도 2에 도시된 실시예의 경우 고정자(100)는 6개의 여자 모듈로 구성되어 24개의 돌극을 포함할 수 있으며, 이 경우 회전자(300)는 22개의 돌극을 포함할 수 있다.
도 3b는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기의 여자 모듈을 나타낸 평면도이다.
상술하였듯, 본 개시의 스위치드 릴럭턴스 전동기는 복수의 여자 모듈(140)을 포함할 수 있고, 각각의 여자 모듈(140)은 영구자석 모듈 및 복수의 돌극(141)을 포함할 수 있다. 여자 모듈(140)에 포함된 돌극(141)은 회전자의 돌극과 자기적 상호작용을 통해, 회전자를 회전시키는 데 기여할 수 있다.
본 개시의 영구 자석 모듈(110)은 전동기의 여자 모듈에 권선된 코일(130)의 중심에 위치하고, 하나 이상의 영구 자석 및 영구 자석과 결합된 하나 이상의 자기 경로 가이드를 포함할 수 있다. 후술할 도 4와 같이 본 개시에서 코일(130)은 여자 모듈에 포함된, 즉 고정자에 포함된 복수의 제1 돌극을 매개로 권선되므로, 영구 자석 모듈(110)은 서로 이웃한 제1 돌극의 사이에 위치할 수 있다.
영구 자석 모듈(110)에 포함된 하나 이상의 영구자석은 S극에서 N극으로 자화되는 바, 전동기 내에서 S극에서 N극으로 자화되는 방향이 원주의 방향과 수직이 되도록 배치될 수 있는 바, 영구 자석의 S극에서 N극으로 자화되는 방향이 원주의 방향과 수직으로 배치되어 있는 실시예가 도 3b에 도시되어 있다.
이와 달리 영구 자석 모듈(110)내부에서 복수의 영구자석이 S극에서 N극으로 자화되는 방향이 원주의 방향과 일치하도록 배치될 수 있다. 이 때 각각의 영구자석은 같은 극이 서로 마주보는 형태로 볼 수 있다. 즉 하나의 영구 자석 모듈(110)이 두 개의 영구 자석을 포함할 때, 각각의 영구자석은 대칭적으로 배치되어 있으며, 왼쪽의 영구자석의 N극은 영구자석 모듈 외부 방향, 오른쪽의 영구자석의 N극은 영구자석 모듈 외부 방향으로 배치될 수 있다.
영구 자석 모듈(110)에 포함된 자기 경로 가이드는 영구 자석 모듈(110)에 포함된 영구 자석의 S극에 가까운 부분과 N극에 가까운 부분을 연결하는 전도체일 수 있다. 결과적으로, 본 개시에서 영구 자석 모듈에 포함된 자기 경로 가이드는 전동기에 전류가 인가되지 않을 때 영구 자석 모듈에 포함된 영구 자석이 형성하는 자기장을 자기 경로 가이드 내부에 집중시키는 한편, 영구 자석 모듈 외부에 형성되는 자기장을 감소시키는 역할을 할 수 있다.
도 4는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기 및 코일을 나타낸 평면도이다.
본 개시의 스위치드 릴럭턴스 전동기는 고정자(100)를 포함하고, 고정자의 일부 돌극에 전류가 인가되는 코일(130)이 권선될 수 있다. 코일(130)은 전동기의 기본적인 원리에 의해, 회전자의 주변에 자기장을 형성하고, 회전자와 자기적 상호작용을 통해 회전자의 회전에 기여할 수 있다.
본 개시에서, 스위치드 릴럭턴스 전동기에 권선된 코일(130)은 대체 돌극 권선(Alternate Teeth Winding)의 형태일 수 있으며, 분포 권선(Distributed Winding)의 형태일 수 있으며, 1층 권선(Single Layer)의 형태일 수 있다. 그러나 간단한 설계 변경을 통해 널리 알려진 다른 방식으로 코일을 권선할 수 있다는 것은 통상의 기술자에게 자명하며, 본 개시의 코일의 형태는 위에 예시로 든 권선 방법에 한정되지 아니한다.
본 개시의 일 실시예에서 코일(130)의 중앙에는 영구 자석 모듈(110)이 배치될 수 있다. 이 경우 코일(130)은 영구 자석 모듈(110)을 감싸는 형태로 권선될 수 있다.
도 5는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기 및 전동기에 인가되는 전류의 방향을 나타낸 평면도이다.
본 개시에서, 고정자(100)에 권선된 코일에 전류가 인가될 수 있는 바, 코일에 인가된 전류(310)가 평면에서 나오는 방향으로 흐르는 경우 'O'로 표시될 수 있고, 코일에서 인가된 전류(320)가 평면으로 들어가는 방향으로 흐르는 경우 'X'로 표시될 수 있다. 앙페르의 법칙(Ampere's law)에 의해 권선된 코일에 전류가 흐르는 경우 코일 주위에 자기장이 형성되며, 자기장의 방향은 전류에 수직한 면 안에서 동심원의 모양을 이룬다. 또한 자기장의 방향은 나사못을 오른쪽으로 돌릴 때의 방향과 같다.
도 4에 도시된 것과 같이 고정자(100)에 코일(130)이 권선된 경우, 고정자(100) 및 고정자 주변에 흐르는 전류는 도 5와 같이 도시될 수 있다.
도 6은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되지 않는 경우 스위치드 릴럭턴스 전동기의 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
*
여자 모듈에 전류가 인가되지 않는 경우, 여자 모듈에 권선된 코일에 전류가 흐르지 않게 된다. 따라서 코일에 흐르는 전류(310 및 320)에 의해 형성되는 자기장 또한 소멸한다. 이 경우 스위치드 릴럭턴스 전동기 전체에서 자기장을 형성하는 요소는 여자 모듈(140)에 포함된 영구 자석 모듈(110)만이 존재한다. 영구 자석 모듈(110)은 N극이 고정자(100)의 중심을 향하고 S극이 고정자(100)의 바깥을 향하도록 배치될 수 있다. 이 때 영구 자석에 의해 생성되는 자기장(400)은, 영구 자석 모듈(110)에 포함된 영구 자석의 자기 경로 가이드에 의해 영구 자석의 주변에 집중적으로 분포하게 되고, 고정자(100)내부에서만 형성된다. 따라서 영구 자석 모듈(110)과 떨어져 있는 회전자(300)는 영구 자석 모듈(110)에 포함된 영구 자석의 자기장의 영향을 받지 않게 된다.
이와 같이 여자 모듈에 전류가 인가되지 않는 경우 회전자(300)는 관성에 의해 회전하거나 정지해있을 수 있고, 외부의 자기장에 의한 코깅 토크가 발생하지 않게 된다. 종래 영구자석을 포함하는 전동기의 경우 영구자석에 의해 형성되는 자기장이 회전자에 항상 영향을 미치고 있으므로, 회전자의 동작 중 회전자의 동작과 반대 방향의 토크인 코깅 토크가 발생하는 구간이 반드시 존재하였다. 본 개시와 같이 영구 자석의 자기 경로 가이드를 포함하는 영구 자석 모듈(110)을 도입하는 경우, 회전자에 영향을 미치는 자기장을 최소화할 수 있고, 따라서 코깅 토크의 발생을 배제할 수 있다.
도 7은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기의 회전자 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
여자 모듈에 전류가 인가되는 경우, 즉 여자 모듈에 포함된 코일에 전류가 인가되는 경우, 코일에 인가되는 전류는 전류에 의해 유도되는 자기장의 방향이 영구 자석 모듈(110)에 의해 생성되는 코일 주변의 자기장과 같은 방향을 가질 수 있다. 이하 도 7을 참조하여 코일에 인가되는 전류에 의해 생성된 자기장과 영구 자석 모듈(110)에 의해 생성되는 자기장의 상호작용을 설명한다.
여자 모듈에 전류가 인가되어 평면으로 들어가는 방향의 전류(310)와 평면에서 나오는 방향의 전류(320)가 형성되는 경우, 평면으로 들어가는 전류(310)를 중심으로 시계 방향의 자기장이 형성되고 평면에서 나오는 방향의 전류(320)를 중심으로 반시계 방향의 자기장이 형성된다. 도 7과 같이 영구 자석 모듈(110)의 N극이 고정자(100)의 중심을 향하고 S극이 고정자(100)의 바깥을 향하도록 배치된 경우, 영구 자석 모듈(110)의 N극에서 나오는 자기장(410)은 자기 경로 가이드를 따라 바로 S극으로 들어가지 않고 전류에 의해 생성된 자기장(420)과 상호작용한다. 영구자석에서 나온 자기장(410)은 전류에 의해 생성된 자기장(420)과 상호작용하여 고정자(100)의 돌극에서 공극(Airgap) 및 회전자(300)의 돌극을 경유하도록 유도된 후 전류에 의해 생성된 자기장(420) 주위를 돌아 최종적으로 S극으로 들어가게 된다. 또한 여자 모듈에 전류가 인가되는 경우, 영구 자석 및 전류에 의해 생성된 자기장은 전동기를 구성하는 여자 모듈 사이의 에어 갭(air gap)에 의해 다른 여자 모듈을 침범하지 않는다.
스위치드 릴럭턴스 전동기는 자기 회로의 인덕턴스가 최소화되는 방향으로 토크가 형성되는 것을 원리로 하여 동작하므로, 본 개시의 경우 스위치드 릴럭턴스 전동기에 전류가 인가되면 고정자(100)와 회전자(300)의 돌극이 서로 정렬되는 방향의 토크가 형성된다.
이 때 각각의 지점에서 영구 자석 모듈에 의해 형성되는 자기장(410)과 전류에 의해 생성된 자기장(420)은 같은 극끼리의 척력 작용으로 강제로 고정자(100)의 돌극에서 공극으로 밀어 공극에서 영구자석에 의해 생성된 자속과 권선에 의해 생성된 자속이 더해져 자기장의 세기가 증가한다. 회전자에 발생하는 토크의 크기는 회전자가 영향을 받는 자기장의 세기에 비례하므로, 전동기의 토크가 증가하는 효과가 발생한다.
도 6과 연관지어 설명하면, 본 개시의 스위치드 릴럭턴스 전동기는 비대칭
하프 브릿지(half bridge)와 같은 회로에 의해 제어되어 동작할 수 있다. 구체적으로 고정자의 돌극과 회전자의 돌극이 일치하지 않는 시점에 코일에 전류를 인가하여 돌극이 일치하는 방향 즉 회전 방향으로 토크를 가할 수 있고, 고정자의 돌극과 회전자의 돌극이 일치하는 시점에 코일에 전류를 인가하지 않음으로써 회전자에 영향을 미치는 자기장을 최소화하여 회전자가 관성에 따라 회전하게 할 수 있다. 이 경우 통상적으로 고정자의 돌극과 회전자의 돌극이 일치하는 시점에 자기장의 변화를 줄이려는 방향으로 회전 방향과 반대 방향으로 발생하는 코깅 토크를 발생시키지 않을 수 있다. 따라서 전동기가 코깅 토크의 영향을 받지 않고 더 효율적으로 동작하는 효과가 발생한다.
도 8은 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기의 회전자 여자 모듈 및 자석에 의해 형성되는 자기장을 나타낸 평면도이다.
본 개시의 일 실시예에 따르면, 스위치드 릴럭턴스 전동기는 영구 자석 모듈(110)은 N극이 고정자(100)의 바깥을 향하고 S극이 고정자(100)의 안쪽을 향하도록 배치되는 방식으로 구현될 수 있다. 이 경우 고정자(100)에 권선된 코일에 인가되는 전류의 방향은 도 7에 도시된 실시예와 반대 방향일 수 있으며, 전동기의 각 포인트에서 전류에 의해 생성된 자기장(420))은 영구자석에 의해 생성된 자기장(410)을 강화하는 방향일 수 있다. 구체적으로, 영구자석에 의해 생성된 자기장(410)은 N극에서 출발하여 고정자의 바깥에서 퍼진 다음, 전류에 의해 생성된 자기장(420)을 따라 회전자 방향으로 유도되고, 회전자와 고정자의 돌극을 경유하여 다시 영구 자석의 S극으로 돌아온다.
동일한 원리로, 이렇게 구현된 경우 코깅 토크의 영향을 배제하면서 전동기가 동작할 수 있고, 전동기의 출력밀도, 토크, 효율이 높아지는 효과가 발생한다.
도 9는 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
본 개시의 일 실시예에서, 일부의 여자 모듈에 권선된 코일에만 전류를 인가함으로써 스위치드 릴럭턴스 전동기가 제어될 수 있다. 예를 들어, 스위치드 릴럭턴스 전동기를 구동하는 특정 시점에서, 고정자(100)에 포함된 여자 모듈 중 여자 모듈의 돌극과 회전자(300)의 돌극이 정렬되거나 가까운 위치에 있는 여자 모듈의 코일에만 전류를 인가할 수 있다. 즉 도 9의 경우 12시 방향 및 6시 방향의 여자 모듈의 코일에만 전류를 인가할 수 있다. 이 경우 12시 방향 및 6시 방향에서는 영구 자석 모듈에 의해 생성된 자기장 및 전류에 의해 생성된 자기장에 의해 회전자에 대하여 회전 방향의 토크가 형성되고, 나머지 방향의 여자 모듈에서는 영구 자석의 자기 경로 가이드에 의해 회전자가 자기장의 영향을 받지 않게 된다. 따라서 회전자에 회전 방향의 토크를 생성하되 나머지 여자 모듈에 대하여는 코깅 토크가 발생하지 않도록 스위치드 릴럭턴스 전동기를 제어할 수 있다.
본 개시의 일 실시예에서, 스위치드 릴럭턴스 전동기는 고정자를 구성하는 복수의 여자 모듈에 포함된 영구 자석 모듈(110 및 120)이 교대로 배치되는 방식으로 구현될 수 있다. 예를 들어, 고정자를 구성하는 여자 모듈 중 12시에 위치하는 여자 모듈의 영구 자석 모듈은 N극이 고정자 안쪽을 향하고 S극이 고정자 바깥쪽을 향하도록 배치되고, 12시에 위치하는 여자 모듈과 인접한 여자 모듈에 포함된 영구 자석 모듈은 N극이 고정자 바깥쪽을 향하고 S극이 고정자 안쪽을 향하도록 배치될 수 있다. 영구 자석 모듈의 방향이 교대로 배치되는 경우, 코일에 전류가 인가되는 시점 및 전류가 인가되지 않는 시점의 자기장이 도 9에 도시되어 있다.
해당 실시예에서도 상술하였던 실시예와 같이 전류가 인가되는 경우 전류에 의해 생성된 자기장과 영구자석에 의해 생성된 자기장의 방향은 서로를 강화하는 방향으로 형성되고, 전류에 의해 생성되는 유도 자기장과 영구자석의 자기장은 같은 극끼리의 척력 작용으로 강제로 공극으로 밀어 공극에서 영구자석에 의해 생성된 자기장과 전류에 의해 생성된 자기장이 더해져, 토크의 크기가 증가하는 효과가 발생한다.
도 10은 본 개시의 일 실시예에 따른 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기의 입체도이다.
본 개시의 일 실시예에서, 스위치드 릴럭턴스 전동기는 회전자(300)가 고정자(100)의 외부에 위치하는 형태로 구현될 수 있다.
이 경우 회전자와 고정자는 동일한 회전축을 공유하는 방식으로 배치될 수 있다. 고정자(100)에 포함된 영구 자석 모듈(120) 및 고정자(100)에 권선된 코일에 인가된 전류에 의해 자기장이 발생하고, 자기장의 영향을 받아 회전자(300)에 회전 방향의 토크가 발생한다. 회전자(300)와 고정자(100)가 분리되는 경우 각각의 구성요소의 개략적인 형태가 도 11에 도시되어 있다.
도 12는 본 개시의 일 실시예에 따른 여자 모듈에 전류가 인가되는 경우, 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
회전자(300)가 고정자(100)의 내부에 존재하는 실시예와 마찬가지로, 고정자(100)의 여자 모듈에 포함된 영구 자석 모듈의 N극에서 나오는 자기력선은 전류가 인가되는 경우 인가된 전류에 의해 생성되는 유도 자기장은 영구자석의 자기장과 같은 극끼리 척력 작용으로 강제로 공극으로 밀어 회전자 극을 돌아 다시 S극으로 들어가도록 형성되고, 전류가 인가되지 않는 경우 영구 자석의 자기 경로 가이드를 따라 고정자 내부에서 바로 S극으로 들어가도록 형성된다.
도 13은 본 개시의 일 실시예에 따른 복수의 고정자로 구성된 스위치드 릴럭턴스 전동기의 입체도이다.
본 개시의 스위치드 릴럭턴스 전동기는 하나의 고정자와 하나의 회전자만을 포함하는 것이 아닌, 복수의 고정자와 하나의 회전자를 포함하도록 구성될 수 있다. 예를 들어, 본 개시의 스위치드 릴럭턴스 전동기는 제1 고정자(100), 제2 고정자(200) 및 회전자(300)를 포함하도록 구현될 수 있다. 이 경우, 각 고정자에 인가되는 전류가 서로 다르도록 스위치드 릴럭턴스 전동기가 제어될 수 있고, 각 고정자에 인가된 전류에 의해 회전자에 가해지는 토크의 방향이 동일하도록 스위치드 릴럭턴스 전동기가 제어될 수 있다.
각각의 고정자는 서로 다른 수의 여자 모듈을 포함할 수 있고, 여자 모듈이 포함하는 영구 자석 모듈의 배치 방법이 다를 수 있고, 코일이 권선되는 방식이 서로 다를 수 있다.
도 13과 같이 스위치드 릴럭턴스 전동기가 복수의 고정자 및 회전자로 구성되는 경우, 회전자에 가해지는 토크는 각 고정자가 발생시키는 토크의 총합에 해당한다. 따라서 복수의 고정자를 포함하도록 스위치드 릴럭턴스 전동기를 구성하는 경우 전동기의 출력이 상승할 수 있다. 제1 고정자(100), 제2 고정자(200) 및 회전자(300)를 분리한 경우 각 구성요소의 예시적인 형태가 도 14에 도시되어 있다.
*도 15는 본 개시의 일 실시예에 따른 영구자석 모듈이 2개의 영구자석을 포함하는 경우 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
본 개시의 영구 자석 모듈(111)은 마주보는 면이 동일한 극인 두 개의 영구 자석을 포함할 수 있다. 영구 자석 모듈이 하나의 영구 자석만을 포함하는 실시예와 마찬가지로, 영구 자석 모듈(111)을 구성하는 각각의 영구 자석의 N극에서 나오는 자기력선은 전류가 인가되는 경우 인가된 전류에 의해 생성되는 유도 자기장에 의해 영구자석의 자기장은 같은 극끼리 척력 작용으로 강제로 공극으로 밀어 회전자 극을 돌아 다시 S극으로 들어가도록 형성되고, 전류가 인가되지 않는 경우 영구 자석 모듈의 자기 경로 가이드를 따라 고정자 내부에서 바로 S극으로 들어가도록 형성된다.
도 16은 본 개시의 일 실시예에 따른 영구자석 모듈이 4개의 영구자석을 포함하는 경우 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
본 개시의 영구 자석 모듈(112)은 마주보는 면이 동일한 극인 네 개의 영구 자석을 포함할 수 있다. 영구 자석 모듈이 하나의 영구 자석만을 포함하는 실시예와 마찬가지로, 영구 자석 모듈(112)을 구성하는 각각의 영구 자석의 N극에서 나오는 자기력선은 전류가 인가되는 경우 인가된 전류에 의해 생성되는 유도 자기장에 의해 영구자석의 자기장은 같은 극끼리 척력 작용으로 강제로 공극으로 밀어 회전자 극을 돌아 다시 S극으로 들어가도록 형성되고, 전류가 인가되지 않는 경우 영구 자석의 자기장은 자기 경로 가이드를 따라 고정자 내부에서 바로 S극으로 들어가도록 형성된다.
이와 같이, 본 개시의 스위치드 릴럭턴스 전동기에 포함된 영구 자석 모듈은 하나의 영구 자석 이외에도 복수의 영구 자석을 포함하는 것으로 구현될 수 있으며, 전동기의 크기 및 설계목적에 따라 영구 자석 모듈에 포함된 영구 자석의 수가 달라질 수 있다.
도 17은 본 개시의 일 실시예에 따른 영구자석 모듈이 2개의 영구자석을 포함하는 경우 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
회전자(300)가 고정자(100)의 내부에 존재하는 실시예와 마찬가지로, 고정자(100)의 여자 모듈에 포함된 영구 자석 모듈은 각각 2개의 영구 자석을 포함할 수 있다. 각각의 영구 자석의 N극에서 나오는 자기력선은 전류가 인가되는 경우
인가된 전류에 의해 생성되는 유도 자기장에 의해 영구자석의 자기장은 같은 극끼리 척력 작용으로 강제로 공극으로 밀어 회전자 극을 돌아 다시 S극으로 들어가도록 형성되고, 전류가 인가되지 않는 경우 영구 자석의 자속은 자기 경로 가이드를 따라 고정자 내부에서 바로 S극으로 들어가도록 형성된다.
도 18은 본 개시의 일 실시예에 따른 영구자석 모듈이 4개의 영구자석을 포함하는 경우 회전자가 고정자 외부에 위치하는 스위치드 릴럭턴스 전동기 및 여자 모듈에 전류가 인가될 때 스위치드 릴럭턴스 전동기 전체에 형성되는 자기장을 나타낸 평면도이다.
회전자(300)가 고정자(100)의 내부에 존재하는 실시예와 마찬가지로, 고정자(100)의 여자 모듈에 포함된 영구 자석 모듈은 각각 2개의 영구 자석을 포함할 수 있다. 각각의 영구 자석의 N극에서 나오는 자기력선은 전류가 인가되는 경우 전류가 인가되는 경우 인가된 전류에 의해 생성되는 유도 자기장에 의해 영구자석의 자기장은 같은 극끼리 척력 작용으로 강제로 공극으로 밀어 회전자 극을 돌아 다시 S극으로 들어가도록 형성되고, 전류가 인가되지 않는 경우 영구 자석의 자기장은 자기 경로 가이드를 따라 고정자 내부에서 바로 S극으로 들어가도록 형성된다.
도 19는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기를 제어하기 위한 회로를 나타낸 개념도이다.
도 19는 본 개시의 일 실시예에 따른 스위치드 릴럭턴스 전동기를 제어하기 위한 비대칭 하프 브릿지 컨버터(Asymmetric Half-bridge converter)의 예시적인 회로도이다.
비대칭 하프 브릿지 컨버터는 일반적으로 반도체 스위치(주로 MOSFET 또는 IGBT)로 구성될 수 있다. 이 스위치는 전류의 흐름을 제어하고 변환기의 작동을 제어하는 역할을 할 수 있다.
본 개시의 일 실시예에서, 비대칭 하프 브릿지 컨버터는 비대칭 브리지컨버터의 동작은 크게 여자모드, 프리휠링모드, 감자모드 3가지 모드로 구분되며, 소프트 초핑제어방식은 한 개 스위치만 동작하며 전류맥동, 필터커패시터용량, 소음 및 효율의 측면에서 하드초핑에 비해 더욱 유리하고 스위칭 주파수도 낮아지게 된다. 고정된 인가전압을 사용하는 경우 인덕턴스가 증가함에 따라 스위칭 주파수는 더욱 감소하게 된다. 스위치드 릴럭턴스 전동기의 작동 시간 중 일부분의 구간에서만 스위치드 릴럭턴스 전동기의 코일에 전류가 인가되도록 할 수 있다. 코일에 전류가 인가되는 구간 동안 코일 주위로 자기장이 생성되고, 이 자기장이 본 개시의 영구 자석 모듈에 의해 생성되는 자기장과 상호작용하여 회전자에 토크를 가할 수 있다.
전류가 인가되지 않는 구간에서, 코일 주위에 전류에 의한 자기장이 생성되지 않고 영구 자석 모듈에 의해 생성되는 자기장 또한 영구 자석의 자기 경로 가이드에 의해 영구 자석 모듈 주변부에서만 형성된다. 따라서 회전자는 자기장에 의한 영향을 받지 않고, 통상적인 스위치드 릴럭턴스 전동기의 동작 중 자기장에 의해 형성되는 코깅 토크가 발생하지 않는 효과가 발생한다.
제시된 실시예들에 대한 설명은 임의의 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 개시를 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 개시는 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.
상기와 같이 발명의 실시를 위한 최선의 형태에서 관련 내용을 기술하였다.
Claims (12)
- 복수의 여자(Excitation) 모듈을 포함하는 고정자; 및상기 고정자와 자기적 상호작용함으로써 회전축을 중심으로 회전하는 회전자;를 포함하고,상기 여자 모듈은,전동기의 코깅 토크(cogging torque)를 억제하는 하나 이상의 영구자석 모듈;을 포함하는,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서,상기 회전자는,상기 고정자 내부에서 상기 회전축을 중심으로 회전하는,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서,상기 영구자석 모듈은 상기 여자 모듈에 권선된 코일(coil)의 중심에 위치하고,하나 이상의 영구자석; 및상기 영구자석과 결합된 하나 이상의 자기 경로 가이드;를 포함하는,스위치드 릴럭턴스 전동기.
- 제 3 항에 있어서,상기 하나 이상의 영구자석 모듈은,상기 고정자의 원주 방향을 따라 일정 간격으로 배치되는,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서.상기 여자 모듈은,상기 고정자의 원주 방향을 따라 배치된 복수의 제1 돌극;상기 제1 돌극 사이에 위치한 하나 이상의 제1 슬롯; 및상기 복수의 제1 돌극에 권선된 코일;을 포함하는,스위치드 릴럭턴스 전동기.
- 제 5 항에 있어서,상기 여자 모듈 사이의 간격은 상기 제1 돌극의 폭과 동일하고,상기 제1 슬롯의 폭은 상기 제1 돌극의 폭의 2배 이하인,스위치드 릴럭턴스 전동기.
- 제 5 항에 있어서,상기 회전자는 복수의 제2 돌극을 포함하고,상기 제2 돌극의 폭은 상기 제1 돌극의 폭 이상인,스위치드 릴럭턴스 전동기.
- 제 5 항에 있어서,상기 코일에 인가되는 전류는, 상기 전류에 의해 유도되는 자기장의 방향이 상기 영구자석 모듈에 의해 생성되는 코일 주변의 자기장을 강화하는 방향으로 인가되는 전류인,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서,상기 고정자는,상기 복수의 여자 모듈 사이의 자속 장벽(flux barrier)을 더 포함하는,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서,상기 회전자는,상기 고정자의 외부에서 상기 회전축을 중심으로 회전하는,스위치드 릴럭턴스 전동기.
- 제 1 항에 있어서,상기 고정자는,위상이 다른 복수의 고정자 모듈을 포함하고,상기 복수의 고정자 모듈은 동일한 회전축 상에 위치하는,스위치드 릴럭턴스 전동기.
- 복수의 여자(Excitation) 모듈을 포함하는 고정자; 및상기 고정자와 자기적 상호작용함으로써 회전축을 중심으로 회전하는 회전자;를 포함하고,상기 여자 모듈은,전동기의 코깅 토크(cogging torque)를 억제하는 하나 이상의 영구자석 모듈;을 포함하는,전동기 구조.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220131993 | 2022-10-14 | ||
KR10-2022-0131993 | 2022-10-14 | ||
KR10-2023-0135220 | 2023-10-11 | ||
KR1020230135220A KR20240052671A (ko) | 2022-10-14 | 2023-10-11 | 영구 자석이 포함된 스위치드 릴럭턴스 전동기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024080774A1 true WO2024080774A1 (ko) | 2024-04-18 |
Family
ID=90670048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/015704 WO2024080774A1 (ko) | 2022-10-14 | 2023-10-12 | 영구 자석이 포함된 스위치드 릴럭턴스 전동기 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024080774A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004229404A (ja) * | 2003-01-22 | 2004-08-12 | Genesis:Kk | リラクタンスモータおよびリラクタンスモータ用ステータの磁石 |
JP2004236369A (ja) * | 2003-01-28 | 2004-08-19 | Mitsuba Corp | スイッチトリラクタンスモータ |
WO2008119055A1 (en) * | 2007-03-27 | 2008-10-02 | Qm Power, Inc. | Permanent magnet electro-mechanical device providing motor/generator functions |
JP2011259633A (ja) * | 2010-06-10 | 2011-12-22 | Ibaraki Univ | リラクタンス発電機 |
US20220006335A1 (en) * | 2019-02-08 | 2022-01-06 | Emf Innovations Pte. Ltd. | Stator, a motor and a vehicle having the same and a method of manufacturing the stator |
-
2023
- 2023-10-12 WO PCT/KR2023/015704 patent/WO2024080774A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004229404A (ja) * | 2003-01-22 | 2004-08-12 | Genesis:Kk | リラクタンスモータおよびリラクタンスモータ用ステータの磁石 |
JP2004236369A (ja) * | 2003-01-28 | 2004-08-19 | Mitsuba Corp | スイッチトリラクタンスモータ |
WO2008119055A1 (en) * | 2007-03-27 | 2008-10-02 | Qm Power, Inc. | Permanent magnet electro-mechanical device providing motor/generator functions |
JP2011259633A (ja) * | 2010-06-10 | 2011-12-22 | Ibaraki Univ | リラクタンス発電機 |
US20220006335A1 (en) * | 2019-02-08 | 2022-01-06 | Emf Innovations Pte. Ltd. | Stator, a motor and a vehicle having the same and a method of manufacturing the stator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013147550A1 (ko) | 3결선 구조의 스테이터, 이를 이용한 bldc 모터 및 그의 구동방법 | |
AU677672B2 (en) | Method of torque notch minimization for quasi square wave back emf permanent magnet synchronous machines with voltage source drive | |
WO2012026685A2 (ko) | 선형 전동기 | |
DE69504391D1 (de) | Flussgeregelte, permanentmagnetische, dynamoelektrische Maschine | |
WO2017078431A1 (en) | Motor | |
WO2018169203A1 (ko) | 가변자속 모터 | |
CA2051752A1 (en) | Rotor lamination for an ac permanent magnet synchronous motor | |
WO2013085231A1 (ko) | 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터 | |
WO2017123013A1 (ko) | 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기 | |
WO2017003033A1 (ko) | 외륜 회전자형 스위치드 릴럭턴스 모터 | |
WO2016010361A1 (ko) | 스위치드 릴럭턴스 모터 | |
EP0502831A1 (en) | Improvements to three-phase brushless motors with half-wave control | |
WO2017204425A1 (ko) | 비균일 자극 길이를 가지는 영구자석 전기기기 | |
WO2024080774A1 (ko) | 영구 자석이 포함된 스위치드 릴럭턴스 전동기 | |
KR910017709A (ko) | 2고정자 유도 동기 전동기 | |
WO2022114389A1 (ko) | 복식 제어장치를 구비한 이중 공극형 표면 영구자석 동기모터 | |
WO2019045280A1 (ko) | 로터 및 이를 포함하는 모터 | |
EP3711141A1 (en) | Motor | |
CA1105988A (en) | Synchronous machine drive apparatus | |
WO2014121466A1 (zh) | 盘式三相无刷永磁直流电机 | |
WO2020149626A1 (ko) | 로터 및 이를 포함하는 모터 | |
WO2010076934A1 (ko) | 쌍코어 구조를 이용한 변압기 | |
WO2022231153A1 (ko) | 전동기 | |
WO2020145538A1 (ko) | 모터 | |
WO2022114388A1 (ko) | 비자성 차단부재를 구비한 이중 공극형 표면 영구자석 동기모터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23877697 Country of ref document: EP Kind code of ref document: A1 |